1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/cpu.h>
18 #include <asm/system.h>
19 #include <asm/apic.h>
20 #include <asm/syscalls.h>
21 #include <asm/idle.h>
22 #include <asm/uaccess.h>
23 #include <asm/i387.h>
24 #include <asm/debugreg.h>
25 
26 struct kmem_cache *task_xstate_cachep;
27 EXPORT_SYMBOL_GPL(task_xstate_cachep);
28 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)29 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
30 {
31 	int ret;
32 
33 	*dst = *src;
34 	if (fpu_allocated(&src->thread.fpu)) {
35 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
36 		ret = fpu_alloc(&dst->thread.fpu);
37 		if (ret)
38 			return ret;
39 		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
40 	}
41 	return 0;
42 }
43 
free_thread_xstate(struct task_struct * tsk)44 void free_thread_xstate(struct task_struct *tsk)
45 {
46 	fpu_free(&tsk->thread.fpu);
47 }
48 
free_thread_info(struct thread_info * ti)49 void free_thread_info(struct thread_info *ti)
50 {
51 	free_thread_xstate(ti->task);
52 	free_pages((unsigned long)ti, THREAD_ORDER);
53 }
54 
arch_task_cache_init(void)55 void arch_task_cache_init(void)
56 {
57         task_xstate_cachep =
58         	kmem_cache_create("task_xstate", xstate_size,
59 				  __alignof__(union thread_xstate),
60 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
61 }
62 
63 /*
64  * Free current thread data structures etc..
65  */
exit_thread(void)66 void exit_thread(void)
67 {
68 	struct task_struct *me = current;
69 	struct thread_struct *t = &me->thread;
70 	unsigned long *bp = t->io_bitmap_ptr;
71 
72 	if (bp) {
73 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
74 
75 		t->io_bitmap_ptr = NULL;
76 		clear_thread_flag(TIF_IO_BITMAP);
77 		/*
78 		 * Careful, clear this in the TSS too:
79 		 */
80 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
81 		t->io_bitmap_max = 0;
82 		put_cpu();
83 		kfree(bp);
84 	}
85 }
86 
show_regs(struct pt_regs * regs)87 void show_regs(struct pt_regs *regs)
88 {
89 	show_registers(regs);
90 	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
91 }
92 
show_regs_common(void)93 void show_regs_common(void)
94 {
95 	const char *vendor, *product, *board;
96 
97 	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
98 	if (!vendor)
99 		vendor = "";
100 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
101 	if (!product)
102 		product = "";
103 
104 	/* Board Name is optional */
105 	board = dmi_get_system_info(DMI_BOARD_NAME);
106 
107 	printk(KERN_CONT "\n");
108 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
109 		current->pid, current->comm, print_tainted(),
110 		init_utsname()->release,
111 		(int)strcspn(init_utsname()->version, " "),
112 		init_utsname()->version);
113 	printk(KERN_CONT " %s %s", vendor, product);
114 	if (board)
115 		printk(KERN_CONT "/%s", board);
116 	printk(KERN_CONT "\n");
117 }
118 
flush_thread(void)119 void flush_thread(void)
120 {
121 	struct task_struct *tsk = current;
122 
123 	flush_ptrace_hw_breakpoint(tsk);
124 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
125 	/*
126 	 * Forget coprocessor state..
127 	 */
128 	tsk->fpu_counter = 0;
129 	clear_fpu(tsk);
130 	clear_used_math();
131 }
132 
hard_disable_TSC(void)133 static void hard_disable_TSC(void)
134 {
135 	write_cr4(read_cr4() | X86_CR4_TSD);
136 }
137 
disable_TSC(void)138 void disable_TSC(void)
139 {
140 	preempt_disable();
141 	if (!test_and_set_thread_flag(TIF_NOTSC))
142 		/*
143 		 * Must flip the CPU state synchronously with
144 		 * TIF_NOTSC in the current running context.
145 		 */
146 		hard_disable_TSC();
147 	preempt_enable();
148 }
149 
hard_enable_TSC(void)150 static void hard_enable_TSC(void)
151 {
152 	write_cr4(read_cr4() & ~X86_CR4_TSD);
153 }
154 
enable_TSC(void)155 static void enable_TSC(void)
156 {
157 	preempt_disable();
158 	if (test_and_clear_thread_flag(TIF_NOTSC))
159 		/*
160 		 * Must flip the CPU state synchronously with
161 		 * TIF_NOTSC in the current running context.
162 		 */
163 		hard_enable_TSC();
164 	preempt_enable();
165 }
166 
get_tsc_mode(unsigned long adr)167 int get_tsc_mode(unsigned long adr)
168 {
169 	unsigned int val;
170 
171 	if (test_thread_flag(TIF_NOTSC))
172 		val = PR_TSC_SIGSEGV;
173 	else
174 		val = PR_TSC_ENABLE;
175 
176 	return put_user(val, (unsigned int __user *)adr);
177 }
178 
set_tsc_mode(unsigned int val)179 int set_tsc_mode(unsigned int val)
180 {
181 	if (val == PR_TSC_SIGSEGV)
182 		disable_TSC();
183 	else if (val == PR_TSC_ENABLE)
184 		enable_TSC();
185 	else
186 		return -EINVAL;
187 
188 	return 0;
189 }
190 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p,struct tss_struct * tss)191 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
192 		      struct tss_struct *tss)
193 {
194 	struct thread_struct *prev, *next;
195 
196 	prev = &prev_p->thread;
197 	next = &next_p->thread;
198 
199 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
200 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
201 		unsigned long debugctl = get_debugctlmsr();
202 
203 		debugctl &= ~DEBUGCTLMSR_BTF;
204 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
205 			debugctl |= DEBUGCTLMSR_BTF;
206 
207 		update_debugctlmsr(debugctl);
208 	}
209 
210 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
211 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
212 		/* prev and next are different */
213 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
214 			hard_disable_TSC();
215 		else
216 			hard_enable_TSC();
217 	}
218 
219 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
220 		/*
221 		 * Copy the relevant range of the IO bitmap.
222 		 * Normally this is 128 bytes or less:
223 		 */
224 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
225 		       max(prev->io_bitmap_max, next->io_bitmap_max));
226 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
227 		/*
228 		 * Clear any possible leftover bits:
229 		 */
230 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
231 	}
232 	propagate_user_return_notify(prev_p, next_p);
233 }
234 
sys_fork(struct pt_regs * regs)235 int sys_fork(struct pt_regs *regs)
236 {
237 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
238 }
239 
240 /*
241  * This is trivial, and on the face of it looks like it
242  * could equally well be done in user mode.
243  *
244  * Not so, for quite unobvious reasons - register pressure.
245  * In user mode vfork() cannot have a stack frame, and if
246  * done by calling the "clone()" system call directly, you
247  * do not have enough call-clobbered registers to hold all
248  * the information you need.
249  */
sys_vfork(struct pt_regs * regs)250 int sys_vfork(struct pt_regs *regs)
251 {
252 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
253 		       NULL, NULL);
254 }
255 
256 long
sys_clone(unsigned long clone_flags,unsigned long newsp,void __user * parent_tid,void __user * child_tid,struct pt_regs * regs)257 sys_clone(unsigned long clone_flags, unsigned long newsp,
258 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
259 {
260 	if (!newsp)
261 		newsp = regs->sp;
262 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
263 }
264 
265 /*
266  * This gets run with %si containing the
267  * function to call, and %di containing
268  * the "args".
269  */
270 extern void kernel_thread_helper(void);
271 
272 /*
273  * Create a kernel thread
274  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)275 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
276 {
277 	struct pt_regs regs;
278 
279 	memset(&regs, 0, sizeof(regs));
280 
281 	regs.si = (unsigned long) fn;
282 	regs.di = (unsigned long) arg;
283 
284 #ifdef CONFIG_X86_32
285 	regs.ds = __USER_DS;
286 	regs.es = __USER_DS;
287 	regs.fs = __KERNEL_PERCPU;
288 	regs.gs = __KERNEL_STACK_CANARY;
289 #else
290 	regs.ss = __KERNEL_DS;
291 #endif
292 
293 	regs.orig_ax = -1;
294 	regs.ip = (unsigned long) kernel_thread_helper;
295 	regs.cs = __KERNEL_CS | get_kernel_rpl();
296 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
297 
298 	/* Ok, create the new process.. */
299 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
300 }
301 EXPORT_SYMBOL(kernel_thread);
302 
303 /*
304  * sys_execve() executes a new program.
305  */
sys_execve(const char __user * name,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)306 long sys_execve(const char __user *name,
307 		const char __user *const __user *argv,
308 		const char __user *const __user *envp, struct pt_regs *regs)
309 {
310 	long error;
311 	char *filename;
312 
313 	filename = getname(name);
314 	error = PTR_ERR(filename);
315 	if (IS_ERR(filename))
316 		return error;
317 	error = do_execve(filename, argv, envp, regs);
318 
319 #ifdef CONFIG_X86_32
320 	if (error == 0) {
321 		/* Make sure we don't return using sysenter.. */
322                 set_thread_flag(TIF_IRET);
323         }
324 #endif
325 
326 	putname(filename);
327 	return error;
328 }
329 
330 /*
331  * Idle related variables and functions
332  */
333 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
334 EXPORT_SYMBOL(boot_option_idle_override);
335 
336 /*
337  * Powermanagement idle function, if any..
338  */
339 void (*pm_idle)(void);
340 #ifdef CONFIG_APM_MODULE
341 EXPORT_SYMBOL(pm_idle);
342 #endif
343 
344 #ifdef CONFIG_X86_32
345 /*
346  * This halt magic was a workaround for ancient floppy DMA
347  * wreckage. It should be safe to remove.
348  */
349 static int hlt_counter;
disable_hlt(void)350 void disable_hlt(void)
351 {
352 	hlt_counter++;
353 }
354 EXPORT_SYMBOL(disable_hlt);
355 
enable_hlt(void)356 void enable_hlt(void)
357 {
358 	hlt_counter--;
359 }
360 EXPORT_SYMBOL(enable_hlt);
361 
hlt_use_halt(void)362 static inline int hlt_use_halt(void)
363 {
364 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
365 }
366 #else
hlt_use_halt(void)367 static inline int hlt_use_halt(void)
368 {
369 	return 1;
370 }
371 #endif
372 
373 /*
374  * We use this if we don't have any better
375  * idle routine..
376  */
default_idle(void)377 void default_idle(void)
378 {
379 	if (hlt_use_halt()) {
380 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
381 		trace_cpu_idle(1, smp_processor_id());
382 		current_thread_info()->status &= ~TS_POLLING;
383 		/*
384 		 * TS_POLLING-cleared state must be visible before we
385 		 * test NEED_RESCHED:
386 		 */
387 		smp_mb();
388 
389 		if (!need_resched())
390 			safe_halt();	/* enables interrupts racelessly */
391 		else
392 			local_irq_enable();
393 		current_thread_info()->status |= TS_POLLING;
394 		trace_power_end(smp_processor_id());
395 		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
396 	} else {
397 		local_irq_enable();
398 		/* loop is done by the caller */
399 		cpu_relax();
400 	}
401 }
402 #ifdef CONFIG_APM_MODULE
403 EXPORT_SYMBOL(default_idle);
404 #endif
405 
set_pm_idle_to_default(void)406 bool set_pm_idle_to_default(void)
407 {
408 	bool ret = !!pm_idle;
409 
410 	pm_idle = default_idle;
411 
412 	return ret;
413 }
stop_this_cpu(void * dummy)414 void stop_this_cpu(void *dummy)
415 {
416 	local_irq_disable();
417 	/*
418 	 * Remove this CPU:
419 	 */
420 	set_cpu_online(smp_processor_id(), false);
421 	disable_local_APIC();
422 
423 	for (;;) {
424 		if (hlt_works(smp_processor_id()))
425 			halt();
426 	}
427 }
428 
do_nothing(void * unused)429 static void do_nothing(void *unused)
430 {
431 }
432 
433 /*
434  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
435  * pm_idle and update to new pm_idle value. Required while changing pm_idle
436  * handler on SMP systems.
437  *
438  * Caller must have changed pm_idle to the new value before the call. Old
439  * pm_idle value will not be used by any CPU after the return of this function.
440  */
cpu_idle_wait(void)441 void cpu_idle_wait(void)
442 {
443 	smp_mb();
444 	/* kick all the CPUs so that they exit out of pm_idle */
445 	smp_call_function(do_nothing, NULL, 1);
446 }
447 EXPORT_SYMBOL_GPL(cpu_idle_wait);
448 
449 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
mwait_idle(void)450 static void mwait_idle(void)
451 {
452 	if (!need_resched()) {
453 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
454 		trace_cpu_idle(1, smp_processor_id());
455 		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
456 			clflush((void *)&current_thread_info()->flags);
457 
458 		__monitor((void *)&current_thread_info()->flags, 0, 0);
459 		smp_mb();
460 		if (!need_resched())
461 			__sti_mwait(0, 0);
462 		else
463 			local_irq_enable();
464 		trace_power_end(smp_processor_id());
465 		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
466 	} else
467 		local_irq_enable();
468 }
469 
470 /*
471  * On SMP it's slightly faster (but much more power-consuming!)
472  * to poll the ->work.need_resched flag instead of waiting for the
473  * cross-CPU IPI to arrive. Use this option with caution.
474  */
poll_idle(void)475 static void poll_idle(void)
476 {
477 	trace_power_start(POWER_CSTATE, 0, smp_processor_id());
478 	trace_cpu_idle(0, smp_processor_id());
479 	local_irq_enable();
480 	while (!need_resched())
481 		cpu_relax();
482 	trace_power_end(smp_processor_id());
483 	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
484 }
485 
486 /*
487  * mwait selection logic:
488  *
489  * It depends on the CPU. For AMD CPUs that support MWAIT this is
490  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
491  * then depend on a clock divisor and current Pstate of the core. If
492  * all cores of a processor are in halt state (C1) the processor can
493  * enter the C1E (C1 enhanced) state. If mwait is used this will never
494  * happen.
495  *
496  * idle=mwait overrides this decision and forces the usage of mwait.
497  */
498 
499 #define MWAIT_INFO			0x05
500 #define MWAIT_ECX_EXTENDED_INFO		0x01
501 #define MWAIT_EDX_C1			0xf0
502 
mwait_usable(const struct cpuinfo_x86 * c)503 int mwait_usable(const struct cpuinfo_x86 *c)
504 {
505 	u32 eax, ebx, ecx, edx;
506 
507 	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
508 		return 1;
509 
510 	if (c->cpuid_level < MWAIT_INFO)
511 		return 0;
512 
513 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
514 	/* Check, whether EDX has extended info about MWAIT */
515 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
516 		return 1;
517 
518 	/*
519 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
520 	 * C1  supports MWAIT
521 	 */
522 	return (edx & MWAIT_EDX_C1);
523 }
524 
525 bool amd_e400_c1e_detected;
526 EXPORT_SYMBOL(amd_e400_c1e_detected);
527 
528 static cpumask_var_t amd_e400_c1e_mask;
529 
amd_e400_remove_cpu(int cpu)530 void amd_e400_remove_cpu(int cpu)
531 {
532 	if (amd_e400_c1e_mask != NULL)
533 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
534 }
535 
536 /*
537  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
538  * pending message MSR. If we detect C1E, then we handle it the same
539  * way as C3 power states (local apic timer and TSC stop)
540  */
amd_e400_idle(void)541 static void amd_e400_idle(void)
542 {
543 	if (need_resched())
544 		return;
545 
546 	if (!amd_e400_c1e_detected) {
547 		u32 lo, hi;
548 
549 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
550 
551 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
552 			amd_e400_c1e_detected = true;
553 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
554 				mark_tsc_unstable("TSC halt in AMD C1E");
555 			printk(KERN_INFO "System has AMD C1E enabled\n");
556 		}
557 	}
558 
559 	if (amd_e400_c1e_detected) {
560 		int cpu = smp_processor_id();
561 
562 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
563 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
564 			/*
565 			 * Force broadcast so ACPI can not interfere.
566 			 */
567 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
568 					   &cpu);
569 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
570 			       cpu);
571 		}
572 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
573 
574 		default_idle();
575 
576 		/*
577 		 * The switch back from broadcast mode needs to be
578 		 * called with interrupts disabled.
579 		 */
580 		 local_irq_disable();
581 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
582 		 local_irq_enable();
583 	} else
584 		default_idle();
585 }
586 
select_idle_routine(const struct cpuinfo_x86 * c)587 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
588 {
589 #ifdef CONFIG_SMP
590 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
591 		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
592 			" performance may degrade.\n");
593 	}
594 #endif
595 	if (pm_idle)
596 		return;
597 
598 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
599 		/*
600 		 * One CPU supports mwait => All CPUs supports mwait
601 		 */
602 		printk(KERN_INFO "using mwait in idle threads.\n");
603 		pm_idle = mwait_idle;
604 	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
605 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
606 		printk(KERN_INFO "using AMD E400 aware idle routine\n");
607 		pm_idle = amd_e400_idle;
608 	} else
609 		pm_idle = default_idle;
610 }
611 
init_amd_e400_c1e_mask(void)612 void __init init_amd_e400_c1e_mask(void)
613 {
614 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
615 	if (pm_idle == amd_e400_idle)
616 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
617 }
618 
idle_setup(char * str)619 static int __init idle_setup(char *str)
620 {
621 	if (!str)
622 		return -EINVAL;
623 
624 	if (!strcmp(str, "poll")) {
625 		printk("using polling idle threads.\n");
626 		pm_idle = poll_idle;
627 		boot_option_idle_override = IDLE_POLL;
628 	} else if (!strcmp(str, "mwait")) {
629 		boot_option_idle_override = IDLE_FORCE_MWAIT;
630 		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
631 	} else if (!strcmp(str, "halt")) {
632 		/*
633 		 * When the boot option of idle=halt is added, halt is
634 		 * forced to be used for CPU idle. In such case CPU C2/C3
635 		 * won't be used again.
636 		 * To continue to load the CPU idle driver, don't touch
637 		 * the boot_option_idle_override.
638 		 */
639 		pm_idle = default_idle;
640 		boot_option_idle_override = IDLE_HALT;
641 	} else if (!strcmp(str, "nomwait")) {
642 		/*
643 		 * If the boot option of "idle=nomwait" is added,
644 		 * it means that mwait will be disabled for CPU C2/C3
645 		 * states. In such case it won't touch the variable
646 		 * of boot_option_idle_override.
647 		 */
648 		boot_option_idle_override = IDLE_NOMWAIT;
649 	} else
650 		return -1;
651 
652 	return 0;
653 }
654 early_param("idle", idle_setup);
655 
arch_align_stack(unsigned long sp)656 unsigned long arch_align_stack(unsigned long sp)
657 {
658 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
659 		sp -= get_random_int() % 8192;
660 	return sp & ~0xf;
661 }
662 
arch_randomize_brk(struct mm_struct * mm)663 unsigned long arch_randomize_brk(struct mm_struct *mm)
664 {
665 	unsigned long range_end = mm->brk + 0x02000000;
666 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
667 }
668 
669