1 #include <linux/perf_event.h>
2 #include <linux/export.h>
3 #include <linux/types.h>
4 #include <linux/init.h>
5 #include <linux/slab.h>
6 #include <asm/apicdef.h>
7 
8 #include "perf_event.h"
9 
10 static __initconst const u64 amd_hw_cache_event_ids
11 				[PERF_COUNT_HW_CACHE_MAX]
12 				[PERF_COUNT_HW_CACHE_OP_MAX]
13 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
14 {
15  [ C(L1D) ] = {
16 	[ C(OP_READ) ] = {
17 		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
18 		[ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
19 	},
20 	[ C(OP_WRITE) ] = {
21 		[ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
22 		[ C(RESULT_MISS)   ] = 0,
23 	},
24 	[ C(OP_PREFETCH) ] = {
25 		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
26 		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
27 	},
28  },
29  [ C(L1I ) ] = {
30 	[ C(OP_READ) ] = {
31 		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
32 		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
33 	},
34 	[ C(OP_WRITE) ] = {
35 		[ C(RESULT_ACCESS) ] = -1,
36 		[ C(RESULT_MISS)   ] = -1,
37 	},
38 	[ C(OP_PREFETCH) ] = {
39 		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
40 		[ C(RESULT_MISS)   ] = 0,
41 	},
42  },
43  [ C(LL  ) ] = {
44 	[ C(OP_READ) ] = {
45 		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
46 		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
47 	},
48 	[ C(OP_WRITE) ] = {
49 		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
50 		[ C(RESULT_MISS)   ] = 0,
51 	},
52 	[ C(OP_PREFETCH) ] = {
53 		[ C(RESULT_ACCESS) ] = 0,
54 		[ C(RESULT_MISS)   ] = 0,
55 	},
56  },
57  [ C(DTLB) ] = {
58 	[ C(OP_READ) ] = {
59 		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
60 		[ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
61 	},
62 	[ C(OP_WRITE) ] = {
63 		[ C(RESULT_ACCESS) ] = 0,
64 		[ C(RESULT_MISS)   ] = 0,
65 	},
66 	[ C(OP_PREFETCH) ] = {
67 		[ C(RESULT_ACCESS) ] = 0,
68 		[ C(RESULT_MISS)   ] = 0,
69 	},
70  },
71  [ C(ITLB) ] = {
72 	[ C(OP_READ) ] = {
73 		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
74 		[ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
75 	},
76 	[ C(OP_WRITE) ] = {
77 		[ C(RESULT_ACCESS) ] = -1,
78 		[ C(RESULT_MISS)   ] = -1,
79 	},
80 	[ C(OP_PREFETCH) ] = {
81 		[ C(RESULT_ACCESS) ] = -1,
82 		[ C(RESULT_MISS)   ] = -1,
83 	},
84  },
85  [ C(BPU ) ] = {
86 	[ C(OP_READ) ] = {
87 		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
88 		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
89 	},
90 	[ C(OP_WRITE) ] = {
91 		[ C(RESULT_ACCESS) ] = -1,
92 		[ C(RESULT_MISS)   ] = -1,
93 	},
94 	[ C(OP_PREFETCH) ] = {
95 		[ C(RESULT_ACCESS) ] = -1,
96 		[ C(RESULT_MISS)   ] = -1,
97 	},
98  },
99  [ C(NODE) ] = {
100 	[ C(OP_READ) ] = {
101 		[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
102 		[ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
103 	},
104 	[ C(OP_WRITE) ] = {
105 		[ C(RESULT_ACCESS) ] = -1,
106 		[ C(RESULT_MISS)   ] = -1,
107 	},
108 	[ C(OP_PREFETCH) ] = {
109 		[ C(RESULT_ACCESS) ] = -1,
110 		[ C(RESULT_MISS)   ] = -1,
111 	},
112  },
113 };
114 
115 /*
116  * AMD Performance Monitor K7 and later.
117  */
118 static const u64 amd_perfmon_event_map[] =
119 {
120   [PERF_COUNT_HW_CPU_CYCLES]			= 0x0076,
121   [PERF_COUNT_HW_INSTRUCTIONS]			= 0x00c0,
122   [PERF_COUNT_HW_CACHE_REFERENCES]		= 0x0080,
123   [PERF_COUNT_HW_CACHE_MISSES]			= 0x0081,
124   [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]		= 0x00c2,
125   [PERF_COUNT_HW_BRANCH_MISSES]			= 0x00c3,
126   [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00d0, /* "Decoder empty" event */
127   [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x00d1, /* "Dispatch stalls" event */
128 };
129 
amd_pmu_event_map(int hw_event)130 static u64 amd_pmu_event_map(int hw_event)
131 {
132 	return amd_perfmon_event_map[hw_event];
133 }
134 
amd_pmu_hw_config(struct perf_event * event)135 static int amd_pmu_hw_config(struct perf_event *event)
136 {
137 	int ret = x86_pmu_hw_config(event);
138 
139 	if (ret)
140 		return ret;
141 
142 	if (event->attr.exclude_host && event->attr.exclude_guest)
143 		/*
144 		 * When HO == GO == 1 the hardware treats that as GO == HO == 0
145 		 * and will count in both modes. We don't want to count in that
146 		 * case so we emulate no-counting by setting US = OS = 0.
147 		 */
148 		event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
149 				      ARCH_PERFMON_EVENTSEL_OS);
150 	else if (event->attr.exclude_host)
151 		event->hw.config |= AMD_PERFMON_EVENTSEL_GUESTONLY;
152 	else if (event->attr.exclude_guest)
153 		event->hw.config |= AMD_PERFMON_EVENTSEL_HOSTONLY;
154 
155 	if (event->attr.type != PERF_TYPE_RAW)
156 		return 0;
157 
158 	event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
159 
160 	return 0;
161 }
162 
163 /*
164  * AMD64 events are detected based on their event codes.
165  */
amd_get_event_code(struct hw_perf_event * hwc)166 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
167 {
168 	return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
169 }
170 
amd_is_nb_event(struct hw_perf_event * hwc)171 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
172 {
173 	return (hwc->config & 0xe0) == 0xe0;
174 }
175 
amd_has_nb(struct cpu_hw_events * cpuc)176 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
177 {
178 	struct amd_nb *nb = cpuc->amd_nb;
179 
180 	return nb && nb->nb_id != -1;
181 }
182 
amd_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)183 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
184 				      struct perf_event *event)
185 {
186 	struct hw_perf_event *hwc = &event->hw;
187 	struct amd_nb *nb = cpuc->amd_nb;
188 	int i;
189 
190 	/*
191 	 * only care about NB events
192 	 */
193 	if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
194 		return;
195 
196 	/*
197 	 * need to scan whole list because event may not have
198 	 * been assigned during scheduling
199 	 *
200 	 * no race condition possible because event can only
201 	 * be removed on one CPU at a time AND PMU is disabled
202 	 * when we come here
203 	 */
204 	for (i = 0; i < x86_pmu.num_counters; i++) {
205 		if (nb->owners[i] == event) {
206 			cmpxchg(nb->owners+i, event, NULL);
207 			break;
208 		}
209 	}
210 }
211 
212  /*
213   * AMD64 NorthBridge events need special treatment because
214   * counter access needs to be synchronized across all cores
215   * of a package. Refer to BKDG section 3.12
216   *
217   * NB events are events measuring L3 cache, Hypertransport
218   * traffic. They are identified by an event code >= 0xe00.
219   * They measure events on the NorthBride which is shared
220   * by all cores on a package. NB events are counted on a
221   * shared set of counters. When a NB event is programmed
222   * in a counter, the data actually comes from a shared
223   * counter. Thus, access to those counters needs to be
224   * synchronized.
225   *
226   * We implement the synchronization such that no two cores
227   * can be measuring NB events using the same counters. Thus,
228   * we maintain a per-NB allocation table. The available slot
229   * is propagated using the event_constraint structure.
230   *
231   * We provide only one choice for each NB event based on
232   * the fact that only NB events have restrictions. Consequently,
233   * if a counter is available, there is a guarantee the NB event
234   * will be assigned to it. If no slot is available, an empty
235   * constraint is returned and scheduling will eventually fail
236   * for this event.
237   *
238   * Note that all cores attached the same NB compete for the same
239   * counters to host NB events, this is why we use atomic ops. Some
240   * multi-chip CPUs may have more than one NB.
241   *
242   * Given that resources are allocated (cmpxchg), they must be
243   * eventually freed for others to use. This is accomplished by
244   * calling amd_put_event_constraints().
245   *
246   * Non NB events are not impacted by this restriction.
247   */
248 static struct event_constraint *
amd_get_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)249 amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
250 {
251 	struct hw_perf_event *hwc = &event->hw;
252 	struct amd_nb *nb = cpuc->amd_nb;
253 	struct perf_event *old = NULL;
254 	int max = x86_pmu.num_counters;
255 	int i, j, k = -1;
256 
257 	/*
258 	 * if not NB event or no NB, then no constraints
259 	 */
260 	if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
261 		return &unconstrained;
262 
263 	/*
264 	 * detect if already present, if so reuse
265 	 *
266 	 * cannot merge with actual allocation
267 	 * because of possible holes
268 	 *
269 	 * event can already be present yet not assigned (in hwc->idx)
270 	 * because of successive calls to x86_schedule_events() from
271 	 * hw_perf_group_sched_in() without hw_perf_enable()
272 	 */
273 	for (i = 0; i < max; i++) {
274 		/*
275 		 * keep track of first free slot
276 		 */
277 		if (k == -1 && !nb->owners[i])
278 			k = i;
279 
280 		/* already present, reuse */
281 		if (nb->owners[i] == event)
282 			goto done;
283 	}
284 	/*
285 	 * not present, so grab a new slot
286 	 * starting either at:
287 	 */
288 	if (hwc->idx != -1) {
289 		/* previous assignment */
290 		i = hwc->idx;
291 	} else if (k != -1) {
292 		/* start from free slot found */
293 		i = k;
294 	} else {
295 		/*
296 		 * event not found, no slot found in
297 		 * first pass, try again from the
298 		 * beginning
299 		 */
300 		i = 0;
301 	}
302 	j = i;
303 	do {
304 		old = cmpxchg(nb->owners+i, NULL, event);
305 		if (!old)
306 			break;
307 		if (++i == max)
308 			i = 0;
309 	} while (i != j);
310 done:
311 	if (!old)
312 		return &nb->event_constraints[i];
313 
314 	return &emptyconstraint;
315 }
316 
amd_alloc_nb(int cpu)317 static struct amd_nb *amd_alloc_nb(int cpu)
318 {
319 	struct amd_nb *nb;
320 	int i;
321 
322 	nb = kmalloc_node(sizeof(struct amd_nb), GFP_KERNEL | __GFP_ZERO,
323 			  cpu_to_node(cpu));
324 	if (!nb)
325 		return NULL;
326 
327 	nb->nb_id = -1;
328 
329 	/*
330 	 * initialize all possible NB constraints
331 	 */
332 	for (i = 0; i < x86_pmu.num_counters; i++) {
333 		__set_bit(i, nb->event_constraints[i].idxmsk);
334 		nb->event_constraints[i].weight = 1;
335 	}
336 	return nb;
337 }
338 
amd_pmu_cpu_prepare(int cpu)339 static int amd_pmu_cpu_prepare(int cpu)
340 {
341 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
342 
343 	WARN_ON_ONCE(cpuc->amd_nb);
344 
345 	if (boot_cpu_data.x86_max_cores < 2)
346 		return NOTIFY_OK;
347 
348 	cpuc->amd_nb = amd_alloc_nb(cpu);
349 	if (!cpuc->amd_nb)
350 		return NOTIFY_BAD;
351 
352 	return NOTIFY_OK;
353 }
354 
amd_pmu_cpu_starting(int cpu)355 static void amd_pmu_cpu_starting(int cpu)
356 {
357 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
358 	struct amd_nb *nb;
359 	int i, nb_id;
360 
361 	cpuc->perf_ctr_virt_mask = AMD_PERFMON_EVENTSEL_HOSTONLY;
362 
363 	if (boot_cpu_data.x86_max_cores < 2 || boot_cpu_data.x86 == 0x15)
364 		return;
365 
366 	nb_id = amd_get_nb_id(cpu);
367 	WARN_ON_ONCE(nb_id == BAD_APICID);
368 
369 	for_each_online_cpu(i) {
370 		nb = per_cpu(cpu_hw_events, i).amd_nb;
371 		if (WARN_ON_ONCE(!nb))
372 			continue;
373 
374 		if (nb->nb_id == nb_id) {
375 			cpuc->kfree_on_online = cpuc->amd_nb;
376 			cpuc->amd_nb = nb;
377 			break;
378 		}
379 	}
380 
381 	cpuc->amd_nb->nb_id = nb_id;
382 	cpuc->amd_nb->refcnt++;
383 }
384 
amd_pmu_cpu_dead(int cpu)385 static void amd_pmu_cpu_dead(int cpu)
386 {
387 	struct cpu_hw_events *cpuhw;
388 
389 	if (boot_cpu_data.x86_max_cores < 2)
390 		return;
391 
392 	cpuhw = &per_cpu(cpu_hw_events, cpu);
393 
394 	if (cpuhw->amd_nb) {
395 		struct amd_nb *nb = cpuhw->amd_nb;
396 
397 		if (nb->nb_id == -1 || --nb->refcnt == 0)
398 			kfree(nb);
399 
400 		cpuhw->amd_nb = NULL;
401 	}
402 }
403 
404 static __initconst const struct x86_pmu amd_pmu = {
405 	.name			= "AMD",
406 	.handle_irq		= x86_pmu_handle_irq,
407 	.disable_all		= x86_pmu_disable_all,
408 	.enable_all		= x86_pmu_enable_all,
409 	.enable			= x86_pmu_enable_event,
410 	.disable		= x86_pmu_disable_event,
411 	.hw_config		= amd_pmu_hw_config,
412 	.schedule_events	= x86_schedule_events,
413 	.eventsel		= MSR_K7_EVNTSEL0,
414 	.perfctr		= MSR_K7_PERFCTR0,
415 	.event_map		= amd_pmu_event_map,
416 	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
417 	.num_counters		= AMD64_NUM_COUNTERS,
418 	.cntval_bits		= 48,
419 	.cntval_mask		= (1ULL << 48) - 1,
420 	.apic			= 1,
421 	/* use highest bit to detect overflow */
422 	.max_period		= (1ULL << 47) - 1,
423 	.get_event_constraints	= amd_get_event_constraints,
424 	.put_event_constraints	= amd_put_event_constraints,
425 
426 	.cpu_prepare		= amd_pmu_cpu_prepare,
427 	.cpu_starting		= amd_pmu_cpu_starting,
428 	.cpu_dead		= amd_pmu_cpu_dead,
429 };
430 
431 /* AMD Family 15h */
432 
433 #define AMD_EVENT_TYPE_MASK	0x000000F0ULL
434 
435 #define AMD_EVENT_FP		0x00000000ULL ... 0x00000010ULL
436 #define AMD_EVENT_LS		0x00000020ULL ... 0x00000030ULL
437 #define AMD_EVENT_DC		0x00000040ULL ... 0x00000050ULL
438 #define AMD_EVENT_CU		0x00000060ULL ... 0x00000070ULL
439 #define AMD_EVENT_IC_DE		0x00000080ULL ... 0x00000090ULL
440 #define AMD_EVENT_EX_LS		0x000000C0ULL
441 #define AMD_EVENT_DE		0x000000D0ULL
442 #define AMD_EVENT_NB		0x000000E0ULL ... 0x000000F0ULL
443 
444 /*
445  * AMD family 15h event code/PMC mappings:
446  *
447  * type = event_code & 0x0F0:
448  *
449  * 0x000	FP	PERF_CTL[5:3]
450  * 0x010	FP	PERF_CTL[5:3]
451  * 0x020	LS	PERF_CTL[5:0]
452  * 0x030	LS	PERF_CTL[5:0]
453  * 0x040	DC	PERF_CTL[5:0]
454  * 0x050	DC	PERF_CTL[5:0]
455  * 0x060	CU	PERF_CTL[2:0]
456  * 0x070	CU	PERF_CTL[2:0]
457  * 0x080	IC/DE	PERF_CTL[2:0]
458  * 0x090	IC/DE	PERF_CTL[2:0]
459  * 0x0A0	---
460  * 0x0B0	---
461  * 0x0C0	EX/LS	PERF_CTL[5:0]
462  * 0x0D0	DE	PERF_CTL[2:0]
463  * 0x0E0	NB	NB_PERF_CTL[3:0]
464  * 0x0F0	NB	NB_PERF_CTL[3:0]
465  *
466  * Exceptions:
467  *
468  * 0x000	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
469  * 0x003	FP	PERF_CTL[3]
470  * 0x004	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
471  * 0x00B	FP	PERF_CTL[3]
472  * 0x00D	FP	PERF_CTL[3]
473  * 0x023	DE	PERF_CTL[2:0]
474  * 0x02D	LS	PERF_CTL[3]
475  * 0x02E	LS	PERF_CTL[3,0]
476  * 0x043	CU	PERF_CTL[2:0]
477  * 0x045	CU	PERF_CTL[2:0]
478  * 0x046	CU	PERF_CTL[2:0]
479  * 0x054	CU	PERF_CTL[2:0]
480  * 0x055	CU	PERF_CTL[2:0]
481  * 0x08F	IC	PERF_CTL[0]
482  * 0x187	DE	PERF_CTL[0]
483  * 0x188	DE	PERF_CTL[0]
484  * 0x0DB	EX	PERF_CTL[5:0]
485  * 0x0DC	LS	PERF_CTL[5:0]
486  * 0x0DD	LS	PERF_CTL[5:0]
487  * 0x0DE	LS	PERF_CTL[5:0]
488  * 0x0DF	LS	PERF_CTL[5:0]
489  * 0x1D6	EX	PERF_CTL[5:0]
490  * 0x1D8	EX	PERF_CTL[5:0]
491  *
492  * (*) depending on the umask all FPU counters may be used
493  */
494 
495 static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
496 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
497 static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
498 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
499 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
500 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
501 
502 static struct event_constraint *
amd_get_event_constraints_f15h(struct cpu_hw_events * cpuc,struct perf_event * event)503 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, struct perf_event *event)
504 {
505 	struct hw_perf_event *hwc = &event->hw;
506 	unsigned int event_code = amd_get_event_code(hwc);
507 
508 	switch (event_code & AMD_EVENT_TYPE_MASK) {
509 	case AMD_EVENT_FP:
510 		switch (event_code) {
511 		case 0x000:
512 			if (!(hwc->config & 0x0000F000ULL))
513 				break;
514 			if (!(hwc->config & 0x00000F00ULL))
515 				break;
516 			return &amd_f15_PMC3;
517 		case 0x004:
518 			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
519 				break;
520 			return &amd_f15_PMC3;
521 		case 0x003:
522 		case 0x00B:
523 		case 0x00D:
524 			return &amd_f15_PMC3;
525 		}
526 		return &amd_f15_PMC53;
527 	case AMD_EVENT_LS:
528 	case AMD_EVENT_DC:
529 	case AMD_EVENT_EX_LS:
530 		switch (event_code) {
531 		case 0x023:
532 		case 0x043:
533 		case 0x045:
534 		case 0x046:
535 		case 0x054:
536 		case 0x055:
537 			return &amd_f15_PMC20;
538 		case 0x02D:
539 			return &amd_f15_PMC3;
540 		case 0x02E:
541 			return &amd_f15_PMC30;
542 		default:
543 			return &amd_f15_PMC50;
544 		}
545 	case AMD_EVENT_CU:
546 	case AMD_EVENT_IC_DE:
547 	case AMD_EVENT_DE:
548 		switch (event_code) {
549 		case 0x08F:
550 		case 0x187:
551 		case 0x188:
552 			return &amd_f15_PMC0;
553 		case 0x0DB ... 0x0DF:
554 		case 0x1D6:
555 		case 0x1D8:
556 			return &amd_f15_PMC50;
557 		default:
558 			return &amd_f15_PMC20;
559 		}
560 	case AMD_EVENT_NB:
561 		/* not yet implemented */
562 		return &emptyconstraint;
563 	default:
564 		return &emptyconstraint;
565 	}
566 }
567 
568 static __initconst const struct x86_pmu amd_pmu_f15h = {
569 	.name			= "AMD Family 15h",
570 	.handle_irq		= x86_pmu_handle_irq,
571 	.disable_all		= x86_pmu_disable_all,
572 	.enable_all		= x86_pmu_enable_all,
573 	.enable			= x86_pmu_enable_event,
574 	.disable		= x86_pmu_disable_event,
575 	.hw_config		= amd_pmu_hw_config,
576 	.schedule_events	= x86_schedule_events,
577 	.eventsel		= MSR_F15H_PERF_CTL,
578 	.perfctr		= MSR_F15H_PERF_CTR,
579 	.event_map		= amd_pmu_event_map,
580 	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
581 	.num_counters		= AMD64_NUM_COUNTERS_F15H,
582 	.cntval_bits		= 48,
583 	.cntval_mask		= (1ULL << 48) - 1,
584 	.apic			= 1,
585 	/* use highest bit to detect overflow */
586 	.max_period		= (1ULL << 47) - 1,
587 	.get_event_constraints	= amd_get_event_constraints_f15h,
588 	/* nortbridge counters not yet implemented: */
589 #if 0
590 	.put_event_constraints	= amd_put_event_constraints,
591 
592 	.cpu_prepare		= amd_pmu_cpu_prepare,
593 	.cpu_dead		= amd_pmu_cpu_dead,
594 #endif
595 	.cpu_starting		= amd_pmu_cpu_starting,
596 };
597 
amd_pmu_init(void)598 __init int amd_pmu_init(void)
599 {
600 	/* Performance-monitoring supported from K7 and later: */
601 	if (boot_cpu_data.x86 < 6)
602 		return -ENODEV;
603 
604 	/*
605 	 * If core performance counter extensions exists, it must be
606 	 * family 15h, otherwise fail. See x86_pmu_addr_offset().
607 	 */
608 	switch (boot_cpu_data.x86) {
609 	case 0x15:
610 		if (!cpu_has_perfctr_core)
611 			return -ENODEV;
612 		x86_pmu = amd_pmu_f15h;
613 		break;
614 	default:
615 		if (cpu_has_perfctr_core)
616 			return -ENODEV;
617 		x86_pmu = amd_pmu;
618 		break;
619 	}
620 
621 	/* Events are common for all AMDs */
622 	memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
623 	       sizeof(hw_cache_event_ids));
624 
625 	return 0;
626 }
627 
amd_pmu_enable_virt(void)628 void amd_pmu_enable_virt(void)
629 {
630 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
631 
632 	cpuc->perf_ctr_virt_mask = 0;
633 
634 	/* Reload all events */
635 	x86_pmu_disable_all();
636 	x86_pmu_enable_all(0);
637 }
638 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
639 
amd_pmu_disable_virt(void)640 void amd_pmu_disable_virt(void)
641 {
642 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
643 
644 	/*
645 	 * We only mask out the Host-only bit so that host-only counting works
646 	 * when SVM is disabled. If someone sets up a guest-only counter when
647 	 * SVM is disabled the Guest-only bits still gets set and the counter
648 	 * will not count anything.
649 	 */
650 	cpuc->perf_ctr_virt_mask = AMD_PERFMON_EVENTSEL_HOSTONLY;
651 
652 	/* Reload all events */
653 	x86_pmu_disable_all();
654 	x86_pmu_enable_all(0);
655 }
656 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);
657