1 /*
2  * apb_timer.c: Driver for Langwell APB timers
3  *
4  * (C) Copyright 2009 Intel Corporation
5  * Author: Jacob Pan (jacob.jun.pan@intel.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * Note:
13  * Langwell is the south complex of Intel Moorestown MID platform. There are
14  * eight external timers in total that can be used by the operating system.
15  * The timer information, such as frequency and addresses, is provided to the
16  * OS via SFI tables.
17  * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
18  * individual redirection table entries (RTE).
19  * Unlike HPET, there is no master counter, therefore one of the timers are
20  * used as clocksource. The overall allocation looks like:
21  *  - timer 0 - NR_CPUs for per cpu timer
22  *  - one timer for clocksource
23  *  - one timer for watchdog driver.
24  * It is also worth notice that APB timer does not support true one-shot mode,
25  * free-running mode will be used here to emulate one-shot mode.
26  * APB timer can also be used as broadcast timer along with per cpu local APIC
27  * timer, but by default APB timer has higher rating than local APIC timers.
28  */
29 
30 #include <linux/delay.h>
31 #include <linux/dw_apb_timer.h>
32 #include <linux/errno.h>
33 #include <linux/init.h>
34 #include <linux/slab.h>
35 #include <linux/pm.h>
36 #include <linux/sfi.h>
37 #include <linux/interrupt.h>
38 #include <linux/cpu.h>
39 #include <linux/irq.h>
40 
41 #include <asm/fixmap.h>
42 #include <asm/apb_timer.h>
43 #include <asm/mrst.h>
44 #include <asm/time.h>
45 
46 #define APBT_CLOCKEVENT_RATING		110
47 #define APBT_CLOCKSOURCE_RATING		250
48 
49 #define APBT_CLOCKEVENT0_NUM   (0)
50 #define APBT_CLOCKSOURCE_NUM   (2)
51 
52 static phys_addr_t apbt_address;
53 static int apb_timer_block_enabled;
54 static void __iomem *apbt_virt_address;
55 
56 /*
57  * Common DW APB timer info
58  */
59 static unsigned long apbt_freq;
60 
61 struct apbt_dev {
62 	struct dw_apb_clock_event_device	*timer;
63 	unsigned int				num;
64 	int					cpu;
65 	unsigned int				irq;
66 	char					name[10];
67 };
68 
69 static struct dw_apb_clocksource *clocksource_apbt;
70 
adev_virt_addr(struct apbt_dev * adev)71 static inline void __iomem *adev_virt_addr(struct apbt_dev *adev)
72 {
73 	return apbt_virt_address + adev->num * APBTMRS_REG_SIZE;
74 }
75 
76 static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
77 
78 #ifdef CONFIG_SMP
79 static unsigned int apbt_num_timers_used;
80 #endif
81 
apbt_set_mapping(void)82 static inline void apbt_set_mapping(void)
83 {
84 	struct sfi_timer_table_entry *mtmr;
85 	int phy_cs_timer_id = 0;
86 
87 	if (apbt_virt_address) {
88 		pr_debug("APBT base already mapped\n");
89 		return;
90 	}
91 	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
92 	if (mtmr == NULL) {
93 		printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
94 		       APBT_CLOCKEVENT0_NUM);
95 		return;
96 	}
97 	apbt_address = (phys_addr_t)mtmr->phys_addr;
98 	if (!apbt_address) {
99 		printk(KERN_WARNING "No timer base from SFI, use default\n");
100 		apbt_address = APBT_DEFAULT_BASE;
101 	}
102 	apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
103 	if (!apbt_virt_address) {
104 		pr_debug("Failed mapping APBT phy address at %lu\n",\
105 			 (unsigned long)apbt_address);
106 		goto panic_noapbt;
107 	}
108 	apbt_freq = mtmr->freq_hz;
109 	sfi_free_mtmr(mtmr);
110 
111 	/* Now figure out the physical timer id for clocksource device */
112 	mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
113 	if (mtmr == NULL)
114 		goto panic_noapbt;
115 
116 	/* Now figure out the physical timer id */
117 	pr_debug("Use timer %d for clocksource\n",
118 		 (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE);
119 	phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) /
120 		APBTMRS_REG_SIZE;
121 
122 	clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING,
123 		"apbt0", apbt_virt_address + phy_cs_timer_id *
124 		APBTMRS_REG_SIZE, apbt_freq);
125 	return;
126 
127 panic_noapbt:
128 	panic("Failed to setup APB system timer\n");
129 
130 }
131 
apbt_clear_mapping(void)132 static inline void apbt_clear_mapping(void)
133 {
134 	iounmap(apbt_virt_address);
135 	apbt_virt_address = NULL;
136 }
137 
138 /*
139  * APBT timer interrupt enable / disable
140  */
is_apbt_capable(void)141 static inline int is_apbt_capable(void)
142 {
143 	return apbt_virt_address ? 1 : 0;
144 }
145 
apbt_clockevent_register(void)146 static int __init apbt_clockevent_register(void)
147 {
148 	struct sfi_timer_table_entry *mtmr;
149 	struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
150 
151 	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
152 	if (mtmr == NULL) {
153 		printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
154 		       APBT_CLOCKEVENT0_NUM);
155 		return -ENODEV;
156 	}
157 
158 	adev->num = smp_processor_id();
159 	adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0",
160 		mrst_timer_options == MRST_TIMER_LAPIC_APBT ?
161 		APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING,
162 		adev_virt_addr(adev), 0, apbt_freq);
163 	/* Firmware does EOI handling for us. */
164 	adev->timer->eoi = NULL;
165 
166 	if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
167 		global_clock_event = &adev->timer->ced;
168 		printk(KERN_DEBUG "%s clockevent registered as global\n",
169 		       global_clock_event->name);
170 	}
171 
172 	dw_apb_clockevent_register(adev->timer);
173 
174 	sfi_free_mtmr(mtmr);
175 	return 0;
176 }
177 
178 #ifdef CONFIG_SMP
179 
apbt_setup_irq(struct apbt_dev * adev)180 static void apbt_setup_irq(struct apbt_dev *adev)
181 {
182 	/* timer0 irq has been setup early */
183 	if (adev->irq == 0)
184 		return;
185 
186 	irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
187 	irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
188 	/* APB timer irqs are set up as mp_irqs, timer is edge type */
189 	__irq_set_handler(adev->irq, handle_edge_irq, 0, "edge");
190 }
191 
192 /* Should be called with per cpu */
apbt_setup_secondary_clock(void)193 void apbt_setup_secondary_clock(void)
194 {
195 	struct apbt_dev *adev;
196 	int cpu;
197 
198 	/* Don't register boot CPU clockevent */
199 	cpu = smp_processor_id();
200 	if (!cpu)
201 		return;
202 
203 	adev = &__get_cpu_var(cpu_apbt_dev);
204 	if (!adev->timer) {
205 		adev->timer = dw_apb_clockevent_init(cpu, adev->name,
206 			APBT_CLOCKEVENT_RATING, adev_virt_addr(adev),
207 			adev->irq, apbt_freq);
208 		adev->timer->eoi = NULL;
209 	} else {
210 		dw_apb_clockevent_resume(adev->timer);
211 	}
212 
213 	printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n",
214 	       cpu, adev->name, adev->cpu);
215 
216 	apbt_setup_irq(adev);
217 	dw_apb_clockevent_register(adev->timer);
218 
219 	return;
220 }
221 
222 /*
223  * this notify handler process CPU hotplug events. in case of S0i3, nonboot
224  * cpus are disabled/enabled frequently, for performance reasons, we keep the
225  * per cpu timer irq registered so that we do need to do free_irq/request_irq.
226  *
227  * TODO: it might be more reliable to directly disable percpu clockevent device
228  * without the notifier chain. currently, cpu 0 may get interrupts from other
229  * cpu timers during the offline process due to the ordering of notification.
230  * the extra interrupt is harmless.
231  */
apbt_cpuhp_notify(struct notifier_block * n,unsigned long action,void * hcpu)232 static int apbt_cpuhp_notify(struct notifier_block *n,
233 			     unsigned long action, void *hcpu)
234 {
235 	unsigned long cpu = (unsigned long)hcpu;
236 	struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
237 
238 	switch (action & 0xf) {
239 	case CPU_DEAD:
240 		dw_apb_clockevent_pause(adev->timer);
241 		if (system_state == SYSTEM_RUNNING) {
242 			pr_debug("skipping APBT CPU %lu offline\n", cpu);
243 		} else if (adev) {
244 			pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
245 			dw_apb_clockevent_stop(adev->timer);
246 		}
247 		break;
248 	default:
249 		pr_debug("APBT notified %lu, no action\n", action);
250 	}
251 	return NOTIFY_OK;
252 }
253 
apbt_late_init(void)254 static __init int apbt_late_init(void)
255 {
256 	if (mrst_timer_options == MRST_TIMER_LAPIC_APBT ||
257 		!apb_timer_block_enabled)
258 		return 0;
259 	/* This notifier should be called after workqueue is ready */
260 	hotcpu_notifier(apbt_cpuhp_notify, -20);
261 	return 0;
262 }
263 fs_initcall(apbt_late_init);
264 #else
265 
apbt_setup_secondary_clock(void)266 void apbt_setup_secondary_clock(void) {}
267 
268 #endif /* CONFIG_SMP */
269 
apbt_clocksource_register(void)270 static int apbt_clocksource_register(void)
271 {
272 	u64 start, now;
273 	cycle_t t1;
274 
275 	/* Start the counter, use timer 2 as source, timer 0/1 for event */
276 	dw_apb_clocksource_start(clocksource_apbt);
277 
278 	/* Verify whether apbt counter works */
279 	t1 = dw_apb_clocksource_read(clocksource_apbt);
280 	rdtscll(start);
281 
282 	/*
283 	 * We don't know the TSC frequency yet, but waiting for
284 	 * 200000 TSC cycles is safe:
285 	 * 4 GHz == 50us
286 	 * 1 GHz == 200us
287 	 */
288 	do {
289 		rep_nop();
290 		rdtscll(now);
291 	} while ((now - start) < 200000UL);
292 
293 	/* APBT is the only always on clocksource, it has to work! */
294 	if (t1 == dw_apb_clocksource_read(clocksource_apbt))
295 		panic("APBT counter not counting. APBT disabled\n");
296 
297 	dw_apb_clocksource_register(clocksource_apbt);
298 
299 	return 0;
300 }
301 
302 /*
303  * Early setup the APBT timer, only use timer 0 for booting then switch to
304  * per CPU timer if possible.
305  * returns 1 if per cpu apbt is setup
306  * returns 0 if no per cpu apbt is chosen
307  * panic if set up failed, this is the only platform timer on Moorestown.
308  */
apbt_time_init(void)309 void __init apbt_time_init(void)
310 {
311 #ifdef CONFIG_SMP
312 	int i;
313 	struct sfi_timer_table_entry *p_mtmr;
314 	unsigned int percpu_timer;
315 	struct apbt_dev *adev;
316 #endif
317 
318 	if (apb_timer_block_enabled)
319 		return;
320 	apbt_set_mapping();
321 	if (!apbt_virt_address)
322 		goto out_noapbt;
323 	/*
324 	 * Read the frequency and check for a sane value, for ESL model
325 	 * we extend the possible clock range to allow time scaling.
326 	 */
327 
328 	if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
329 		pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq);
330 		goto out_noapbt;
331 	}
332 	if (apbt_clocksource_register()) {
333 		pr_debug("APBT has failed to register clocksource\n");
334 		goto out_noapbt;
335 	}
336 	if (!apbt_clockevent_register())
337 		apb_timer_block_enabled = 1;
338 	else {
339 		pr_debug("APBT has failed to register clockevent\n");
340 		goto out_noapbt;
341 	}
342 #ifdef CONFIG_SMP
343 	/* kernel cmdline disable apb timer, so we will use lapic timers */
344 	if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
345 		printk(KERN_INFO "apbt: disabled per cpu timer\n");
346 		return;
347 	}
348 	pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
349 	if (num_possible_cpus() <= sfi_mtimer_num) {
350 		percpu_timer = 1;
351 		apbt_num_timers_used = num_possible_cpus();
352 	} else {
353 		percpu_timer = 0;
354 		apbt_num_timers_used = 1;
355 	}
356 	pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
357 
358 	/* here we set up per CPU timer data structure */
359 	for (i = 0; i < apbt_num_timers_used; i++) {
360 		adev = &per_cpu(cpu_apbt_dev, i);
361 		adev->num = i;
362 		adev->cpu = i;
363 		p_mtmr = sfi_get_mtmr(i);
364 		if (p_mtmr)
365 			adev->irq = p_mtmr->irq;
366 		else
367 			printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
368 		snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i);
369 	}
370 #endif
371 
372 	return;
373 
374 out_noapbt:
375 	apbt_clear_mapping();
376 	apb_timer_block_enabled = 0;
377 	panic("failed to enable APB timer\n");
378 }
379 
380 /* called before apb_timer_enable, use early map */
apbt_quick_calibrate(void)381 unsigned long apbt_quick_calibrate(void)
382 {
383 	int i, scale;
384 	u64 old, new;
385 	cycle_t t1, t2;
386 	unsigned long khz = 0;
387 	u32 loop, shift;
388 
389 	apbt_set_mapping();
390 	dw_apb_clocksource_start(clocksource_apbt);
391 
392 	/* check if the timer can count down, otherwise return */
393 	old = dw_apb_clocksource_read(clocksource_apbt);
394 	i = 10000;
395 	while (--i) {
396 		if (old != dw_apb_clocksource_read(clocksource_apbt))
397 			break;
398 	}
399 	if (!i)
400 		goto failed;
401 
402 	/* count 16 ms */
403 	loop = (apbt_freq / 1000) << 4;
404 
405 	/* restart the timer to ensure it won't get to 0 in the calibration */
406 	dw_apb_clocksource_start(clocksource_apbt);
407 
408 	old = dw_apb_clocksource_read(clocksource_apbt);
409 	old += loop;
410 
411 	t1 = __native_read_tsc();
412 
413 	do {
414 		new = dw_apb_clocksource_read(clocksource_apbt);
415 	} while (new < old);
416 
417 	t2 = __native_read_tsc();
418 
419 	shift = 5;
420 	if (unlikely(loop >> shift == 0)) {
421 		printk(KERN_INFO
422 		       "APBT TSC calibration failed, not enough resolution\n");
423 		return 0;
424 	}
425 	scale = (int)div_u64((t2 - t1), loop >> shift);
426 	khz = (scale * (apbt_freq / 1000)) >> shift;
427 	printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
428 	return khz;
429 failed:
430 	return 0;
431 }
432