1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
3
4 /*
5 * Copyright 1992, Linus Torvalds.
6 *
7 * Note: inlines with more than a single statement should be marked
8 * __always_inline to avoid problems with older gcc's inlining heuristics.
9 */
10
11 #ifndef _LINUX_BITOPS_H
12 #error only <linux/bitops.h> can be included directly
13 #endif
14
15 #include <linux/compiler.h>
16 #include <asm/alternative.h>
17
18 /*
19 * These have to be done with inline assembly: that way the bit-setting
20 * is guaranteed to be atomic. All bit operations return 0 if the bit
21 * was cleared before the operation and != 0 if it was not.
22 *
23 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
24 */
25
26 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
27 /* Technically wrong, but this avoids compilation errors on some gcc
28 versions. */
29 #define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
30 #else
31 #define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
32 #endif
33
34 #define ADDR BITOP_ADDR(addr)
35
36 /*
37 * We do the locked ops that don't return the old value as
38 * a mask operation on a byte.
39 */
40 #define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
41 #define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
42 #define CONST_MASK(nr) (1 << ((nr) & 7))
43
44 /**
45 * set_bit - Atomically set a bit in memory
46 * @nr: the bit to set
47 * @addr: the address to start counting from
48 *
49 * This function is atomic and may not be reordered. See __set_bit()
50 * if you do not require the atomic guarantees.
51 *
52 * Note: there are no guarantees that this function will not be reordered
53 * on non x86 architectures, so if you are writing portable code,
54 * make sure not to rely on its reordering guarantees.
55 *
56 * Note that @nr may be almost arbitrarily large; this function is not
57 * restricted to acting on a single-word quantity.
58 */
59 static __always_inline void
set_bit(unsigned int nr,volatile unsigned long * addr)60 set_bit(unsigned int nr, volatile unsigned long *addr)
61 {
62 if (IS_IMMEDIATE(nr)) {
63 asm volatile(LOCK_PREFIX "orb %1,%0"
64 : CONST_MASK_ADDR(nr, addr)
65 : "iq" ((u8)CONST_MASK(nr))
66 : "memory");
67 } else {
68 asm volatile(LOCK_PREFIX "bts %1,%0"
69 : BITOP_ADDR(addr) : "Ir" (nr) : "memory");
70 }
71 }
72
73 /**
74 * __set_bit - Set a bit in memory
75 * @nr: the bit to set
76 * @addr: the address to start counting from
77 *
78 * Unlike set_bit(), this function is non-atomic and may be reordered.
79 * If it's called on the same region of memory simultaneously, the effect
80 * may be that only one operation succeeds.
81 */
__set_bit(int nr,volatile unsigned long * addr)82 static inline void __set_bit(int nr, volatile unsigned long *addr)
83 {
84 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
85 }
86
87 /**
88 * clear_bit - Clears a bit in memory
89 * @nr: Bit to clear
90 * @addr: Address to start counting from
91 *
92 * clear_bit() is atomic and may not be reordered. However, it does
93 * not contain a memory barrier, so if it is used for locking purposes,
94 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
95 * in order to ensure changes are visible on other processors.
96 */
97 static __always_inline void
clear_bit(int nr,volatile unsigned long * addr)98 clear_bit(int nr, volatile unsigned long *addr)
99 {
100 if (IS_IMMEDIATE(nr)) {
101 asm volatile(LOCK_PREFIX "andb %1,%0"
102 : CONST_MASK_ADDR(nr, addr)
103 : "iq" ((u8)~CONST_MASK(nr)));
104 } else {
105 asm volatile(LOCK_PREFIX "btr %1,%0"
106 : BITOP_ADDR(addr)
107 : "Ir" (nr));
108 }
109 }
110
111 /*
112 * clear_bit_unlock - Clears a bit in memory
113 * @nr: Bit to clear
114 * @addr: Address to start counting from
115 *
116 * clear_bit() is atomic and implies release semantics before the memory
117 * operation. It can be used for an unlock.
118 */
clear_bit_unlock(unsigned nr,volatile unsigned long * addr)119 static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
120 {
121 barrier();
122 clear_bit(nr, addr);
123 }
124
__clear_bit(int nr,volatile unsigned long * addr)125 static inline void __clear_bit(int nr, volatile unsigned long *addr)
126 {
127 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
128 }
129
130 /*
131 * __clear_bit_unlock - Clears a bit in memory
132 * @nr: Bit to clear
133 * @addr: Address to start counting from
134 *
135 * __clear_bit() is non-atomic and implies release semantics before the memory
136 * operation. It can be used for an unlock if no other CPUs can concurrently
137 * modify other bits in the word.
138 *
139 * No memory barrier is required here, because x86 cannot reorder stores past
140 * older loads. Same principle as spin_unlock.
141 */
__clear_bit_unlock(unsigned nr,volatile unsigned long * addr)142 static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
143 {
144 barrier();
145 __clear_bit(nr, addr);
146 }
147
148 #define smp_mb__before_clear_bit() barrier()
149 #define smp_mb__after_clear_bit() barrier()
150
151 /**
152 * __change_bit - Toggle a bit in memory
153 * @nr: the bit to change
154 * @addr: the address to start counting from
155 *
156 * Unlike change_bit(), this function is non-atomic and may be reordered.
157 * If it's called on the same region of memory simultaneously, the effect
158 * may be that only one operation succeeds.
159 */
__change_bit(int nr,volatile unsigned long * addr)160 static inline void __change_bit(int nr, volatile unsigned long *addr)
161 {
162 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
163 }
164
165 /**
166 * change_bit - Toggle a bit in memory
167 * @nr: Bit to change
168 * @addr: Address to start counting from
169 *
170 * change_bit() is atomic and may not be reordered.
171 * Note that @nr may be almost arbitrarily large; this function is not
172 * restricted to acting on a single-word quantity.
173 */
change_bit(int nr,volatile unsigned long * addr)174 static inline void change_bit(int nr, volatile unsigned long *addr)
175 {
176 if (IS_IMMEDIATE(nr)) {
177 asm volatile(LOCK_PREFIX "xorb %1,%0"
178 : CONST_MASK_ADDR(nr, addr)
179 : "iq" ((u8)CONST_MASK(nr)));
180 } else {
181 asm volatile(LOCK_PREFIX "btc %1,%0"
182 : BITOP_ADDR(addr)
183 : "Ir" (nr));
184 }
185 }
186
187 /**
188 * test_and_set_bit - Set a bit and return its old value
189 * @nr: Bit to set
190 * @addr: Address to count from
191 *
192 * This operation is atomic and cannot be reordered.
193 * It also implies a memory barrier.
194 */
test_and_set_bit(int nr,volatile unsigned long * addr)195 static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
196 {
197 int oldbit;
198
199 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
200 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
201
202 return oldbit;
203 }
204
205 /**
206 * test_and_set_bit_lock - Set a bit and return its old value for lock
207 * @nr: Bit to set
208 * @addr: Address to count from
209 *
210 * This is the same as test_and_set_bit on x86.
211 */
212 static __always_inline int
test_and_set_bit_lock(int nr,volatile unsigned long * addr)213 test_and_set_bit_lock(int nr, volatile unsigned long *addr)
214 {
215 return test_and_set_bit(nr, addr);
216 }
217
218 /**
219 * __test_and_set_bit - Set a bit and return its old value
220 * @nr: Bit to set
221 * @addr: Address to count from
222 *
223 * This operation is non-atomic and can be reordered.
224 * If two examples of this operation race, one can appear to succeed
225 * but actually fail. You must protect multiple accesses with a lock.
226 */
__test_and_set_bit(int nr,volatile unsigned long * addr)227 static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
228 {
229 int oldbit;
230
231 asm("bts %2,%1\n\t"
232 "sbb %0,%0"
233 : "=r" (oldbit), ADDR
234 : "Ir" (nr));
235 return oldbit;
236 }
237
238 /**
239 * test_and_clear_bit - Clear a bit and return its old value
240 * @nr: Bit to clear
241 * @addr: Address to count from
242 *
243 * This operation is atomic and cannot be reordered.
244 * It also implies a memory barrier.
245 */
test_and_clear_bit(int nr,volatile unsigned long * addr)246 static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
247 {
248 int oldbit;
249
250 asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
251 "sbb %0,%0"
252 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
253
254 return oldbit;
255 }
256
257 /**
258 * __test_and_clear_bit - Clear a bit and return its old value
259 * @nr: Bit to clear
260 * @addr: Address to count from
261 *
262 * This operation is non-atomic and can be reordered.
263 * If two examples of this operation race, one can appear to succeed
264 * but actually fail. You must protect multiple accesses with a lock.
265 */
__test_and_clear_bit(int nr,volatile unsigned long * addr)266 static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
267 {
268 int oldbit;
269
270 asm volatile("btr %2,%1\n\t"
271 "sbb %0,%0"
272 : "=r" (oldbit), ADDR
273 : "Ir" (nr));
274 return oldbit;
275 }
276
277 /* WARNING: non atomic and it can be reordered! */
__test_and_change_bit(int nr,volatile unsigned long * addr)278 static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
279 {
280 int oldbit;
281
282 asm volatile("btc %2,%1\n\t"
283 "sbb %0,%0"
284 : "=r" (oldbit), ADDR
285 : "Ir" (nr) : "memory");
286
287 return oldbit;
288 }
289
290 /**
291 * test_and_change_bit - Change a bit and return its old value
292 * @nr: Bit to change
293 * @addr: Address to count from
294 *
295 * This operation is atomic and cannot be reordered.
296 * It also implies a memory barrier.
297 */
test_and_change_bit(int nr,volatile unsigned long * addr)298 static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
299 {
300 int oldbit;
301
302 asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
303 "sbb %0,%0"
304 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
305
306 return oldbit;
307 }
308
constant_test_bit(unsigned int nr,const volatile unsigned long * addr)309 static __always_inline int constant_test_bit(unsigned int nr, const volatile unsigned long *addr)
310 {
311 return ((1UL << (nr % BITS_PER_LONG)) &
312 (addr[nr / BITS_PER_LONG])) != 0;
313 }
314
variable_test_bit(int nr,volatile const unsigned long * addr)315 static inline int variable_test_bit(int nr, volatile const unsigned long *addr)
316 {
317 int oldbit;
318
319 asm volatile("bt %2,%1\n\t"
320 "sbb %0,%0"
321 : "=r" (oldbit)
322 : "m" (*(unsigned long *)addr), "Ir" (nr));
323
324 return oldbit;
325 }
326
327 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
328 /**
329 * test_bit - Determine whether a bit is set
330 * @nr: bit number to test
331 * @addr: Address to start counting from
332 */
333 static int test_bit(int nr, const volatile unsigned long *addr);
334 #endif
335
336 #define test_bit(nr, addr) \
337 (__builtin_constant_p((nr)) \
338 ? constant_test_bit((nr), (addr)) \
339 : variable_test_bit((nr), (addr)))
340
341 /**
342 * __ffs - find first set bit in word
343 * @word: The word to search
344 *
345 * Undefined if no bit exists, so code should check against 0 first.
346 */
__ffs(unsigned long word)347 static inline unsigned long __ffs(unsigned long word)
348 {
349 asm("bsf %1,%0"
350 : "=r" (word)
351 : "rm" (word));
352 return word;
353 }
354
355 /**
356 * ffz - find first zero bit in word
357 * @word: The word to search
358 *
359 * Undefined if no zero exists, so code should check against ~0UL first.
360 */
ffz(unsigned long word)361 static inline unsigned long ffz(unsigned long word)
362 {
363 asm("bsf %1,%0"
364 : "=r" (word)
365 : "r" (~word));
366 return word;
367 }
368
369 /*
370 * __fls: find last set bit in word
371 * @word: The word to search
372 *
373 * Undefined if no set bit exists, so code should check against 0 first.
374 */
__fls(unsigned long word)375 static inline unsigned long __fls(unsigned long word)
376 {
377 asm("bsr %1,%0"
378 : "=r" (word)
379 : "rm" (word));
380 return word;
381 }
382
383 #undef ADDR
384
385 #ifdef __KERNEL__
386 /**
387 * ffs - find first set bit in word
388 * @x: the word to search
389 *
390 * This is defined the same way as the libc and compiler builtin ffs
391 * routines, therefore differs in spirit from the other bitops.
392 *
393 * ffs(value) returns 0 if value is 0 or the position of the first
394 * set bit if value is nonzero. The first (least significant) bit
395 * is at position 1.
396 */
ffs(int x)397 static inline int ffs(int x)
398 {
399 int r;
400
401 #ifdef CONFIG_X86_64
402 /*
403 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
404 * dest reg is undefined if x==0, but their CPU architect says its
405 * value is written to set it to the same as before, except that the
406 * top 32 bits will be cleared.
407 *
408 * We cannot do this on 32 bits because at the very least some
409 * 486 CPUs did not behave this way.
410 */
411 long tmp = -1;
412 asm("bsfl %1,%0"
413 : "=r" (r)
414 : "rm" (x), "0" (tmp));
415 #elif defined(CONFIG_X86_CMOV)
416 asm("bsfl %1,%0\n\t"
417 "cmovzl %2,%0"
418 : "=&r" (r) : "rm" (x), "r" (-1));
419 #else
420 asm("bsfl %1,%0\n\t"
421 "jnz 1f\n\t"
422 "movl $-1,%0\n"
423 "1:" : "=r" (r) : "rm" (x));
424 #endif
425 return r + 1;
426 }
427
428 /**
429 * fls - find last set bit in word
430 * @x: the word to search
431 *
432 * This is defined in a similar way as the libc and compiler builtin
433 * ffs, but returns the position of the most significant set bit.
434 *
435 * fls(value) returns 0 if value is 0 or the position of the last
436 * set bit if value is nonzero. The last (most significant) bit is
437 * at position 32.
438 */
fls(int x)439 static inline int fls(int x)
440 {
441 int r;
442
443 #ifdef CONFIG_X86_64
444 /*
445 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
446 * dest reg is undefined if x==0, but their CPU architect says its
447 * value is written to set it to the same as before, except that the
448 * top 32 bits will be cleared.
449 *
450 * We cannot do this on 32 bits because at the very least some
451 * 486 CPUs did not behave this way.
452 */
453 long tmp = -1;
454 asm("bsrl %1,%0"
455 : "=r" (r)
456 : "rm" (x), "0" (tmp));
457 #elif defined(CONFIG_X86_CMOV)
458 asm("bsrl %1,%0\n\t"
459 "cmovzl %2,%0"
460 : "=&r" (r) : "rm" (x), "rm" (-1));
461 #else
462 asm("bsrl %1,%0\n\t"
463 "jnz 1f\n\t"
464 "movl $-1,%0\n"
465 "1:" : "=r" (r) : "rm" (x));
466 #endif
467 return r + 1;
468 }
469
470 /**
471 * fls64 - find last set bit in a 64-bit word
472 * @x: the word to search
473 *
474 * This is defined in a similar way as the libc and compiler builtin
475 * ffsll, but returns the position of the most significant set bit.
476 *
477 * fls64(value) returns 0 if value is 0 or the position of the last
478 * set bit if value is nonzero. The last (most significant) bit is
479 * at position 64.
480 */
481 #ifdef CONFIG_X86_64
fls64(__u64 x)482 static __always_inline int fls64(__u64 x)
483 {
484 long bitpos = -1;
485 /*
486 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
487 * dest reg is undefined if x==0, but their CPU architect says its
488 * value is written to set it to the same as before.
489 */
490 asm("bsrq %1,%0"
491 : "+r" (bitpos)
492 : "rm" (x));
493 return bitpos + 1;
494 }
495 #else
496 #include <asm-generic/bitops/fls64.h>
497 #endif
498
499 #include <asm-generic/bitops/find.h>
500
501 #include <asm-generic/bitops/sched.h>
502
503 #define ARCH_HAS_FAST_MULTIPLIER 1
504
505 #include <asm/arch_hweight.h>
506
507 #include <asm-generic/bitops/const_hweight.h>
508
509 #include <asm-generic/bitops/le.h>
510
511 #include <asm-generic/bitops/ext2-atomic-setbit.h>
512
513 #endif /* __KERNEL__ */
514 #endif /* _ASM_X86_BITOPS_H */
515