1 /*
2  *  linux/arch/unicore32/mm/init.c
3  *
4  *  Copyright (C) 2010 GUAN Xue-tao
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/highmem.h>
19 #include <linux/gfp.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/export.h>
24 
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/sizes.h>
28 #include <asm/tlb.h>
29 #include <asm/memblock.h>
30 #include <mach/map.h>
31 
32 #include "mm.h"
33 
34 static unsigned long phys_initrd_start __initdata = 0x01000000;
35 static unsigned long phys_initrd_size __initdata = SZ_8M;
36 
early_initrd(char * p)37 static int __init early_initrd(char *p)
38 {
39 	unsigned long start, size;
40 	char *endp;
41 
42 	start = memparse(p, &endp);
43 	if (*endp == ',') {
44 		size = memparse(endp + 1, NULL);
45 
46 		phys_initrd_start = start;
47 		phys_initrd_size = size;
48 	}
49 	return 0;
50 }
51 early_param("initrd", early_initrd);
52 
53 /*
54  * This keeps memory configuration data used by a couple memory
55  * initialization functions, as well as show_mem() for the skipping
56  * of holes in the memory map.  It is populated by uc32_add_memory().
57  */
58 struct meminfo meminfo;
59 
show_mem(unsigned int filter)60 void show_mem(unsigned int filter)
61 {
62 	int free = 0, total = 0, reserved = 0;
63 	int shared = 0, cached = 0, slab = 0, i;
64 	struct meminfo *mi = &meminfo;
65 
66 	printk(KERN_DEFAULT "Mem-info:\n");
67 	show_free_areas(filter);
68 
69 	for_each_bank(i, mi) {
70 		struct membank *bank = &mi->bank[i];
71 		unsigned int pfn1, pfn2;
72 		struct page *page, *end;
73 
74 		pfn1 = bank_pfn_start(bank);
75 		pfn2 = bank_pfn_end(bank);
76 
77 		page = pfn_to_page(pfn1);
78 		end  = pfn_to_page(pfn2 - 1) + 1;
79 
80 		do {
81 			total++;
82 			if (PageReserved(page))
83 				reserved++;
84 			else if (PageSwapCache(page))
85 				cached++;
86 			else if (PageSlab(page))
87 				slab++;
88 			else if (!page_count(page))
89 				free++;
90 			else
91 				shared += page_count(page) - 1;
92 			page++;
93 		} while (page < end);
94 	}
95 
96 	printk(KERN_DEFAULT "%d pages of RAM\n", total);
97 	printk(KERN_DEFAULT "%d free pages\n", free);
98 	printk(KERN_DEFAULT "%d reserved pages\n", reserved);
99 	printk(KERN_DEFAULT "%d slab pages\n", slab);
100 	printk(KERN_DEFAULT "%d pages shared\n", shared);
101 	printk(KERN_DEFAULT "%d pages swap cached\n", cached);
102 }
103 
find_limits(unsigned long * min,unsigned long * max_low,unsigned long * max_high)104 static void __init find_limits(unsigned long *min, unsigned long *max_low,
105 	unsigned long *max_high)
106 {
107 	struct meminfo *mi = &meminfo;
108 	int i;
109 
110 	*min = -1UL;
111 	*max_low = *max_high = 0;
112 
113 	for_each_bank(i, mi) {
114 		struct membank *bank = &mi->bank[i];
115 		unsigned long start, end;
116 
117 		start = bank_pfn_start(bank);
118 		end = bank_pfn_end(bank);
119 
120 		if (*min > start)
121 			*min = start;
122 		if (*max_high < end)
123 			*max_high = end;
124 		if (bank->highmem)
125 			continue;
126 		if (*max_low < end)
127 			*max_low = end;
128 	}
129 }
130 
uc32_bootmem_init(unsigned long start_pfn,unsigned long end_pfn)131 static void __init uc32_bootmem_init(unsigned long start_pfn,
132 	unsigned long end_pfn)
133 {
134 	struct memblock_region *reg;
135 	unsigned int boot_pages;
136 	phys_addr_t bitmap;
137 	pg_data_t *pgdat;
138 
139 	/*
140 	 * Allocate the bootmem bitmap page.  This must be in a region
141 	 * of memory which has already been mapped.
142 	 */
143 	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
144 	bitmap = memblock_alloc_base(boot_pages << PAGE_SHIFT, L1_CACHE_BYTES,
145 				__pfn_to_phys(end_pfn));
146 
147 	/*
148 	 * Initialise the bootmem allocator, handing the
149 	 * memory banks over to bootmem.
150 	 */
151 	node_set_online(0);
152 	pgdat = NODE_DATA(0);
153 	init_bootmem_node(pgdat, __phys_to_pfn(bitmap), start_pfn, end_pfn);
154 
155 	/* Free the lowmem regions from memblock into bootmem. */
156 	for_each_memblock(memory, reg) {
157 		unsigned long start = memblock_region_memory_base_pfn(reg);
158 		unsigned long end = memblock_region_memory_end_pfn(reg);
159 
160 		if (end >= end_pfn)
161 			end = end_pfn;
162 		if (start >= end)
163 			break;
164 
165 		free_bootmem(__pfn_to_phys(start), (end - start) << PAGE_SHIFT);
166 	}
167 
168 	/* Reserve the lowmem memblock reserved regions in bootmem. */
169 	for_each_memblock(reserved, reg) {
170 		unsigned long start = memblock_region_reserved_base_pfn(reg);
171 		unsigned long end = memblock_region_reserved_end_pfn(reg);
172 
173 		if (end >= end_pfn)
174 			end = end_pfn;
175 		if (start >= end)
176 			break;
177 
178 		reserve_bootmem(__pfn_to_phys(start),
179 			(end - start) << PAGE_SHIFT, BOOTMEM_DEFAULT);
180 	}
181 }
182 
uc32_bootmem_free(unsigned long min,unsigned long max_low,unsigned long max_high)183 static void __init uc32_bootmem_free(unsigned long min, unsigned long max_low,
184 	unsigned long max_high)
185 {
186 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
187 	struct memblock_region *reg;
188 
189 	/*
190 	 * initialise the zones.
191 	 */
192 	memset(zone_size, 0, sizeof(zone_size));
193 
194 	/*
195 	 * The memory size has already been determined.  If we need
196 	 * to do anything fancy with the allocation of this memory
197 	 * to the zones, now is the time to do it.
198 	 */
199 	zone_size[0] = max_low - min;
200 
201 	/*
202 	 * Calculate the size of the holes.
203 	 *  holes = node_size - sum(bank_sizes)
204 	 */
205 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
206 	for_each_memblock(memory, reg) {
207 		unsigned long start = memblock_region_memory_base_pfn(reg);
208 		unsigned long end = memblock_region_memory_end_pfn(reg);
209 
210 		if (start < max_low) {
211 			unsigned long low_end = min(end, max_low);
212 			zhole_size[0] -= low_end - start;
213 		}
214 	}
215 
216 	/*
217 	 * Adjust the sizes according to any special requirements for
218 	 * this machine type.
219 	 */
220 	arch_adjust_zones(zone_size, zhole_size);
221 
222 	free_area_init_node(0, zone_size, min, zhole_size);
223 }
224 
pfn_valid(unsigned long pfn)225 int pfn_valid(unsigned long pfn)
226 {
227 	return memblock_is_memory(pfn << PAGE_SHIFT);
228 }
229 EXPORT_SYMBOL(pfn_valid);
230 
uc32_memory_present(void)231 static void uc32_memory_present(void)
232 {
233 }
234 
meminfo_cmp(const void * _a,const void * _b)235 static int __init meminfo_cmp(const void *_a, const void *_b)
236 {
237 	const struct membank *a = _a, *b = _b;
238 	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
239 	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
240 }
241 
uc32_memblock_init(struct meminfo * mi)242 void __init uc32_memblock_init(struct meminfo *mi)
243 {
244 	int i;
245 
246 	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]),
247 		meminfo_cmp, NULL);
248 
249 	for (i = 0; i < mi->nr_banks; i++)
250 		memblock_add(mi->bank[i].start, mi->bank[i].size);
251 
252 	/* Register the kernel text, kernel data and initrd with memblock. */
253 	memblock_reserve(__pa(_text), _end - _text);
254 
255 #ifdef CONFIG_BLK_DEV_INITRD
256 	if (phys_initrd_size) {
257 		memblock_reserve(phys_initrd_start, phys_initrd_size);
258 
259 		/* Now convert initrd to virtual addresses */
260 		initrd_start = __phys_to_virt(phys_initrd_start);
261 		initrd_end = initrd_start + phys_initrd_size;
262 	}
263 #endif
264 
265 	uc32_mm_memblock_reserve();
266 
267 	memblock_allow_resize();
268 	memblock_dump_all();
269 }
270 
bootmem_init(void)271 void __init bootmem_init(void)
272 {
273 	unsigned long min, max_low, max_high;
274 
275 	max_low = max_high = 0;
276 
277 	find_limits(&min, &max_low, &max_high);
278 
279 	uc32_bootmem_init(min, max_low);
280 
281 #ifdef CONFIG_SWIOTLB
282 	swiotlb_init(1);
283 #endif
284 	/*
285 	 * Sparsemem tries to allocate bootmem in memory_present(),
286 	 * so must be done after the fixed reservations
287 	 */
288 	uc32_memory_present();
289 
290 	/*
291 	 * sparse_init() needs the bootmem allocator up and running.
292 	 */
293 	sparse_init();
294 
295 	/*
296 	 * Now free the memory - free_area_init_node needs
297 	 * the sparse mem_map arrays initialized by sparse_init()
298 	 * for memmap_init_zone(), otherwise all PFNs are invalid.
299 	 */
300 	uc32_bootmem_free(min, max_low, max_high);
301 
302 	high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1;
303 
304 	/*
305 	 * This doesn't seem to be used by the Linux memory manager any
306 	 * more, but is used by ll_rw_block.  If we can get rid of it, we
307 	 * also get rid of some of the stuff above as well.
308 	 *
309 	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
310 	 * the system, not the maximum PFN.
311 	 */
312 	max_low_pfn = max_low - PHYS_PFN_OFFSET;
313 	max_pfn = max_high - PHYS_PFN_OFFSET;
314 }
315 
free_area(unsigned long pfn,unsigned long end,char * s)316 static inline int free_area(unsigned long pfn, unsigned long end, char *s)
317 {
318 	unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10);
319 
320 	for (; pfn < end; pfn++) {
321 		struct page *page = pfn_to_page(pfn);
322 		ClearPageReserved(page);
323 		init_page_count(page);
324 		__free_page(page);
325 		pages++;
326 	}
327 
328 	if (size && s)
329 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
330 
331 	return pages;
332 }
333 
334 static inline void
free_memmap(unsigned long start_pfn,unsigned long end_pfn)335 free_memmap(unsigned long start_pfn, unsigned long end_pfn)
336 {
337 	struct page *start_pg, *end_pg;
338 	unsigned long pg, pgend;
339 
340 	/*
341 	 * Convert start_pfn/end_pfn to a struct page pointer.
342 	 */
343 	start_pg = pfn_to_page(start_pfn - 1) + 1;
344 	end_pg = pfn_to_page(end_pfn);
345 
346 	/*
347 	 * Convert to physical addresses, and
348 	 * round start upwards and end downwards.
349 	 */
350 	pg = PAGE_ALIGN(__pa(start_pg));
351 	pgend = __pa(end_pg) & PAGE_MASK;
352 
353 	/*
354 	 * If there are free pages between these,
355 	 * free the section of the memmap array.
356 	 */
357 	if (pg < pgend)
358 		free_bootmem(pg, pgend - pg);
359 }
360 
361 /*
362  * The mem_map array can get very big.  Free the unused area of the memory map.
363  */
free_unused_memmap(struct meminfo * mi)364 static void __init free_unused_memmap(struct meminfo *mi)
365 {
366 	unsigned long bank_start, prev_bank_end = 0;
367 	unsigned int i;
368 
369 	/*
370 	 * This relies on each bank being in address order.
371 	 * The banks are sorted previously in bootmem_init().
372 	 */
373 	for_each_bank(i, mi) {
374 		struct membank *bank = &mi->bank[i];
375 
376 		bank_start = bank_pfn_start(bank);
377 
378 		/*
379 		 * If we had a previous bank, and there is a space
380 		 * between the current bank and the previous, free it.
381 		 */
382 		if (prev_bank_end && prev_bank_end < bank_start)
383 			free_memmap(prev_bank_end, bank_start);
384 
385 		/*
386 		 * Align up here since the VM subsystem insists that the
387 		 * memmap entries are valid from the bank end aligned to
388 		 * MAX_ORDER_NR_PAGES.
389 		 */
390 		prev_bank_end = ALIGN(bank_pfn_end(bank), MAX_ORDER_NR_PAGES);
391 	}
392 }
393 
394 /*
395  * mem_init() marks the free areas in the mem_map and tells us how much
396  * memory is free.  This is done after various parts of the system have
397  * claimed their memory after the kernel image.
398  */
mem_init(void)399 void __init mem_init(void)
400 {
401 	unsigned long reserved_pages, free_pages;
402 	struct memblock_region *reg;
403 	int i;
404 
405 	max_mapnr   = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;
406 
407 	/* this will put all unused low memory onto the freelists */
408 	free_unused_memmap(&meminfo);
409 
410 	totalram_pages += free_all_bootmem();
411 
412 	reserved_pages = free_pages = 0;
413 
414 	for_each_bank(i, &meminfo) {
415 		struct membank *bank = &meminfo.bank[i];
416 		unsigned int pfn1, pfn2;
417 		struct page *page, *end;
418 
419 		pfn1 = bank_pfn_start(bank);
420 		pfn2 = bank_pfn_end(bank);
421 
422 		page = pfn_to_page(pfn1);
423 		end  = pfn_to_page(pfn2 - 1) + 1;
424 
425 		do {
426 			if (PageReserved(page))
427 				reserved_pages++;
428 			else if (!page_count(page))
429 				free_pages++;
430 			page++;
431 		} while (page < end);
432 	}
433 
434 	/*
435 	 * Since our memory may not be contiguous, calculate the
436 	 * real number of pages we have in this system
437 	 */
438 	printk(KERN_INFO "Memory:");
439 	num_physpages = 0;
440 	for_each_memblock(memory, reg) {
441 		unsigned long pages = memblock_region_memory_end_pfn(reg) -
442 			memblock_region_memory_base_pfn(reg);
443 		num_physpages += pages;
444 		printk(" %ldMB", pages >> (20 - PAGE_SHIFT));
445 	}
446 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
447 
448 	printk(KERN_NOTICE "Memory: %luk/%luk available, %luk reserved, %luK highmem\n",
449 		nr_free_pages() << (PAGE_SHIFT-10),
450 		free_pages << (PAGE_SHIFT-10),
451 		reserved_pages << (PAGE_SHIFT-10),
452 		totalhigh_pages << (PAGE_SHIFT-10));
453 
454 	printk(KERN_NOTICE "Virtual kernel memory layout:\n"
455 		"    vector  : 0x%08lx - 0x%08lx   (%4ld kB)\n"
456 		"    vmalloc : 0x%08lx - 0x%08lx   (%4ld MB)\n"
457 		"    lowmem  : 0x%08lx - 0x%08lx   (%4ld MB)\n"
458 		"    modules : 0x%08lx - 0x%08lx   (%4ld MB)\n"
459 		"      .init : 0x%p" " - 0x%p" "   (%4d kB)\n"
460 		"      .text : 0x%p" " - 0x%p" "   (%4d kB)\n"
461 		"      .data : 0x%p" " - 0x%p" "   (%4d kB)\n",
462 
463 		VECTORS_BASE, VECTORS_BASE + PAGE_SIZE,
464 		DIV_ROUND_UP(PAGE_SIZE, SZ_1K),
465 		VMALLOC_START, VMALLOC_END,
466 		DIV_ROUND_UP((VMALLOC_END - VMALLOC_START), SZ_1M),
467 		PAGE_OFFSET, (unsigned long)high_memory,
468 		DIV_ROUND_UP(((unsigned long)high_memory - PAGE_OFFSET), SZ_1M),
469 		MODULES_VADDR, MODULES_END,
470 		DIV_ROUND_UP((MODULES_END - MODULES_VADDR), SZ_1M),
471 
472 		__init_begin, __init_end,
473 		DIV_ROUND_UP((__init_end - __init_begin), SZ_1K),
474 		_stext, _etext,
475 		DIV_ROUND_UP((_etext - _stext), SZ_1K),
476 		_sdata, _edata,
477 		DIV_ROUND_UP((_edata - _sdata), SZ_1K));
478 
479 	BUILD_BUG_ON(TASK_SIZE				> MODULES_VADDR);
480 	BUG_ON(TASK_SIZE				> MODULES_VADDR);
481 
482 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
483 		/*
484 		 * On a machine this small we won't get
485 		 * anywhere without overcommit, so turn
486 		 * it on by default.
487 		 */
488 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
489 	}
490 }
491 
free_initmem(void)492 void free_initmem(void)
493 {
494 	totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)),
495 				    __phys_to_pfn(__pa(__init_end)),
496 				    "init");
497 }
498 
499 #ifdef CONFIG_BLK_DEV_INITRD
500 
501 static int keep_initrd;
502 
free_initrd_mem(unsigned long start,unsigned long end)503 void free_initrd_mem(unsigned long start, unsigned long end)
504 {
505 	if (!keep_initrd)
506 		totalram_pages += free_area(__phys_to_pfn(__pa(start)),
507 					    __phys_to_pfn(__pa(end)),
508 					    "initrd");
509 }
510 
keepinitrd_setup(char * __unused)511 static int __init keepinitrd_setup(char *__unused)
512 {
513 	keep_initrd = 1;
514 	return 1;
515 }
516 
517 __setup("keepinitrd", keepinitrd_setup);
518 #endif
519