1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/spinlock.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/smp.h>
29 
30 #include <asm/system.h>
31 #include <asm/pgtable.h>
32 #include <asm/pgalloc.h>
33 #include <asm/fixmap.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/homecache.h>
37 
38 #define K(x) ((x) << (PAGE_SHIFT-10))
39 
40 /*
41  * The normal show_free_areas() is too verbose on Tile, with dozens
42  * of processors and often four NUMA zones each with high and lowmem.
43  */
show_mem(unsigned int filter)44 void show_mem(unsigned int filter)
45 {
46 	struct zone *zone;
47 
48 	pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu"
49 	       " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu"
50 	       " pagecache:%lu swap:%lu\n",
51 	       (global_page_state(NR_ACTIVE_ANON) +
52 		global_page_state(NR_ACTIVE_FILE)),
53 	       (global_page_state(NR_INACTIVE_ANON) +
54 		global_page_state(NR_INACTIVE_FILE)),
55 	       global_page_state(NR_FILE_DIRTY),
56 	       global_page_state(NR_WRITEBACK),
57 	       global_page_state(NR_UNSTABLE_NFS),
58 	       global_page_state(NR_FREE_PAGES),
59 	       (global_page_state(NR_SLAB_RECLAIMABLE) +
60 		global_page_state(NR_SLAB_UNRECLAIMABLE)),
61 	       global_page_state(NR_FILE_MAPPED),
62 	       global_page_state(NR_PAGETABLE),
63 	       global_page_state(NR_BOUNCE),
64 	       global_page_state(NR_FILE_PAGES),
65 	       nr_swap_pages);
66 
67 	for_each_zone(zone) {
68 		unsigned long flags, order, total = 0, largest_order = -1;
69 
70 		if (!populated_zone(zone))
71 			continue;
72 
73 		spin_lock_irqsave(&zone->lock, flags);
74 		for (order = 0; order < MAX_ORDER; order++) {
75 			int nr = zone->free_area[order].nr_free;
76 			total += nr << order;
77 			if (nr)
78 				largest_order = order;
79 		}
80 		spin_unlock_irqrestore(&zone->lock, flags);
81 		pr_err("Node %d %7s: %lukB (largest %luKb)\n",
82 		       zone_to_nid(zone), zone->name,
83 		       K(total), largest_order ? K(1UL) << largest_order : 0);
84 	}
85 }
86 
87 /*
88  * Associate a virtual page frame with a given physical page frame
89  * and protection flags for that frame.
90  */
set_pte_pfn(unsigned long vaddr,unsigned long pfn,pgprot_t flags)91 static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
92 {
93 	pgd_t *pgd;
94 	pud_t *pud;
95 	pmd_t *pmd;
96 	pte_t *pte;
97 
98 	pgd = swapper_pg_dir + pgd_index(vaddr);
99 	if (pgd_none(*pgd)) {
100 		BUG();
101 		return;
102 	}
103 	pud = pud_offset(pgd, vaddr);
104 	if (pud_none(*pud)) {
105 		BUG();
106 		return;
107 	}
108 	pmd = pmd_offset(pud, vaddr);
109 	if (pmd_none(*pmd)) {
110 		BUG();
111 		return;
112 	}
113 	pte = pte_offset_kernel(pmd, vaddr);
114 	/* <pfn,flags> stored as-is, to permit clearing entries */
115 	set_pte(pte, pfn_pte(pfn, flags));
116 
117 	/*
118 	 * It's enough to flush this one mapping.
119 	 * This appears conservative since it is only called
120 	 * from __set_fixmap.
121 	 */
122 	local_flush_tlb_page(NULL, vaddr, PAGE_SIZE);
123 }
124 
__set_fixmap(enum fixed_addresses idx,unsigned long phys,pgprot_t flags)125 void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
126 {
127 	unsigned long address = __fix_to_virt(idx);
128 
129 	if (idx >= __end_of_fixed_addresses) {
130 		BUG();
131 		return;
132 	}
133 	set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
134 }
135 
136 #if defined(CONFIG_HIGHPTE)
_pte_offset_map(pmd_t * dir,unsigned long address)137 pte_t *_pte_offset_map(pmd_t *dir, unsigned long address)
138 {
139 	pte_t *pte = kmap_atomic(pmd_page(*dir)) +
140 		(pmd_ptfn(*dir) << HV_LOG2_PAGE_TABLE_ALIGN) & ~PAGE_MASK;
141 	return &pte[pte_index(address)];
142 }
143 #endif
144 
145 /**
146  * shatter_huge_page() - ensure a given address is mapped by a small page.
147  *
148  * This function converts a huge PTE mapping kernel LOWMEM into a bunch
149  * of small PTEs with the same caching.  No cache flush required, but we
150  * must do a global TLB flush.
151  *
152  * Any caller that wishes to modify a kernel mapping that might
153  * have been made with a huge page should call this function,
154  * since doing so properly avoids race conditions with installing the
155  * newly-shattered page and then flushing all the TLB entries.
156  *
157  * @addr: Address at which to shatter any existing huge page.
158  */
shatter_huge_page(unsigned long addr)159 void shatter_huge_page(unsigned long addr)
160 {
161 	pgd_t *pgd;
162 	pud_t *pud;
163 	pmd_t *pmd;
164 	unsigned long flags = 0;  /* happy compiler */
165 #ifdef __PAGETABLE_PMD_FOLDED
166 	struct list_head *pos;
167 #endif
168 
169 	/* Get a pointer to the pmd entry that we need to change. */
170 	addr &= HPAGE_MASK;
171 	BUG_ON(pgd_addr_invalid(addr));
172 	BUG_ON(addr < PAGE_OFFSET);  /* only for kernel LOWMEM */
173 	pgd = swapper_pg_dir + pgd_index(addr);
174 	pud = pud_offset(pgd, addr);
175 	BUG_ON(!pud_present(*pud));
176 	pmd = pmd_offset(pud, addr);
177 	BUG_ON(!pmd_present(*pmd));
178 	if (!pmd_huge_page(*pmd))
179 		return;
180 
181 	/*
182 	 * Grab the pgd_lock, since we may need it to walk the pgd_list,
183 	 * and since we need some kind of lock here to avoid races.
184 	 */
185 	spin_lock_irqsave(&pgd_lock, flags);
186 	if (!pmd_huge_page(*pmd)) {
187 		/* Lost the race to convert the huge page. */
188 		spin_unlock_irqrestore(&pgd_lock, flags);
189 		return;
190 	}
191 
192 	/* Shatter the huge page into the preallocated L2 page table. */
193 	pmd_populate_kernel(&init_mm, pmd,
194 			    get_prealloc_pte(pte_pfn(*(pte_t *)pmd)));
195 
196 #ifdef __PAGETABLE_PMD_FOLDED
197 	/* Walk every pgd on the system and update the pmd there. */
198 	list_for_each(pos, &pgd_list) {
199 		pmd_t *copy_pmd;
200 		pgd = list_to_pgd(pos) + pgd_index(addr);
201 		pud = pud_offset(pgd, addr);
202 		copy_pmd = pmd_offset(pud, addr);
203 		__set_pmd(copy_pmd, *pmd);
204 	}
205 #endif
206 
207 	/* Tell every cpu to notice the change. */
208 	flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
209 		     cpu_possible_mask, NULL, 0);
210 
211 	/* Hold the lock until the TLB flush is finished to avoid races. */
212 	spin_unlock_irqrestore(&pgd_lock, flags);
213 }
214 
215 /*
216  * List of all pgd's needed so it can invalidate entries in both cached
217  * and uncached pgd's. This is essentially codepath-based locking
218  * against pageattr.c; it is the unique case in which a valid change
219  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
220  * vmalloc faults work because attached pagetables are never freed.
221  * The locking scheme was chosen on the basis of manfred's
222  * recommendations and having no core impact whatsoever.
223  * -- wli
224  */
225 DEFINE_SPINLOCK(pgd_lock);
226 LIST_HEAD(pgd_list);
227 
pgd_list_add(pgd_t * pgd)228 static inline void pgd_list_add(pgd_t *pgd)
229 {
230 	list_add(pgd_to_list(pgd), &pgd_list);
231 }
232 
pgd_list_del(pgd_t * pgd)233 static inline void pgd_list_del(pgd_t *pgd)
234 {
235 	list_del(pgd_to_list(pgd));
236 }
237 
238 #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
239 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
240 
pgd_ctor(pgd_t * pgd)241 static void pgd_ctor(pgd_t *pgd)
242 {
243 	unsigned long flags;
244 
245 	memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
246 	spin_lock_irqsave(&pgd_lock, flags);
247 
248 #ifndef __tilegx__
249 	/*
250 	 * Check that the user interrupt vector has no L2.
251 	 * It never should for the swapper, and new page tables
252 	 * should always start with an empty user interrupt vector.
253 	 */
254 	BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
255 #endif
256 
257 	memcpy(pgd + KERNEL_PGD_INDEX_START,
258 	       swapper_pg_dir + KERNEL_PGD_INDEX_START,
259 	       KERNEL_PGD_PTRS * sizeof(pgd_t));
260 
261 	pgd_list_add(pgd);
262 	spin_unlock_irqrestore(&pgd_lock, flags);
263 }
264 
pgd_dtor(pgd_t * pgd)265 static void pgd_dtor(pgd_t *pgd)
266 {
267 	unsigned long flags; /* can be called from interrupt context */
268 
269 	spin_lock_irqsave(&pgd_lock, flags);
270 	pgd_list_del(pgd);
271 	spin_unlock_irqrestore(&pgd_lock, flags);
272 }
273 
pgd_alloc(struct mm_struct * mm)274 pgd_t *pgd_alloc(struct mm_struct *mm)
275 {
276 	pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
277 	if (pgd)
278 		pgd_ctor(pgd);
279 	return pgd;
280 }
281 
pgd_free(struct mm_struct * mm,pgd_t * pgd)282 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
283 {
284 	pgd_dtor(pgd);
285 	kmem_cache_free(pgd_cache, pgd);
286 }
287 
288 
289 #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
290 
pte_alloc_one(struct mm_struct * mm,unsigned long address)291 struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
292 {
293 	gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
294 	struct page *p;
295 #if L2_USER_PGTABLE_ORDER > 0
296 	int i;
297 #endif
298 
299 #ifdef CONFIG_HIGHPTE
300 	flags |= __GFP_HIGHMEM;
301 #endif
302 
303 	p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
304 	if (p == NULL)
305 		return NULL;
306 
307 #if L2_USER_PGTABLE_ORDER > 0
308 	/*
309 	 * Make every page have a page_count() of one, not just the first.
310 	 * We don't use __GFP_COMP since it doesn't look like it works
311 	 * correctly with tlb_remove_page().
312 	 */
313 	for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
314 		init_page_count(p+i);
315 		inc_zone_page_state(p+i, NR_PAGETABLE);
316 	}
317 #endif
318 
319 	pgtable_page_ctor(p);
320 	return p;
321 }
322 
323 /*
324  * Free page immediately (used in __pte_alloc if we raced with another
325  * process).  We have to correct whatever pte_alloc_one() did before
326  * returning the pages to the allocator.
327  */
pte_free(struct mm_struct * mm,struct page * p)328 void pte_free(struct mm_struct *mm, struct page *p)
329 {
330 	int i;
331 
332 	pgtable_page_dtor(p);
333 	__free_page(p);
334 
335 	for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
336 		__free_page(p+i);
337 		dec_zone_page_state(p+i, NR_PAGETABLE);
338 	}
339 }
340 
__pte_free_tlb(struct mmu_gather * tlb,struct page * pte,unsigned long address)341 void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte,
342 		    unsigned long address)
343 {
344 	int i;
345 
346 	pgtable_page_dtor(pte);
347 	tlb_remove_page(tlb, pte);
348 
349 	for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
350 		tlb_remove_page(tlb, pte + i);
351 		dec_zone_page_state(pte + i, NR_PAGETABLE);
352 	}
353 }
354 
355 #ifndef __tilegx__
356 
357 /*
358  * FIXME: needs to be atomic vs hypervisor writes.  For now we make the
359  * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
360  */
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)361 int ptep_test_and_clear_young(struct vm_area_struct *vma,
362 			      unsigned long addr, pte_t *ptep)
363 {
364 #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
365 # error Code assumes HV_PTE "accessed" bit in second byte
366 #endif
367 	u8 *tmp = (u8 *)ptep;
368 	u8 second_byte = tmp[1];
369 	if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
370 		return 0;
371 	tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
372 	return 1;
373 }
374 
375 /*
376  * This implementation is atomic vs hypervisor writes, since the hypervisor
377  * always writes the low word (where "accessed" and "dirty" are) and this
378  * routine only writes the high word.
379  */
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)380 void ptep_set_wrprotect(struct mm_struct *mm,
381 			unsigned long addr, pte_t *ptep)
382 {
383 #if HV_PTE_INDEX_WRITABLE < 32
384 # error Code assumes HV_PTE "writable" bit in high word
385 #endif
386 	u32 *tmp = (u32 *)ptep;
387 	tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
388 }
389 
390 #endif
391 
virt_to_pte(struct mm_struct * mm,unsigned long addr)392 pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
393 {
394 	pgd_t *pgd;
395 	pud_t *pud;
396 	pmd_t *pmd;
397 
398 	if (pgd_addr_invalid(addr))
399 		return NULL;
400 
401 	pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
402 	pud = pud_offset(pgd, addr);
403 	if (!pud_present(*pud))
404 		return NULL;
405 	pmd = pmd_offset(pud, addr);
406 	if (pmd_huge_page(*pmd))
407 		return (pte_t *)pmd;
408 	if (!pmd_present(*pmd))
409 		return NULL;
410 	return pte_offset_kernel(pmd, addr);
411 }
412 
set_remote_cache_cpu(pgprot_t prot,int cpu)413 pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
414 {
415 	unsigned int width = smp_width;
416 	int x = cpu % width;
417 	int y = cpu / width;
418 	BUG_ON(y >= smp_height);
419 	BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
420 	BUG_ON(cpu < 0 || cpu >= NR_CPUS);
421 	BUG_ON(!cpu_is_valid_lotar(cpu));
422 	return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
423 }
424 
get_remote_cache_cpu(pgprot_t prot)425 int get_remote_cache_cpu(pgprot_t prot)
426 {
427 	HV_LOTAR lotar = hv_pte_get_lotar(prot);
428 	int x = HV_LOTAR_X(lotar);
429 	int y = HV_LOTAR_Y(lotar);
430 	BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
431 	return x + y * smp_width;
432 }
433 
434 /*
435  * Convert a kernel VA to a PA and homing information.
436  */
va_to_cpa_and_pte(void * va,unsigned long long * cpa,pte_t * pte)437 int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
438 {
439 	struct page *page = virt_to_page(va);
440 	pte_t null_pte = { 0 };
441 
442 	*cpa = __pa(va);
443 
444 	/* Note that this is not writing a page table, just returning a pte. */
445 	*pte = pte_set_home(null_pte, page_home(page));
446 
447 	return 0; /* return non-zero if not hfh? */
448 }
449 EXPORT_SYMBOL(va_to_cpa_and_pte);
450 
__set_pte(pte_t * ptep,pte_t pte)451 void __set_pte(pte_t *ptep, pte_t pte)
452 {
453 #ifdef __tilegx__
454 	*ptep = pte;
455 #else
456 # if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
457 #  error Must write the present and migrating bits last
458 # endif
459 	if (pte_present(pte)) {
460 		((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
461 		barrier();
462 		((u32 *)ptep)[0] = (u32)(pte_val(pte));
463 	} else {
464 		((u32 *)ptep)[0] = (u32)(pte_val(pte));
465 		barrier();
466 		((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
467 	}
468 #endif /* __tilegx__ */
469 }
470 
set_pte(pte_t * ptep,pte_t pte)471 void set_pte(pte_t *ptep, pte_t pte)
472 {
473 	struct page *page = pfn_to_page(pte_pfn(pte));
474 
475 	/* Update the home of a PTE if necessary */
476 	pte = pte_set_home(pte, page_home(page));
477 
478 	__set_pte(ptep, pte);
479 }
480 
481 /* Can this mm load a PTE with cached_priority set? */
mm_is_priority_cached(struct mm_struct * mm)482 static inline int mm_is_priority_cached(struct mm_struct *mm)
483 {
484 	return mm->context.priority_cached;
485 }
486 
487 /*
488  * Add a priority mapping to an mm_context and
489  * notify the hypervisor if this is the first one.
490  */
start_mm_caching(struct mm_struct * mm)491 void start_mm_caching(struct mm_struct *mm)
492 {
493 	if (!mm_is_priority_cached(mm)) {
494 		mm->context.priority_cached = -1U;
495 		hv_set_caching(-1U);
496 	}
497 }
498 
499 /*
500  * Validate and return the priority_cached flag.  We know if it's zero
501  * that we don't need to scan, since we immediately set it non-zero
502  * when we first consider a MAP_CACHE_PRIORITY mapping.
503  *
504  * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
505  * since we're in an interrupt context (servicing switch_mm) we don't
506  * worry about it and don't unset the "priority_cached" field.
507  * Presumably we'll come back later and have more luck and clear
508  * the value then; for now we'll just keep the cache marked for priority.
509  */
update_priority_cached(struct mm_struct * mm)510 static unsigned int update_priority_cached(struct mm_struct *mm)
511 {
512 	if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
513 		struct vm_area_struct *vm;
514 		for (vm = mm->mmap; vm; vm = vm->vm_next) {
515 			if (hv_pte_get_cached_priority(vm->vm_page_prot))
516 				break;
517 		}
518 		if (vm == NULL)
519 			mm->context.priority_cached = 0;
520 		up_write(&mm->mmap_sem);
521 	}
522 	return mm->context.priority_cached;
523 }
524 
525 /* Set caching correctly for an mm that we are switching to. */
check_mm_caching(struct mm_struct * prev,struct mm_struct * next)526 void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
527 {
528 	if (!mm_is_priority_cached(next)) {
529 		/*
530 		 * If the new mm doesn't use priority caching, just see if we
531 		 * need the hv_set_caching(), or can assume it's already zero.
532 		 */
533 		if (mm_is_priority_cached(prev))
534 			hv_set_caching(0);
535 	} else {
536 		hv_set_caching(update_priority_cached(next));
537 	}
538 }
539 
540 #if CHIP_HAS_MMIO()
541 
542 /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
ioremap_prot(resource_size_t phys_addr,unsigned long size,pgprot_t home)543 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
544 			   pgprot_t home)
545 {
546 	void *addr;
547 	struct vm_struct *area;
548 	unsigned long offset, last_addr;
549 	pgprot_t pgprot;
550 
551 	/* Don't allow wraparound or zero size */
552 	last_addr = phys_addr + size - 1;
553 	if (!size || last_addr < phys_addr)
554 		return NULL;
555 
556 	/* Create a read/write, MMIO VA mapping homed at the requested shim. */
557 	pgprot = PAGE_KERNEL;
558 	pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
559 	pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
560 
561 	/*
562 	 * Mappings have to be page-aligned
563 	 */
564 	offset = phys_addr & ~PAGE_MASK;
565 	phys_addr &= PAGE_MASK;
566 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
567 
568 	/*
569 	 * Ok, go for it..
570 	 */
571 	area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
572 	if (!area)
573 		return NULL;
574 	area->phys_addr = phys_addr;
575 	addr = area->addr;
576 	if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
577 			       phys_addr, pgprot)) {
578 		remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr));
579 		return NULL;
580 	}
581 	return (__force void __iomem *) (offset + (char *)addr);
582 }
583 EXPORT_SYMBOL(ioremap_prot);
584 
585 /* Map a PCI MMIO bus address into VA space. */
ioremap(resource_size_t phys_addr,unsigned long size)586 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
587 {
588 	panic("ioremap for PCI MMIO is not supported");
589 }
590 EXPORT_SYMBOL(ioremap);
591 
592 /* Unmap an MMIO VA mapping. */
iounmap(volatile void __iomem * addr_in)593 void iounmap(volatile void __iomem *addr_in)
594 {
595 	volatile void __iomem *addr = (volatile void __iomem *)
596 		(PAGE_MASK & (unsigned long __force)addr_in);
597 #if 1
598 	vunmap((void * __force)addr);
599 #else
600 	/* x86 uses this complicated flow instead of vunmap().  Is
601 	 * there any particular reason we should do the same? */
602 	struct vm_struct *p, *o;
603 
604 	/* Use the vm area unlocked, assuming the caller
605 	   ensures there isn't another iounmap for the same address
606 	   in parallel. Reuse of the virtual address is prevented by
607 	   leaving it in the global lists until we're done with it.
608 	   cpa takes care of the direct mappings. */
609 	read_lock(&vmlist_lock);
610 	for (p = vmlist; p; p = p->next) {
611 		if (p->addr == addr)
612 			break;
613 	}
614 	read_unlock(&vmlist_lock);
615 
616 	if (!p) {
617 		pr_err("iounmap: bad address %p\n", addr);
618 		dump_stack();
619 		return;
620 	}
621 
622 	/* Finally remove it */
623 	o = remove_vm_area((void *)addr);
624 	BUG_ON(p != o || o == NULL);
625 	kfree(p);
626 #endif
627 }
628 EXPORT_SYMBOL(iounmap);
629 
630 #endif /* CHIP_HAS_MMIO() */
631