1 /*
2  * Copyright (C) 1995  Linus Torvalds
3  * Copyright 2010 Tilera Corporation. All Rights Reserved.
4  *
5  *   This program is free software; you can redistribute it and/or
6  *   modify it under the terms of the GNU General Public License
7  *   as published by the Free Software Foundation, version 2.
8  *
9  *   This program is distributed in the hope that it will be useful, but
10  *   WITHOUT ANY WARRANTY; without even the implied warranty of
11  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *   NON INFRINGEMENT.  See the GNU General Public License for
13  *   more details.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/hugetlb.h>
27 #include <linux/swap.h>
28 #include <linux/smp.h>
29 #include <linux/init.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/poison.h>
33 #include <linux/bootmem.h>
34 #include <linux/slab.h>
35 #include <linux/proc_fs.h>
36 #include <linux/efi.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/processor.h>
41 #include <asm/system.h>
42 #include <asm/pgtable.h>
43 #include <asm/pgalloc.h>
44 #include <asm/dma.h>
45 #include <asm/fixmap.h>
46 #include <asm/tlb.h>
47 #include <asm/tlbflush.h>
48 #include <asm/sections.h>
49 #include <asm/setup.h>
50 #include <asm/homecache.h>
51 #include <hv/hypervisor.h>
52 #include <arch/chip.h>
53 
54 #include "migrate.h"
55 
56 #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
57 
58 #ifndef __tilegx__
59 unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
60 EXPORT_SYMBOL(VMALLOC_RESERVE);
61 #endif
62 
63 /* Create an L2 page table */
alloc_pte(void)64 static pte_t * __init alloc_pte(void)
65 {
66 	return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
67 }
68 
69 /*
70  * L2 page tables per controller.  We allocate these all at once from
71  * the bootmem allocator and store them here.  This saves on kernel L2
72  * page table memory, compared to allocating a full 64K page per L2
73  * page table, and also means that in cases where we use huge pages,
74  * we are guaranteed to later be able to shatter those huge pages and
75  * switch to using these page tables instead, without requiring
76  * further allocation.  Each l2_ptes[] entry points to the first page
77  * table for the first hugepage-size piece of memory on the
78  * controller; other page tables are just indexed directly, i.e. the
79  * L2 page tables are contiguous in memory for each controller.
80  */
81 static pte_t *l2_ptes[MAX_NUMNODES];
82 static int num_l2_ptes[MAX_NUMNODES];
83 
init_prealloc_ptes(int node,int pages)84 static void init_prealloc_ptes(int node, int pages)
85 {
86 	BUG_ON(pages & (HV_L2_ENTRIES-1));
87 	if (pages) {
88 		num_l2_ptes[node] = pages;
89 		l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
90 						HV_PAGE_TABLE_ALIGN, 0);
91 	}
92 }
93 
get_prealloc_pte(unsigned long pfn)94 pte_t *get_prealloc_pte(unsigned long pfn)
95 {
96 	int node = pfn_to_nid(pfn);
97 	pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
98 	BUG_ON(node >= MAX_NUMNODES);
99 	BUG_ON(pfn >= num_l2_ptes[node]);
100 	return &l2_ptes[node][pfn];
101 }
102 
103 /*
104  * What caching do we expect pages from the heap to have when
105  * they are allocated during bootup?  (Once we've installed the
106  * "real" swapper_pg_dir.)
107  */
initial_heap_home(void)108 static int initial_heap_home(void)
109 {
110 #if CHIP_HAS_CBOX_HOME_MAP()
111 	if (hash_default)
112 		return PAGE_HOME_HASH;
113 #endif
114 	return smp_processor_id();
115 }
116 
117 /*
118  * Place a pointer to an L2 page table in a middle page
119  * directory entry.
120  */
assign_pte(pmd_t * pmd,pte_t * page_table)121 static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
122 {
123 	phys_addr_t pa = __pa(page_table);
124 	unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
125 	pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
126 	BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
127 	pteval = pte_set_home(pteval, initial_heap_home());
128 	*(pte_t *)pmd = pteval;
129 	if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
130 		BUG();
131 }
132 
133 #ifdef __tilegx__
134 
135 #if HV_L1_SIZE != HV_L2_SIZE
136 # error Rework assumption that L1 and L2 page tables are same size.
137 #endif
138 
139 /* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
alloc_pmd(void)140 static inline pmd_t *alloc_pmd(void)
141 {
142 	return (pmd_t *)alloc_pte();
143 }
144 
assign_pmd(pud_t * pud,pmd_t * pmd)145 static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
146 {
147 	assign_pte((pmd_t *)pud, (pte_t *)pmd);
148 }
149 
150 #endif /* __tilegx__ */
151 
152 /* Replace the given pmd with a full PTE table. */
shatter_pmd(pmd_t * pmd)153 void __init shatter_pmd(pmd_t *pmd)
154 {
155 	pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
156 	assign_pte(pmd, pte);
157 }
158 
159 #ifdef CONFIG_HIGHMEM
160 /*
161  * This function initializes a certain range of kernel virtual memory
162  * with new bootmem page tables, everywhere page tables are missing in
163  * the given range.
164  */
165 
166 /*
167  * NOTE: The pagetables are allocated contiguous on the physical space
168  * so we can cache the place of the first one and move around without
169  * checking the pgd every time.
170  */
page_table_range_init(unsigned long start,unsigned long end,pgd_t * pgd_base)171 static void __init page_table_range_init(unsigned long start,
172 					 unsigned long end, pgd_t *pgd_base)
173 {
174 	pgd_t *pgd;
175 	int pgd_idx;
176 	unsigned long vaddr;
177 
178 	vaddr = start;
179 	pgd_idx = pgd_index(vaddr);
180 	pgd = pgd_base + pgd_idx;
181 
182 	for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
183 		pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
184 		if (pmd_none(*pmd))
185 			assign_pte(pmd, alloc_pte());
186 		vaddr += PMD_SIZE;
187 	}
188 }
189 #endif /* CONFIG_HIGHMEM */
190 
191 
192 #if CHIP_HAS_CBOX_HOME_MAP()
193 
194 static int __initdata ktext_hash = 1;  /* .text pages */
195 static int __initdata kdata_hash = 1;  /* .data and .bss pages */
196 int __write_once hash_default = 1;     /* kernel allocator pages */
197 EXPORT_SYMBOL(hash_default);
198 int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
199 #endif /* CHIP_HAS_CBOX_HOME_MAP */
200 
201 /*
202  * CPUs to use to for striping the pages of kernel data.  If hash-for-home
203  * is available, this is only relevant if kcache_hash sets up the
204  * .data and .bss to be page-homed, and we don't want the default mode
205  * of using the full set of kernel cpus for the striping.
206  */
207 static __initdata struct cpumask kdata_mask;
208 static __initdata int kdata_arg_seen;
209 
210 int __write_once kdata_huge;       /* if no homecaching, small pages */
211 
212 
213 /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
construct_pgprot(pgprot_t prot,int home)214 static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
215 {
216 	prot = pte_set_home(prot, home);
217 #if CHIP_HAS_CBOX_HOME_MAP()
218 	if (home == PAGE_HOME_IMMUTABLE) {
219 		if (ktext_hash)
220 			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
221 		else
222 			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
223 	}
224 #endif
225 	return prot;
226 }
227 
228 /*
229  * For a given kernel data VA, how should it be cached?
230  * We return the complete pgprot_t with caching bits set.
231  */
init_pgprot(ulong address)232 static pgprot_t __init init_pgprot(ulong address)
233 {
234 	int cpu;
235 	unsigned long page;
236 	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
237 
238 #if CHIP_HAS_CBOX_HOME_MAP()
239 	/* For kdata=huge, everything is just hash-for-home. */
240 	if (kdata_huge)
241 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
242 #endif
243 
244 	/* We map the aliased pages of permanent text inaccessible. */
245 	if (address < (ulong) _sinittext - CODE_DELTA)
246 		return PAGE_NONE;
247 
248 	/*
249 	 * We map read-only data non-coherent for performance.  We could
250 	 * use neighborhood caching on TILE64, but it's not clear it's a win.
251 	 */
252 	if ((address >= (ulong) __start_rodata &&
253 	     address < (ulong) __end_rodata) ||
254 	    address == (ulong) empty_zero_page) {
255 		return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
256 	}
257 
258 	/* As a performance optimization, keep the boot init stack here. */
259 	if (address >= (ulong)&init_thread_union &&
260 	    address < (ulong)&init_thread_union + THREAD_SIZE)
261 		return construct_pgprot(PAGE_KERNEL, smp_processor_id());
262 
263 #ifndef __tilegx__
264 #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
265 	/* Force the atomic_locks[] array page to be hash-for-home. */
266 	if (address == (ulong) atomic_locks)
267 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
268 #endif
269 #endif
270 
271 	/*
272 	 * Everything else that isn't data or bss is heap, so mark it
273 	 * with the initial heap home (hash-for-home, or this cpu).  This
274 	 * includes any addresses after the loaded image and any address before
275 	 * _einitdata, since we already captured the case of text before
276 	 * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
277 	 *
278 	 * All the LOWMEM pages that we mark this way will get their
279 	 * struct page homecache properly marked later, in set_page_homes().
280 	 * The HIGHMEM pages we leave with a default zero for their
281 	 * homes, but with a zero free_time we don't have to actually
282 	 * do a flush action the first time we use them, either.
283 	 */
284 	if (address >= (ulong) _end || address < (ulong) _einitdata)
285 		return construct_pgprot(PAGE_KERNEL, initial_heap_home());
286 
287 #if CHIP_HAS_CBOX_HOME_MAP()
288 	/* Use hash-for-home if requested for data/bss. */
289 	if (kdata_hash)
290 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
291 #endif
292 
293 	/*
294 	 * Make the w1data homed like heap to start with, to avoid
295 	 * making it part of the page-striped data area when we're just
296 	 * going to convert it to read-only soon anyway.
297 	 */
298 	if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
299 		return construct_pgprot(PAGE_KERNEL, initial_heap_home());
300 
301 	/*
302 	 * Otherwise we just hand out consecutive cpus.  To avoid
303 	 * requiring this function to hold state, we just walk forward from
304 	 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
305 	 * the requested address, while walking cpu home around kdata_mask.
306 	 * This is typically no more than a dozen or so iterations.
307 	 */
308 	page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
309 	BUG_ON(address < page || address >= (ulong)_end);
310 	cpu = cpumask_first(&kdata_mask);
311 	for (; page < address; page += PAGE_SIZE) {
312 		if (page >= (ulong)&init_thread_union &&
313 		    page < (ulong)&init_thread_union + THREAD_SIZE)
314 			continue;
315 		if (page == (ulong)empty_zero_page)
316 			continue;
317 #ifndef __tilegx__
318 #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
319 		if (page == (ulong)atomic_locks)
320 			continue;
321 #endif
322 #endif
323 		cpu = cpumask_next(cpu, &kdata_mask);
324 		if (cpu == NR_CPUS)
325 			cpu = cpumask_first(&kdata_mask);
326 	}
327 	return construct_pgprot(PAGE_KERNEL, cpu);
328 }
329 
330 /*
331  * This function sets up how we cache the kernel text.  If we have
332  * hash-for-home support, normally that is used instead (see the
333  * kcache_hash boot flag for more information).  But if we end up
334  * using a page-based caching technique, this option sets up the
335  * details of that.  In addition, the "ktext=nocache" option may
336  * always be used to disable local caching of text pages, if desired.
337  */
338 
339 static int __initdata ktext_arg_seen;
340 static int __initdata ktext_small;
341 static int __initdata ktext_local;
342 static int __initdata ktext_all;
343 static int __initdata ktext_nondataplane;
344 static int __initdata ktext_nocache;
345 static struct cpumask __initdata ktext_mask;
346 
setup_ktext(char * str)347 static int __init setup_ktext(char *str)
348 {
349 	if (str == NULL)
350 		return -EINVAL;
351 
352 	/* If you have a leading "nocache", turn off ktext caching */
353 	if (strncmp(str, "nocache", 7) == 0) {
354 		ktext_nocache = 1;
355 		pr_info("ktext: disabling local caching of kernel text\n");
356 		str += 7;
357 		if (*str == ',')
358 			++str;
359 		if (*str == '\0')
360 			return 0;
361 	}
362 
363 	ktext_arg_seen = 1;
364 
365 	/* Default setting on Tile64: use a huge page */
366 	if (strcmp(str, "huge") == 0)
367 		pr_info("ktext: using one huge locally cached page\n");
368 
369 	/* Pay TLB cost but get no cache benefit: cache small pages locally */
370 	else if (strcmp(str, "local") == 0) {
371 		ktext_small = 1;
372 		ktext_local = 1;
373 		pr_info("ktext: using small pages with local caching\n");
374 	}
375 
376 	/* Neighborhood cache ktext pages on all cpus. */
377 	else if (strcmp(str, "all") == 0) {
378 		ktext_small = 1;
379 		ktext_all = 1;
380 		pr_info("ktext: using maximal caching neighborhood\n");
381 	}
382 
383 
384 	/* Neighborhood ktext pages on specified mask */
385 	else if (cpulist_parse(str, &ktext_mask) == 0) {
386 		char buf[NR_CPUS * 5];
387 		cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
388 		if (cpumask_weight(&ktext_mask) > 1) {
389 			ktext_small = 1;
390 			pr_info("ktext: using caching neighborhood %s "
391 			       "with small pages\n", buf);
392 		} else {
393 			pr_info("ktext: caching on cpu %s with one huge page\n",
394 			       buf);
395 		}
396 	}
397 
398 	else if (*str)
399 		return -EINVAL;
400 
401 	return 0;
402 }
403 
404 early_param("ktext", setup_ktext);
405 
406 
ktext_set_nocache(pgprot_t prot)407 static inline pgprot_t ktext_set_nocache(pgprot_t prot)
408 {
409 	if (!ktext_nocache)
410 		prot = hv_pte_set_nc(prot);
411 #if CHIP_HAS_NC_AND_NOALLOC_BITS()
412 	else
413 		prot = hv_pte_set_no_alloc_l2(prot);
414 #endif
415 	return prot;
416 }
417 
418 #ifndef __tilegx__
get_pmd(pgd_t pgtables[],unsigned long va)419 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
420 {
421 	return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
422 }
423 #else
get_pmd(pgd_t pgtables[],unsigned long va)424 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
425 {
426 	pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
427 	if (pud_none(*pud))
428 		assign_pmd(pud, alloc_pmd());
429 	return pmd_offset(pud, va);
430 }
431 #endif
432 
433 /* Temporary page table we use for staging. */
434 static pgd_t pgtables[PTRS_PER_PGD]
435  __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
436 
437 /*
438  * This maps the physical memory to kernel virtual address space, a total
439  * of max_low_pfn pages, by creating page tables starting from address
440  * PAGE_OFFSET.
441  *
442  * This routine transitions us from using a set of compiled-in large
443  * pages to using some more precise caching, including removing access
444  * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
445  * marking read-only data as locally cacheable, striping the remaining
446  * .data and .bss across all the available tiles, and removing access
447  * to pages above the top of RAM (thus ensuring a page fault from a bad
448  * virtual address rather than a hypervisor shoot down for accessing
449  * memory outside the assigned limits).
450  */
kernel_physical_mapping_init(pgd_t * pgd_base)451 static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
452 {
453 	unsigned long address, pfn;
454 	pmd_t *pmd;
455 	pte_t *pte;
456 	int pte_ofs;
457 	const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
458 	struct cpumask kstripe_mask;
459 	int rc, i;
460 
461 #if CHIP_HAS_CBOX_HOME_MAP()
462 	if (ktext_arg_seen && ktext_hash) {
463 		pr_warning("warning: \"ktext\" boot argument ignored"
464 			   " if \"kcache_hash\" sets up text hash-for-home\n");
465 		ktext_small = 0;
466 	}
467 
468 	if (kdata_arg_seen && kdata_hash) {
469 		pr_warning("warning: \"kdata\" boot argument ignored"
470 			   " if \"kcache_hash\" sets up data hash-for-home\n");
471 	}
472 
473 	if (kdata_huge && !hash_default) {
474 		pr_warning("warning: disabling \"kdata=huge\"; requires"
475 			  " kcache_hash=all or =allbutstack\n");
476 		kdata_huge = 0;
477 	}
478 #endif
479 
480 	/*
481 	 * Set up a mask for cpus to use for kernel striping.
482 	 * This is normally all cpus, but minus dataplane cpus if any.
483 	 * If the dataplane covers the whole chip, we stripe over
484 	 * the whole chip too.
485 	 */
486 	cpumask_copy(&kstripe_mask, cpu_possible_mask);
487 	if (!kdata_arg_seen)
488 		kdata_mask = kstripe_mask;
489 
490 	/* Allocate and fill in L2 page tables */
491 	for (i = 0; i < MAX_NUMNODES; ++i) {
492 #ifdef CONFIG_HIGHMEM
493 		unsigned long end_pfn = node_lowmem_end_pfn[i];
494 #else
495 		unsigned long end_pfn = node_end_pfn[i];
496 #endif
497 		unsigned long end_huge_pfn = 0;
498 
499 		/* Pre-shatter the last huge page to allow per-cpu pages. */
500 		if (kdata_huge)
501 			end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
502 
503 		pfn = node_start_pfn[i];
504 
505 		/* Allocate enough memory to hold L2 page tables for node. */
506 		init_prealloc_ptes(i, end_pfn - pfn);
507 
508 		address = (unsigned long) pfn_to_kaddr(pfn);
509 		while (pfn < end_pfn) {
510 			BUG_ON(address & (HPAGE_SIZE-1));
511 			pmd = get_pmd(pgtables, address);
512 			pte = get_prealloc_pte(pfn);
513 			if (pfn < end_huge_pfn) {
514 				pgprot_t prot = init_pgprot(address);
515 				*(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
516 				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
517 				     pfn++, pte_ofs++, address += PAGE_SIZE)
518 					pte[pte_ofs] = pfn_pte(pfn, prot);
519 			} else {
520 				if (kdata_huge)
521 					printk(KERN_DEBUG "pre-shattered huge"
522 					       " page at %#lx\n", address);
523 				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
524 				     pfn++, pte_ofs++, address += PAGE_SIZE) {
525 					pgprot_t prot = init_pgprot(address);
526 					pte[pte_ofs] = pfn_pte(pfn, prot);
527 				}
528 				assign_pte(pmd, pte);
529 			}
530 		}
531 	}
532 
533 	/*
534 	 * Set or check ktext_map now that we have cpu_possible_mask
535 	 * and kstripe_mask to work with.
536 	 */
537 	if (ktext_all)
538 		cpumask_copy(&ktext_mask, cpu_possible_mask);
539 	else if (ktext_nondataplane)
540 		ktext_mask = kstripe_mask;
541 	else if (!cpumask_empty(&ktext_mask)) {
542 		/* Sanity-check any mask that was requested */
543 		struct cpumask bad;
544 		cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
545 		cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
546 		if (!cpumask_empty(&bad)) {
547 			char buf[NR_CPUS * 5];
548 			cpulist_scnprintf(buf, sizeof(buf), &bad);
549 			pr_info("ktext: not using unavailable cpus %s\n", buf);
550 		}
551 		if (cpumask_empty(&ktext_mask)) {
552 			pr_warning("ktext: no valid cpus; caching on %d.\n",
553 				   smp_processor_id());
554 			cpumask_copy(&ktext_mask,
555 				     cpumask_of(smp_processor_id()));
556 		}
557 	}
558 
559 	address = MEM_SV_INTRPT;
560 	pmd = get_pmd(pgtables, address);
561 	if (ktext_small) {
562 		/* Allocate an L2 PTE for the kernel text */
563 		int cpu = 0;
564 		pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
565 						 PAGE_HOME_IMMUTABLE);
566 
567 		if (ktext_local) {
568 			if (ktext_nocache)
569 				prot = hv_pte_set_mode(prot,
570 						       HV_PTE_MODE_UNCACHED);
571 			else
572 				prot = hv_pte_set_mode(prot,
573 						       HV_PTE_MODE_CACHE_NO_L3);
574 		} else {
575 			prot = hv_pte_set_mode(prot,
576 					       HV_PTE_MODE_CACHE_TILE_L3);
577 			cpu = cpumask_first(&ktext_mask);
578 
579 			prot = ktext_set_nocache(prot);
580 		}
581 
582 		BUG_ON(address != (unsigned long)_stext);
583 		pfn = 0;  /* code starts at PA 0 */
584 		pte = alloc_pte();
585 		for (pte_ofs = 0; address < (unsigned long)_einittext;
586 		     pfn++, pte_ofs++, address += PAGE_SIZE) {
587 			if (!ktext_local) {
588 				prot = set_remote_cache_cpu(prot, cpu);
589 				cpu = cpumask_next(cpu, &ktext_mask);
590 				if (cpu == NR_CPUS)
591 					cpu = cpumask_first(&ktext_mask);
592 			}
593 			pte[pte_ofs] = pfn_pte(pfn, prot);
594 		}
595 		assign_pte(pmd, pte);
596 	} else {
597 		pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
598 		pteval = pte_mkhuge(pteval);
599 #if CHIP_HAS_CBOX_HOME_MAP()
600 		if (ktext_hash) {
601 			pteval = hv_pte_set_mode(pteval,
602 						 HV_PTE_MODE_CACHE_HASH_L3);
603 			pteval = ktext_set_nocache(pteval);
604 		} else
605 #endif /* CHIP_HAS_CBOX_HOME_MAP() */
606 		if (cpumask_weight(&ktext_mask) == 1) {
607 			pteval = set_remote_cache_cpu(pteval,
608 					      cpumask_first(&ktext_mask));
609 			pteval = hv_pte_set_mode(pteval,
610 						 HV_PTE_MODE_CACHE_TILE_L3);
611 			pteval = ktext_set_nocache(pteval);
612 		} else if (ktext_nocache)
613 			pteval = hv_pte_set_mode(pteval,
614 						 HV_PTE_MODE_UNCACHED);
615 		else
616 			pteval = hv_pte_set_mode(pteval,
617 						 HV_PTE_MODE_CACHE_NO_L3);
618 		*(pte_t *)pmd = pteval;
619 	}
620 
621 	/* Set swapper_pgprot here so it is flushed to memory right away. */
622 	swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
623 
624 	/*
625 	 * Since we may be changing the caching of the stack and page
626 	 * table itself, we invoke an assembly helper to do the
627 	 * following steps:
628 	 *
629 	 *  - flush the cache so we start with an empty slate
630 	 *  - install pgtables[] as the real page table
631 	 *  - flush the TLB so the new page table takes effect
632 	 */
633 	rc = flush_and_install_context(__pa(pgtables),
634 				       init_pgprot((unsigned long)pgtables),
635 				       __get_cpu_var(current_asid),
636 				       cpumask_bits(my_cpu_mask));
637 	BUG_ON(rc != 0);
638 
639 	/* Copy the page table back to the normal swapper_pg_dir. */
640 	memcpy(pgd_base, pgtables, sizeof(pgtables));
641 	__install_page_table(pgd_base, __get_cpu_var(current_asid),
642 			     swapper_pgprot);
643 
644 	/*
645 	 * We just read swapper_pgprot and thus brought it into the cache,
646 	 * with its new home & caching mode.  When we start the other CPUs,
647 	 * they're going to reference swapper_pgprot via their initial fake
648 	 * VA-is-PA mappings, which cache everything locally.  At that
649 	 * time, if it's in our cache with a conflicting home, the
650 	 * simulator's coherence checker will complain.  So, flush it out
651 	 * of our cache; we're not going to ever use it again anyway.
652 	 */
653 	__insn_finv(&swapper_pgprot);
654 }
655 
656 /*
657  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
658  * is valid. The argument is a physical page number.
659  *
660  * On Tile, the only valid things for which we can just hand out unchecked
661  * PTEs are the kernel code and data.  Anything else might change its
662  * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
663  * Note that init_thread_union is released to heap soon after boot,
664  * so we include it in the init data.
665  *
666  * For TILE-Gx, we might want to consider allowing access to PA
667  * regions corresponding to PCI space, etc.
668  */
devmem_is_allowed(unsigned long pagenr)669 int devmem_is_allowed(unsigned long pagenr)
670 {
671 	return pagenr < kaddr_to_pfn(_end) &&
672 		!(pagenr >= kaddr_to_pfn(&init_thread_union) ||
673 		  pagenr < kaddr_to_pfn(_einitdata)) &&
674 		!(pagenr >= kaddr_to_pfn(_sinittext) ||
675 		  pagenr <= kaddr_to_pfn(_einittext-1));
676 }
677 
678 #ifdef CONFIG_HIGHMEM
permanent_kmaps_init(pgd_t * pgd_base)679 static void __init permanent_kmaps_init(pgd_t *pgd_base)
680 {
681 	pgd_t *pgd;
682 	pud_t *pud;
683 	pmd_t *pmd;
684 	pte_t *pte;
685 	unsigned long vaddr;
686 
687 	vaddr = PKMAP_BASE;
688 	page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
689 
690 	pgd = swapper_pg_dir + pgd_index(vaddr);
691 	pud = pud_offset(pgd, vaddr);
692 	pmd = pmd_offset(pud, vaddr);
693 	pte = pte_offset_kernel(pmd, vaddr);
694 	pkmap_page_table = pte;
695 }
696 #endif /* CONFIG_HIGHMEM */
697 
698 
init_free_pfn_range(unsigned long start,unsigned long end)699 static void __init init_free_pfn_range(unsigned long start, unsigned long end)
700 {
701 	unsigned long pfn;
702 	struct page *page = pfn_to_page(start);
703 
704 	for (pfn = start; pfn < end; ) {
705 		/* Optimize by freeing pages in large batches */
706 		int order = __ffs(pfn);
707 		int count, i;
708 		struct page *p;
709 
710 		if (order >= MAX_ORDER)
711 			order = MAX_ORDER-1;
712 		count = 1 << order;
713 		while (pfn + count > end) {
714 			count >>= 1;
715 			--order;
716 		}
717 		for (p = page, i = 0; i < count; ++i, ++p) {
718 			__ClearPageReserved(p);
719 			/*
720 			 * Hacky direct set to avoid unnecessary
721 			 * lock take/release for EVERY page here.
722 			 */
723 			p->_count.counter = 0;
724 			p->_mapcount.counter = -1;
725 		}
726 		init_page_count(page);
727 		__free_pages(page, order);
728 		totalram_pages += count;
729 
730 		page += count;
731 		pfn += count;
732 	}
733 }
734 
set_non_bootmem_pages_init(void)735 static void __init set_non_bootmem_pages_init(void)
736 {
737 	struct zone *z;
738 	for_each_zone(z) {
739 		unsigned long start, end;
740 		int nid = z->zone_pgdat->node_id;
741 		int idx = zone_idx(z);
742 
743 		start = z->zone_start_pfn;
744 		if (start == 0)
745 			continue;  /* bootmem */
746 		end = start + z->spanned_pages;
747 		if (idx == ZONE_NORMAL) {
748 			BUG_ON(start != node_start_pfn[nid]);
749 			start = node_free_pfn[nid];
750 		}
751 #ifdef CONFIG_HIGHMEM
752 		if (idx == ZONE_HIGHMEM)
753 			totalhigh_pages += z->spanned_pages;
754 #endif
755 		if (kdata_huge) {
756 			unsigned long percpu_pfn = node_percpu_pfn[nid];
757 			if (start < percpu_pfn && end > percpu_pfn)
758 				end = percpu_pfn;
759 		}
760 #ifdef CONFIG_PCI
761 		if (start <= pci_reserve_start_pfn &&
762 		    end > pci_reserve_start_pfn) {
763 			if (end > pci_reserve_end_pfn)
764 				init_free_pfn_range(pci_reserve_end_pfn, end);
765 			end = pci_reserve_start_pfn;
766 		}
767 #endif
768 		init_free_pfn_range(start, end);
769 	}
770 }
771 
772 /*
773  * paging_init() sets up the page tables - note that all of lowmem is
774  * already mapped by head.S.
775  */
paging_init(void)776 void __init paging_init(void)
777 {
778 #ifdef CONFIG_HIGHMEM
779 	unsigned long vaddr, end;
780 #endif
781 #ifdef __tilegx__
782 	pud_t *pud;
783 #endif
784 	pgd_t *pgd_base = swapper_pg_dir;
785 
786 	kernel_physical_mapping_init(pgd_base);
787 
788 #ifdef CONFIG_HIGHMEM
789 	/*
790 	 * Fixed mappings, only the page table structure has to be
791 	 * created - mappings will be set by set_fixmap():
792 	 */
793 	vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
794 	end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
795 	page_table_range_init(vaddr, end, pgd_base);
796 	permanent_kmaps_init(pgd_base);
797 #endif
798 
799 #ifdef __tilegx__
800 	/*
801 	 * Since GX allocates just one pmd_t array worth of vmalloc space,
802 	 * we go ahead and allocate it statically here, then share it
803 	 * globally.  As a result we don't have to worry about any task
804 	 * changing init_mm once we get up and running, and there's no
805 	 * need for e.g. vmalloc_sync_all().
806 	 */
807 	BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
808 	pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
809 	assign_pmd(pud, alloc_pmd());
810 #endif
811 }
812 
813 
814 /*
815  * Walk the kernel page tables and derive the page_home() from
816  * the PTEs, so that set_pte() can properly validate the caching
817  * of all PTEs it sees.
818  */
set_page_homes(void)819 void __init set_page_homes(void)
820 {
821 }
822 
set_max_mapnr_init(void)823 static void __init set_max_mapnr_init(void)
824 {
825 #ifdef CONFIG_FLATMEM
826 	max_mapnr = max_low_pfn;
827 #endif
828 }
829 
mem_init(void)830 void __init mem_init(void)
831 {
832 	int codesize, datasize, initsize;
833 	int i;
834 #ifndef __tilegx__
835 	void *last;
836 #endif
837 
838 #ifdef CONFIG_FLATMEM
839 	BUG_ON(!mem_map);
840 #endif
841 
842 #ifdef CONFIG_HIGHMEM
843 	/* check that fixmap and pkmap do not overlap */
844 	if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
845 		pr_err("fixmap and kmap areas overlap"
846 		       " - this will crash\n");
847 		pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
848 		       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
849 		       FIXADDR_START);
850 		BUG();
851 	}
852 #endif
853 
854 	set_max_mapnr_init();
855 
856 	/* this will put all bootmem onto the freelists */
857 	totalram_pages += free_all_bootmem();
858 
859 	/* count all remaining LOWMEM and give all HIGHMEM to page allocator */
860 	set_non_bootmem_pages_init();
861 
862 	codesize =  (unsigned long)&_etext - (unsigned long)&_text;
863 	datasize =  (unsigned long)&_end - (unsigned long)&_sdata;
864 	initsize =  (unsigned long)&_einittext - (unsigned long)&_sinittext;
865 	initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
866 
867 	pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
868 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
869 		num_physpages << (PAGE_SHIFT-10),
870 		codesize >> 10,
871 		datasize >> 10,
872 		initsize >> 10,
873 		(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
874 	       );
875 
876 	/*
877 	 * In debug mode, dump some interesting memory mappings.
878 	 */
879 #ifdef CONFIG_HIGHMEM
880 	printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
881 	       FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
882 	printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
883 	       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
884 #endif
885 #ifdef CONFIG_HUGEVMAP
886 	printk(KERN_DEBUG "  HUGEMAP %#lx - %#lx\n",
887 	       HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
888 #endif
889 	printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
890 	       _VMALLOC_START, _VMALLOC_END - 1);
891 #ifdef __tilegx__
892 	for (i = MAX_NUMNODES-1; i >= 0; --i) {
893 		struct pglist_data *node = &node_data[i];
894 		if (node->node_present_pages) {
895 			unsigned long start = (unsigned long)
896 				pfn_to_kaddr(node->node_start_pfn);
897 			unsigned long end = start +
898 				(node->node_present_pages << PAGE_SHIFT);
899 			printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
900 			       i, start, end - 1);
901 		}
902 	}
903 #else
904 	last = high_memory;
905 	for (i = MAX_NUMNODES-1; i >= 0; --i) {
906 		if ((unsigned long)vbase_map[i] != -1UL) {
907 			printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
908 			       i, (unsigned long) (vbase_map[i]),
909 			       (unsigned long) (last-1));
910 			last = vbase_map[i];
911 		}
912 	}
913 #endif
914 
915 #ifndef __tilegx__
916 	/*
917 	 * Convert from using one lock for all atomic operations to
918 	 * one per cpu.
919 	 */
920 	__init_atomic_per_cpu();
921 #endif
922 }
923 
924 /*
925  * this is for the non-NUMA, single node SMP system case.
926  * Specifically, in the case of x86, we will always add
927  * memory to the highmem for now.
928  */
929 #ifndef CONFIG_NEED_MULTIPLE_NODES
arch_add_memory(u64 start,u64 size)930 int arch_add_memory(u64 start, u64 size)
931 {
932 	struct pglist_data *pgdata = &contig_page_data;
933 	struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
934 	unsigned long start_pfn = start >> PAGE_SHIFT;
935 	unsigned long nr_pages = size >> PAGE_SHIFT;
936 
937 	return __add_pages(zone, start_pfn, nr_pages);
938 }
939 
remove_memory(u64 start,u64 size)940 int remove_memory(u64 start, u64 size)
941 {
942 	return -EINVAL;
943 }
944 #endif
945 
946 struct kmem_cache *pgd_cache;
947 
pgtable_cache_init(void)948 void __init pgtable_cache_init(void)
949 {
950 	pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
951 	if (!pgd_cache)
952 		panic("pgtable_cache_init(): Cannot create pgd cache");
953 }
954 
955 #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
956 /*
957  * The __w1data area holds data that is only written during initialization,
958  * and is read-only and thus freely cacheable thereafter.  Fix the page
959  * table entries that cover that region accordingly.
960  */
mark_w1data_ro(void)961 static void mark_w1data_ro(void)
962 {
963 	/* Loop over page table entries */
964 	unsigned long addr = (unsigned long)__w1data_begin;
965 	BUG_ON((addr & (PAGE_SIZE-1)) != 0);
966 	for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
967 		unsigned long pfn = kaddr_to_pfn((void *)addr);
968 		pte_t *ptep = virt_to_pte(NULL, addr);
969 		BUG_ON(pte_huge(*ptep));   /* not relevant for kdata_huge */
970 		set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
971 	}
972 }
973 #endif
974 
975 #ifdef CONFIG_DEBUG_PAGEALLOC
976 static long __write_once initfree;
977 #else
978 static long __write_once initfree = 1;
979 #endif
980 
981 /* Select whether to free (1) or mark unusable (0) the __init pages. */
set_initfree(char * str)982 static int __init set_initfree(char *str)
983 {
984 	long val;
985 	if (strict_strtol(str, 0, &val) == 0) {
986 		initfree = val;
987 		pr_info("initfree: %s free init pages\n",
988 			initfree ? "will" : "won't");
989 	}
990 	return 1;
991 }
992 __setup("initfree=", set_initfree);
993 
free_init_pages(char * what,unsigned long begin,unsigned long end)994 static void free_init_pages(char *what, unsigned long begin, unsigned long end)
995 {
996 	unsigned long addr = (unsigned long) begin;
997 
998 	if (kdata_huge && !initfree) {
999 		pr_warning("Warning: ignoring initfree=0:"
1000 			   " incompatible with kdata=huge\n");
1001 		initfree = 1;
1002 	}
1003 	end = (end + PAGE_SIZE - 1) & PAGE_MASK;
1004 	local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
1005 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1006 		/*
1007 		 * Note we just reset the home here directly in the
1008 		 * page table.  We know this is safe because our caller
1009 		 * just flushed the caches on all the other cpus,
1010 		 * and they won't be touching any of these pages.
1011 		 */
1012 		int pfn = kaddr_to_pfn((void *)addr);
1013 		struct page *page = pfn_to_page(pfn);
1014 		pte_t *ptep = virt_to_pte(NULL, addr);
1015 		if (!initfree) {
1016 			/*
1017 			 * If debugging page accesses then do not free
1018 			 * this memory but mark them not present - any
1019 			 * buggy init-section access will create a
1020 			 * kernel page fault:
1021 			 */
1022 			pte_clear(&init_mm, addr, ptep);
1023 			continue;
1024 		}
1025 		__ClearPageReserved(page);
1026 		init_page_count(page);
1027 		if (pte_huge(*ptep))
1028 			BUG_ON(!kdata_huge);
1029 		else
1030 			set_pte_at(&init_mm, addr, ptep,
1031 				   pfn_pte(pfn, PAGE_KERNEL));
1032 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1033 		free_page(addr);
1034 		totalram_pages++;
1035 	}
1036 	pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1037 }
1038 
free_initmem(void)1039 void free_initmem(void)
1040 {
1041 	const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1042 
1043 	/*
1044 	 * Evict the dirty initdata on the boot cpu, evict the w1data
1045 	 * wherever it's homed, and evict all the init code everywhere.
1046 	 * We are guaranteed that no one will touch the init pages any
1047 	 * more, and although other cpus may be touching the w1data,
1048 	 * we only actually change the caching on tile64, which won't
1049 	 * be keeping local copies in the other tiles' caches anyway.
1050 	 */
1051 	homecache_evict(&cpu_cacheable_map);
1052 
1053 	/* Free the data pages that we won't use again after init. */
1054 	free_init_pages("unused kernel data",
1055 			(unsigned long)_sinitdata,
1056 			(unsigned long)_einitdata);
1057 
1058 	/*
1059 	 * Free the pages mapped from 0xc0000000 that correspond to code
1060 	 * pages from MEM_SV_INTRPT that we won't use again after init.
1061 	 */
1062 	free_init_pages("unused kernel text",
1063 			(unsigned long)_sinittext - text_delta,
1064 			(unsigned long)_einittext - text_delta);
1065 
1066 #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1067 	/*
1068 	 * Upgrade the .w1data section to globally cached.
1069 	 * We don't do this on tilepro, since the cache architecture
1070 	 * pretty much makes it irrelevant, and in any case we end
1071 	 * up having racing issues with other tiles that may touch
1072 	 * the data after we flush the cache but before we update
1073 	 * the PTEs and flush the TLBs, causing sharer shootdowns
1074 	 * later.  Even though this is to clean data, it seems like
1075 	 * an unnecessary complication.
1076 	 */
1077 	mark_w1data_ro();
1078 #endif
1079 
1080 	/* Do a global TLB flush so everyone sees the changes. */
1081 	flush_tlb_all();
1082 }
1083