1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * From i386 code copyright (C) 1995  Linus Torvalds
15  */
16 
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/smp.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/tty.h>
30 #include <linux/vt_kern.h>		/* For unblank_screen() */
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
34 #include <linux/hugetlb.h>
35 #include <linux/syscalls.h>
36 #include <linux/uaccess.h>
37 
38 #include <asm/system.h>
39 #include <asm/pgalloc.h>
40 #include <asm/sections.h>
41 #include <asm/traps.h>
42 #include <asm/syscalls.h>
43 
44 #include <arch/interrupts.h>
45 
force_sig_info_fault(const char * type,int si_signo,int si_code,unsigned long address,int fault_num,struct task_struct * tsk,struct pt_regs * regs)46 static noinline void force_sig_info_fault(const char *type, int si_signo,
47 					  int si_code, unsigned long address,
48 					  int fault_num,
49 					  struct task_struct *tsk,
50 					  struct pt_regs *regs)
51 {
52 	siginfo_t info;
53 
54 	if (unlikely(tsk->pid < 2)) {
55 		panic("Signal %d (code %d) at %#lx sent to %s!",
56 		      si_signo, si_code & 0xffff, address,
57 		      is_idle_task(tsk) ? "the idle task" : "init");
58 	}
59 
60 	info.si_signo = si_signo;
61 	info.si_errno = 0;
62 	info.si_code = si_code;
63 	info.si_addr = (void __user *)address;
64 	info.si_trapno = fault_num;
65 	trace_unhandled_signal(type, regs, address, si_signo);
66 	force_sig_info(si_signo, &info, tsk);
67 }
68 
69 #ifndef __tilegx__
70 /*
71  * Synthesize the fault a PL0 process would get by doing a word-load of
72  * an unaligned address or a high kernel address.
73  */
SYSCALL_DEFINE2(cmpxchg_badaddr,unsigned long,address,struct pt_regs *,regs)74 SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address,
75 		struct pt_regs *, regs)
76 {
77 	if (address >= PAGE_OFFSET)
78 		force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
79 				     address, INT_DTLB_MISS, current, regs);
80 	else
81 		force_sig_info_fault("atomic alignment fault", SIGBUS,
82 				     BUS_ADRALN, address,
83 				     INT_UNALIGN_DATA, current, regs);
84 
85 	/*
86 	 * Adjust pc to point at the actual instruction, which is unusual
87 	 * for syscalls normally, but is appropriate when we are claiming
88 	 * that a syscall swint1 caused a page fault or bus error.
89 	 */
90 	regs->pc -= 8;
91 
92 	/*
93 	 * Mark this as a caller-save interrupt, like a normal page fault,
94 	 * so that when we go through the signal handler path we will
95 	 * properly restore r0, r1, and r2 for the signal handler arguments.
96 	 */
97 	regs->flags |= PT_FLAGS_CALLER_SAVES;
98 
99 	return 0;
100 }
101 #endif
102 
vmalloc_sync_one(pgd_t * pgd,unsigned long address)103 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
104 {
105 	unsigned index = pgd_index(address);
106 	pgd_t *pgd_k;
107 	pud_t *pud, *pud_k;
108 	pmd_t *pmd, *pmd_k;
109 
110 	pgd += index;
111 	pgd_k = init_mm.pgd + index;
112 
113 	if (!pgd_present(*pgd_k))
114 		return NULL;
115 
116 	pud = pud_offset(pgd, address);
117 	pud_k = pud_offset(pgd_k, address);
118 	if (!pud_present(*pud_k))
119 		return NULL;
120 
121 	pmd = pmd_offset(pud, address);
122 	pmd_k = pmd_offset(pud_k, address);
123 	if (!pmd_present(*pmd_k))
124 		return NULL;
125 	if (!pmd_present(*pmd)) {
126 		set_pmd(pmd, *pmd_k);
127 		arch_flush_lazy_mmu_mode();
128 	} else
129 		BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
130 	return pmd_k;
131 }
132 
133 /*
134  * Handle a fault on the vmalloc or module mapping area
135  */
vmalloc_fault(pgd_t * pgd,unsigned long address)136 static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
137 {
138 	pmd_t *pmd_k;
139 	pte_t *pte_k;
140 
141 	/* Make sure we are in vmalloc area */
142 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
143 		return -1;
144 
145 	/*
146 	 * Synchronize this task's top level page-table
147 	 * with the 'reference' page table.
148 	 */
149 	pmd_k = vmalloc_sync_one(pgd, address);
150 	if (!pmd_k)
151 		return -1;
152 	if (pmd_huge(*pmd_k))
153 		return 0;   /* support TILE huge_vmap() API */
154 	pte_k = pte_offset_kernel(pmd_k, address);
155 	if (!pte_present(*pte_k))
156 		return -1;
157 	return 0;
158 }
159 
160 /* Wait until this PTE has completed migration. */
wait_for_migration(pte_t * pte)161 static void wait_for_migration(pte_t *pte)
162 {
163 	if (pte_migrating(*pte)) {
164 		/*
165 		 * Wait until the migrater fixes up this pte.
166 		 * We scale the loop count by the clock rate so we'll wait for
167 		 * a few seconds here.
168 		 */
169 		int retries = 0;
170 		int bound = get_clock_rate();
171 		while (pte_migrating(*pte)) {
172 			barrier();
173 			if (++retries > bound)
174 				panic("Hit migrating PTE (%#llx) and"
175 				      " page PFN %#lx still migrating",
176 				      pte->val, pte_pfn(*pte));
177 		}
178 	}
179 }
180 
181 /*
182  * It's not generally safe to use "current" to get the page table pointer,
183  * since we might be running an oprofile interrupt in the middle of a
184  * task switch.
185  */
get_current_pgd(void)186 static pgd_t *get_current_pgd(void)
187 {
188 	HV_Context ctx = hv_inquire_context();
189 	unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
190 	struct page *pgd_page = pfn_to_page(pgd_pfn);
191 	BUG_ON(PageHighMem(pgd_page));   /* oops, HIGHPTE? */
192 	return (pgd_t *) __va(ctx.page_table);
193 }
194 
195 /*
196  * We can receive a page fault from a migrating PTE at any time.
197  * Handle it by just waiting until the fault resolves.
198  *
199  * It's also possible to get a migrating kernel PTE that resolves
200  * itself during the downcall from hypervisor to Linux.  We just check
201  * here to see if the PTE seems valid, and if so we retry it.
202  *
203  * NOTE! We MUST NOT take any locks for this case.  We may be in an
204  * interrupt or a critical region, and must do as little as possible.
205  * Similarly, we can't use atomic ops here, since we may be handling a
206  * fault caused by an atomic op access.
207  */
handle_migrating_pte(pgd_t * pgd,int fault_num,unsigned long address,int is_kernel_mode,int write)208 static int handle_migrating_pte(pgd_t *pgd, int fault_num,
209 				unsigned long address,
210 				int is_kernel_mode, int write)
211 {
212 	pud_t *pud;
213 	pmd_t *pmd;
214 	pte_t *pte;
215 	pte_t pteval;
216 
217 	if (pgd_addr_invalid(address))
218 		return 0;
219 
220 	pgd += pgd_index(address);
221 	pud = pud_offset(pgd, address);
222 	if (!pud || !pud_present(*pud))
223 		return 0;
224 	pmd = pmd_offset(pud, address);
225 	if (!pmd || !pmd_present(*pmd))
226 		return 0;
227 	pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
228 		pte_offset_kernel(pmd, address);
229 	pteval = *pte;
230 	if (pte_migrating(pteval)) {
231 		wait_for_migration(pte);
232 		return 1;
233 	}
234 
235 	if (!is_kernel_mode || !pte_present(pteval))
236 		return 0;
237 	if (fault_num == INT_ITLB_MISS) {
238 		if (pte_exec(pteval))
239 			return 1;
240 	} else if (write) {
241 		if (pte_write(pteval))
242 			return 1;
243 	} else {
244 		if (pte_read(pteval))
245 			return 1;
246 	}
247 
248 	return 0;
249 }
250 
251 /*
252  * This routine is responsible for faulting in user pages.
253  * It passes the work off to one of the appropriate routines.
254  * It returns true if the fault was successfully handled.
255  */
handle_page_fault(struct pt_regs * regs,int fault_num,int is_page_fault,unsigned long address,int write)256 static int handle_page_fault(struct pt_regs *regs,
257 			     int fault_num,
258 			     int is_page_fault,
259 			     unsigned long address,
260 			     int write)
261 {
262 	struct task_struct *tsk;
263 	struct mm_struct *mm;
264 	struct vm_area_struct *vma;
265 	unsigned long stack_offset;
266 	int fault;
267 	int si_code;
268 	int is_kernel_mode;
269 	pgd_t *pgd;
270 
271 	/* on TILE, protection faults are always writes */
272 	if (!is_page_fault)
273 		write = 1;
274 
275 	is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
276 
277 	tsk = validate_current();
278 
279 	/*
280 	 * Check to see if we might be overwriting the stack, and bail
281 	 * out if so.  The page fault code is a relatively likely
282 	 * place to get trapped in an infinite regress, and once we
283 	 * overwrite the whole stack, it becomes very hard to recover.
284 	 */
285 	stack_offset = stack_pointer & (THREAD_SIZE-1);
286 	if (stack_offset < THREAD_SIZE / 8) {
287 		pr_alert("Potential stack overrun: sp %#lx\n",
288 		       stack_pointer);
289 		show_regs(regs);
290 		pr_alert("Killing current process %d/%s\n",
291 		       tsk->pid, tsk->comm);
292 		do_group_exit(SIGKILL);
293 	}
294 
295 	/*
296 	 * Early on, we need to check for migrating PTE entries;
297 	 * see homecache.c.  If we find a migrating PTE, we wait until
298 	 * the backing page claims to be done migrating, then we proceed.
299 	 * For kernel PTEs, we rewrite the PTE and return and retry.
300 	 * Otherwise, we treat the fault like a normal "no PTE" fault,
301 	 * rather than trying to patch up the existing PTE.
302 	 */
303 	pgd = get_current_pgd();
304 	if (handle_migrating_pte(pgd, fault_num, address,
305 				 is_kernel_mode, write))
306 		return 1;
307 
308 	si_code = SEGV_MAPERR;
309 
310 	/*
311 	 * We fault-in kernel-space virtual memory on-demand. The
312 	 * 'reference' page table is init_mm.pgd.
313 	 *
314 	 * NOTE! We MUST NOT take any locks for this case. We may
315 	 * be in an interrupt or a critical region, and should
316 	 * only copy the information from the master page table,
317 	 * nothing more.
318 	 *
319 	 * This verifies that the fault happens in kernel space
320 	 * and that the fault was not a protection fault.
321 	 */
322 	if (unlikely(address >= TASK_SIZE &&
323 		     !is_arch_mappable_range(address, 0))) {
324 		if (is_kernel_mode && is_page_fault &&
325 		    vmalloc_fault(pgd, address) >= 0)
326 			return 1;
327 		/*
328 		 * Don't take the mm semaphore here. If we fixup a prefetch
329 		 * fault we could otherwise deadlock.
330 		 */
331 		mm = NULL;  /* happy compiler */
332 		vma = NULL;
333 		goto bad_area_nosemaphore;
334 	}
335 
336 	/*
337 	 * If we're trying to touch user-space addresses, we must
338 	 * be either at PL0, or else with interrupts enabled in the
339 	 * kernel, so either way we can re-enable interrupts here.
340 	 */
341 	local_irq_enable();
342 
343 	mm = tsk->mm;
344 
345 	/*
346 	 * If we're in an interrupt, have no user context or are running in an
347 	 * atomic region then we must not take the fault.
348 	 */
349 	if (in_atomic() || !mm) {
350 		vma = NULL;  /* happy compiler */
351 		goto bad_area_nosemaphore;
352 	}
353 
354 	/*
355 	 * When running in the kernel we expect faults to occur only to
356 	 * addresses in user space.  All other faults represent errors in the
357 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
358 	 * erroneous fault occurring in a code path which already holds mmap_sem
359 	 * we will deadlock attempting to validate the fault against the
360 	 * address space.  Luckily the kernel only validly references user
361 	 * space from well defined areas of code, which are listed in the
362 	 * exceptions table.
363 	 *
364 	 * As the vast majority of faults will be valid we will only perform
365 	 * the source reference check when there is a possibility of a deadlock.
366 	 * Attempt to lock the address space, if we cannot we then validate the
367 	 * source.  If this is invalid we can skip the address space check,
368 	 * thus avoiding the deadlock.
369 	 */
370 	if (!down_read_trylock(&mm->mmap_sem)) {
371 		if (is_kernel_mode &&
372 		    !search_exception_tables(regs->pc)) {
373 			vma = NULL;  /* happy compiler */
374 			goto bad_area_nosemaphore;
375 		}
376 		down_read(&mm->mmap_sem);
377 	}
378 
379 	vma = find_vma(mm, address);
380 	if (!vma)
381 		goto bad_area;
382 	if (vma->vm_start <= address)
383 		goto good_area;
384 	if (!(vma->vm_flags & VM_GROWSDOWN))
385 		goto bad_area;
386 	if (regs->sp < PAGE_OFFSET) {
387 		/*
388 		 * accessing the stack below sp is always a bug.
389 		 */
390 		if (address < regs->sp)
391 			goto bad_area;
392 	}
393 	if (expand_stack(vma, address))
394 		goto bad_area;
395 
396 /*
397  * Ok, we have a good vm_area for this memory access, so
398  * we can handle it..
399  */
400 good_area:
401 	si_code = SEGV_ACCERR;
402 	if (fault_num == INT_ITLB_MISS) {
403 		if (!(vma->vm_flags & VM_EXEC))
404 			goto bad_area;
405 	} else if (write) {
406 #ifdef TEST_VERIFY_AREA
407 		if (!is_page_fault && regs->cs == KERNEL_CS)
408 			pr_err("WP fault at "REGFMT"\n", regs->eip);
409 #endif
410 		if (!(vma->vm_flags & VM_WRITE))
411 			goto bad_area;
412 	} else {
413 		if (!is_page_fault || !(vma->vm_flags & VM_READ))
414 			goto bad_area;
415 	}
416 
417  survive:
418 	/*
419 	 * If for any reason at all we couldn't handle the fault,
420 	 * make sure we exit gracefully rather than endlessly redo
421 	 * the fault.
422 	 */
423 	fault = handle_mm_fault(mm, vma, address, write);
424 	if (unlikely(fault & VM_FAULT_ERROR)) {
425 		if (fault & VM_FAULT_OOM)
426 			goto out_of_memory;
427 		else if (fault & VM_FAULT_SIGBUS)
428 			goto do_sigbus;
429 		BUG();
430 	}
431 	if (fault & VM_FAULT_MAJOR)
432 		tsk->maj_flt++;
433 	else
434 		tsk->min_flt++;
435 
436 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
437 	/*
438 	 * If this was an asynchronous fault,
439 	 * restart the appropriate engine.
440 	 */
441 	switch (fault_num) {
442 #if CHIP_HAS_TILE_DMA()
443 	case INT_DMATLB_MISS:
444 	case INT_DMATLB_MISS_DWNCL:
445 	case INT_DMATLB_ACCESS:
446 	case INT_DMATLB_ACCESS_DWNCL:
447 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
448 		break;
449 #endif
450 #if CHIP_HAS_SN_PROC()
451 	case INT_SNITLB_MISS:
452 	case INT_SNITLB_MISS_DWNCL:
453 		__insn_mtspr(SPR_SNCTL,
454 			     __insn_mfspr(SPR_SNCTL) &
455 			     ~SPR_SNCTL__FRZPROC_MASK);
456 		break;
457 #endif
458 	}
459 #endif
460 
461 	up_read(&mm->mmap_sem);
462 	return 1;
463 
464 /*
465  * Something tried to access memory that isn't in our memory map..
466  * Fix it, but check if it's kernel or user first..
467  */
468 bad_area:
469 	up_read(&mm->mmap_sem);
470 
471 bad_area_nosemaphore:
472 	/* User mode accesses just cause a SIGSEGV */
473 	if (!is_kernel_mode) {
474 		/*
475 		 * It's possible to have interrupts off here.
476 		 */
477 		local_irq_enable();
478 
479 		force_sig_info_fault("segfault", SIGSEGV, si_code, address,
480 				     fault_num, tsk, regs);
481 		return 0;
482 	}
483 
484 no_context:
485 	/* Are we prepared to handle this kernel fault?  */
486 	if (fixup_exception(regs))
487 		return 0;
488 
489 /*
490  * Oops. The kernel tried to access some bad page. We'll have to
491  * terminate things with extreme prejudice.
492  */
493 
494 	bust_spinlocks(1);
495 
496 	/* FIXME: no lookup_address() yet */
497 #ifdef SUPPORT_LOOKUP_ADDRESS
498 	if (fault_num == INT_ITLB_MISS) {
499 		pte_t *pte = lookup_address(address);
500 
501 		if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
502 			pr_crit("kernel tried to execute"
503 			       " non-executable page - exploit attempt?"
504 			       " (uid: %d)\n", current->uid);
505 	}
506 #endif
507 	if (address < PAGE_SIZE)
508 		pr_alert("Unable to handle kernel NULL pointer dereference\n");
509 	else
510 		pr_alert("Unable to handle kernel paging request\n");
511 	pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
512 		 address, regs->pc);
513 
514 	show_regs(regs);
515 
516 	if (unlikely(tsk->pid < 2)) {
517 		panic("Kernel page fault running %s!",
518 		      is_idle_task(tsk) ? "the idle task" : "init");
519 	}
520 
521 	/*
522 	 * More FIXME: we should probably copy the i386 here and
523 	 * implement a generic die() routine.  Not today.
524 	 */
525 #ifdef SUPPORT_DIE
526 	die("Oops", regs);
527 #endif
528 	bust_spinlocks(1);
529 
530 	do_group_exit(SIGKILL);
531 
532 /*
533  * We ran out of memory, or some other thing happened to us that made
534  * us unable to handle the page fault gracefully.
535  */
536 out_of_memory:
537 	up_read(&mm->mmap_sem);
538 	if (is_global_init(tsk)) {
539 		yield();
540 		down_read(&mm->mmap_sem);
541 		goto survive;
542 	}
543 	pr_alert("VM: killing process %s\n", tsk->comm);
544 	if (!is_kernel_mode)
545 		do_group_exit(SIGKILL);
546 	goto no_context;
547 
548 do_sigbus:
549 	up_read(&mm->mmap_sem);
550 
551 	/* Kernel mode? Handle exceptions or die */
552 	if (is_kernel_mode)
553 		goto no_context;
554 
555 	force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
556 			     fault_num, tsk, regs);
557 	return 0;
558 }
559 
560 #ifndef __tilegx__
561 
562 /* We must release ICS before panicking or we won't get anywhere. */
563 #define ics_panic(fmt, ...) do { \
564 	__insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
565 	panic(fmt, __VA_ARGS__); \
566 } while (0)
567 
568 /*
569  * When we take an ITLB or DTLB fault or access violation in the
570  * supervisor while the critical section bit is set, the hypervisor is
571  * reluctant to write new values into the EX_CONTEXT_K_x registers,
572  * since that might indicate we have not yet squirreled the SPR
573  * contents away and can thus safely take a recursive interrupt.
574  * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
575  *
576  * Note that this routine is called before homecache_tlb_defer_enter(),
577  * which means that we can properly unlock any atomics that might
578  * be used there (good), but also means we must be very sensitive
579  * to not touch any data structures that might be located in memory
580  * that could migrate, as we could be entering the kernel on a dataplane
581  * cpu that has been deferring kernel TLB updates.  This means, for
582  * example, that we can't migrate init_mm or its pgd.
583  */
do_page_fault_ics(struct pt_regs * regs,int fault_num,unsigned long address,unsigned long info)584 struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
585 				      unsigned long address,
586 				      unsigned long info)
587 {
588 	unsigned long pc = info & ~1;
589 	int write = info & 1;
590 	pgd_t *pgd = get_current_pgd();
591 
592 	/* Retval is 1 at first since we will handle the fault fully. */
593 	struct intvec_state state = {
594 		do_page_fault, fault_num, address, write, 1
595 	};
596 
597 	/* Validate that we are plausibly in the right routine. */
598 	if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
599 	    (fault_num != INT_DTLB_MISS &&
600 	     fault_num != INT_DTLB_ACCESS)) {
601 		unsigned long old_pc = regs->pc;
602 		regs->pc = pc;
603 		ics_panic("Bad ICS page fault args:"
604 			  " old PC %#lx, fault %d/%d at %#lx\n",
605 			  old_pc, fault_num, write, address);
606 	}
607 
608 	/* We might be faulting on a vmalloc page, so check that first. */
609 	if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
610 		return state;
611 
612 	/*
613 	 * If we faulted with ICS set in sys_cmpxchg, we are providing
614 	 * a user syscall service that should generate a signal on
615 	 * fault.  We didn't set up a kernel stack on initial entry to
616 	 * sys_cmpxchg, but instead had one set up by the fault, which
617 	 * (because sys_cmpxchg never releases ICS) came to us via the
618 	 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
619 	 * still referencing the original user code.  We release the
620 	 * atomic lock and rewrite pt_regs so that it appears that we
621 	 * came from user-space directly, and after we finish the
622 	 * fault we'll go back to user space and re-issue the swint.
623 	 * This way the backtrace information is correct if we need to
624 	 * emit a stack dump at any point while handling this.
625 	 *
626 	 * Must match register use in sys_cmpxchg().
627 	 */
628 	if (pc >= (unsigned long) sys_cmpxchg &&
629 	    pc < (unsigned long) __sys_cmpxchg_end) {
630 #ifdef CONFIG_SMP
631 		/* Don't unlock before we could have locked. */
632 		if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
633 			int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
634 			__atomic_fault_unlock(lock_ptr);
635 		}
636 #endif
637 		regs->sp = regs->regs[27];
638 	}
639 
640 	/*
641 	 * We can also fault in the atomic assembly, in which
642 	 * case we use the exception table to do the first-level fixup.
643 	 * We may re-fixup again in the real fault handler if it
644 	 * turns out the faulting address is just bad, and not,
645 	 * for example, migrating.
646 	 */
647 	else if (pc >= (unsigned long) __start_atomic_asm_code &&
648 		   pc < (unsigned long) __end_atomic_asm_code) {
649 		const struct exception_table_entry *fixup;
650 #ifdef CONFIG_SMP
651 		/* Unlock the atomic lock. */
652 		int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
653 		__atomic_fault_unlock(lock_ptr);
654 #endif
655 		fixup = search_exception_tables(pc);
656 		if (!fixup)
657 			ics_panic("ICS atomic fault not in table:"
658 				  " PC %#lx, fault %d", pc, fault_num);
659 		regs->pc = fixup->fixup;
660 		regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
661 	}
662 
663 	/*
664 	 * Now that we have released the atomic lock (if necessary),
665 	 * it's safe to spin if the PTE that caused the fault was migrating.
666 	 */
667 	if (fault_num == INT_DTLB_ACCESS)
668 		write = 1;
669 	if (handle_migrating_pte(pgd, fault_num, address, 1, write))
670 		return state;
671 
672 	/* Return zero so that we continue on with normal fault handling. */
673 	state.retval = 0;
674 	return state;
675 }
676 
677 #endif /* !__tilegx__ */
678 
679 /*
680  * This routine handles page faults.  It determines the address, and the
681  * problem, and then passes it handle_page_fault() for normal DTLB and
682  * ITLB issues, and for DMA or SN processor faults when we are in user
683  * space.  For the latter, if we're in kernel mode, we just save the
684  * interrupt away appropriately and return immediately.  We can't do
685  * page faults for user code while in kernel mode.
686  */
do_page_fault(struct pt_regs * regs,int fault_num,unsigned long address,unsigned long write)687 void do_page_fault(struct pt_regs *regs, int fault_num,
688 		   unsigned long address, unsigned long write)
689 {
690 	int is_page_fault;
691 
692 	/* This case should have been handled by do_page_fault_ics(). */
693 	BUG_ON(write & ~1);
694 
695 #if CHIP_HAS_TILE_DMA()
696 	/*
697 	 * If it's a DMA fault, suspend the transfer while we're
698 	 * handling the miss; we'll restart after it's handled.  If we
699 	 * don't suspend, it's possible that this process could swap
700 	 * out and back in, and restart the engine since the DMA is
701 	 * still 'running'.
702 	 */
703 	if (fault_num == INT_DMATLB_MISS ||
704 	    fault_num == INT_DMATLB_ACCESS ||
705 	    fault_num == INT_DMATLB_MISS_DWNCL ||
706 	    fault_num == INT_DMATLB_ACCESS_DWNCL) {
707 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
708 		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
709 		       SPR_DMA_STATUS__BUSY_MASK)
710 			;
711 	}
712 #endif
713 
714 	/* Validate fault num and decide if this is a first-time page fault. */
715 	switch (fault_num) {
716 	case INT_ITLB_MISS:
717 	case INT_DTLB_MISS:
718 #if CHIP_HAS_TILE_DMA()
719 	case INT_DMATLB_MISS:
720 	case INT_DMATLB_MISS_DWNCL:
721 #endif
722 #if CHIP_HAS_SN_PROC()
723 	case INT_SNITLB_MISS:
724 	case INT_SNITLB_MISS_DWNCL:
725 #endif
726 		is_page_fault = 1;
727 		break;
728 
729 	case INT_DTLB_ACCESS:
730 #if CHIP_HAS_TILE_DMA()
731 	case INT_DMATLB_ACCESS:
732 	case INT_DMATLB_ACCESS_DWNCL:
733 #endif
734 		is_page_fault = 0;
735 		break;
736 
737 	default:
738 		panic("Bad fault number %d in do_page_fault", fault_num);
739 	}
740 
741 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
742 	if (EX1_PL(regs->ex1) != USER_PL) {
743 		struct async_tlb *async;
744 		switch (fault_num) {
745 #if CHIP_HAS_TILE_DMA()
746 		case INT_DMATLB_MISS:
747 		case INT_DMATLB_ACCESS:
748 		case INT_DMATLB_MISS_DWNCL:
749 		case INT_DMATLB_ACCESS_DWNCL:
750 			async = &current->thread.dma_async_tlb;
751 			break;
752 #endif
753 #if CHIP_HAS_SN_PROC()
754 		case INT_SNITLB_MISS:
755 		case INT_SNITLB_MISS_DWNCL:
756 			async = &current->thread.sn_async_tlb;
757 			break;
758 #endif
759 		default:
760 			async = NULL;
761 		}
762 		if (async) {
763 
764 			/*
765 			 * No vmalloc check required, so we can allow
766 			 * interrupts immediately at this point.
767 			 */
768 			local_irq_enable();
769 
770 			set_thread_flag(TIF_ASYNC_TLB);
771 			if (async->fault_num != 0) {
772 				panic("Second async fault %d;"
773 				      " old fault was %d (%#lx/%ld)",
774 				      fault_num, async->fault_num,
775 				      address, write);
776 			}
777 			BUG_ON(fault_num == 0);
778 			async->fault_num = fault_num;
779 			async->is_fault = is_page_fault;
780 			async->is_write = write;
781 			async->address = address;
782 			return;
783 		}
784 	}
785 #endif
786 
787 	handle_page_fault(regs, fault_num, is_page_fault, address, write);
788 }
789 
790 
791 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
792 /*
793  * Check an async_tlb structure to see if a deferred fault is waiting,
794  * and if so pass it to the page-fault code.
795  */
handle_async_page_fault(struct pt_regs * regs,struct async_tlb * async)796 static void handle_async_page_fault(struct pt_regs *regs,
797 				    struct async_tlb *async)
798 {
799 	if (async->fault_num) {
800 		/*
801 		 * Clear async->fault_num before calling the page-fault
802 		 * handler so that if we re-interrupt before returning
803 		 * from the function we have somewhere to put the
804 		 * information from the new interrupt.
805 		 */
806 		int fault_num = async->fault_num;
807 		async->fault_num = 0;
808 		handle_page_fault(regs, fault_num, async->is_fault,
809 				  async->address, async->is_write);
810 	}
811 }
812 
813 /*
814  * This routine effectively re-issues asynchronous page faults
815  * when we are returning to user space.
816  */
do_async_page_fault(struct pt_regs * regs)817 void do_async_page_fault(struct pt_regs *regs)
818 {
819 	/*
820 	 * Clear thread flag early.  If we re-interrupt while processing
821 	 * code here, we will reset it and recall this routine before
822 	 * returning to user space.
823 	 */
824 	clear_thread_flag(TIF_ASYNC_TLB);
825 
826 #if CHIP_HAS_TILE_DMA()
827 	handle_async_page_fault(regs, &current->thread.dma_async_tlb);
828 #endif
829 #if CHIP_HAS_SN_PROC()
830 	handle_async_page_fault(regs, &current->thread.sn_async_tlb);
831 #endif
832 }
833 #endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
834 
835 
vmalloc_sync_all(void)836 void vmalloc_sync_all(void)
837 {
838 #ifdef __tilegx__
839 	/* Currently all L1 kernel pmd's are static and shared. */
840 	BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
841 #else
842 	/*
843 	 * Note that races in the updates of insync and start aren't
844 	 * problematic: insync can only get set bits added, and updates to
845 	 * start are only improving performance (without affecting correctness
846 	 * if undone).
847 	 */
848 	static DECLARE_BITMAP(insync, PTRS_PER_PGD);
849 	static unsigned long start = PAGE_OFFSET;
850 	unsigned long address;
851 
852 	BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
853 	for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
854 		if (!test_bit(pgd_index(address), insync)) {
855 			unsigned long flags;
856 			struct list_head *pos;
857 
858 			spin_lock_irqsave(&pgd_lock, flags);
859 			list_for_each(pos, &pgd_list)
860 				if (!vmalloc_sync_one(list_to_pgd(pos),
861 								address)) {
862 					/* Must be at first entry in list. */
863 					BUG_ON(pos != pgd_list.next);
864 					break;
865 				}
866 			spin_unlock_irqrestore(&pgd_lock, flags);
867 			if (pos != pgd_list.next)
868 				set_bit(pgd_index(address), insync);
869 		}
870 		if (address == start && test_bit(pgd_index(address), insync))
871 			start = address + PGDIR_SIZE;
872 	}
873 #endif
874 }
875