1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mmzone.h>
18 #include <linux/bootmem.h>
19 #include <linux/module.h>
20 #include <linux/node.h>
21 #include <linux/cpu.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/kexec.h>
25 #include <linux/pci.h>
26 #include <linux/initrd.h>
27 #include <linux/io.h>
28 #include <linux/highmem.h>
29 #include <linux/smp.h>
30 #include <linux/timex.h>
31 #include <asm/setup.h>
32 #include <asm/sections.h>
33 #include <asm/cacheflush.h>
34 #include <asm/pgalloc.h>
35 #include <asm/mmu_context.h>
36 #include <hv/hypervisor.h>
37 #include <arch/interrupts.h>
38 
39 /* <linux/smp.h> doesn't provide this definition. */
40 #ifndef CONFIG_SMP
41 #define setup_max_cpus 1
42 #endif
43 
ABS(int x)44 static inline int ABS(int x) { return x >= 0 ? x : -x; }
45 
46 /* Chip information */
47 char chip_model[64] __write_once;
48 
49 struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
50 EXPORT_SYMBOL(node_data);
51 
52 /* We only create bootmem data on node 0. */
53 static bootmem_data_t __initdata node0_bdata;
54 
55 /* Information on the NUMA nodes that we compute early */
56 unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
57 unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
58 unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
59 unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
60 unsigned long __initdata node_free_pfn[MAX_NUMNODES];
61 
62 static unsigned long __initdata node_percpu[MAX_NUMNODES];
63 
64 #ifdef CONFIG_HIGHMEM
65 /* Page frame index of end of lowmem on each controller. */
66 unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
67 
68 /* Number of pages that can be mapped into lowmem. */
69 static unsigned long __initdata mappable_physpages;
70 #endif
71 
72 /* Data on which physical memory controller corresponds to which NUMA node */
73 int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
74 
75 #ifdef CONFIG_HIGHMEM
76 /* Map information from VAs to PAs */
77 unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
78   __write_once __attribute__((aligned(L2_CACHE_BYTES)));
79 EXPORT_SYMBOL(pbase_map);
80 
81 /* Map information from PAs to VAs */
82 void *vbase_map[NR_PA_HIGHBIT_VALUES]
83   __write_once __attribute__((aligned(L2_CACHE_BYTES)));
84 EXPORT_SYMBOL(vbase_map);
85 #endif
86 
87 /* Node number as a function of the high PA bits */
88 int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
89 EXPORT_SYMBOL(highbits_to_node);
90 
91 static unsigned int __initdata maxmem_pfn = -1U;
92 static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
93 	[0 ... MAX_NUMNODES-1] = -1U
94 };
95 static nodemask_t __initdata isolnodes;
96 
97 #ifdef CONFIG_PCI
98 enum { DEFAULT_PCI_RESERVE_MB = 64 };
99 static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
100 unsigned long __initdata pci_reserve_start_pfn = -1U;
101 unsigned long __initdata pci_reserve_end_pfn = -1U;
102 #endif
103 
setup_maxmem(char * str)104 static int __init setup_maxmem(char *str)
105 {
106 	long maxmem_mb;
107 	if (str == NULL || strict_strtol(str, 0, &maxmem_mb) != 0 ||
108 	    maxmem_mb == 0)
109 		return -EINVAL;
110 
111 	maxmem_pfn = (maxmem_mb >> (HPAGE_SHIFT - 20)) <<
112 		(HPAGE_SHIFT - PAGE_SHIFT);
113 	pr_info("Forcing RAM used to no more than %dMB\n",
114 	       maxmem_pfn >> (20 - PAGE_SHIFT));
115 	return 0;
116 }
117 early_param("maxmem", setup_maxmem);
118 
setup_maxnodemem(char * str)119 static int __init setup_maxnodemem(char *str)
120 {
121 	char *endp;
122 	long maxnodemem_mb, node;
123 
124 	node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
125 	if (node >= MAX_NUMNODES || *endp != ':' ||
126 	    strict_strtol(endp+1, 0, &maxnodemem_mb) != 0)
127 		return -EINVAL;
128 
129 	maxnodemem_pfn[node] = (maxnodemem_mb >> (HPAGE_SHIFT - 20)) <<
130 		(HPAGE_SHIFT - PAGE_SHIFT);
131 	pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
132 	       node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
133 	return 0;
134 }
135 early_param("maxnodemem", setup_maxnodemem);
136 
setup_isolnodes(char * str)137 static int __init setup_isolnodes(char *str)
138 {
139 	char buf[MAX_NUMNODES * 5];
140 	if (str == NULL || nodelist_parse(str, isolnodes) != 0)
141 		return -EINVAL;
142 
143 	nodelist_scnprintf(buf, sizeof(buf), isolnodes);
144 	pr_info("Set isolnodes value to '%s'\n", buf);
145 	return 0;
146 }
147 early_param("isolnodes", setup_isolnodes);
148 
149 #ifdef CONFIG_PCI
setup_pci_reserve(char * str)150 static int __init setup_pci_reserve(char* str)
151 {
152 	unsigned long mb;
153 
154 	if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
155 	    mb > 3 * 1024)
156 		return -EINVAL;
157 
158 	pci_reserve_mb = mb;
159 	pr_info("Reserving %dMB for PCIE root complex mappings\n",
160 	       pci_reserve_mb);
161 	return 0;
162 }
163 early_param("pci_reserve", setup_pci_reserve);
164 #endif
165 
166 #ifndef __tilegx__
167 /*
168  * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
169  * This can be used to increase (or decrease) the vmalloc area.
170  */
parse_vmalloc(char * arg)171 static int __init parse_vmalloc(char *arg)
172 {
173 	if (!arg)
174 		return -EINVAL;
175 
176 	VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
177 
178 	/* See validate_va() for more on this test. */
179 	if ((long)_VMALLOC_START >= 0)
180 		early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
181 			    VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
182 
183 	return 0;
184 }
185 early_param("vmalloc", parse_vmalloc);
186 #endif
187 
188 #ifdef CONFIG_HIGHMEM
189 /*
190  * Determine for each controller where its lowmem is mapped and how much of
191  * it is mapped there.  On controller zero, the first few megabytes are
192  * already mapped in as code at MEM_SV_INTRPT, so in principle we could
193  * start our data mappings higher up, but for now we don't bother, to avoid
194  * additional confusion.
195  *
196  * One question is whether, on systems with more than 768 Mb and
197  * controllers of different sizes, to map in a proportionate amount of
198  * each one, or to try to map the same amount from each controller.
199  * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
200  * respectively, do we map 256MB from each, or do we map 128 MB, 512
201  * MB, and 128 MB respectively?)  For now we use a proportionate
202  * solution like the latter.
203  *
204  * The VA/PA mapping demands that we align our decisions at 16 MB
205  * boundaries so that we can rapidly convert VA to PA.
206  */
setup_pa_va_mapping(void)207 static void *__init setup_pa_va_mapping(void)
208 {
209 	unsigned long curr_pages = 0;
210 	unsigned long vaddr = PAGE_OFFSET;
211 	nodemask_t highonlynodes = isolnodes;
212 	int i, j;
213 
214 	memset(pbase_map, -1, sizeof(pbase_map));
215 	memset(vbase_map, -1, sizeof(vbase_map));
216 
217 	/* Node zero cannot be isolated for LOWMEM purposes. */
218 	node_clear(0, highonlynodes);
219 
220 	/* Count up the number of pages on non-highonlynodes controllers. */
221 	mappable_physpages = 0;
222 	for_each_online_node(i) {
223 		if (!node_isset(i, highonlynodes))
224 			mappable_physpages +=
225 				node_end_pfn[i] - node_start_pfn[i];
226 	}
227 
228 	for_each_online_node(i) {
229 		unsigned long start = node_start_pfn[i];
230 		unsigned long end = node_end_pfn[i];
231 		unsigned long size = end - start;
232 		unsigned long vaddr_end;
233 
234 		if (node_isset(i, highonlynodes)) {
235 			/* Mark this controller as having no lowmem. */
236 			node_lowmem_end_pfn[i] = start;
237 			continue;
238 		}
239 
240 		curr_pages += size;
241 		if (mappable_physpages > MAXMEM_PFN) {
242 			vaddr_end = PAGE_OFFSET +
243 				(((u64)curr_pages * MAXMEM_PFN /
244 				  mappable_physpages)
245 				 << PAGE_SHIFT);
246 		} else {
247 			vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
248 		}
249 		for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
250 			unsigned long this_pfn =
251 				start + (j << HUGETLB_PAGE_ORDER);
252 			pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
253 			if (vbase_map[__pfn_to_highbits(this_pfn)] ==
254 			    (void *)-1)
255 				vbase_map[__pfn_to_highbits(this_pfn)] =
256 					(void *)(vaddr & HPAGE_MASK);
257 		}
258 		node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
259 		BUG_ON(node_lowmem_end_pfn[i] > end);
260 	}
261 
262 	/* Return highest address of any mapped memory. */
263 	return (void *)vaddr;
264 }
265 #endif /* CONFIG_HIGHMEM */
266 
267 /*
268  * Register our most important memory mappings with the debug stub.
269  *
270  * This is up to 4 mappings for lowmem, one mapping per memory
271  * controller, plus one for our text segment.
272  */
store_permanent_mappings(void)273 static void __cpuinit store_permanent_mappings(void)
274 {
275 	int i;
276 
277 	for_each_online_node(i) {
278 		HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
279 #ifdef CONFIG_HIGHMEM
280 		HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
281 #else
282 		HV_PhysAddr high_mapped_pa = node_end_pfn[i];
283 #endif
284 
285 		unsigned long pages = high_mapped_pa - node_start_pfn[i];
286 		HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
287 		hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
288 	}
289 
290 	hv_store_mapping((HV_VirtAddr)_stext,
291 			 (uint32_t)(_einittext - _stext), 0);
292 }
293 
294 /*
295  * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
296  * and node_online_map, doing suitable sanity-checking.
297  * Also set min_low_pfn, max_low_pfn, and max_pfn.
298  */
setup_memory(void)299 static void __init setup_memory(void)
300 {
301 	int i, j;
302 	int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
303 #ifdef CONFIG_HIGHMEM
304 	long highmem_pages;
305 #endif
306 #ifndef __tilegx__
307 	int cap;
308 #endif
309 #if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
310 	long lowmem_pages;
311 #endif
312 
313 	/* We are using a char to hold the cpu_2_node[] mapping */
314 	BUILD_BUG_ON(MAX_NUMNODES > 127);
315 
316 	/* Discover the ranges of memory available to us */
317 	for (i = 0; ; ++i) {
318 		unsigned long start, size, end, highbits;
319 		HV_PhysAddrRange range = hv_inquire_physical(i);
320 		if (range.size == 0)
321 			break;
322 #ifdef CONFIG_FLATMEM
323 		if (i > 0) {
324 			pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
325 			       range.size, range.start + range.size);
326 			continue;
327 		}
328 #endif
329 #ifndef __tilegx__
330 		if ((unsigned long)range.start) {
331 			pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
332 			       range.start, range.start + range.size);
333 			continue;
334 		}
335 #endif
336 		if ((range.start & (HPAGE_SIZE-1)) != 0 ||
337 		    (range.size & (HPAGE_SIZE-1)) != 0) {
338 			unsigned long long start_pa = range.start;
339 			unsigned long long orig_size = range.size;
340 			range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
341 			range.size -= (range.start - start_pa);
342 			range.size &= HPAGE_MASK;
343 			pr_err("Range not hugepage-aligned: %#llx..%#llx:"
344 			       " now %#llx-%#llx\n",
345 			       start_pa, start_pa + orig_size,
346 			       range.start, range.start + range.size);
347 		}
348 		highbits = __pa_to_highbits(range.start);
349 		if (highbits >= NR_PA_HIGHBIT_VALUES) {
350 			pr_err("PA high bits too high: %#llx..%#llx\n",
351 			       range.start, range.start + range.size);
352 			continue;
353 		}
354 		if (highbits_seen[highbits]) {
355 			pr_err("Range overlaps in high bits: %#llx..%#llx\n",
356 			       range.start, range.start + range.size);
357 			continue;
358 		}
359 		highbits_seen[highbits] = 1;
360 		if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
361 			int max_size = maxnodemem_pfn[i];
362 			if (max_size > 0) {
363 				pr_err("Maxnodemem reduced node %d to"
364 				       " %d pages\n", i, max_size);
365 				range.size = PFN_PHYS(max_size);
366 			} else {
367 				pr_err("Maxnodemem disabled node %d\n", i);
368 				continue;
369 			}
370 		}
371 		if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
372 			int max_size = maxmem_pfn - num_physpages;
373 			if (max_size > 0) {
374 				pr_err("Maxmem reduced node %d to %d pages\n",
375 				       i, max_size);
376 				range.size = PFN_PHYS(max_size);
377 			} else {
378 				pr_err("Maxmem disabled node %d\n", i);
379 				continue;
380 			}
381 		}
382 		if (i >= MAX_NUMNODES) {
383 			pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
384 			       i, range.size, range.size + range.start);
385 			continue;
386 		}
387 
388 		start = range.start >> PAGE_SHIFT;
389 		size = range.size >> PAGE_SHIFT;
390 		end = start + size;
391 
392 #ifndef __tilegx__
393 		if (((HV_PhysAddr)end << PAGE_SHIFT) !=
394 		    (range.start + range.size)) {
395 			pr_err("PAs too high to represent: %#llx..%#llx\n",
396 			       range.start, range.start + range.size);
397 			continue;
398 		}
399 #endif
400 #ifdef CONFIG_PCI
401 		/*
402 		 * Blocks that overlap the pci reserved region must
403 		 * have enough space to hold the maximum percpu data
404 		 * region at the top of the range.  If there isn't
405 		 * enough space above the reserved region, just
406 		 * truncate the node.
407 		 */
408 		if (start <= pci_reserve_start_pfn &&
409 		    end > pci_reserve_start_pfn) {
410 			unsigned int per_cpu_size =
411 				__per_cpu_end - __per_cpu_start;
412 			unsigned int percpu_pages =
413 				NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
414 			if (end < pci_reserve_end_pfn + percpu_pages) {
415 				end = pci_reserve_start_pfn;
416 				pr_err("PCI mapping region reduced node %d to"
417 				       " %ld pages\n", i, end - start);
418 			}
419 		}
420 #endif
421 
422 		for (j = __pfn_to_highbits(start);
423 		     j <= __pfn_to_highbits(end - 1); j++)
424 			highbits_to_node[j] = i;
425 
426 		node_start_pfn[i] = start;
427 		node_end_pfn[i] = end;
428 		node_controller[i] = range.controller;
429 		num_physpages += size;
430 		max_pfn = end;
431 
432 		/* Mark node as online */
433 		node_set(i, node_online_map);
434 		node_set(i, node_possible_map);
435 	}
436 
437 #ifndef __tilegx__
438 	/*
439 	 * For 4KB pages, mem_map "struct page" data is 1% of the size
440 	 * of the physical memory, so can be quite big (640 MB for
441 	 * four 16G zones).  These structures must be mapped in
442 	 * lowmem, and since we currently cap out at about 768 MB,
443 	 * it's impractical to try to use this much address space.
444 	 * For now, arbitrarily cap the amount of physical memory
445 	 * we're willing to use at 8 million pages (32GB of 4KB pages).
446 	 */
447 	cap = 8 * 1024 * 1024;  /* 8 million pages */
448 	if (num_physpages > cap) {
449 		int num_nodes = num_online_nodes();
450 		int cap_each = cap / num_nodes;
451 		unsigned long dropped_pages = 0;
452 		for (i = 0; i < num_nodes; ++i) {
453 			int size = node_end_pfn[i] - node_start_pfn[i];
454 			if (size > cap_each) {
455 				dropped_pages += (size - cap_each);
456 				node_end_pfn[i] = node_start_pfn[i] + cap_each;
457 			}
458 		}
459 		num_physpages -= dropped_pages;
460 		pr_warning("Only using %ldMB memory;"
461 		       " ignoring %ldMB.\n",
462 		       num_physpages >> (20 - PAGE_SHIFT),
463 		       dropped_pages >> (20 - PAGE_SHIFT));
464 		pr_warning("Consider using a larger page size.\n");
465 	}
466 #endif
467 
468 	/* Heap starts just above the last loaded address. */
469 	min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
470 
471 #ifdef CONFIG_HIGHMEM
472 	/* Find where we map lowmem from each controller. */
473 	high_memory = setup_pa_va_mapping();
474 
475 	/* Set max_low_pfn based on what node 0 can directly address. */
476 	max_low_pfn = node_lowmem_end_pfn[0];
477 
478 	lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
479 		MAXMEM_PFN : mappable_physpages;
480 	highmem_pages = (long) (num_physpages - lowmem_pages);
481 
482 	pr_notice("%ldMB HIGHMEM available.\n",
483 	       pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
484 	pr_notice("%ldMB LOWMEM available.\n",
485 			pages_to_mb(lowmem_pages));
486 #else
487 	/* Set max_low_pfn based on what node 0 can directly address. */
488 	max_low_pfn = node_end_pfn[0];
489 
490 #ifndef __tilegx__
491 	if (node_end_pfn[0] > MAXMEM_PFN) {
492 		pr_warning("Only using %ldMB LOWMEM.\n",
493 		       MAXMEM>>20);
494 		pr_warning("Use a HIGHMEM enabled kernel.\n");
495 		max_low_pfn = MAXMEM_PFN;
496 		max_pfn = MAXMEM_PFN;
497 		num_physpages = MAXMEM_PFN;
498 		node_end_pfn[0] = MAXMEM_PFN;
499 	} else {
500 		pr_notice("%ldMB memory available.\n",
501 		       pages_to_mb(node_end_pfn[0]));
502 	}
503 	for (i = 1; i < MAX_NUMNODES; ++i) {
504 		node_start_pfn[i] = 0;
505 		node_end_pfn[i] = 0;
506 	}
507 	high_memory = __va(node_end_pfn[0]);
508 #else
509 	lowmem_pages = 0;
510 	for (i = 0; i < MAX_NUMNODES; ++i) {
511 		int pages = node_end_pfn[i] - node_start_pfn[i];
512 		lowmem_pages += pages;
513 		if (pages)
514 			high_memory = pfn_to_kaddr(node_end_pfn[i]);
515 	}
516 	pr_notice("%ldMB memory available.\n",
517 	       pages_to_mb(lowmem_pages));
518 #endif
519 #endif
520 }
521 
setup_bootmem_allocator(void)522 static void __init setup_bootmem_allocator(void)
523 {
524 	unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
525 
526 	/* Provide a node 0 bdata. */
527 	NODE_DATA(0)->bdata = &node0_bdata;
528 
529 #ifdef CONFIG_PCI
530 	/* Don't let boot memory alias the PCI region. */
531 	last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
532 #else
533 	last_alloc_pfn = max_low_pfn;
534 #endif
535 
536 	/*
537 	 * Initialize the boot-time allocator (with low memory only):
538 	 * The first argument says where to put the bitmap, and the
539 	 * second says where the end of allocatable memory is.
540 	 */
541 	bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
542 
543 	/*
544 	 * Let the bootmem allocator use all the space we've given it
545 	 * except for its own bitmap.
546 	 */
547 	first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
548 	if (first_alloc_pfn >= last_alloc_pfn)
549 		early_panic("Not enough memory on controller 0 for bootmem\n");
550 
551 	free_bootmem(PFN_PHYS(first_alloc_pfn),
552 		     PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
553 
554 #ifdef CONFIG_KEXEC
555 	if (crashk_res.start != crashk_res.end)
556 		reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
557 #endif
558 }
559 
alloc_remap(int nid,unsigned long size)560 void *__init alloc_remap(int nid, unsigned long size)
561 {
562 	int pages = node_end_pfn[nid] - node_start_pfn[nid];
563 	void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
564 	BUG_ON(size != pages * sizeof(struct page));
565 	memset(map, 0, size);
566 	return map;
567 }
568 
percpu_size(void)569 static int __init percpu_size(void)
570 {
571 	int size = __per_cpu_end - __per_cpu_start;
572 	size += PERCPU_MODULE_RESERVE;
573 	size += PERCPU_DYNAMIC_EARLY_SIZE;
574 	if (size < PCPU_MIN_UNIT_SIZE)
575 		size = PCPU_MIN_UNIT_SIZE;
576 	size = roundup(size, PAGE_SIZE);
577 
578 	/* In several places we assume the per-cpu data fits on a huge page. */
579 	BUG_ON(kdata_huge && size > HPAGE_SIZE);
580 	return size;
581 }
582 
alloc_bootmem_pfn(int size,unsigned long goal)583 static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
584 {
585 	void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
586 	unsigned long pfn = kaddr_to_pfn(kva);
587 	BUG_ON(goal && PFN_PHYS(pfn) != goal);
588 	return pfn;
589 }
590 
zone_sizes_init(void)591 static void __init zone_sizes_init(void)
592 {
593 	unsigned long zones_size[MAX_NR_ZONES] = { 0 };
594 	int size = percpu_size();
595 	int num_cpus = smp_height * smp_width;
596 	int i;
597 
598 	for (i = 0; i < num_cpus; ++i)
599 		node_percpu[cpu_to_node(i)] += size;
600 
601 	for_each_online_node(i) {
602 		unsigned long start = node_start_pfn[i];
603 		unsigned long end = node_end_pfn[i];
604 #ifdef CONFIG_HIGHMEM
605 		unsigned long lowmem_end = node_lowmem_end_pfn[i];
606 #else
607 		unsigned long lowmem_end = end;
608 #endif
609 		int memmap_size = (end - start) * sizeof(struct page);
610 		node_free_pfn[i] = start;
611 
612 		/*
613 		 * Set aside pages for per-cpu data and the mem_map array.
614 		 *
615 		 * Since the per-cpu data requires special homecaching,
616 		 * if we are in kdata_huge mode, we put it at the end of
617 		 * the lowmem region.  If we're not in kdata_huge mode,
618 		 * we take the per-cpu pages from the bottom of the
619 		 * controller, since that avoids fragmenting a huge page
620 		 * that users might want.  We always take the memmap
621 		 * from the bottom of the controller, since with
622 		 * kdata_huge that lets it be under a huge TLB entry.
623 		 *
624 		 * If the user has requested isolnodes for a controller,
625 		 * though, there'll be no lowmem, so we just alloc_bootmem
626 		 * the memmap.  There will be no percpu memory either.
627 		 */
628 		if (__pfn_to_highbits(start) == 0) {
629 			/* In low PAs, allocate via bootmem. */
630 			unsigned long goal = 0;
631 			node_memmap_pfn[i] =
632 				alloc_bootmem_pfn(memmap_size, goal);
633 			if (kdata_huge)
634 				goal = PFN_PHYS(lowmem_end) - node_percpu[i];
635 			if (node_percpu[i])
636 				node_percpu_pfn[i] =
637 				    alloc_bootmem_pfn(node_percpu[i], goal);
638 		} else if (cpu_isset(i, isolnodes)) {
639 			node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
640 			BUG_ON(node_percpu[i] != 0);
641 		} else {
642 			/* In high PAs, just reserve some pages. */
643 			node_memmap_pfn[i] = node_free_pfn[i];
644 			node_free_pfn[i] += PFN_UP(memmap_size);
645 			if (!kdata_huge) {
646 				node_percpu_pfn[i] = node_free_pfn[i];
647 				node_free_pfn[i] += PFN_UP(node_percpu[i]);
648 			} else {
649 				node_percpu_pfn[i] =
650 					lowmem_end - PFN_UP(node_percpu[i]);
651 			}
652 		}
653 
654 #ifdef CONFIG_HIGHMEM
655 		if (start > lowmem_end) {
656 			zones_size[ZONE_NORMAL] = 0;
657 			zones_size[ZONE_HIGHMEM] = end - start;
658 		} else {
659 			zones_size[ZONE_NORMAL] = lowmem_end - start;
660 			zones_size[ZONE_HIGHMEM] = end - lowmem_end;
661 		}
662 #else
663 		zones_size[ZONE_NORMAL] = end - start;
664 #endif
665 
666 		/*
667 		 * Everyone shares node 0's bootmem allocator, but
668 		 * we use alloc_remap(), above, to put the actual
669 		 * struct page array on the individual controllers,
670 		 * which is most of the data that we actually care about.
671 		 * We can't place bootmem allocators on the other
672 		 * controllers since the bootmem allocator can only
673 		 * operate on 32-bit physical addresses.
674 		 */
675 		NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
676 
677 		free_area_init_node(i, zones_size, start, NULL);
678 		printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
679 		       PFN_UP(node_percpu[i]));
680 
681 		/* Track the type of memory on each node */
682 		if (zones_size[ZONE_NORMAL])
683 			node_set_state(i, N_NORMAL_MEMORY);
684 #ifdef CONFIG_HIGHMEM
685 		if (end != start)
686 			node_set_state(i, N_HIGH_MEMORY);
687 #endif
688 
689 		node_set_online(i);
690 	}
691 }
692 
693 #ifdef CONFIG_NUMA
694 
695 /* which logical CPUs are on which nodes */
696 struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
697 EXPORT_SYMBOL(node_2_cpu_mask);
698 
699 /* which node each logical CPU is on */
700 char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
701 EXPORT_SYMBOL(cpu_2_node);
702 
703 /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
cpu_to_bound_node(int cpu,struct cpumask * unbound_cpus)704 static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
705 {
706 	if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
707 		return -1;
708 	else
709 		return cpu_to_node(cpu);
710 }
711 
712 /* Return number of immediately-adjacent tiles sharing the same NUMA node. */
node_neighbors(int node,int cpu,struct cpumask * unbound_cpus)713 static int __init node_neighbors(int node, int cpu,
714 				 struct cpumask *unbound_cpus)
715 {
716 	int neighbors = 0;
717 	int w = smp_width;
718 	int h = smp_height;
719 	int x = cpu % w;
720 	int y = cpu / w;
721 	if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
722 		++neighbors;
723 	if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
724 		++neighbors;
725 	if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
726 		++neighbors;
727 	if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
728 		++neighbors;
729 	return neighbors;
730 }
731 
setup_numa_mapping(void)732 static void __init setup_numa_mapping(void)
733 {
734 	int distance[MAX_NUMNODES][NR_CPUS];
735 	HV_Coord coord;
736 	int cpu, node, cpus, i, x, y;
737 	int num_nodes = num_online_nodes();
738 	struct cpumask unbound_cpus;
739 	nodemask_t default_nodes;
740 
741 	cpumask_clear(&unbound_cpus);
742 
743 	/* Get set of nodes we will use for defaults */
744 	nodes_andnot(default_nodes, node_online_map, isolnodes);
745 	if (nodes_empty(default_nodes)) {
746 		BUG_ON(!node_isset(0, node_online_map));
747 		pr_err("Forcing NUMA node zero available as a default node\n");
748 		node_set(0, default_nodes);
749 	}
750 
751 	/* Populate the distance[] array */
752 	memset(distance, -1, sizeof(distance));
753 	cpu = 0;
754 	for (coord.y = 0; coord.y < smp_height; ++coord.y) {
755 		for (coord.x = 0; coord.x < smp_width;
756 		     ++coord.x, ++cpu) {
757 			BUG_ON(cpu >= nr_cpu_ids);
758 			if (!cpu_possible(cpu)) {
759 				cpu_2_node[cpu] = -1;
760 				continue;
761 			}
762 			for_each_node_mask(node, default_nodes) {
763 				HV_MemoryControllerInfo info =
764 					hv_inquire_memory_controller(
765 						coord, node_controller[node]);
766 				distance[node][cpu] =
767 					ABS(info.coord.x) + ABS(info.coord.y);
768 			}
769 			cpumask_set_cpu(cpu, &unbound_cpus);
770 		}
771 	}
772 	cpus = cpu;
773 
774 	/*
775 	 * Round-robin through the NUMA nodes until all the cpus are
776 	 * assigned.  We could be more clever here (e.g. create four
777 	 * sorted linked lists on the same set of cpu nodes, and pull
778 	 * off them in round-robin sequence, removing from all four
779 	 * lists each time) but given the relatively small numbers
780 	 * involved, O(n^2) seem OK for a one-time cost.
781 	 */
782 	node = first_node(default_nodes);
783 	while (!cpumask_empty(&unbound_cpus)) {
784 		int best_cpu = -1;
785 		int best_distance = INT_MAX;
786 		for (cpu = 0; cpu < cpus; ++cpu) {
787 			if (cpumask_test_cpu(cpu, &unbound_cpus)) {
788 				/*
789 				 * Compute metric, which is how much
790 				 * closer the cpu is to this memory
791 				 * controller than the others, shifted
792 				 * up, and then the number of
793 				 * neighbors already in the node as an
794 				 * epsilon adjustment to try to keep
795 				 * the nodes compact.
796 				 */
797 				int d = distance[node][cpu] * num_nodes;
798 				for_each_node_mask(i, default_nodes) {
799 					if (i != node)
800 						d -= distance[i][cpu];
801 				}
802 				d *= 8;  /* allow space for epsilon */
803 				d -= node_neighbors(node, cpu, &unbound_cpus);
804 				if (d < best_distance) {
805 					best_cpu = cpu;
806 					best_distance = d;
807 				}
808 			}
809 		}
810 		BUG_ON(best_cpu < 0);
811 		cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
812 		cpu_2_node[best_cpu] = node;
813 		cpumask_clear_cpu(best_cpu, &unbound_cpus);
814 		node = next_node(node, default_nodes);
815 		if (node == MAX_NUMNODES)
816 			node = first_node(default_nodes);
817 	}
818 
819 	/* Print out node assignments and set defaults for disabled cpus */
820 	cpu = 0;
821 	for (y = 0; y < smp_height; ++y) {
822 		printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
823 		for (x = 0; x < smp_width; ++x, ++cpu) {
824 			if (cpu_to_node(cpu) < 0) {
825 				pr_cont(" -");
826 				cpu_2_node[cpu] = first_node(default_nodes);
827 			} else {
828 				pr_cont(" %d", cpu_to_node(cpu));
829 			}
830 		}
831 		pr_cont("\n");
832 	}
833 }
834 
835 static struct cpu cpu_devices[NR_CPUS];
836 
topology_init(void)837 static int __init topology_init(void)
838 {
839 	int i;
840 
841 	for_each_online_node(i)
842 		register_one_node(i);
843 
844 	for (i = 0; i < smp_height * smp_width; ++i)
845 		register_cpu(&cpu_devices[i], i);
846 
847 	return 0;
848 }
849 
850 subsys_initcall(topology_init);
851 
852 #else /* !CONFIG_NUMA */
853 
854 #define setup_numa_mapping() do { } while (0)
855 
856 #endif /* CONFIG_NUMA */
857 
858 /**
859  * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
860  * @boot: Is this the boot cpu?
861  *
862  * Called from setup_arch() on the boot cpu, or online_secondary().
863  */
setup_cpu(int boot)864 void __cpuinit setup_cpu(int boot)
865 {
866 	/* The boot cpu sets up its permanent mappings much earlier. */
867 	if (!boot)
868 		store_permanent_mappings();
869 
870 	/* Allow asynchronous TLB interrupts. */
871 #if CHIP_HAS_TILE_DMA()
872 	arch_local_irq_unmask(INT_DMATLB_MISS);
873 	arch_local_irq_unmask(INT_DMATLB_ACCESS);
874 #endif
875 #if CHIP_HAS_SN_PROC()
876 	arch_local_irq_unmask(INT_SNITLB_MISS);
877 #endif
878 #ifdef __tilegx__
879 	arch_local_irq_unmask(INT_SINGLE_STEP_K);
880 #endif
881 
882 	/*
883 	 * Allow user access to many generic SPRs, like the cycle
884 	 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
885 	 */
886 	__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
887 
888 #if CHIP_HAS_SN()
889 	/* Static network is not restricted. */
890 	__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
891 #endif
892 #if CHIP_HAS_SN_PROC()
893 	__insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
894 	__insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
895 #endif
896 
897 	/*
898 	 * Set the MPL for interrupt control 0 & 1 to the corresponding
899 	 * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
900 	 * SPRs, as well as the interrupt mask.
901 	 */
902 	__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
903 	__insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
904 
905 	/* Initialize IRQ support for this cpu. */
906 	setup_irq_regs();
907 
908 #ifdef CONFIG_HARDWALL
909 	/* Reset the network state on this cpu. */
910 	reset_network_state();
911 #endif
912 }
913 
914 #ifdef CONFIG_BLK_DEV_INITRD
915 
916 static int __initdata set_initramfs_file;
917 static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
918 
setup_initramfs_file(char * str)919 static int __init setup_initramfs_file(char *str)
920 {
921 	if (str == NULL)
922 		return -EINVAL;
923 	strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
924 	set_initramfs_file = 1;
925 
926 	return 0;
927 }
928 early_param("initramfs_file", setup_initramfs_file);
929 
930 /*
931  * We look for an additional "initramfs.cpio.gz" file in the hvfs.
932  * If there is one, we allocate some memory for it and it will be
933  * unpacked to the initramfs after any built-in initramfs_data.
934  */
load_hv_initrd(void)935 static void __init load_hv_initrd(void)
936 {
937 	HV_FS_StatInfo stat;
938 	int fd, rc;
939 	void *initrd;
940 
941 	fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
942 	if (fd == HV_ENOENT) {
943 		if (set_initramfs_file)
944 			pr_warning("No such hvfs initramfs file '%s'\n",
945 				   initramfs_file);
946 		return;
947 	}
948 	BUG_ON(fd < 0);
949 	stat = hv_fs_fstat(fd);
950 	BUG_ON(stat.size < 0);
951 	if (stat.flags & HV_FS_ISDIR) {
952 		pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
953 			   initramfs_file);
954 		return;
955 	}
956 	initrd = alloc_bootmem_pages(stat.size);
957 	rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
958 	if (rc != stat.size) {
959 		pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
960 		       stat.size, initramfs_file, rc);
961 		free_initrd_mem((unsigned long) initrd, stat.size);
962 		return;
963 	}
964 	initrd_start = (unsigned long) initrd;
965 	initrd_end = initrd_start + stat.size;
966 }
967 
free_initrd_mem(unsigned long begin,unsigned long end)968 void __init free_initrd_mem(unsigned long begin, unsigned long end)
969 {
970 	free_bootmem(__pa(begin), end - begin);
971 }
972 
973 #else
load_hv_initrd(void)974 static inline void load_hv_initrd(void) {}
975 #endif /* CONFIG_BLK_DEV_INITRD */
976 
validate_hv(void)977 static void __init validate_hv(void)
978 {
979 	/*
980 	 * It may already be too late, but let's check our built-in
981 	 * configuration against what the hypervisor is providing.
982 	 */
983 	unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
984 	int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
985 	int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
986 	HV_ASIDRange asid_range;
987 
988 #ifndef CONFIG_SMP
989 	HV_Topology topology = hv_inquire_topology();
990 	BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
991 	if (topology.width != 1 || topology.height != 1) {
992 		pr_warning("Warning: booting UP kernel on %dx%d grid;"
993 			   " will ignore all but first tile.\n",
994 			   topology.width, topology.height);
995 	}
996 #endif
997 
998 	if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
999 		early_panic("Hypervisor glue size %ld is too big!\n",
1000 			    glue_size);
1001 	if (hv_page_size != PAGE_SIZE)
1002 		early_panic("Hypervisor page size %#x != our %#lx\n",
1003 			    hv_page_size, PAGE_SIZE);
1004 	if (hv_hpage_size != HPAGE_SIZE)
1005 		early_panic("Hypervisor huge page size %#x != our %#lx\n",
1006 			    hv_hpage_size, HPAGE_SIZE);
1007 
1008 #ifdef CONFIG_SMP
1009 	/*
1010 	 * Some hypervisor APIs take a pointer to a bitmap array
1011 	 * whose size is at least the number of cpus on the chip.
1012 	 * We use a struct cpumask for this, so it must be big enough.
1013 	 */
1014 	if ((smp_height * smp_width) > nr_cpu_ids)
1015 		early_panic("Hypervisor %d x %d grid too big for Linux"
1016 			    " NR_CPUS %d\n", smp_height, smp_width,
1017 			    nr_cpu_ids);
1018 #endif
1019 
1020 	/*
1021 	 * Check that we're using allowed ASIDs, and initialize the
1022 	 * various asid variables to their appropriate initial states.
1023 	 */
1024 	asid_range = hv_inquire_asid(0);
1025 	__get_cpu_var(current_asid) = min_asid = asid_range.start;
1026 	max_asid = asid_range.start + asid_range.size - 1;
1027 
1028 	if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1029 		       sizeof(chip_model)) < 0) {
1030 		pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1031 		strlcpy(chip_model, "unknown", sizeof(chip_model));
1032 	}
1033 }
1034 
validate_va(void)1035 static void __init validate_va(void)
1036 {
1037 #ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1038 	/*
1039 	 * Similarly, make sure we're only using allowed VAs.
1040 	 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1041 	 * and 0 .. KERNEL_HIGH_VADDR.
1042 	 * In addition, make sure we CAN'T use the end of memory, since
1043 	 * we use the last chunk of each pgd for the pgd_list.
1044 	 */
1045 	int i, user_kernel_ok = 0;
1046 	unsigned long max_va = 0;
1047 	unsigned long list_va =
1048 		((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1049 
1050 	for (i = 0; ; ++i) {
1051 		HV_VirtAddrRange range = hv_inquire_virtual(i);
1052 		if (range.size == 0)
1053 			break;
1054 		if (range.start <= MEM_USER_INTRPT &&
1055 		    range.start + range.size >= MEM_HV_INTRPT)
1056 			user_kernel_ok = 1;
1057 		if (range.start == 0)
1058 			max_va = range.size;
1059 		BUG_ON(range.start + range.size > list_va);
1060 	}
1061 	if (!user_kernel_ok)
1062 		early_panic("Hypervisor not configured for user/kernel VAs\n");
1063 	if (max_va == 0)
1064 		early_panic("Hypervisor not configured for low VAs\n");
1065 	if (max_va < KERNEL_HIGH_VADDR)
1066 		early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1067 			    max_va, KERNEL_HIGH_VADDR);
1068 
1069 	/* Kernel PCs must have their high bit set; see intvec.S. */
1070 	if ((long)VMALLOC_START >= 0)
1071 		early_panic(
1072 			"Linux VMALLOC region below the 2GB line (%#lx)!\n"
1073 			"Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1074 			"or smaller VMALLOC_RESERVE.\n",
1075 			VMALLOC_START);
1076 #endif
1077 }
1078 
1079 /*
1080  * cpu_lotar_map lists all the cpus that are valid for the supervisor
1081  * to cache data on at a page level, i.e. what cpus can be placed in
1082  * the LOTAR field of a PTE.  It is equivalent to the set of possible
1083  * cpus plus any other cpus that are willing to share their cache.
1084  * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1085  */
1086 struct cpumask __write_once cpu_lotar_map;
1087 EXPORT_SYMBOL(cpu_lotar_map);
1088 
1089 #if CHIP_HAS_CBOX_HOME_MAP()
1090 /*
1091  * hash_for_home_map lists all the tiles that hash-for-home data
1092  * will be cached on.  Note that this may includes tiles that are not
1093  * valid for this supervisor to use otherwise (e.g. if a hypervisor
1094  * device is being shared between multiple supervisors).
1095  * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1096  */
1097 struct cpumask hash_for_home_map;
1098 EXPORT_SYMBOL(hash_for_home_map);
1099 #endif
1100 
1101 /*
1102  * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1103  * flush on our behalf.  It is set to cpu_possible_map OR'ed with
1104  * hash_for_home_map, and it is what should be passed to
1105  * hv_flush_remote() to flush all caches.  Note that if there are
1106  * dedicated hypervisor driver tiles that have authorized use of their
1107  * cache, those tiles will only appear in cpu_lotar_map, NOT in
1108  * cpu_cacheable_map, as they are a special case.
1109  */
1110 struct cpumask __write_once cpu_cacheable_map;
1111 EXPORT_SYMBOL(cpu_cacheable_map);
1112 
1113 static __initdata struct cpumask disabled_map;
1114 
disabled_cpus(char * str)1115 static int __init disabled_cpus(char *str)
1116 {
1117 	int boot_cpu = smp_processor_id();
1118 
1119 	if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1120 		return -EINVAL;
1121 	if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1122 		pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1123 		cpumask_clear_cpu(boot_cpu, &disabled_map);
1124 	}
1125 	return 0;
1126 }
1127 
1128 early_param("disabled_cpus", disabled_cpus);
1129 
print_disabled_cpus(void)1130 void __init print_disabled_cpus(void)
1131 {
1132 	if (!cpumask_empty(&disabled_map)) {
1133 		char buf[100];
1134 		cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1135 		pr_info("CPUs not available for Linux: %s\n", buf);
1136 	}
1137 }
1138 
setup_cpu_maps(void)1139 static void __init setup_cpu_maps(void)
1140 {
1141 	struct cpumask hv_disabled_map, cpu_possible_init;
1142 	int boot_cpu = smp_processor_id();
1143 	int cpus, i, rc;
1144 
1145 	/* Learn which cpus are allowed by the hypervisor. */
1146 	rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1147 			      (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1148 			      sizeof(cpu_cacheable_map));
1149 	if (rc < 0)
1150 		early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1151 	if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1152 		early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1153 
1154 	/* Compute the cpus disabled by the hvconfig file. */
1155 	cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1156 
1157 	/* Include them with the cpus disabled by "disabled_cpus". */
1158 	cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1159 
1160 	/*
1161 	 * Disable every cpu after "setup_max_cpus".  But don't mark
1162 	 * as disabled the cpus that are outside of our initial rectangle,
1163 	 * since that turns out to be confusing.
1164 	 */
1165 	cpus = 1;                          /* this cpu */
1166 	cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1167 	for (i = 0; cpus < setup_max_cpus; ++i)
1168 		if (!cpumask_test_cpu(i, &disabled_map))
1169 			++cpus;
1170 	for (; i < smp_height * smp_width; ++i)
1171 		cpumask_set_cpu(i, &disabled_map);
1172 	cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1173 	for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1174 		cpumask_clear_cpu(i, &disabled_map);
1175 
1176 	/*
1177 	 * Setup cpu_possible map as every cpu allocated to us, minus
1178 	 * the results of any "disabled_cpus" settings.
1179 	 */
1180 	cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1181 	init_cpu_possible(&cpu_possible_init);
1182 
1183 	/* Learn which cpus are valid for LOTAR caching. */
1184 	rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1185 			      (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1186 			      sizeof(cpu_lotar_map));
1187 	if (rc < 0) {
1188 		pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1189 		cpu_lotar_map = cpu_possible_map;
1190 	}
1191 
1192 #if CHIP_HAS_CBOX_HOME_MAP()
1193 	/* Retrieve set of CPUs used for hash-for-home caching */
1194 	rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1195 			      (HV_VirtAddr) hash_for_home_map.bits,
1196 			      sizeof(hash_for_home_map));
1197 	if (rc < 0)
1198 		early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1199 	cpumask_or(&cpu_cacheable_map, &cpu_possible_map, &hash_for_home_map);
1200 #else
1201 	cpu_cacheable_map = cpu_possible_map;
1202 #endif
1203 }
1204 
1205 
dataplane(char * str)1206 static int __init dataplane(char *str)
1207 {
1208 	pr_warning("WARNING: dataplane support disabled in this kernel\n");
1209 	return 0;
1210 }
1211 
1212 early_param("dataplane", dataplane);
1213 
1214 #ifdef CONFIG_CMDLINE_BOOL
1215 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1216 #endif
1217 
setup_arch(char ** cmdline_p)1218 void __init setup_arch(char **cmdline_p)
1219 {
1220 	int len;
1221 
1222 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1223 	len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1224 				  COMMAND_LINE_SIZE);
1225 	if (boot_command_line[0])
1226 		pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1227 			   boot_command_line);
1228 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1229 #else
1230 	char *hv_cmdline;
1231 #if defined(CONFIG_CMDLINE_BOOL)
1232 	if (builtin_cmdline[0]) {
1233 		int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1234 					  COMMAND_LINE_SIZE);
1235 		if (builtin_len < COMMAND_LINE_SIZE-1)
1236 			boot_command_line[builtin_len++] = ' ';
1237 		hv_cmdline = &boot_command_line[builtin_len];
1238 		len = COMMAND_LINE_SIZE - builtin_len;
1239 	} else
1240 #endif
1241 	{
1242 		hv_cmdline = boot_command_line;
1243 		len = COMMAND_LINE_SIZE;
1244 	}
1245 	len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1246 	if (len < 0 || len > COMMAND_LINE_SIZE)
1247 		early_panic("hv_get_command_line failed: %d\n", len);
1248 #endif
1249 
1250 	*cmdline_p = boot_command_line;
1251 
1252 	/* Set disabled_map and setup_max_cpus very early */
1253 	parse_early_param();
1254 
1255 	/* Make sure the kernel is compatible with the hypervisor. */
1256 	validate_hv();
1257 	validate_va();
1258 
1259 	setup_cpu_maps();
1260 
1261 
1262 #ifdef CONFIG_PCI
1263 	/*
1264 	 * Initialize the PCI structures.  This is done before memory
1265 	 * setup so that we know whether or not a pci_reserve region
1266 	 * is necessary.
1267 	 */
1268 	if (tile_pci_init() == 0)
1269 		pci_reserve_mb = 0;
1270 
1271 	/* PCI systems reserve a region just below 4GB for mapping iomem. */
1272 	pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1273 	pci_reserve_start_pfn = pci_reserve_end_pfn -
1274 		(pci_reserve_mb << (20 - PAGE_SHIFT));
1275 #endif
1276 
1277 	init_mm.start_code = (unsigned long) _text;
1278 	init_mm.end_code = (unsigned long) _etext;
1279 	init_mm.end_data = (unsigned long) _edata;
1280 	init_mm.brk = (unsigned long) _end;
1281 
1282 	setup_memory();
1283 	store_permanent_mappings();
1284 	setup_bootmem_allocator();
1285 
1286 	/*
1287 	 * NOTE: before this point _nobody_ is allowed to allocate
1288 	 * any memory using the bootmem allocator.
1289 	 */
1290 
1291 	paging_init();
1292 	setup_numa_mapping();
1293 	zone_sizes_init();
1294 	set_page_homes();
1295 	setup_cpu(1);
1296 	setup_clock();
1297 	load_hv_initrd();
1298 }
1299 
1300 
1301 /*
1302  * Set up per-cpu memory.
1303  */
1304 
1305 unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1306 EXPORT_SYMBOL(__per_cpu_offset);
1307 
1308 static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1309 static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1310 
1311 /*
1312  * As the percpu code allocates pages, we return the pages from the
1313  * end of the node for the specified cpu.
1314  */
pcpu_fc_alloc(unsigned int cpu,size_t size,size_t align)1315 static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1316 {
1317 	int nid = cpu_to_node(cpu);
1318 	unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1319 
1320 	BUG_ON(size % PAGE_SIZE != 0);
1321 	pfn_offset[nid] += size / PAGE_SIZE;
1322 	BUG_ON(node_percpu[nid] < size);
1323 	node_percpu[nid] -= size;
1324 	if (percpu_pfn[cpu] == 0)
1325 		percpu_pfn[cpu] = pfn;
1326 	return pfn_to_kaddr(pfn);
1327 }
1328 
1329 /*
1330  * Pages reserved for percpu memory are not freeable, and in any case we are
1331  * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1332  */
pcpu_fc_free(void * ptr,size_t size)1333 static void __init pcpu_fc_free(void *ptr, size_t size)
1334 {
1335 }
1336 
1337 /*
1338  * Set up vmalloc page tables using bootmem for the percpu code.
1339  */
pcpu_fc_populate_pte(unsigned long addr)1340 static void __init pcpu_fc_populate_pte(unsigned long addr)
1341 {
1342 	pgd_t *pgd;
1343 	pud_t *pud;
1344 	pmd_t *pmd;
1345 	pte_t *pte;
1346 
1347 	BUG_ON(pgd_addr_invalid(addr));
1348 	if (addr < VMALLOC_START || addr >= VMALLOC_END)
1349 		panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1350 		      " try increasing CONFIG_VMALLOC_RESERVE\n",
1351 		      addr, VMALLOC_START, VMALLOC_END);
1352 
1353 	pgd = swapper_pg_dir + pgd_index(addr);
1354 	pud = pud_offset(pgd, addr);
1355 	BUG_ON(!pud_present(*pud));
1356 	pmd = pmd_offset(pud, addr);
1357 	if (pmd_present(*pmd)) {
1358 		BUG_ON(pmd_huge_page(*pmd));
1359 	} else {
1360 		pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1361 				      HV_PAGE_TABLE_ALIGN, 0);
1362 		pmd_populate_kernel(&init_mm, pmd, pte);
1363 	}
1364 }
1365 
setup_per_cpu_areas(void)1366 void __init setup_per_cpu_areas(void)
1367 {
1368 	struct page *pg;
1369 	unsigned long delta, pfn, lowmem_va;
1370 	unsigned long size = percpu_size();
1371 	char *ptr;
1372 	int rc, cpu, i;
1373 
1374 	rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1375 				   pcpu_fc_free, pcpu_fc_populate_pte);
1376 	if (rc < 0)
1377 		panic("Cannot initialize percpu area (err=%d)", rc);
1378 
1379 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1380 	for_each_possible_cpu(cpu) {
1381 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1382 
1383 		/* finv the copy out of cache so we can change homecache */
1384 		ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1385 		__finv_buffer(ptr, size);
1386 		pfn = percpu_pfn[cpu];
1387 
1388 		/* Rewrite the page tables to cache on that cpu */
1389 		pg = pfn_to_page(pfn);
1390 		for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1391 
1392 			/* Update the vmalloc mapping and page home. */
1393 			pte_t *ptep =
1394 				virt_to_pte(NULL, (unsigned long)ptr + i);
1395 			pte_t pte = *ptep;
1396 			BUG_ON(pfn != pte_pfn(pte));
1397 			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1398 			pte = set_remote_cache_cpu(pte, cpu);
1399 			set_pte(ptep, pte);
1400 
1401 			/* Update the lowmem mapping for consistency. */
1402 			lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1403 			ptep = virt_to_pte(NULL, lowmem_va);
1404 			if (pte_huge(*ptep)) {
1405 				printk(KERN_DEBUG "early shatter of huge page"
1406 				       " at %#lx\n", lowmem_va);
1407 				shatter_pmd((pmd_t *)ptep);
1408 				ptep = virt_to_pte(NULL, lowmem_va);
1409 				BUG_ON(pte_huge(*ptep));
1410 			}
1411 			BUG_ON(pfn != pte_pfn(*ptep));
1412 			set_pte(ptep, pte);
1413 		}
1414 	}
1415 
1416 	/* Set our thread pointer appropriately. */
1417 	set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1418 
1419 	/* Make sure the finv's have completed. */
1420 	mb_incoherent();
1421 
1422 	/* Flush the TLB so we reference it properly from here on out. */
1423 	local_flush_tlb_all();
1424 }
1425 
1426 static struct resource data_resource = {
1427 	.name	= "Kernel data",
1428 	.start	= 0,
1429 	.end	= 0,
1430 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1431 };
1432 
1433 static struct resource code_resource = {
1434 	.name	= "Kernel code",
1435 	.start	= 0,
1436 	.end	= 0,
1437 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1438 };
1439 
1440 /*
1441  * We reserve all resources above 4GB so that PCI won't try to put
1442  * mappings above 4GB; the standard allows that for some devices but
1443  * the probing code trunates values to 32 bits.
1444  */
1445 #ifdef CONFIG_PCI
1446 static struct resource* __init
insert_non_bus_resource(void)1447 insert_non_bus_resource(void)
1448 {
1449 	struct resource *res =
1450 		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1451 	res->name = "Non-Bus Physical Address Space";
1452 	res->start = (1ULL << 32);
1453 	res->end = -1LL;
1454 	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1455 	if (insert_resource(&iomem_resource, res)) {
1456 		kfree(res);
1457 		return NULL;
1458 	}
1459 	return res;
1460 }
1461 #endif
1462 
1463 static struct resource* __init
insert_ram_resource(u64 start_pfn,u64 end_pfn)1464 insert_ram_resource(u64 start_pfn, u64 end_pfn)
1465 {
1466 	struct resource *res =
1467 		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1468 	res->name = "System RAM";
1469 	res->start = start_pfn << PAGE_SHIFT;
1470 	res->end = (end_pfn << PAGE_SHIFT) - 1;
1471 	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1472 	if (insert_resource(&iomem_resource, res)) {
1473 		kfree(res);
1474 		return NULL;
1475 	}
1476 	return res;
1477 }
1478 
1479 /*
1480  * Request address space for all standard resources
1481  *
1482  * If the system includes PCI root complex drivers, we need to create
1483  * a window just below 4GB where PCI BARs can be mapped.
1484  */
request_standard_resources(void)1485 static int __init request_standard_resources(void)
1486 {
1487 	int i;
1488 	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1489 
1490 	iomem_resource.end = -1LL;
1491 #ifdef CONFIG_PCI
1492 	insert_non_bus_resource();
1493 #endif
1494 
1495 	for_each_online_node(i) {
1496 		u64 start_pfn = node_start_pfn[i];
1497 		u64 end_pfn = node_end_pfn[i];
1498 
1499 #ifdef CONFIG_PCI
1500 		if (start_pfn <= pci_reserve_start_pfn &&
1501 		    end_pfn > pci_reserve_start_pfn) {
1502 			if (end_pfn > pci_reserve_end_pfn)
1503 				insert_ram_resource(pci_reserve_end_pfn,
1504 						     end_pfn);
1505 			end_pfn = pci_reserve_start_pfn;
1506 		}
1507 #endif
1508 		insert_ram_resource(start_pfn, end_pfn);
1509 	}
1510 
1511 	code_resource.start = __pa(_text - CODE_DELTA);
1512 	code_resource.end = __pa(_etext - CODE_DELTA)-1;
1513 	data_resource.start = __pa(_sdata);
1514 	data_resource.end = __pa(_end)-1;
1515 
1516 	insert_resource(&iomem_resource, &code_resource);
1517 	insert_resource(&iomem_resource, &data_resource);
1518 
1519 #ifdef CONFIG_KEXEC
1520 	insert_resource(&iomem_resource, &crashk_res);
1521 #endif
1522 
1523 	return 0;
1524 }
1525 
1526 subsys_initcall(request_standard_resources);
1527