1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * This file contains the functions and defines necessary to modify and use
15 * the TILE page table tree.
16 */
17
18 #ifndef _ASM_TILE_PGTABLE_H
19 #define _ASM_TILE_PGTABLE_H
20
21 #include <hv/hypervisor.h>
22
23 #ifndef __ASSEMBLY__
24
25 #include <linux/bitops.h>
26 #include <linux/threads.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/spinlock.h>
30 #include <asm/processor.h>
31 #include <asm/fixmap.h>
32 #include <asm/system.h>
33
34 struct mm_struct;
35 struct vm_area_struct;
36
37 /*
38 * ZERO_PAGE is a global shared page that is always zero: used
39 * for zero-mapped memory areas etc..
40 */
41 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
42 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
43
44 extern pgd_t swapper_pg_dir[];
45 extern pgprot_t swapper_pgprot;
46 extern struct kmem_cache *pgd_cache;
47 extern spinlock_t pgd_lock;
48 extern struct list_head pgd_list;
49
50 /*
51 * The very last slots in the pgd_t are for addresses unusable by Linux
52 * (pgd_addr_invalid() returns true). So we use them for the list structure.
53 * The x86 code we are modelled on uses the page->private/index fields
54 * (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since
55 * our pgds are so much smaller than a page, it seems a waste to
56 * spend a whole page on each pgd.
57 */
58 #define PGD_LIST_OFFSET \
59 ((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head))
60 #define pgd_to_list(pgd) \
61 ((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET))
62 #define list_to_pgd(list) \
63 ((pgd_t *)((char *)(list) - PGD_LIST_OFFSET))
64
65 extern void pgtable_cache_init(void);
66 extern void paging_init(void);
67 extern void set_page_homes(void);
68
69 #define FIRST_USER_ADDRESS 0
70
71 #define _PAGE_PRESENT HV_PTE_PRESENT
72 #define _PAGE_HUGE_PAGE HV_PTE_PAGE
73 #define _PAGE_READABLE HV_PTE_READABLE
74 #define _PAGE_WRITABLE HV_PTE_WRITABLE
75 #define _PAGE_EXECUTABLE HV_PTE_EXECUTABLE
76 #define _PAGE_ACCESSED HV_PTE_ACCESSED
77 #define _PAGE_DIRTY HV_PTE_DIRTY
78 #define _PAGE_GLOBAL HV_PTE_GLOBAL
79 #define _PAGE_USER HV_PTE_USER
80
81 /*
82 * All the "standard" bits. Cache-control bits are managed elsewhere.
83 * This is used to test for valid level-2 page table pointers by checking
84 * all the bits, and to mask away the cache control bits for mprotect.
85 */
86 #define _PAGE_ALL (\
87 _PAGE_PRESENT | \
88 _PAGE_HUGE_PAGE | \
89 _PAGE_READABLE | \
90 _PAGE_WRITABLE | \
91 _PAGE_EXECUTABLE | \
92 _PAGE_ACCESSED | \
93 _PAGE_DIRTY | \
94 _PAGE_GLOBAL | \
95 _PAGE_USER \
96 )
97
98 #define PAGE_NONE \
99 __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
100 #define PAGE_SHARED \
101 __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
102 _PAGE_USER | _PAGE_ACCESSED)
103
104 #define PAGE_SHARED_EXEC \
105 __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
106 _PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED)
107 #define PAGE_COPY_NOEXEC \
108 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
109 #define PAGE_COPY_EXEC \
110 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
111 _PAGE_READABLE | _PAGE_EXECUTABLE)
112 #define PAGE_COPY \
113 PAGE_COPY_NOEXEC
114 #define PAGE_READONLY \
115 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
116 #define PAGE_READONLY_EXEC \
117 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
118 _PAGE_READABLE | _PAGE_EXECUTABLE)
119
120 #define _PAGE_KERNEL_RO \
121 (_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED)
122 #define _PAGE_KERNEL \
123 (_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY)
124 #define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE)
125
126 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
127 #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO)
128 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC)
129
130 #define page_to_kpgprot(p) PAGE_KERNEL
131
132 /*
133 * We could tighten these up, but for now writable or executable
134 * implies readable.
135 */
136 #define __P000 PAGE_NONE
137 #define __P001 PAGE_READONLY
138 #define __P010 PAGE_COPY /* this is write-only, which we won't support */
139 #define __P011 PAGE_COPY
140 #define __P100 PAGE_READONLY_EXEC
141 #define __P101 PAGE_READONLY_EXEC
142 #define __P110 PAGE_COPY_EXEC
143 #define __P111 PAGE_COPY_EXEC
144
145 #define __S000 PAGE_NONE
146 #define __S001 PAGE_READONLY
147 #define __S010 PAGE_SHARED
148 #define __S011 PAGE_SHARED
149 #define __S100 PAGE_READONLY_EXEC
150 #define __S101 PAGE_READONLY_EXEC
151 #define __S110 PAGE_SHARED_EXEC
152 #define __S111 PAGE_SHARED_EXEC
153
154 /*
155 * All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT
156 * and PAGE_HUGE_PAGE, which must be one and zero, respectively.
157 * We set the ignored bits to zero.
158 */
159 #define _PAGE_TABLE _PAGE_PRESENT
160
161 /* Inherit the caching flags from the old protection bits. */
162 #define pgprot_modify(oldprot, newprot) \
163 (pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val }
164
165 /* Just setting the PFN to zero suffices. */
166 #define pte_pgprot(x) hv_pte_set_pfn((x), 0)
167
168 /*
169 * For PTEs and PDEs, we must clear the Present bit first when
170 * clearing a page table entry, so clear the bottom half first and
171 * enforce ordering with a barrier.
172 */
__pte_clear(pte_t * ptep)173 static inline void __pte_clear(pte_t *ptep)
174 {
175 #ifdef __tilegx__
176 ptep->val = 0;
177 #else
178 u32 *tmp = (u32 *)ptep;
179 tmp[0] = 0;
180 barrier();
181 tmp[1] = 0;
182 #endif
183 }
184 #define pte_clear(mm, addr, ptep) __pte_clear(ptep)
185
186 /*
187 * The following only work if pte_present() is true.
188 * Undefined behaviour if not..
189 */
190 #define pte_present hv_pte_get_present
191 #define pte_user hv_pte_get_user
192 #define pte_read hv_pte_get_readable
193 #define pte_dirty hv_pte_get_dirty
194 #define pte_young hv_pte_get_accessed
195 #define pte_write hv_pte_get_writable
196 #define pte_exec hv_pte_get_executable
197 #define pte_huge hv_pte_get_page
198 #define pte_rdprotect hv_pte_clear_readable
199 #define pte_exprotect hv_pte_clear_executable
200 #define pte_mkclean hv_pte_clear_dirty
201 #define pte_mkold hv_pte_clear_accessed
202 #define pte_wrprotect hv_pte_clear_writable
203 #define pte_mksmall hv_pte_clear_page
204 #define pte_mkread hv_pte_set_readable
205 #define pte_mkexec hv_pte_set_executable
206 #define pte_mkdirty hv_pte_set_dirty
207 #define pte_mkyoung hv_pte_set_accessed
208 #define pte_mkwrite hv_pte_set_writable
209 #define pte_mkhuge hv_pte_set_page
210
211 #define pte_special(pte) 0
212 #define pte_mkspecial(pte) (pte)
213
214 /*
215 * Use some spare bits in the PTE for user-caching tags.
216 */
217 #define pte_set_forcecache hv_pte_set_client0
218 #define pte_get_forcecache hv_pte_get_client0
219 #define pte_clear_forcecache hv_pte_clear_client0
220 #define pte_set_anyhome hv_pte_set_client1
221 #define pte_get_anyhome hv_pte_get_client1
222 #define pte_clear_anyhome hv_pte_clear_client1
223
224 /*
225 * A migrating PTE has PAGE_PRESENT clear but all the other bits preserved.
226 */
227 #define pte_migrating hv_pte_get_migrating
228 #define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x))
229 #define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x))
230
231 #define pte_ERROR(e) \
232 pr_err("%s:%d: bad pte 0x%016llx.\n", __FILE__, __LINE__, pte_val(e))
233 #define pgd_ERROR(e) \
234 pr_err("%s:%d: bad pgd 0x%016llx.\n", __FILE__, __LINE__, pgd_val(e))
235
236 /* Return PA and protection info for a given kernel VA. */
237 int va_to_cpa_and_pte(void *va, phys_addr_t *cpa, pte_t *pte);
238
239 /*
240 * __set_pte() ensures we write the 64-bit PTE with 32-bit words in
241 * the right order on 32-bit platforms and also allows us to write
242 * hooks to check valid PTEs, etc., if we want.
243 */
244 void __set_pte(pte_t *ptep, pte_t pte);
245
246 /*
247 * set_pte() sets the given PTE and also sanity-checks the
248 * requested PTE against the page homecaching. Unspecified parts
249 * of the PTE are filled in when it is written to memory, i.e. all
250 * caching attributes if "!forcecache", or the home cpu if "anyhome".
251 */
252 extern void set_pte(pte_t *ptep, pte_t pte);
253 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
254 #define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval)
255
256 #define pte_page(x) pfn_to_page(pte_pfn(x))
257
pte_none(pte_t pte)258 static inline int pte_none(pte_t pte)
259 {
260 return !pte.val;
261 }
262
pte_pfn(pte_t pte)263 static inline unsigned long pte_pfn(pte_t pte)
264 {
265 return hv_pte_get_pfn(pte);
266 }
267
268 /* Set or get the remote cache cpu in a pgprot with remote caching. */
269 extern pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu);
270 extern int get_remote_cache_cpu(pgprot_t prot);
271
pfn_pte(unsigned long pfn,pgprot_t prot)272 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
273 {
274 return hv_pte_set_pfn(prot, pfn);
275 }
276
277 /* Support for priority mappings. */
278 extern void start_mm_caching(struct mm_struct *mm);
279 extern void check_mm_caching(struct mm_struct *prev, struct mm_struct *next);
280
281 /*
282 * Support non-linear file mappings (see sys_remap_file_pages).
283 * This is defined by CLIENT1 set but CLIENT0 and _PAGE_PRESENT clear, and the
284 * file offset in the 32 high bits.
285 */
286 #define _PAGE_FILE HV_PTE_CLIENT1
287 #define PTE_FILE_MAX_BITS 32
288 #define pte_file(pte) (hv_pte_get_client1(pte) && !hv_pte_get_client0(pte))
289 #define pte_to_pgoff(pte) ((pte).val >> 32)
290 #define pgoff_to_pte(off) ((pte_t) { (((long long)(off)) << 32) | _PAGE_FILE })
291
292 /*
293 * Encode and de-code a swap entry (see <linux/swapops.h>).
294 * We put the swap file type+offset in the 32 high bits;
295 * I believe we can just leave the low bits clear.
296 */
297 #define __swp_type(swp) ((swp).val & 0x1f)
298 #define __swp_offset(swp) ((swp).val >> 5)
299 #define __swp_entry(type, off) ((swp_entry_t) { (type) | ((off) << 5) })
300 #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).val >> 32 })
301 #define __swp_entry_to_pte(swp) ((pte_t) { (((long long) ((swp).val)) << 32) })
302
303 /*
304 * Conversion functions: convert a page and protection to a page entry,
305 * and a page entry and page directory to the page they refer to.
306 */
307
308 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
309
310 /*
311 * If we are doing an mprotect(), just accept the new vma->vm_page_prot
312 * value and combine it with the PFN from the old PTE to get a new PTE.
313 */
pte_modify(pte_t pte,pgprot_t newprot)314 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
315 {
316 return pfn_pte(hv_pte_get_pfn(pte), newprot);
317 }
318
319 /*
320 * The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
321 *
322 * This macro returns the index of the entry in the pgd page which would
323 * control the given virtual address.
324 */
325 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
326
327 /*
328 * pgd_offset() returns a (pgd_t *)
329 * pgd_index() is used get the offset into the pgd page's array of pgd_t's.
330 */
331 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
332
333 /*
334 * A shortcut which implies the use of the kernel's pgd, instead
335 * of a process's.
336 */
337 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
338
339 #if defined(CONFIG_HIGHPTE)
340 extern pte_t *pte_offset_map(pmd_t *, unsigned long address);
341 #define pte_unmap(pte) kunmap_atomic(pte)
342 #else
343 #define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
344 #define pte_unmap(pte) do { } while (0)
345 #endif
346
347 /* Clear a non-executable kernel PTE and flush it from the TLB. */
348 #define kpte_clear_flush(ptep, vaddr) \
349 do { \
350 pte_clear(&init_mm, (vaddr), (ptep)); \
351 local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \
352 } while (0)
353
354 /*
355 * The kernel page tables contain what we need, and we flush when we
356 * change specific page table entries.
357 */
358 #define update_mmu_cache(vma, address, pte) do { } while (0)
359
360 #ifdef CONFIG_FLATMEM
361 #define kern_addr_valid(addr) (1)
362 #endif /* CONFIG_FLATMEM */
363
364 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
365 remap_pfn_range(vma, vaddr, pfn, size, prot)
366
367 extern void vmalloc_sync_all(void);
368
369 #endif /* !__ASSEMBLY__ */
370
371 #ifdef __tilegx__
372 #include <asm/pgtable_64.h>
373 #else
374 #include <asm/pgtable_32.h>
375 #endif
376
377 #ifndef __ASSEMBLY__
378
pmd_none(pmd_t pmd)379 static inline int pmd_none(pmd_t pmd)
380 {
381 /*
382 * Only check low word on 32-bit platforms, since it might be
383 * out of sync with upper half.
384 */
385 return (unsigned long)pmd_val(pmd) == 0;
386 }
387
pmd_present(pmd_t pmd)388 static inline int pmd_present(pmd_t pmd)
389 {
390 return pmd_val(pmd) & _PAGE_PRESENT;
391 }
392
pmd_bad(pmd_t pmd)393 static inline int pmd_bad(pmd_t pmd)
394 {
395 return ((pmd_val(pmd) & _PAGE_ALL) != _PAGE_TABLE);
396 }
397
pages_to_mb(unsigned long npg)398 static inline unsigned long pages_to_mb(unsigned long npg)
399 {
400 return npg >> (20 - PAGE_SHIFT);
401 }
402
403 /*
404 * The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD]
405 *
406 * This function returns the index of the entry in the pmd which would
407 * control the given virtual address.
408 */
pmd_index(unsigned long address)409 static inline unsigned long pmd_index(unsigned long address)
410 {
411 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
412 }
413
414 /*
415 * A given kernel pmd_t maps to a specific virtual address (either a
416 * kernel huge page or a kernel pte_t table). Since kernel pte_t
417 * tables can be aligned at sub-page granularity, this function can
418 * return non-page-aligned pointers, despite its name.
419 */
pmd_page_vaddr(pmd_t pmd)420 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
421 {
422 phys_addr_t pa =
423 (phys_addr_t)pmd_ptfn(pmd) << HV_LOG2_PAGE_TABLE_ALIGN;
424 return (unsigned long)__va(pa);
425 }
426
427 /*
428 * A pmd_t points to the base of a huge page or to a pte_t array.
429 * If a pte_t array, since we can have multiple per page, we don't
430 * have a one-to-one mapping of pmd_t's to pages. However, this is
431 * OK for pte_lockptr(), since we just end up with potentially one
432 * lock being used for several pte_t arrays.
433 */
434 #define pmd_page(pmd) pfn_to_page(HV_PTFN_TO_PFN(pmd_ptfn(pmd)))
435
436 /*
437 * The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
438 *
439 * This macro returns the index of the entry in the pte page which would
440 * control the given virtual address.
441 */
pte_index(unsigned long address)442 static inline unsigned long pte_index(unsigned long address)
443 {
444 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
445 }
446
pte_offset_kernel(pmd_t * pmd,unsigned long address)447 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
448 {
449 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
450 }
451
pmd_huge_page(pmd_t pmd)452 static inline int pmd_huge_page(pmd_t pmd)
453 {
454 return pmd_val(pmd) & _PAGE_HUGE_PAGE;
455 }
456
457 #include <asm-generic/pgtable.h>
458
459 /* Support /proc/NN/pgtable API. */
460 struct seq_file;
461 int arch_proc_pgtable_show(struct seq_file *m, struct mm_struct *mm,
462 unsigned long vaddr, pte_t *ptep, void **datap);
463
464 #endif /* !__ASSEMBLY__ */
465
466 #endif /* _ASM_TILE_PGTABLE_H */
467