1 /* us2e_cpufreq.c: UltraSPARC-IIe cpu frequency support
2  *
3  * Copyright (C) 2003 David S. Miller (davem@redhat.com)
4  *
5  * Many thanks to Dominik Brodowski for fixing up the cpufreq
6  * infrastructure in order to make this driver easier to implement.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/sched.h>
12 #include <linux/smp.h>
13 #include <linux/cpufreq.h>
14 #include <linux/threads.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 
19 #include <asm/asi.h>
20 #include <asm/timer.h>
21 
22 static struct cpufreq_driver *cpufreq_us2e_driver;
23 
24 struct us2e_freq_percpu_info {
25 	struct cpufreq_frequency_table table[6];
26 };
27 
28 /* Indexed by cpu number. */
29 static struct us2e_freq_percpu_info *us2e_freq_table;
30 
31 #define HBIRD_MEM_CNTL0_ADDR	0x1fe0000f010UL
32 #define HBIRD_ESTAR_MODE_ADDR	0x1fe0000f080UL
33 
34 /* UltraSPARC-IIe has five dividers: 1, 2, 4, 6, and 8.  These are controlled
35  * in the ESTAR mode control register.
36  */
37 #define ESTAR_MODE_DIV_1	0x0000000000000000UL
38 #define ESTAR_MODE_DIV_2	0x0000000000000001UL
39 #define ESTAR_MODE_DIV_4	0x0000000000000003UL
40 #define ESTAR_MODE_DIV_6	0x0000000000000002UL
41 #define ESTAR_MODE_DIV_8	0x0000000000000004UL
42 #define ESTAR_MODE_DIV_MASK	0x0000000000000007UL
43 
44 #define MCTRL0_SREFRESH_ENAB	0x0000000000010000UL
45 #define MCTRL0_REFR_COUNT_MASK	0x0000000000007f00UL
46 #define MCTRL0_REFR_COUNT_SHIFT	8
47 #define MCTRL0_REFR_INTERVAL	7800
48 #define MCTRL0_REFR_CLKS_P_CNT	64
49 
read_hbreg(unsigned long addr)50 static unsigned long read_hbreg(unsigned long addr)
51 {
52 	unsigned long ret;
53 
54 	__asm__ __volatile__("ldxa	[%1] %2, %0"
55 			     : "=&r" (ret)
56 			     : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
57 	return ret;
58 }
59 
write_hbreg(unsigned long addr,unsigned long val)60 static void write_hbreg(unsigned long addr, unsigned long val)
61 {
62 	__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
63 			     "membar	#Sync"
64 			     : /* no outputs */
65 			     : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)
66 			     : "memory");
67 	if (addr == HBIRD_ESTAR_MODE_ADDR) {
68 		/* Need to wait 16 clock cycles for the PLL to lock.  */
69 		udelay(1);
70 	}
71 }
72 
self_refresh_ctl(int enable)73 static void self_refresh_ctl(int enable)
74 {
75 	unsigned long mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
76 
77 	if (enable)
78 		mctrl |= MCTRL0_SREFRESH_ENAB;
79 	else
80 		mctrl &= ~MCTRL0_SREFRESH_ENAB;
81 	write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl);
82 	(void) read_hbreg(HBIRD_MEM_CNTL0_ADDR);
83 }
84 
frob_mem_refresh(int cpu_slowing_down,unsigned long clock_tick,unsigned long old_divisor,unsigned long divisor)85 static void frob_mem_refresh(int cpu_slowing_down,
86 			     unsigned long clock_tick,
87 			     unsigned long old_divisor, unsigned long divisor)
88 {
89 	unsigned long old_refr_count, refr_count, mctrl;
90 
91 	refr_count  = (clock_tick * MCTRL0_REFR_INTERVAL);
92 	refr_count /= (MCTRL0_REFR_CLKS_P_CNT * divisor * 1000000000UL);
93 
94 	mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
95 	old_refr_count = (mctrl & MCTRL0_REFR_COUNT_MASK)
96 		>> MCTRL0_REFR_COUNT_SHIFT;
97 
98 	mctrl &= ~MCTRL0_REFR_COUNT_MASK;
99 	mctrl |= refr_count << MCTRL0_REFR_COUNT_SHIFT;
100 	write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl);
101 	mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
102 
103 	if (cpu_slowing_down && !(mctrl & MCTRL0_SREFRESH_ENAB)) {
104 		unsigned long usecs;
105 
106 		/* We have to wait for both refresh counts (old
107 		 * and new) to go to zero.
108 		 */
109 		usecs = (MCTRL0_REFR_CLKS_P_CNT *
110 			 (refr_count + old_refr_count) *
111 			 1000000UL *
112 			 old_divisor) / clock_tick;
113 		udelay(usecs + 1UL);
114 	}
115 }
116 
us2e_transition(unsigned long estar,unsigned long new_bits,unsigned long clock_tick,unsigned long old_divisor,unsigned long divisor)117 static void us2e_transition(unsigned long estar, unsigned long new_bits,
118 			    unsigned long clock_tick,
119 			    unsigned long old_divisor, unsigned long divisor)
120 {
121 	unsigned long flags;
122 
123 	local_irq_save(flags);
124 
125 	estar &= ~ESTAR_MODE_DIV_MASK;
126 
127 	/* This is based upon the state transition diagram in the IIe manual.  */
128 	if (old_divisor == 2 && divisor == 1) {
129 		self_refresh_ctl(0);
130 		write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
131 		frob_mem_refresh(0, clock_tick, old_divisor, divisor);
132 	} else if (old_divisor == 1 && divisor == 2) {
133 		frob_mem_refresh(1, clock_tick, old_divisor, divisor);
134 		write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
135 		self_refresh_ctl(1);
136 	} else if (old_divisor == 1 && divisor > 2) {
137 		us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick,
138 				1, 2);
139 		us2e_transition(estar, new_bits, clock_tick,
140 				2, divisor);
141 	} else if (old_divisor > 2 && divisor == 1) {
142 		us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick,
143 				old_divisor, 2);
144 		us2e_transition(estar, new_bits, clock_tick,
145 				2, divisor);
146 	} else if (old_divisor < divisor) {
147 		frob_mem_refresh(0, clock_tick, old_divisor, divisor);
148 		write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
149 	} else if (old_divisor > divisor) {
150 		write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
151 		frob_mem_refresh(1, clock_tick, old_divisor, divisor);
152 	} else {
153 		BUG();
154 	}
155 
156 	local_irq_restore(flags);
157 }
158 
index_to_estar_mode(unsigned int index)159 static unsigned long index_to_estar_mode(unsigned int index)
160 {
161 	switch (index) {
162 	case 0:
163 		return ESTAR_MODE_DIV_1;
164 
165 	case 1:
166 		return ESTAR_MODE_DIV_2;
167 
168 	case 2:
169 		return ESTAR_MODE_DIV_4;
170 
171 	case 3:
172 		return ESTAR_MODE_DIV_6;
173 
174 	case 4:
175 		return ESTAR_MODE_DIV_8;
176 
177 	default:
178 		BUG();
179 	}
180 }
181 
index_to_divisor(unsigned int index)182 static unsigned long index_to_divisor(unsigned int index)
183 {
184 	switch (index) {
185 	case 0:
186 		return 1;
187 
188 	case 1:
189 		return 2;
190 
191 	case 2:
192 		return 4;
193 
194 	case 3:
195 		return 6;
196 
197 	case 4:
198 		return 8;
199 
200 	default:
201 		BUG();
202 	}
203 }
204 
estar_to_divisor(unsigned long estar)205 static unsigned long estar_to_divisor(unsigned long estar)
206 {
207 	unsigned long ret;
208 
209 	switch (estar & ESTAR_MODE_DIV_MASK) {
210 	case ESTAR_MODE_DIV_1:
211 		ret = 1;
212 		break;
213 	case ESTAR_MODE_DIV_2:
214 		ret = 2;
215 		break;
216 	case ESTAR_MODE_DIV_4:
217 		ret = 4;
218 		break;
219 	case ESTAR_MODE_DIV_6:
220 		ret = 6;
221 		break;
222 	case ESTAR_MODE_DIV_8:
223 		ret = 8;
224 		break;
225 	default:
226 		BUG();
227 	}
228 
229 	return ret;
230 }
231 
us2e_freq_get(unsigned int cpu)232 static unsigned int us2e_freq_get(unsigned int cpu)
233 {
234 	cpumask_t cpus_allowed;
235 	unsigned long clock_tick, estar;
236 
237 	if (!cpu_online(cpu))
238 		return 0;
239 
240 	cpumask_copy(&cpus_allowed, tsk_cpus_allowed(current));
241 	set_cpus_allowed_ptr(current, cpumask_of(cpu));
242 
243 	clock_tick = sparc64_get_clock_tick(cpu) / 1000;
244 	estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
245 
246 	set_cpus_allowed_ptr(current, &cpus_allowed);
247 
248 	return clock_tick / estar_to_divisor(estar);
249 }
250 
us2e_set_cpu_divider_index(unsigned int cpu,unsigned int index)251 static void us2e_set_cpu_divider_index(unsigned int cpu, unsigned int index)
252 {
253 	unsigned long new_bits, new_freq;
254 	unsigned long clock_tick, divisor, old_divisor, estar;
255 	cpumask_t cpus_allowed;
256 	struct cpufreq_freqs freqs;
257 
258 	if (!cpu_online(cpu))
259 		return;
260 
261 	cpumask_copy(&cpus_allowed, tsk_cpus_allowed(current));
262 	set_cpus_allowed_ptr(current, cpumask_of(cpu));
263 
264 	new_freq = clock_tick = sparc64_get_clock_tick(cpu) / 1000;
265 	new_bits = index_to_estar_mode(index);
266 	divisor = index_to_divisor(index);
267 	new_freq /= divisor;
268 
269 	estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
270 
271 	old_divisor = estar_to_divisor(estar);
272 
273 	freqs.old = clock_tick / old_divisor;
274 	freqs.new = new_freq;
275 	freqs.cpu = cpu;
276 	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
277 
278 	if (old_divisor != divisor)
279 		us2e_transition(estar, new_bits, clock_tick * 1000,
280 				old_divisor, divisor);
281 
282 	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
283 
284 	set_cpus_allowed_ptr(current, &cpus_allowed);
285 }
286 
us2e_freq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)287 static int us2e_freq_target(struct cpufreq_policy *policy,
288 			  unsigned int target_freq,
289 			  unsigned int relation)
290 {
291 	unsigned int new_index = 0;
292 
293 	if (cpufreq_frequency_table_target(policy,
294 					   &us2e_freq_table[policy->cpu].table[0],
295 					   target_freq, relation, &new_index))
296 		return -EINVAL;
297 
298 	us2e_set_cpu_divider_index(policy->cpu, new_index);
299 
300 	return 0;
301 }
302 
us2e_freq_verify(struct cpufreq_policy * policy)303 static int us2e_freq_verify(struct cpufreq_policy *policy)
304 {
305 	return cpufreq_frequency_table_verify(policy,
306 					      &us2e_freq_table[policy->cpu].table[0]);
307 }
308 
us2e_freq_cpu_init(struct cpufreq_policy * policy)309 static int __init us2e_freq_cpu_init(struct cpufreq_policy *policy)
310 {
311 	unsigned int cpu = policy->cpu;
312 	unsigned long clock_tick = sparc64_get_clock_tick(cpu) / 1000;
313 	struct cpufreq_frequency_table *table =
314 		&us2e_freq_table[cpu].table[0];
315 
316 	table[0].index = 0;
317 	table[0].frequency = clock_tick / 1;
318 	table[1].index = 1;
319 	table[1].frequency = clock_tick / 2;
320 	table[2].index = 2;
321 	table[2].frequency = clock_tick / 4;
322 	table[2].index = 3;
323 	table[2].frequency = clock_tick / 6;
324 	table[2].index = 4;
325 	table[2].frequency = clock_tick / 8;
326 	table[2].index = 5;
327 	table[3].frequency = CPUFREQ_TABLE_END;
328 
329 	policy->cpuinfo.transition_latency = 0;
330 	policy->cur = clock_tick;
331 
332 	return cpufreq_frequency_table_cpuinfo(policy, table);
333 }
334 
us2e_freq_cpu_exit(struct cpufreq_policy * policy)335 static int us2e_freq_cpu_exit(struct cpufreq_policy *policy)
336 {
337 	if (cpufreq_us2e_driver)
338 		us2e_set_cpu_divider_index(policy->cpu, 0);
339 
340 	return 0;
341 }
342 
us2e_freq_init(void)343 static int __init us2e_freq_init(void)
344 {
345 	unsigned long manuf, impl, ver;
346 	int ret;
347 
348 	if (tlb_type != spitfire)
349 		return -ENODEV;
350 
351 	__asm__("rdpr %%ver, %0" : "=r" (ver));
352 	manuf = ((ver >> 48) & 0xffff);
353 	impl  = ((ver >> 32) & 0xffff);
354 
355 	if (manuf == 0x17 && impl == 0x13) {
356 		struct cpufreq_driver *driver;
357 
358 		ret = -ENOMEM;
359 		driver = kzalloc(sizeof(struct cpufreq_driver), GFP_KERNEL);
360 		if (!driver)
361 			goto err_out;
362 
363 		us2e_freq_table = kzalloc(
364 			(NR_CPUS * sizeof(struct us2e_freq_percpu_info)),
365 			GFP_KERNEL);
366 		if (!us2e_freq_table)
367 			goto err_out;
368 
369 		driver->init = us2e_freq_cpu_init;
370 		driver->verify = us2e_freq_verify;
371 		driver->target = us2e_freq_target;
372 		driver->get = us2e_freq_get;
373 		driver->exit = us2e_freq_cpu_exit;
374 		driver->owner = THIS_MODULE,
375 		strcpy(driver->name, "UltraSPARC-IIe");
376 
377 		cpufreq_us2e_driver = driver;
378 		ret = cpufreq_register_driver(driver);
379 		if (ret)
380 			goto err_out;
381 
382 		return 0;
383 
384 err_out:
385 		if (driver) {
386 			kfree(driver);
387 			cpufreq_us2e_driver = NULL;
388 		}
389 		kfree(us2e_freq_table);
390 		us2e_freq_table = NULL;
391 		return ret;
392 	}
393 
394 	return -ENODEV;
395 }
396 
us2e_freq_exit(void)397 static void __exit us2e_freq_exit(void)
398 {
399 	if (cpufreq_us2e_driver) {
400 		cpufreq_unregister_driver(cpufreq_us2e_driver);
401 		kfree(cpufreq_us2e_driver);
402 		cpufreq_us2e_driver = NULL;
403 		kfree(us2e_freq_table);
404 		us2e_freq_table = NULL;
405 	}
406 }
407 
408 MODULE_AUTHOR("David S. Miller <davem@redhat.com>");
409 MODULE_DESCRIPTION("cpufreq driver for UltraSPARC-IIe");
410 MODULE_LICENSE("GPL");
411 
412 module_init(us2e_freq_init);
413 module_exit(us2e_freq_exit);
414