1 /*
2 * arch/sh/kernel/process.c
3 *
4 * This file handles the architecture-dependent parts of process handling..
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 *
8 * SuperH version: Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
9 * Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
10 * Copyright (C) 2002 - 2008 Paul Mundt
11 *
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file "COPYING" in the main directory of this archive
14 * for more details.
15 */
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/elfcore.h>
20 #include <linux/kallsyms.h>
21 #include <linux/fs.h>
22 #include <linux/ftrace.h>
23 #include <linux/hw_breakpoint.h>
24 #include <linux/prefetch.h>
25 #include <asm/uaccess.h>
26 #include <asm/mmu_context.h>
27 #include <asm/system.h>
28 #include <asm/fpu.h>
29 #include <asm/syscalls.h>
30
show_regs(struct pt_regs * regs)31 void show_regs(struct pt_regs * regs)
32 {
33 printk("\n");
34 printk("Pid : %d, Comm: \t\t%s\n", task_pid_nr(current), current->comm);
35 printk("CPU : %d \t\t%s (%s %.*s)\n\n",
36 smp_processor_id(), print_tainted(), init_utsname()->release,
37 (int)strcspn(init_utsname()->version, " "),
38 init_utsname()->version);
39
40 print_symbol("PC is at %s\n", instruction_pointer(regs));
41 print_symbol("PR is at %s\n", regs->pr);
42
43 printk("PC : %08lx SP : %08lx SR : %08lx ",
44 regs->pc, regs->regs[15], regs->sr);
45 #ifdef CONFIG_MMU
46 printk("TEA : %08x\n", __raw_readl(MMU_TEA));
47 #else
48 printk("\n");
49 #endif
50
51 printk("R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
52 regs->regs[0],regs->regs[1],
53 regs->regs[2],regs->regs[3]);
54 printk("R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
55 regs->regs[4],regs->regs[5],
56 regs->regs[6],regs->regs[7]);
57 printk("R8 : %08lx R9 : %08lx R10 : %08lx R11 : %08lx\n",
58 regs->regs[8],regs->regs[9],
59 regs->regs[10],regs->regs[11]);
60 printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
61 regs->regs[12],regs->regs[13],
62 regs->regs[14]);
63 printk("MACH: %08lx MACL: %08lx GBR : %08lx PR : %08lx\n",
64 regs->mach, regs->macl, regs->gbr, regs->pr);
65
66 show_trace(NULL, (unsigned long *)regs->regs[15], regs);
67 show_code(regs);
68 }
69
70 /*
71 * Create a kernel thread
72 */
kernel_thread_helper(void * arg,int (* fn)(void *))73 __noreturn void kernel_thread_helper(void *arg, int (*fn)(void *))
74 {
75 do_exit(fn(arg));
76 }
77
78 /* Don't use this in BL=1(cli). Or else, CPU resets! */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)79 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
80 {
81 struct pt_regs regs;
82 int pid;
83
84 memset(®s, 0, sizeof(regs));
85 regs.regs[4] = (unsigned long)arg;
86 regs.regs[5] = (unsigned long)fn;
87
88 regs.pc = (unsigned long)kernel_thread_helper;
89 regs.sr = SR_MD;
90 #if defined(CONFIG_SH_FPU)
91 regs.sr |= SR_FD;
92 #endif
93
94 /* Ok, create the new process.. */
95 pid = do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
96 ®s, 0, NULL, NULL);
97
98 return pid;
99 }
100 EXPORT_SYMBOL(kernel_thread);
101
start_thread(struct pt_regs * regs,unsigned long new_pc,unsigned long new_sp)102 void start_thread(struct pt_regs *regs, unsigned long new_pc,
103 unsigned long new_sp)
104 {
105 regs->pr = 0;
106 regs->sr = SR_FD;
107 regs->pc = new_pc;
108 regs->regs[15] = new_sp;
109
110 free_thread_xstate(current);
111 }
112 EXPORT_SYMBOL(start_thread);
113
114 /*
115 * Free current thread data structures etc..
116 */
exit_thread(void)117 void exit_thread(void)
118 {
119 }
120
flush_thread(void)121 void flush_thread(void)
122 {
123 struct task_struct *tsk = current;
124
125 flush_ptrace_hw_breakpoint(tsk);
126
127 #if defined(CONFIG_SH_FPU)
128 /* Forget lazy FPU state */
129 clear_fpu(tsk, task_pt_regs(tsk));
130 clear_used_math();
131 #endif
132 }
133
release_thread(struct task_struct * dead_task)134 void release_thread(struct task_struct *dead_task)
135 {
136 /* do nothing */
137 }
138
139 /* Fill in the fpu structure for a core dump.. */
dump_fpu(struct pt_regs * regs,elf_fpregset_t * fpu)140 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
141 {
142 int fpvalid = 0;
143
144 #if defined(CONFIG_SH_FPU)
145 struct task_struct *tsk = current;
146
147 fpvalid = !!tsk_used_math(tsk);
148 if (fpvalid)
149 fpvalid = !fpregs_get(tsk, NULL, 0,
150 sizeof(struct user_fpu_struct),
151 fpu, NULL);
152 #endif
153
154 return fpvalid;
155 }
156 EXPORT_SYMBOL(dump_fpu);
157
158 /*
159 * This gets called before we allocate a new thread and copy
160 * the current task into it.
161 */
prepare_to_copy(struct task_struct * tsk)162 void prepare_to_copy(struct task_struct *tsk)
163 {
164 unlazy_fpu(tsk, task_pt_regs(tsk));
165 }
166
167 asmlinkage void ret_from_fork(void);
168
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long unused,struct task_struct * p,struct pt_regs * regs)169 int copy_thread(unsigned long clone_flags, unsigned long usp,
170 unsigned long unused,
171 struct task_struct *p, struct pt_regs *regs)
172 {
173 struct thread_info *ti = task_thread_info(p);
174 struct pt_regs *childregs;
175
176 #if defined(CONFIG_SH_DSP)
177 struct task_struct *tsk = current;
178
179 if (is_dsp_enabled(tsk)) {
180 /* We can use the __save_dsp or just copy the struct:
181 * __save_dsp(p);
182 * p->thread.dsp_status.status |= SR_DSP
183 */
184 p->thread.dsp_status = tsk->thread.dsp_status;
185 }
186 #endif
187
188 childregs = task_pt_regs(p);
189 *childregs = *regs;
190
191 if (user_mode(regs)) {
192 childregs->regs[15] = usp;
193 ti->addr_limit = USER_DS;
194 } else {
195 childregs->regs[15] = (unsigned long)childregs;
196 ti->addr_limit = KERNEL_DS;
197 ti->status &= ~TS_USEDFPU;
198 p->fpu_counter = 0;
199 }
200
201 if (clone_flags & CLONE_SETTLS)
202 childregs->gbr = childregs->regs[0];
203
204 childregs->regs[0] = 0; /* Set return value for child */
205
206 p->thread.sp = (unsigned long) childregs;
207 p->thread.pc = (unsigned long) ret_from_fork;
208
209 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
210
211 return 0;
212 }
213
214 /*
215 * switch_to(x,y) should switch tasks from x to y.
216 *
217 */
218 __notrace_funcgraph struct task_struct *
__switch_to(struct task_struct * prev,struct task_struct * next)219 __switch_to(struct task_struct *prev, struct task_struct *next)
220 {
221 struct thread_struct *next_t = &next->thread;
222
223 unlazy_fpu(prev, task_pt_regs(prev));
224
225 /* we're going to use this soon, after a few expensive things */
226 if (next->fpu_counter > 5)
227 prefetch(next_t->xstate);
228
229 #ifdef CONFIG_MMU
230 /*
231 * Restore the kernel mode register
232 * k7 (r7_bank1)
233 */
234 asm volatile("ldc %0, r7_bank"
235 : /* no output */
236 : "r" (task_thread_info(next)));
237 #endif
238
239 /*
240 * If the task has used fpu the last 5 timeslices, just do a full
241 * restore of the math state immediately to avoid the trap; the
242 * chances of needing FPU soon are obviously high now
243 */
244 if (next->fpu_counter > 5)
245 __fpu_state_restore();
246
247 return prev;
248 }
249
sys_fork(unsigned long r4,unsigned long r5,unsigned long r6,unsigned long r7,struct pt_regs __regs)250 asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
251 unsigned long r6, unsigned long r7,
252 struct pt_regs __regs)
253 {
254 #ifdef CONFIG_MMU
255 struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
256 return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL);
257 #else
258 /* fork almost works, enough to trick you into looking elsewhere :-( */
259 return -EINVAL;
260 #endif
261 }
262
sys_clone(unsigned long clone_flags,unsigned long newsp,unsigned long parent_tidptr,unsigned long child_tidptr,struct pt_regs __regs)263 asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
264 unsigned long parent_tidptr,
265 unsigned long child_tidptr,
266 struct pt_regs __regs)
267 {
268 struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
269 if (!newsp)
270 newsp = regs->regs[15];
271 return do_fork(clone_flags, newsp, regs, 0,
272 (int __user *)parent_tidptr,
273 (int __user *)child_tidptr);
274 }
275
276 /*
277 * This is trivial, and on the face of it looks like it
278 * could equally well be done in user mode.
279 *
280 * Not so, for quite unobvious reasons - register pressure.
281 * In user mode vfork() cannot have a stack frame, and if
282 * done by calling the "clone()" system call directly, you
283 * do not have enough call-clobbered registers to hold all
284 * the information you need.
285 */
sys_vfork(unsigned long r4,unsigned long r5,unsigned long r6,unsigned long r7,struct pt_regs __regs)286 asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
287 unsigned long r6, unsigned long r7,
288 struct pt_regs __regs)
289 {
290 struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
291 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs,
292 0, NULL, NULL);
293 }
294
295 /*
296 * sys_execve() executes a new program.
297 */
sys_execve(const char __user * ufilename,const char __user * const __user * uargv,const char __user * const __user * uenvp,unsigned long r7,struct pt_regs __regs)298 asmlinkage int sys_execve(const char __user *ufilename,
299 const char __user *const __user *uargv,
300 const char __user *const __user *uenvp,
301 unsigned long r7, struct pt_regs __regs)
302 {
303 struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
304 int error;
305 char *filename;
306
307 filename = getname(ufilename);
308 error = PTR_ERR(filename);
309 if (IS_ERR(filename))
310 goto out;
311
312 error = do_execve(filename, uargv, uenvp, regs);
313 putname(filename);
314 out:
315 return error;
316 }
317
get_wchan(struct task_struct * p)318 unsigned long get_wchan(struct task_struct *p)
319 {
320 unsigned long pc;
321
322 if (!p || p == current || p->state == TASK_RUNNING)
323 return 0;
324
325 /*
326 * The same comment as on the Alpha applies here, too ...
327 */
328 pc = thread_saved_pc(p);
329
330 #ifdef CONFIG_FRAME_POINTER
331 if (in_sched_functions(pc)) {
332 unsigned long schedule_frame = (unsigned long)p->thread.sp;
333 return ((unsigned long *)schedule_frame)[21];
334 }
335 #endif
336
337 return pc;
338 }
339