1 #ifndef __ASM_SH_UNALIGNED_SH4A_H
2 #define __ASM_SH_UNALIGNED_SH4A_H
3 
4 /*
5  * SH-4A has support for unaligned 32-bit loads, and 32-bit loads only.
6  * Support for 64-bit accesses are done through shifting and masking
7  * relative to the endianness. Unaligned stores are not supported by the
8  * instruction encoding, so these continue to use the packed
9  * struct.
10  *
11  * The same note as with the movli.l/movco.l pair applies here, as long
12  * as the load is guaranteed to be inlined, nothing else will hook in to
13  * r0 and we get the return value for free.
14  *
15  * NOTE: Due to the fact we require r0 encoding, care should be taken to
16  * avoid mixing these heavily with other r0 consumers, such as the atomic
17  * ops. Failure to adhere to this can result in the compiler running out
18  * of spill registers and blowing up when building at low optimization
19  * levels. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34777.
20  */
21 #include <linux/unaligned/packed_struct.h>
22 #include <linux/types.h>
23 #include <asm/byteorder.h>
24 
sh4a_get_unaligned_cpu16(const u8 * p)25 static inline u16 sh4a_get_unaligned_cpu16(const u8 *p)
26 {
27 #ifdef __LITTLE_ENDIAN
28 	return p[0] | p[1] << 8;
29 #else
30 	return p[0] << 8 | p[1];
31 #endif
32 }
33 
sh4a_get_unaligned_cpu32(const u8 * p)34 static __always_inline u32 sh4a_get_unaligned_cpu32(const u8 *p)
35 {
36 	unsigned long unaligned;
37 
38 	__asm__ __volatile__ (
39 		"movua.l	@%1, %0\n\t"
40 		 : "=z" (unaligned)
41 		 : "r" (p)
42 	);
43 
44 	return unaligned;
45 }
46 
47 /*
48  * Even though movua.l supports auto-increment on the read side, it can
49  * only store to r0 due to instruction encoding constraints, so just let
50  * the compiler sort it out on its own.
51  */
sh4a_get_unaligned_cpu64(const u8 * p)52 static inline u64 sh4a_get_unaligned_cpu64(const u8 *p)
53 {
54 #ifdef __LITTLE_ENDIAN
55 	return (u64)sh4a_get_unaligned_cpu32(p + 4) << 32 |
56 		    sh4a_get_unaligned_cpu32(p);
57 #else
58 	return (u64)sh4a_get_unaligned_cpu32(p) << 32 |
59 		    sh4a_get_unaligned_cpu32(p + 4);
60 #endif
61 }
62 
get_unaligned_le16(const void * p)63 static inline u16 get_unaligned_le16(const void *p)
64 {
65 	return le16_to_cpu(sh4a_get_unaligned_cpu16(p));
66 }
67 
get_unaligned_le32(const void * p)68 static inline u32 get_unaligned_le32(const void *p)
69 {
70 	return le32_to_cpu(sh4a_get_unaligned_cpu32(p));
71 }
72 
get_unaligned_le64(const void * p)73 static inline u64 get_unaligned_le64(const void *p)
74 {
75 	return le64_to_cpu(sh4a_get_unaligned_cpu64(p));
76 }
77 
get_unaligned_be16(const void * p)78 static inline u16 get_unaligned_be16(const void *p)
79 {
80 	return be16_to_cpu(sh4a_get_unaligned_cpu16(p));
81 }
82 
get_unaligned_be32(const void * p)83 static inline u32 get_unaligned_be32(const void *p)
84 {
85 	return be32_to_cpu(sh4a_get_unaligned_cpu32(p));
86 }
87 
get_unaligned_be64(const void * p)88 static inline u64 get_unaligned_be64(const void *p)
89 {
90 	return be64_to_cpu(sh4a_get_unaligned_cpu64(p));
91 }
92 
nonnative_put_le16(u16 val,u8 * p)93 static inline void nonnative_put_le16(u16 val, u8 *p)
94 {
95 	*p++ = val;
96 	*p++ = val >> 8;
97 }
98 
nonnative_put_le32(u32 val,u8 * p)99 static inline void nonnative_put_le32(u32 val, u8 *p)
100 {
101 	nonnative_put_le16(val, p);
102 	nonnative_put_le16(val >> 16, p + 2);
103 }
104 
nonnative_put_le64(u64 val,u8 * p)105 static inline void nonnative_put_le64(u64 val, u8 *p)
106 {
107 	nonnative_put_le32(val, p);
108 	nonnative_put_le32(val >> 32, p + 4);
109 }
110 
nonnative_put_be16(u16 val,u8 * p)111 static inline void nonnative_put_be16(u16 val, u8 *p)
112 {
113 	*p++ = val >> 8;
114 	*p++ = val;
115 }
116 
nonnative_put_be32(u32 val,u8 * p)117 static inline void nonnative_put_be32(u32 val, u8 *p)
118 {
119 	nonnative_put_be16(val >> 16, p);
120 	nonnative_put_be16(val, p + 2);
121 }
122 
nonnative_put_be64(u64 val,u8 * p)123 static inline void nonnative_put_be64(u64 val, u8 *p)
124 {
125 	nonnative_put_be32(val >> 32, p);
126 	nonnative_put_be32(val, p + 4);
127 }
128 
put_unaligned_le16(u16 val,void * p)129 static inline void put_unaligned_le16(u16 val, void *p)
130 {
131 #ifdef __LITTLE_ENDIAN
132 	__put_unaligned_cpu16(val, p);
133 #else
134 	nonnative_put_le16(val, p);
135 #endif
136 }
137 
put_unaligned_le32(u32 val,void * p)138 static inline void put_unaligned_le32(u32 val, void *p)
139 {
140 #ifdef __LITTLE_ENDIAN
141 	__put_unaligned_cpu32(val, p);
142 #else
143 	nonnative_put_le32(val, p);
144 #endif
145 }
146 
put_unaligned_le64(u64 val,void * p)147 static inline void put_unaligned_le64(u64 val, void *p)
148 {
149 #ifdef __LITTLE_ENDIAN
150 	__put_unaligned_cpu64(val, p);
151 #else
152 	nonnative_put_le64(val, p);
153 #endif
154 }
155 
put_unaligned_be16(u16 val,void * p)156 static inline void put_unaligned_be16(u16 val, void *p)
157 {
158 #ifdef __BIG_ENDIAN
159 	__put_unaligned_cpu16(val, p);
160 #else
161 	nonnative_put_be16(val, p);
162 #endif
163 }
164 
put_unaligned_be32(u32 val,void * p)165 static inline void put_unaligned_be32(u32 val, void *p)
166 {
167 #ifdef __BIG_ENDIAN
168 	__put_unaligned_cpu32(val, p);
169 #else
170 	nonnative_put_be32(val, p);
171 #endif
172 }
173 
put_unaligned_be64(u64 val,void * p)174 static inline void put_unaligned_be64(u64 val, void *p)
175 {
176 #ifdef __BIG_ENDIAN
177 	__put_unaligned_cpu64(val, p);
178 #else
179 	nonnative_put_be64(val, p);
180 #endif
181 }
182 
183 /*
184  * While it's a bit non-obvious, even though the generic le/be wrappers
185  * use the __get/put_xxx prefixing, they actually wrap in to the
186  * non-prefixed get/put_xxx variants as provided above.
187  */
188 #include <linux/unaligned/generic.h>
189 
190 #ifdef __LITTLE_ENDIAN
191 # define get_unaligned __get_unaligned_le
192 # define put_unaligned __put_unaligned_le
193 #else
194 # define get_unaligned __get_unaligned_be
195 # define put_unaligned __put_unaligned_be
196 #endif
197 
198 #endif /* __ASM_SH_UNALIGNED_SH4A_H */
199