1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16 
17 #undef DEBUG
18 
19 #include <linux/init.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/export.h>
25 #include <linux/seq_file.h>
26 #include <linux/kdev_t.h>
27 #include <linux/kexec.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
31 #include <linux/hrtimer.h>
32 #include <linux/tick.h>
33 
34 #include <asm/processor.h>
35 #include <asm/machdep.h>
36 #include <asm/page.h>
37 #include <asm/mmu.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu_context.h>
40 #include <asm/cputable.h>
41 #include <asm/sections.h>
42 #include <asm/iommu.h>
43 #include <asm/firmware.h>
44 #include <asm/system.h>
45 #include <asm/time.h>
46 #include <asm/paca.h>
47 #include <asm/cache.h>
48 #include <asm/abs_addr.h>
49 #include <asm/iseries/hv_lp_config.h>
50 #include <asm/iseries/hv_call_event.h>
51 #include <asm/iseries/hv_call_xm.h>
52 #include <asm/iseries/it_lp_queue.h>
53 #include <asm/iseries/mf.h>
54 #include <asm/iseries/hv_lp_event.h>
55 #include <asm/iseries/lpar_map.h>
56 #include <asm/udbg.h>
57 #include <asm/irq.h>
58 
59 #include "naca.h"
60 #include "setup.h"
61 #include "irq.h"
62 #include "vpd_areas.h"
63 #include "processor_vpd.h"
64 #include "it_lp_naca.h"
65 #include "main_store.h"
66 #include "call_sm.h"
67 #include "call_hpt.h"
68 #include "pci.h"
69 
70 #ifdef DEBUG
71 #define DBG(fmt...) udbg_printf(fmt)
72 #else
73 #define DBG(fmt...)
74 #endif
75 
76 /* Function Prototypes */
77 static unsigned long build_iSeries_Memory_Map(void);
78 static void iseries_shared_idle(void);
79 static void iseries_dedicated_idle(void);
80 
81 
82 struct MemoryBlock {
83 	unsigned long absStart;
84 	unsigned long absEnd;
85 	unsigned long logicalStart;
86 	unsigned long logicalEnd;
87 };
88 
89 /*
90  * Process the main store vpd to determine where the holes in memory are
91  * and return the number of physical blocks and fill in the array of
92  * block data.
93  */
iSeries_process_Condor_mainstore_vpd(struct MemoryBlock * mb_array,unsigned long max_entries)94 static unsigned long iSeries_process_Condor_mainstore_vpd(
95 		struct MemoryBlock *mb_array, unsigned long max_entries)
96 {
97 	unsigned long holeFirstChunk, holeSizeChunks;
98 	unsigned long numMemoryBlocks = 1;
99 	struct IoHriMainStoreSegment4 *msVpd =
100 		(struct IoHriMainStoreSegment4 *)xMsVpd;
101 	unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
102 	unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
103 	unsigned long holeSize = holeEnd - holeStart;
104 
105 	printk("Mainstore_VPD: Condor\n");
106 	/*
107 	 * Determine if absolute memory has any
108 	 * holes so that we can interpret the
109 	 * access map we get back from the hypervisor
110 	 * correctly.
111 	 */
112 	mb_array[0].logicalStart = 0;
113 	mb_array[0].logicalEnd = 0x100000000UL;
114 	mb_array[0].absStart = 0;
115 	mb_array[0].absEnd = 0x100000000UL;
116 
117 	if (holeSize) {
118 		numMemoryBlocks = 2;
119 		holeStart = holeStart & 0x000fffffffffffffUL;
120 		holeStart = addr_to_chunk(holeStart);
121 		holeFirstChunk = holeStart;
122 		holeSize = addr_to_chunk(holeSize);
123 		holeSizeChunks = holeSize;
124 		printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
125 				holeFirstChunk, holeSizeChunks );
126 		mb_array[0].logicalEnd = holeFirstChunk;
127 		mb_array[0].absEnd = holeFirstChunk;
128 		mb_array[1].logicalStart = holeFirstChunk;
129 		mb_array[1].logicalEnd = 0x100000000UL - holeSizeChunks;
130 		mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
131 		mb_array[1].absEnd = 0x100000000UL;
132 	}
133 	return numMemoryBlocks;
134 }
135 
136 #define MaxSegmentAreas			32
137 #define MaxSegmentAdrRangeBlocks	128
138 #define MaxAreaRangeBlocks		4
139 
iSeries_process_Regatta_mainstore_vpd(struct MemoryBlock * mb_array,unsigned long max_entries)140 static unsigned long iSeries_process_Regatta_mainstore_vpd(
141 		struct MemoryBlock *mb_array, unsigned long max_entries)
142 {
143 	struct IoHriMainStoreSegment5 *msVpdP =
144 		(struct IoHriMainStoreSegment5 *)xMsVpd;
145 	unsigned long numSegmentBlocks = 0;
146 	u32 existsBits = msVpdP->msAreaExists;
147 	unsigned long area_num;
148 
149 	printk("Mainstore_VPD: Regatta\n");
150 
151 	for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
152 		unsigned long numAreaBlocks;
153 		struct IoHriMainStoreArea4 *currentArea;
154 
155 		if (existsBits & 0x80000000) {
156 			unsigned long block_num;
157 
158 			currentArea = &msVpdP->msAreaArray[area_num];
159 			numAreaBlocks = currentArea->numAdrRangeBlocks;
160 			printk("ms_vpd: processing area %2ld  blocks=%ld",
161 					area_num, numAreaBlocks);
162 			for (block_num = 0; block_num < numAreaBlocks;
163 					++block_num ) {
164 				/* Process an address range block */
165 				struct MemoryBlock tempBlock;
166 				unsigned long i;
167 
168 				tempBlock.absStart =
169 					(unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
170 				tempBlock.absEnd =
171 					(unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
172 				tempBlock.logicalStart = 0;
173 				tempBlock.logicalEnd   = 0;
174 				printk("\n          block %ld absStart=%016lx absEnd=%016lx",
175 						block_num, tempBlock.absStart,
176 						tempBlock.absEnd);
177 
178 				for (i = 0; i < numSegmentBlocks; ++i) {
179 					if (mb_array[i].absStart ==
180 							tempBlock.absStart)
181 						break;
182 				}
183 				if (i == numSegmentBlocks) {
184 					if (numSegmentBlocks == max_entries)
185 						panic("iSeries_process_mainstore_vpd: too many memory blocks");
186 					mb_array[numSegmentBlocks] = tempBlock;
187 					++numSegmentBlocks;
188 				} else
189 					printk(" (duplicate)");
190 			}
191 			printk("\n");
192 		}
193 		existsBits <<= 1;
194 	}
195 	/* Now sort the blocks found into ascending sequence */
196 	if (numSegmentBlocks > 1) {
197 		unsigned long m, n;
198 
199 		for (m = 0; m < numSegmentBlocks - 1; ++m) {
200 			for (n = numSegmentBlocks - 1; m < n; --n) {
201 				if (mb_array[n].absStart <
202 						mb_array[n-1].absStart) {
203 					struct MemoryBlock tempBlock;
204 
205 					tempBlock = mb_array[n];
206 					mb_array[n] = mb_array[n-1];
207 					mb_array[n-1] = tempBlock;
208 				}
209 			}
210 		}
211 	}
212 	/*
213 	 * Assign "logical" addresses to each block.  These
214 	 * addresses correspond to the hypervisor "bitmap" space.
215 	 * Convert all addresses into units of 256K chunks.
216 	 */
217 	{
218 	unsigned long i, nextBitmapAddress;
219 
220 	printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
221 	nextBitmapAddress = 0;
222 	for (i = 0; i < numSegmentBlocks; ++i) {
223 		unsigned long length = mb_array[i].absEnd -
224 			mb_array[i].absStart;
225 
226 		mb_array[i].logicalStart = nextBitmapAddress;
227 		mb_array[i].logicalEnd = nextBitmapAddress + length;
228 		nextBitmapAddress += length;
229 		printk("          Bitmap range: %016lx - %016lx\n"
230 				"        Absolute range: %016lx - %016lx\n",
231 				mb_array[i].logicalStart,
232 				mb_array[i].logicalEnd,
233 				mb_array[i].absStart, mb_array[i].absEnd);
234 		mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
235 				0x000fffffffffffffUL);
236 		mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
237 				0x000fffffffffffffUL);
238 		mb_array[i].logicalStart =
239 			addr_to_chunk(mb_array[i].logicalStart);
240 		mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
241 	}
242 	}
243 
244 	return numSegmentBlocks;
245 }
246 
iSeries_process_mainstore_vpd(struct MemoryBlock * mb_array,unsigned long max_entries)247 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
248 		unsigned long max_entries)
249 {
250 	unsigned long i;
251 	unsigned long mem_blocks = 0;
252 
253 	if (mmu_has_feature(MMU_FTR_SLB))
254 		mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
255 				max_entries);
256 	else
257 		mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
258 				max_entries);
259 
260 	printk("Mainstore_VPD: numMemoryBlocks = %ld\n", mem_blocks);
261 	for (i = 0; i < mem_blocks; ++i) {
262 		printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
263 		       "                             abs chunks %016lx - %016lx\n",
264 			i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
265 			mb_array[i].absStart, mb_array[i].absEnd);
266 	}
267 	return mem_blocks;
268 }
269 
iSeries_get_cmdline(void)270 static void __init iSeries_get_cmdline(void)
271 {
272 	char *p, *q;
273 
274 	/* copy the command line parameter from the primary VSP  */
275 	HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
276 			HvLpDma_Direction_RemoteToLocal);
277 
278 	p = cmd_line;
279 	q = cmd_line + 255;
280 	while(p < q) {
281 		if (!*p || *p == '\n')
282 			break;
283 		++p;
284 	}
285 	*p = 0;
286 }
287 
iSeries_init_early(void)288 static void __init iSeries_init_early(void)
289 {
290 	DBG(" -> iSeries_init_early()\n");
291 
292 	/* Snapshot the timebase, for use in later recalibration */
293 	iSeries_time_init_early();
294 
295 	/*
296 	 * Initialize the DMA/TCE management
297 	 */
298 	iommu_init_early_iSeries();
299 
300 	/* Initialize machine-dependency vectors */
301 #ifdef CONFIG_SMP
302 	smp_init_iSeries();
303 #endif
304 
305 	/* Associate Lp Event Queue 0 with processor 0 */
306 	HvCallEvent_setLpEventQueueInterruptProc(0, 0);
307 
308 	mf_init();
309 
310 	DBG(" <- iSeries_init_early()\n");
311 }
312 
313 struct mschunks_map mschunks_map = {
314 	/* XXX We don't use these, but Piranha might need them. */
315 	.chunk_size  = MSCHUNKS_CHUNK_SIZE,
316 	.chunk_shift = MSCHUNKS_CHUNK_SHIFT,
317 	.chunk_mask  = MSCHUNKS_OFFSET_MASK,
318 };
319 EXPORT_SYMBOL(mschunks_map);
320 
mschunks_alloc(unsigned long num_chunks)321 static void mschunks_alloc(unsigned long num_chunks)
322 {
323 	klimit = _ALIGN(klimit, sizeof(u32));
324 	mschunks_map.mapping = (u32 *)klimit;
325 	klimit += num_chunks * sizeof(u32);
326 	mschunks_map.num_chunks = num_chunks;
327 }
328 
329 /*
330  * The iSeries may have very large memories ( > 128 GB ) and a partition
331  * may get memory in "chunks" that may be anywhere in the 2**52 real
332  * address space.  The chunks are 256K in size.  To map this to the
333  * memory model Linux expects, the AS/400 specific code builds a
334  * translation table to translate what Linux thinks are "physical"
335  * addresses to the actual real addresses.  This allows us to make
336  * it appear to Linux that we have contiguous memory starting at
337  * physical address zero while in fact this could be far from the truth.
338  * To avoid confusion, I'll let the words physical and/or real address
339  * apply to the Linux addresses while I'll use "absolute address" to
340  * refer to the actual hardware real address.
341  *
342  * build_iSeries_Memory_Map gets information from the Hypervisor and
343  * looks at the Main Store VPD to determine the absolute addresses
344  * of the memory that has been assigned to our partition and builds
345  * a table used to translate Linux's physical addresses to these
346  * absolute addresses.  Absolute addresses are needed when
347  * communicating with the hypervisor (e.g. to build HPT entries)
348  *
349  * Returns the physical memory size
350  */
351 
build_iSeries_Memory_Map(void)352 static unsigned long __init build_iSeries_Memory_Map(void)
353 {
354 	u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
355 	u32 nextPhysChunk;
356 	u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
357 	u32 totalChunks,moreChunks;
358 	u32 currChunk, thisChunk, absChunk;
359 	u32 currDword;
360 	u32 chunkBit;
361 	u64 map;
362 	struct MemoryBlock mb[32];
363 	unsigned long numMemoryBlocks, curBlock;
364 
365 	/* Chunk size on iSeries is 256K bytes */
366 	totalChunks = (u32)HvLpConfig_getMsChunks();
367 	mschunks_alloc(totalChunks);
368 
369 	/*
370 	 * Get absolute address of our load area
371 	 * and map it to physical address 0
372 	 * This guarantees that the loadarea ends up at physical 0
373 	 * otherwise, it might not be returned by PLIC as the first
374 	 * chunks
375 	 */
376 
377 	loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
378 	loadAreaSize =  itLpNaca.xLoadAreaChunks;
379 
380 	/*
381 	 * Only add the pages already mapped here.
382 	 * Otherwise we might add the hpt pages
383 	 * The rest of the pages of the load area
384 	 * aren't in the HPT yet and can still
385 	 * be assigned an arbitrary physical address
386 	 */
387 	if ((loadAreaSize * 64) > HvPagesToMap)
388 		loadAreaSize = HvPagesToMap / 64;
389 
390 	loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
391 
392 	/*
393 	 * TODO Do we need to do something if the HPT is in the 64MB load area?
394 	 * This would be required if the itLpNaca.xLoadAreaChunks includes
395 	 * the HPT size
396 	 */
397 
398 	printk("Mapping load area - physical addr = 0000000000000000\n"
399 		"                    absolute addr = %016lx\n",
400 		chunk_to_addr(loadAreaFirstChunk));
401 	printk("Load area size %dK\n", loadAreaSize * 256);
402 
403 	for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
404 		mschunks_map.mapping[nextPhysChunk] =
405 			loadAreaFirstChunk + nextPhysChunk;
406 
407 	/*
408 	 * Get absolute address of our HPT and remember it so
409 	 * we won't map it to any physical address
410 	 */
411 	hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
412 	hptSizePages = (u32)HvCallHpt_getHptPages();
413 	hptSizeChunks = hptSizePages >>
414 		(MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
415 	hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
416 
417 	printk("HPT absolute addr = %016lx, size = %dK\n",
418 			chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
419 
420 	/*
421 	 * Determine if absolute memory has any
422 	 * holes so that we can interpret the
423 	 * access map we get back from the hypervisor
424 	 * correctly.
425 	 */
426 	numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
427 
428 	/*
429 	 * Process the main store access map from the hypervisor
430 	 * to build up our physical -> absolute translation table
431 	 */
432 	curBlock = 0;
433 	currChunk = 0;
434 	currDword = 0;
435 	moreChunks = totalChunks;
436 
437 	while (moreChunks) {
438 		map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
439 				currDword);
440 		thisChunk = currChunk;
441 		while (map) {
442 			chunkBit = map >> 63;
443 			map <<= 1;
444 			if (chunkBit) {
445 				--moreChunks;
446 				while (thisChunk >= mb[curBlock].logicalEnd) {
447 					++curBlock;
448 					if (curBlock >= numMemoryBlocks)
449 						panic("out of memory blocks");
450 				}
451 				if (thisChunk < mb[curBlock].logicalStart)
452 					panic("memory block error");
453 
454 				absChunk = mb[curBlock].absStart +
455 					(thisChunk - mb[curBlock].logicalStart);
456 				if (((absChunk < hptFirstChunk) ||
457 				     (absChunk > hptLastChunk)) &&
458 				    ((absChunk < loadAreaFirstChunk) ||
459 				     (absChunk > loadAreaLastChunk))) {
460 					mschunks_map.mapping[nextPhysChunk] =
461 						absChunk;
462 					++nextPhysChunk;
463 				}
464 			}
465 			++thisChunk;
466 		}
467 		++currDword;
468 		currChunk += 64;
469 	}
470 
471 	/*
472 	 * main store size (in chunks) is
473 	 *   totalChunks - hptSizeChunks
474 	 * which should be equal to
475 	 *   nextPhysChunk
476 	 */
477 	return chunk_to_addr(nextPhysChunk);
478 }
479 
480 /*
481  * Document me.
482  */
iSeries_setup_arch(void)483 static void __init iSeries_setup_arch(void)
484 {
485 	if (get_lppaca()->shared_proc) {
486 		ppc_md.idle_loop = iseries_shared_idle;
487 		printk(KERN_DEBUG "Using shared processor idle loop\n");
488 	} else {
489 		ppc_md.idle_loop = iseries_dedicated_idle;
490 		printk(KERN_DEBUG "Using dedicated idle loop\n");
491 	}
492 
493 	/* Setup the Lp Event Queue */
494 	setup_hvlpevent_queue();
495 
496 	printk("Max  logical processors = %d\n",
497 			itVpdAreas.xSlicMaxLogicalProcs);
498 	printk("Max physical processors = %d\n",
499 			itVpdAreas.xSlicMaxPhysicalProcs);
500 
501 	iSeries_pcibios_init();
502 }
503 
iSeries_show_cpuinfo(struct seq_file * m)504 static void iSeries_show_cpuinfo(struct seq_file *m)
505 {
506 	seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
507 }
508 
iSeries_progress(char * st,unsigned short code)509 static void __init iSeries_progress(char * st, unsigned short code)
510 {
511 	printk("Progress: [%04x] - %s\n", (unsigned)code, st);
512 	mf_display_progress(code);
513 }
514 
iSeries_fixup_klimit(void)515 static void __init iSeries_fixup_klimit(void)
516 {
517 	/*
518 	 * Change klimit to take into account any ram disk
519 	 * that may be included
520 	 */
521 	if (naca.xRamDisk)
522 		klimit = KERNELBASE + (u64)naca.xRamDisk +
523 			(naca.xRamDiskSize * HW_PAGE_SIZE);
524 }
525 
iSeries_src_init(void)526 static int __init iSeries_src_init(void)
527 {
528         /* clear the progress line */
529 	if (firmware_has_feature(FW_FEATURE_ISERIES))
530 		ppc_md.progress(" ", 0xffff);
531         return 0;
532 }
533 
534 late_initcall(iSeries_src_init);
535 
process_iSeries_events(void)536 static inline void process_iSeries_events(void)
537 {
538 	asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
539 }
540 
yield_shared_processor(void)541 static void yield_shared_processor(void)
542 {
543 	unsigned long tb;
544 
545 	HvCall_setEnabledInterrupts(HvCall_MaskIPI |
546 				    HvCall_MaskLpEvent |
547 				    HvCall_MaskLpProd |
548 				    HvCall_MaskTimeout);
549 
550 	tb = get_tb();
551 	/* Compute future tb value when yield should expire */
552 	HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
553 
554 	/*
555 	 * The decrementer stops during the yield.  Force a fake decrementer
556 	 * here and let the timer_interrupt code sort out the actual time.
557 	 */
558 	get_lppaca()->int_dword.fields.decr_int = 1;
559 	ppc64_runlatch_on();
560 	process_iSeries_events();
561 }
562 
iseries_shared_idle(void)563 static void iseries_shared_idle(void)
564 {
565 	while (1) {
566 		tick_nohz_idle_enter();
567 		rcu_idle_enter();
568 		while (!need_resched() && !hvlpevent_is_pending()) {
569 			local_irq_disable();
570 			ppc64_runlatch_off();
571 
572 			/* Recheck with irqs off */
573 			if (!need_resched() && !hvlpevent_is_pending())
574 				yield_shared_processor();
575 
576 			HMT_medium();
577 			local_irq_enable();
578 		}
579 
580 		ppc64_runlatch_on();
581 		rcu_idle_exit();
582 		tick_nohz_idle_exit();
583 
584 		if (hvlpevent_is_pending())
585 			process_iSeries_events();
586 
587 		preempt_enable_no_resched();
588 		schedule();
589 		preempt_disable();
590 	}
591 }
592 
iseries_dedicated_idle(void)593 static void iseries_dedicated_idle(void)
594 {
595 	set_thread_flag(TIF_POLLING_NRFLAG);
596 
597 	while (1) {
598 		tick_nohz_idle_enter();
599 		rcu_idle_enter();
600 		if (!need_resched()) {
601 			while (!need_resched()) {
602 				ppc64_runlatch_off();
603 				HMT_low();
604 
605 				if (hvlpevent_is_pending()) {
606 					HMT_medium();
607 					ppc64_runlatch_on();
608 					process_iSeries_events();
609 				}
610 			}
611 
612 			HMT_medium();
613 		}
614 
615 		ppc64_runlatch_on();
616 		rcu_idle_exit();
617 		tick_nohz_idle_exit();
618 		preempt_enable_no_resched();
619 		schedule();
620 		preempt_disable();
621 	}
622 }
623 
iseries_ioremap(phys_addr_t address,unsigned long size,unsigned long flags,void * caller)624 static void __iomem *iseries_ioremap(phys_addr_t address, unsigned long size,
625 				     unsigned long flags, void *caller)
626 {
627 	return (void __iomem *)address;
628 }
629 
iseries_iounmap(volatile void __iomem * token)630 static void iseries_iounmap(volatile void __iomem *token)
631 {
632 }
633 
iseries_probe(void)634 static int __init iseries_probe(void)
635 {
636 	unsigned long root = of_get_flat_dt_root();
637 	if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
638 		return 0;
639 
640 	hpte_init_iSeries();
641 	/* iSeries does not support 16M pages */
642 	cur_cpu_spec->mmu_features &= ~MMU_FTR_16M_PAGE;
643 
644 	return 1;
645 }
646 
647 #ifdef CONFIG_KEXEC
iseries_kexec_prepare(struct kimage * image)648 static int iseries_kexec_prepare(struct kimage *image)
649 {
650 	return -ENOSYS;
651 }
652 #endif
653 
define_machine(iseries)654 define_machine(iseries) {
655 	.name			= "iSeries",
656 	.setup_arch		= iSeries_setup_arch,
657 	.show_cpuinfo		= iSeries_show_cpuinfo,
658 	.init_IRQ		= iSeries_init_IRQ,
659 	.get_irq		= iSeries_get_irq,
660 	.init_early		= iSeries_init_early,
661 	.pcibios_fixup		= iSeries_pci_final_fixup,
662 	.pcibios_fixup_resources= iSeries_pcibios_fixup_resources,
663 	.restart		= mf_reboot,
664 	.power_off		= mf_power_off,
665 	.halt			= mf_power_off,
666 	.get_boot_time		= iSeries_get_boot_time,
667 	.set_rtc_time		= iSeries_set_rtc_time,
668 	.get_rtc_time		= iSeries_get_rtc_time,
669 	.calibrate_decr		= generic_calibrate_decr,
670 	.progress		= iSeries_progress,
671 	.probe			= iseries_probe,
672 	.ioremap		= iseries_ioremap,
673 	.iounmap		= iseries_iounmap,
674 #ifdef CONFIG_KEXEC
675 	.machine_kexec_prepare	= iseries_kexec_prepare,
676 #endif
677 	/* XXX Implement enable_pmcs for iSeries */
678 };
679 
iSeries_early_setup(void)680 void * __init iSeries_early_setup(void)
681 {
682 	unsigned long phys_mem_size;
683 
684 	/* Identify CPU type. This is done again by the common code later
685 	 * on but calling this function multiple times is fine.
686 	 */
687 	identify_cpu(0, mfspr(SPRN_PVR));
688 	initialise_paca(&boot_paca, 0);
689 
690 	powerpc_firmware_features |= FW_FEATURE_ISERIES;
691 	powerpc_firmware_features |= FW_FEATURE_LPAR;
692 
693 #ifdef CONFIG_SMP
694 	/* On iSeries we know we can never have more than 64 cpus */
695 	nr_cpu_ids = max(nr_cpu_ids, 64);
696 #endif
697 
698 	iSeries_fixup_klimit();
699 
700 	/*
701 	 * Initialize the table which translate Linux physical addresses to
702 	 * AS/400 absolute addresses
703 	 */
704 	phys_mem_size = build_iSeries_Memory_Map();
705 
706 	iSeries_get_cmdline();
707 
708 	return (void *) __pa(build_flat_dt(phys_mem_size));
709 }
710 
hvputc(char c)711 static void hvputc(char c)
712 {
713 	if (c == '\n')
714 		hvputc('\r');
715 
716 	HvCall_writeLogBuffer(&c, 1);
717 }
718 
udbg_init_iseries(void)719 void __init udbg_init_iseries(void)
720 {
721 	udbg_putc = hvputc;
722 }
723