1 /*
2  * This file contains the routines for TLB flushing.
3  * On machines where the MMU does not use a hash table to store virtual to
4  * physical translations (ie, SW loaded TLBs or Book3E compilant processors,
5  * this does -not- include 603 however which shares the implementation with
6  * hash based processors)
7  *
8  *  -- BenH
9  *
10  * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
11  *                     IBM Corp.
12  *
13  *  Derived from arch/ppc/mm/init.c:
14  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
15  *
16  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
17  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
18  *    Copyright (C) 1996 Paul Mackerras
19  *
20  *  Derived from "arch/i386/mm/init.c"
21  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
22  *
23  *  This program is free software; you can redistribute it and/or
24  *  modify it under the terms of the GNU General Public License
25  *  as published by the Free Software Foundation; either version
26  *  2 of the License, or (at your option) any later version.
27  *
28  */
29 
30 #include <linux/kernel.h>
31 #include <linux/export.h>
32 #include <linux/mm.h>
33 #include <linux/init.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/preempt.h>
37 #include <linux/spinlock.h>
38 #include <linux/memblock.h>
39 #include <linux/of_fdt.h>
40 #include <linux/hugetlb.h>
41 
42 #include <asm/tlbflush.h>
43 #include <asm/tlb.h>
44 #include <asm/code-patching.h>
45 #include <asm/hugetlb.h>
46 
47 #include "mmu_decl.h"
48 
49 /*
50  * This struct lists the sw-supported page sizes.  The hardawre MMU may support
51  * other sizes not listed here.   The .ind field is only used on MMUs that have
52  * indirect page table entries.
53  */
54 #ifdef CONFIG_PPC_BOOK3E_MMU
55 #ifdef CONFIG_PPC_FSL_BOOK3E
56 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
57 	[MMU_PAGE_4K] = {
58 		.shift	= 12,
59 		.enc	= BOOK3E_PAGESZ_4K,
60 	},
61 	[MMU_PAGE_4M] = {
62 		.shift	= 22,
63 		.enc	= BOOK3E_PAGESZ_4M,
64 	},
65 	[MMU_PAGE_16M] = {
66 		.shift	= 24,
67 		.enc	= BOOK3E_PAGESZ_16M,
68 	},
69 	[MMU_PAGE_64M] = {
70 		.shift	= 26,
71 		.enc	= BOOK3E_PAGESZ_64M,
72 	},
73 	[MMU_PAGE_256M] = {
74 		.shift	= 28,
75 		.enc	= BOOK3E_PAGESZ_256M,
76 	},
77 	[MMU_PAGE_1G] = {
78 		.shift	= 30,
79 		.enc	= BOOK3E_PAGESZ_1GB,
80 	},
81 };
82 #else
83 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
84 	[MMU_PAGE_4K] = {
85 		.shift	= 12,
86 		.ind	= 20,
87 		.enc	= BOOK3E_PAGESZ_4K,
88 	},
89 	[MMU_PAGE_16K] = {
90 		.shift	= 14,
91 		.enc	= BOOK3E_PAGESZ_16K,
92 	},
93 	[MMU_PAGE_64K] = {
94 		.shift	= 16,
95 		.ind	= 28,
96 		.enc	= BOOK3E_PAGESZ_64K,
97 	},
98 	[MMU_PAGE_1M] = {
99 		.shift	= 20,
100 		.enc	= BOOK3E_PAGESZ_1M,
101 	},
102 	[MMU_PAGE_16M] = {
103 		.shift	= 24,
104 		.ind	= 36,
105 		.enc	= BOOK3E_PAGESZ_16M,
106 	},
107 	[MMU_PAGE_256M] = {
108 		.shift	= 28,
109 		.enc	= BOOK3E_PAGESZ_256M,
110 	},
111 	[MMU_PAGE_1G] = {
112 		.shift	= 30,
113 		.enc	= BOOK3E_PAGESZ_1GB,
114 	},
115 };
116 #endif /* CONFIG_FSL_BOOKE */
117 
mmu_get_tsize(int psize)118 static inline int mmu_get_tsize(int psize)
119 {
120 	return mmu_psize_defs[psize].enc;
121 }
122 #else
mmu_get_tsize(int psize)123 static inline int mmu_get_tsize(int psize)
124 {
125 	/* This isn't used on !Book3E for now */
126 	return 0;
127 }
128 #endif /* CONFIG_PPC_BOOK3E_MMU */
129 
130 /* The variables below are currently only used on 64-bit Book3E
131  * though this will probably be made common with other nohash
132  * implementations at some point
133  */
134 #ifdef CONFIG_PPC64
135 
136 int mmu_linear_psize;		/* Page size used for the linear mapping */
137 int mmu_pte_psize;		/* Page size used for PTE pages */
138 int mmu_vmemmap_psize;		/* Page size used for the virtual mem map */
139 int book3e_htw_enabled;		/* Is HW tablewalk enabled ? */
140 unsigned long linear_map_top;	/* Top of linear mapping */
141 
142 #endif /* CONFIG_PPC64 */
143 
144 #ifdef CONFIG_PPC_FSL_BOOK3E
145 /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */
146 DEFINE_PER_CPU(int, next_tlbcam_idx);
147 EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx);
148 #endif
149 
150 /*
151  * Base TLB flushing operations:
152  *
153  *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
154  *  - flush_tlb_page(vma, vmaddr) flushes one page
155  *  - flush_tlb_range(vma, start, end) flushes a range of pages
156  *  - flush_tlb_kernel_range(start, end) flushes kernel pages
157  *
158  *  - local_* variants of page and mm only apply to the current
159  *    processor
160  */
161 
162 /*
163  * These are the base non-SMP variants of page and mm flushing
164  */
local_flush_tlb_mm(struct mm_struct * mm)165 void local_flush_tlb_mm(struct mm_struct *mm)
166 {
167 	unsigned int pid;
168 
169 	preempt_disable();
170 	pid = mm->context.id;
171 	if (pid != MMU_NO_CONTEXT)
172 		_tlbil_pid(pid);
173 	preempt_enable();
174 }
175 EXPORT_SYMBOL(local_flush_tlb_mm);
176 
__local_flush_tlb_page(struct mm_struct * mm,unsigned long vmaddr,int tsize,int ind)177 void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
178 			    int tsize, int ind)
179 {
180 	unsigned int pid;
181 
182 	preempt_disable();
183 	pid = mm ? mm->context.id : 0;
184 	if (pid != MMU_NO_CONTEXT)
185 		_tlbil_va(vmaddr, pid, tsize, ind);
186 	preempt_enable();
187 }
188 
local_flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)189 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
190 {
191 	__local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
192 			       mmu_get_tsize(mmu_virtual_psize), 0);
193 }
194 EXPORT_SYMBOL(local_flush_tlb_page);
195 
196 /*
197  * And here are the SMP non-local implementations
198  */
199 #ifdef CONFIG_SMP
200 
201 static DEFINE_RAW_SPINLOCK(tlbivax_lock);
202 
mm_is_core_local(struct mm_struct * mm)203 static int mm_is_core_local(struct mm_struct *mm)
204 {
205 	return cpumask_subset(mm_cpumask(mm),
206 			      topology_thread_cpumask(smp_processor_id()));
207 }
208 
209 struct tlb_flush_param {
210 	unsigned long addr;
211 	unsigned int pid;
212 	unsigned int tsize;
213 	unsigned int ind;
214 };
215 
do_flush_tlb_mm_ipi(void * param)216 static void do_flush_tlb_mm_ipi(void *param)
217 {
218 	struct tlb_flush_param *p = param;
219 
220 	_tlbil_pid(p ? p->pid : 0);
221 }
222 
do_flush_tlb_page_ipi(void * param)223 static void do_flush_tlb_page_ipi(void *param)
224 {
225 	struct tlb_flush_param *p = param;
226 
227 	_tlbil_va(p->addr, p->pid, p->tsize, p->ind);
228 }
229 
230 
231 /* Note on invalidations and PID:
232  *
233  * We snapshot the PID with preempt disabled. At this point, it can still
234  * change either because:
235  * - our context is being stolen (PID -> NO_CONTEXT) on another CPU
236  * - we are invaliating some target that isn't currently running here
237  *   and is concurrently acquiring a new PID on another CPU
238  * - some other CPU is re-acquiring a lost PID for this mm
239  * etc...
240  *
241  * However, this shouldn't be a problem as we only guarantee
242  * invalidation of TLB entries present prior to this call, so we
243  * don't care about the PID changing, and invalidating a stale PID
244  * is generally harmless.
245  */
246 
flush_tlb_mm(struct mm_struct * mm)247 void flush_tlb_mm(struct mm_struct *mm)
248 {
249 	unsigned int pid;
250 
251 	preempt_disable();
252 	pid = mm->context.id;
253 	if (unlikely(pid == MMU_NO_CONTEXT))
254 		goto no_context;
255 	if (!mm_is_core_local(mm)) {
256 		struct tlb_flush_param p = { .pid = pid };
257 		/* Ignores smp_processor_id() even if set. */
258 		smp_call_function_many(mm_cpumask(mm),
259 				       do_flush_tlb_mm_ipi, &p, 1);
260 	}
261 	_tlbil_pid(pid);
262  no_context:
263 	preempt_enable();
264 }
265 EXPORT_SYMBOL(flush_tlb_mm);
266 
__flush_tlb_page(struct mm_struct * mm,unsigned long vmaddr,int tsize,int ind)267 void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
268 		      int tsize, int ind)
269 {
270 	struct cpumask *cpu_mask;
271 	unsigned int pid;
272 
273 	preempt_disable();
274 	pid = mm ? mm->context.id : 0;
275 	if (unlikely(pid == MMU_NO_CONTEXT))
276 		goto bail;
277 	cpu_mask = mm_cpumask(mm);
278 	if (!mm_is_core_local(mm)) {
279 		/* If broadcast tlbivax is supported, use it */
280 		if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
281 			int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
282 			if (lock)
283 				raw_spin_lock(&tlbivax_lock);
284 			_tlbivax_bcast(vmaddr, pid, tsize, ind);
285 			if (lock)
286 				raw_spin_unlock(&tlbivax_lock);
287 			goto bail;
288 		} else {
289 			struct tlb_flush_param p = {
290 				.pid = pid,
291 				.addr = vmaddr,
292 				.tsize = tsize,
293 				.ind = ind,
294 			};
295 			/* Ignores smp_processor_id() even if set in cpu_mask */
296 			smp_call_function_many(cpu_mask,
297 					       do_flush_tlb_page_ipi, &p, 1);
298 		}
299 	}
300 	_tlbil_va(vmaddr, pid, tsize, ind);
301  bail:
302 	preempt_enable();
303 }
304 
flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)305 void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
306 {
307 #ifdef CONFIG_HUGETLB_PAGE
308 	if (is_vm_hugetlb_page(vma))
309 		flush_hugetlb_page(vma, vmaddr);
310 #endif
311 
312 	__flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
313 			 mmu_get_tsize(mmu_virtual_psize), 0);
314 }
315 EXPORT_SYMBOL(flush_tlb_page);
316 
317 #endif /* CONFIG_SMP */
318 
319 #ifdef CONFIG_PPC_47x
early_init_mmu_47x(void)320 void __init early_init_mmu_47x(void)
321 {
322 #ifdef CONFIG_SMP
323 	unsigned long root = of_get_flat_dt_root();
324 	if (of_get_flat_dt_prop(root, "cooperative-partition", NULL))
325 		mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST);
326 #endif /* CONFIG_SMP */
327 }
328 #endif /* CONFIG_PPC_47x */
329 
330 /*
331  * Flush kernel TLB entries in the given range
332  */
flush_tlb_kernel_range(unsigned long start,unsigned long end)333 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
334 {
335 #ifdef CONFIG_SMP
336 	preempt_disable();
337 	smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
338 	_tlbil_pid(0);
339 	preempt_enable();
340 #else
341 	_tlbil_pid(0);
342 #endif
343 }
344 EXPORT_SYMBOL(flush_tlb_kernel_range);
345 
346 /*
347  * Currently, for range flushing, we just do a full mm flush. This should
348  * be optimized based on a threshold on the size of the range, since
349  * some implementation can stack multiple tlbivax before a tlbsync but
350  * for now, we keep it that way
351  */
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)352 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
353 		     unsigned long end)
354 
355 {
356 	flush_tlb_mm(vma->vm_mm);
357 }
358 EXPORT_SYMBOL(flush_tlb_range);
359 
tlb_flush(struct mmu_gather * tlb)360 void tlb_flush(struct mmu_gather *tlb)
361 {
362 	flush_tlb_mm(tlb->mm);
363 }
364 
365 /*
366  * Below are functions specific to the 64-bit variant of Book3E though that
367  * may change in the future
368  */
369 
370 #ifdef CONFIG_PPC64
371 
372 /*
373  * Handling of virtual linear page tables or indirect TLB entries
374  * flushing when PTE pages are freed
375  */
tlb_flush_pgtable(struct mmu_gather * tlb,unsigned long address)376 void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
377 {
378 	int tsize = mmu_psize_defs[mmu_pte_psize].enc;
379 
380 	if (book3e_htw_enabled) {
381 		unsigned long start = address & PMD_MASK;
382 		unsigned long end = address + PMD_SIZE;
383 		unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
384 
385 		/* This isn't the most optimal, ideally we would factor out the
386 		 * while preempt & CPU mask mucking around, or even the IPI but
387 		 * it will do for now
388 		 */
389 		while (start < end) {
390 			__flush_tlb_page(tlb->mm, start, tsize, 1);
391 			start += size;
392 		}
393 	} else {
394 		unsigned long rmask = 0xf000000000000000ul;
395 		unsigned long rid = (address & rmask) | 0x1000000000000000ul;
396 		unsigned long vpte = address & ~rmask;
397 
398 #ifdef CONFIG_PPC_64K_PAGES
399 		vpte = (vpte >> (PAGE_SHIFT - 4)) & ~0xfffful;
400 #else
401 		vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
402 #endif
403 		vpte |= rid;
404 		__flush_tlb_page(tlb->mm, vpte, tsize, 0);
405 	}
406 }
407 
setup_page_sizes(void)408 static void setup_page_sizes(void)
409 {
410 	unsigned int tlb0cfg;
411 	unsigned int tlb0ps;
412 	unsigned int eptcfg;
413 	int i, psize;
414 
415 #ifdef CONFIG_PPC_FSL_BOOK3E
416 	unsigned int mmucfg = mfspr(SPRN_MMUCFG);
417 
418 	if (((mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) &&
419 		(mmu_has_feature(MMU_FTR_TYPE_FSL_E))) {
420 		unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
421 		unsigned int min_pg, max_pg;
422 
423 		min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
424 		max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
425 
426 		for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
427 			struct mmu_psize_def *def;
428 			unsigned int shift;
429 
430 			def = &mmu_psize_defs[psize];
431 			shift = def->shift;
432 
433 			if (shift == 0)
434 				continue;
435 
436 			/* adjust to be in terms of 4^shift Kb */
437 			shift = (shift - 10) >> 1;
438 
439 			if ((shift >= min_pg) && (shift <= max_pg))
440 				def->flags |= MMU_PAGE_SIZE_DIRECT;
441 		}
442 
443 		goto no_indirect;
444 	}
445 #endif
446 
447 	tlb0cfg = mfspr(SPRN_TLB0CFG);
448 	tlb0ps = mfspr(SPRN_TLB0PS);
449 	eptcfg = mfspr(SPRN_EPTCFG);
450 
451 	/* Look for supported direct sizes */
452 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
453 		struct mmu_psize_def *def = &mmu_psize_defs[psize];
454 
455 		if (tlb0ps & (1U << (def->shift - 10)))
456 			def->flags |= MMU_PAGE_SIZE_DIRECT;
457 	}
458 
459 	/* Indirect page sizes supported ? */
460 	if ((tlb0cfg & TLBnCFG_IND) == 0)
461 		goto no_indirect;
462 
463 	/* Now, we only deal with one IND page size for each
464 	 * direct size. Hopefully all implementations today are
465 	 * unambiguous, but we might want to be careful in the
466 	 * future.
467 	 */
468 	for (i = 0; i < 3; i++) {
469 		unsigned int ps, sps;
470 
471 		sps = eptcfg & 0x1f;
472 		eptcfg >>= 5;
473 		ps = eptcfg & 0x1f;
474 		eptcfg >>= 5;
475 		if (!ps || !sps)
476 			continue;
477 		for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
478 			struct mmu_psize_def *def = &mmu_psize_defs[psize];
479 
480 			if (ps == (def->shift - 10))
481 				def->flags |= MMU_PAGE_SIZE_INDIRECT;
482 			if (sps == (def->shift - 10))
483 				def->ind = ps + 10;
484 		}
485 	}
486  no_indirect:
487 
488 	/* Cleanup array and print summary */
489 	pr_info("MMU: Supported page sizes\n");
490 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
491 		struct mmu_psize_def *def = &mmu_psize_defs[psize];
492 		const char *__page_type_names[] = {
493 			"unsupported",
494 			"direct",
495 			"indirect",
496 			"direct & indirect"
497 		};
498 		if (def->flags == 0) {
499 			def->shift = 0;
500 			continue;
501 		}
502 		pr_info("  %8ld KB as %s\n", 1ul << (def->shift - 10),
503 			__page_type_names[def->flags & 0x3]);
504 	}
505 }
506 
__patch_exception(int exc,unsigned long addr)507 static void __patch_exception(int exc, unsigned long addr)
508 {
509 	extern unsigned int interrupt_base_book3e;
510  	unsigned int *ibase = &interrupt_base_book3e;
511 
512 	/* Our exceptions vectors start with a NOP and -then- a branch
513 	 * to deal with single stepping from userspace which stops on
514 	 * the second instruction. Thus we need to patch the second
515 	 * instruction of the exception, not the first one
516 	 */
517 
518 	patch_branch(ibase + (exc / 4) + 1, addr, 0);
519 }
520 
521 #define patch_exception(exc, name) do { \
522 	extern unsigned int name; \
523 	__patch_exception((exc), (unsigned long)&name); \
524 } while (0)
525 
setup_mmu_htw(void)526 static void setup_mmu_htw(void)
527 {
528 	/* Check if HW tablewalk is present, and if yes, enable it by:
529 	 *
530 	 * - patching the TLB miss handlers to branch to the
531 	 *   one dedicates to it
532 	 *
533 	 * - setting the global book3e_htw_enabled
534        	 */
535 	unsigned int tlb0cfg = mfspr(SPRN_TLB0CFG);
536 
537 	if ((tlb0cfg & TLBnCFG_IND) &&
538 	    (tlb0cfg & TLBnCFG_PT)) {
539 		patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e);
540 		patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e);
541 		book3e_htw_enabled = 1;
542 	}
543 	pr_info("MMU: Book3E HW tablewalk %s\n",
544 		book3e_htw_enabled ? "enabled" : "not supported");
545 }
546 
547 /*
548  * Early initialization of the MMU TLB code
549  */
__early_init_mmu(int boot_cpu)550 static void __early_init_mmu(int boot_cpu)
551 {
552 	unsigned int mas4;
553 
554 	/* XXX This will have to be decided at runtime, but right
555 	 * now our boot and TLB miss code hard wires it. Ideally
556 	 * we should find out a suitable page size and patch the
557 	 * TLB miss code (either that or use the PACA to store
558 	 * the value we want)
559 	 */
560 	mmu_linear_psize = MMU_PAGE_1G;
561 
562 	/* XXX This should be decided at runtime based on supported
563 	 * page sizes in the TLB, but for now let's assume 16M is
564 	 * always there and a good fit (which it probably is)
565 	 */
566 	mmu_vmemmap_psize = MMU_PAGE_16M;
567 
568 	/* XXX This code only checks for TLB 0 capabilities and doesn't
569 	 *     check what page size combos are supported by the HW. It
570 	 *     also doesn't handle the case where a separate array holds
571 	 *     the IND entries from the array loaded by the PT.
572 	 */
573 	if (boot_cpu) {
574 		/* Look for supported page sizes */
575 		setup_page_sizes();
576 
577 		/* Look for HW tablewalk support */
578 		setup_mmu_htw();
579 	}
580 
581 	/* Set MAS4 based on page table setting */
582 
583 	mas4 = 0x4 << MAS4_WIMGED_SHIFT;
584 	if (book3e_htw_enabled) {
585 		mas4 |= mas4 | MAS4_INDD;
586 #ifdef CONFIG_PPC_64K_PAGES
587 		mas4 |=	BOOK3E_PAGESZ_256M << MAS4_TSIZED_SHIFT;
588 		mmu_pte_psize = MMU_PAGE_256M;
589 #else
590 		mas4 |=	BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
591 		mmu_pte_psize = MMU_PAGE_1M;
592 #endif
593 	} else {
594 #ifdef CONFIG_PPC_64K_PAGES
595 		mas4 |=	BOOK3E_PAGESZ_64K << MAS4_TSIZED_SHIFT;
596 #else
597 		mas4 |=	BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
598 #endif
599 		mmu_pte_psize = mmu_virtual_psize;
600 	}
601 	mtspr(SPRN_MAS4, mas4);
602 
603 	/* Set the global containing the top of the linear mapping
604 	 * for use by the TLB miss code
605 	 */
606 	linear_map_top = memblock_end_of_DRAM();
607 
608 #ifdef CONFIG_PPC_FSL_BOOK3E
609 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
610 		unsigned int num_cams;
611 
612 		/* use a quarter of the TLBCAM for bolted linear map */
613 		num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
614 		linear_map_top = map_mem_in_cams(linear_map_top, num_cams);
615 
616 		/* limit memory so we dont have linear faults */
617 		memblock_enforce_memory_limit(linear_map_top);
618 
619 		patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e);
620 		patch_exception(0x1e0, exc_instruction_tlb_miss_bolted_book3e);
621 	}
622 #endif
623 
624 	/* A sync won't hurt us after mucking around with
625 	 * the MMU configuration
626 	 */
627 	mb();
628 
629 	memblock_set_current_limit(linear_map_top);
630 }
631 
early_init_mmu(void)632 void __init early_init_mmu(void)
633 {
634 	__early_init_mmu(1);
635 }
636 
early_init_mmu_secondary(void)637 void __cpuinit early_init_mmu_secondary(void)
638 {
639 	__early_init_mmu(0);
640 }
641 
setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)642 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
643 				phys_addr_t first_memblock_size)
644 {
645 	/* On non-FSL Embedded 64-bit, we adjust the RMA size to match
646 	 * the bolted TLB entry. We know for now that only 1G
647 	 * entries are supported though that may eventually
648 	 * change.
649 	 *
650 	 * on FSL Embedded 64-bit, we adjust the RMA size to match the
651 	 * first bolted TLB entry size.  We still limit max to 1G even if
652 	 * the TLB could cover more.  This is due to what the early init
653 	 * code is setup to do.
654 	 *
655 	 * We crop it to the size of the first MEMBLOCK to
656 	 * avoid going over total available memory just in case...
657 	 */
658 #ifdef CONFIG_PPC_FSL_BOOK3E
659 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
660 		unsigned long linear_sz;
661 		linear_sz = calc_cam_sz(first_memblock_size, PAGE_OFFSET,
662 					first_memblock_base);
663 		ppc64_rma_size = min_t(u64, linear_sz, 0x40000000);
664 	} else
665 #endif
666 		ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
667 
668 	/* Finally limit subsequent allocations */
669 	memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
670 }
671 #else /* ! CONFIG_PPC64 */
early_init_mmu(void)672 void __init early_init_mmu(void)
673 {
674 #ifdef CONFIG_PPC_47x
675 	early_init_mmu_47x();
676 #endif
677 }
678 #endif /* CONFIG_PPC64 */
679