1 /*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/of_fdt.h>
16 #include <linux/memblock.h>
17 #include <linux/bootmem.h>
18 #include <linux/moduleparam.h>
19 #include <asm/pgtable.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlb.h>
22 #include <asm/setup.h>
23
24 #define PAGE_SHIFT_64K 16
25 #define PAGE_SHIFT_16M 24
26 #define PAGE_SHIFT_16G 34
27
28 unsigned int HPAGE_SHIFT;
29
30 /*
31 * Tracks gpages after the device tree is scanned and before the
32 * huge_boot_pages list is ready. On non-Freescale implementations, this is
33 * just used to track 16G pages and so is a single array. FSL-based
34 * implementations may have more than one gpage size, so we need multiple
35 * arrays
36 */
37 #ifdef CONFIG_PPC_FSL_BOOK3E
38 #define MAX_NUMBER_GPAGES 128
39 struct psize_gpages {
40 u64 gpage_list[MAX_NUMBER_GPAGES];
41 unsigned int nr_gpages;
42 };
43 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
44 #else
45 #define MAX_NUMBER_GPAGES 1024
46 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
47 static unsigned nr_gpages;
48 #endif
49
shift_to_mmu_psize(unsigned int shift)50 static inline int shift_to_mmu_psize(unsigned int shift)
51 {
52 int psize;
53
54 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
55 if (mmu_psize_defs[psize].shift == shift)
56 return psize;
57 return -1;
58 }
59
mmu_psize_to_shift(unsigned int mmu_psize)60 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
61 {
62 if (mmu_psize_defs[mmu_psize].shift)
63 return mmu_psize_defs[mmu_psize].shift;
64 BUG();
65 }
66
67 #define hugepd_none(hpd) ((hpd).pd == 0)
68
find_linux_pte_or_hugepte(pgd_t * pgdir,unsigned long ea,unsigned * shift)69 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
70 {
71 pgd_t *pg;
72 pud_t *pu;
73 pmd_t *pm;
74 hugepd_t *hpdp = NULL;
75 unsigned pdshift = PGDIR_SHIFT;
76
77 if (shift)
78 *shift = 0;
79
80 pg = pgdir + pgd_index(ea);
81 if (is_hugepd(pg)) {
82 hpdp = (hugepd_t *)pg;
83 } else if (!pgd_none(*pg)) {
84 pdshift = PUD_SHIFT;
85 pu = pud_offset(pg, ea);
86 if (is_hugepd(pu))
87 hpdp = (hugepd_t *)pu;
88 else if (!pud_none(*pu)) {
89 pdshift = PMD_SHIFT;
90 pm = pmd_offset(pu, ea);
91 if (is_hugepd(pm))
92 hpdp = (hugepd_t *)pm;
93 else if (!pmd_none(*pm)) {
94 return pte_offset_kernel(pm, ea);
95 }
96 }
97 }
98
99 if (!hpdp)
100 return NULL;
101
102 if (shift)
103 *shift = hugepd_shift(*hpdp);
104 return hugepte_offset(hpdp, ea, pdshift);
105 }
106
huge_pte_offset(struct mm_struct * mm,unsigned long addr)107 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
108 {
109 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
110 }
111
__hugepte_alloc(struct mm_struct * mm,hugepd_t * hpdp,unsigned long address,unsigned pdshift,unsigned pshift)112 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
113 unsigned long address, unsigned pdshift, unsigned pshift)
114 {
115 struct kmem_cache *cachep;
116 pte_t *new;
117
118 #ifdef CONFIG_PPC_FSL_BOOK3E
119 int i;
120 int num_hugepd = 1 << (pshift - pdshift);
121 cachep = hugepte_cache;
122 #else
123 cachep = PGT_CACHE(pdshift - pshift);
124 #endif
125
126 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
127
128 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
129 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
130
131 if (! new)
132 return -ENOMEM;
133
134 spin_lock(&mm->page_table_lock);
135 #ifdef CONFIG_PPC_FSL_BOOK3E
136 /*
137 * We have multiple higher-level entries that point to the same
138 * actual pte location. Fill in each as we go and backtrack on error.
139 * We need all of these so the DTLB pgtable walk code can find the
140 * right higher-level entry without knowing if it's a hugepage or not.
141 */
142 for (i = 0; i < num_hugepd; i++, hpdp++) {
143 if (unlikely(!hugepd_none(*hpdp)))
144 break;
145 else
146 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
147 }
148 /* If we bailed from the for loop early, an error occurred, clean up */
149 if (i < num_hugepd) {
150 for (i = i - 1 ; i >= 0; i--, hpdp--)
151 hpdp->pd = 0;
152 kmem_cache_free(cachep, new);
153 }
154 #else
155 if (!hugepd_none(*hpdp))
156 kmem_cache_free(cachep, new);
157 else
158 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
159 #endif
160 spin_unlock(&mm->page_table_lock);
161 return 0;
162 }
163
164 /*
165 * These macros define how to determine which level of the page table holds
166 * the hpdp.
167 */
168 #ifdef CONFIG_PPC_FSL_BOOK3E
169 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
170 #define HUGEPD_PUD_SHIFT PUD_SHIFT
171 #else
172 #define HUGEPD_PGD_SHIFT PUD_SHIFT
173 #define HUGEPD_PUD_SHIFT PMD_SHIFT
174 #endif
175
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)176 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
177 {
178 pgd_t *pg;
179 pud_t *pu;
180 pmd_t *pm;
181 hugepd_t *hpdp = NULL;
182 unsigned pshift = __ffs(sz);
183 unsigned pdshift = PGDIR_SHIFT;
184
185 addr &= ~(sz-1);
186
187 pg = pgd_offset(mm, addr);
188
189 if (pshift >= HUGEPD_PGD_SHIFT) {
190 hpdp = (hugepd_t *)pg;
191 } else {
192 pdshift = PUD_SHIFT;
193 pu = pud_alloc(mm, pg, addr);
194 if (pshift >= HUGEPD_PUD_SHIFT) {
195 hpdp = (hugepd_t *)pu;
196 } else {
197 pdshift = PMD_SHIFT;
198 pm = pmd_alloc(mm, pu, addr);
199 hpdp = (hugepd_t *)pm;
200 }
201 }
202
203 if (!hpdp)
204 return NULL;
205
206 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
207
208 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
209 return NULL;
210
211 return hugepte_offset(hpdp, addr, pdshift);
212 }
213
214 #ifdef CONFIG_PPC_FSL_BOOK3E
215 /* Build list of addresses of gigantic pages. This function is used in early
216 * boot before the buddy or bootmem allocator is setup.
217 */
add_gpage(u64 addr,u64 page_size,unsigned long number_of_pages)218 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
219 {
220 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
221 int i;
222
223 if (addr == 0)
224 return;
225
226 gpage_freearray[idx].nr_gpages = number_of_pages;
227
228 for (i = 0; i < number_of_pages; i++) {
229 gpage_freearray[idx].gpage_list[i] = addr;
230 addr += page_size;
231 }
232 }
233
234 /*
235 * Moves the gigantic page addresses from the temporary list to the
236 * huge_boot_pages list.
237 */
alloc_bootmem_huge_page(struct hstate * hstate)238 int alloc_bootmem_huge_page(struct hstate *hstate)
239 {
240 struct huge_bootmem_page *m;
241 int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
242 int nr_gpages = gpage_freearray[idx].nr_gpages;
243
244 if (nr_gpages == 0)
245 return 0;
246
247 #ifdef CONFIG_HIGHMEM
248 /*
249 * If gpages can be in highmem we can't use the trick of storing the
250 * data structure in the page; allocate space for this
251 */
252 m = alloc_bootmem(sizeof(struct huge_bootmem_page));
253 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
254 #else
255 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
256 #endif
257
258 list_add(&m->list, &huge_boot_pages);
259 gpage_freearray[idx].nr_gpages = nr_gpages;
260 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
261 m->hstate = hstate;
262
263 return 1;
264 }
265 /*
266 * Scan the command line hugepagesz= options for gigantic pages; store those in
267 * a list that we use to allocate the memory once all options are parsed.
268 */
269
270 unsigned long gpage_npages[MMU_PAGE_COUNT];
271
do_gpage_early_setup(char * param,char * val)272 static int __init do_gpage_early_setup(char *param, char *val)
273 {
274 static phys_addr_t size;
275 unsigned long npages;
276
277 /*
278 * The hugepagesz and hugepages cmdline options are interleaved. We
279 * use the size variable to keep track of whether or not this was done
280 * properly and skip over instances where it is incorrect. Other
281 * command-line parsing code will issue warnings, so we don't need to.
282 *
283 */
284 if ((strcmp(param, "default_hugepagesz") == 0) ||
285 (strcmp(param, "hugepagesz") == 0)) {
286 size = memparse(val, NULL);
287 } else if (strcmp(param, "hugepages") == 0) {
288 if (size != 0) {
289 if (sscanf(val, "%lu", &npages) <= 0)
290 npages = 0;
291 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
292 size = 0;
293 }
294 }
295 return 0;
296 }
297
298
299 /*
300 * This function allocates physical space for pages that are larger than the
301 * buddy allocator can handle. We want to allocate these in highmem because
302 * the amount of lowmem is limited. This means that this function MUST be
303 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
304 * allocate to grab highmem.
305 */
reserve_hugetlb_gpages(void)306 void __init reserve_hugetlb_gpages(void)
307 {
308 static __initdata char cmdline[COMMAND_LINE_SIZE];
309 phys_addr_t size, base;
310 int i;
311
312 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
313 parse_args("hugetlb gpages", cmdline, NULL, 0, &do_gpage_early_setup);
314
315 /*
316 * Walk gpage list in reverse, allocating larger page sizes first.
317 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
318 * When we reach the point in the list where pages are no longer
319 * considered gpages, we're done.
320 */
321 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
322 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
323 continue;
324 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
325 break;
326
327 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
328 base = memblock_alloc_base(size * gpage_npages[i], size,
329 MEMBLOCK_ALLOC_ANYWHERE);
330 add_gpage(base, size, gpage_npages[i]);
331 }
332 }
333
334 #else /* !PPC_FSL_BOOK3E */
335
336 /* Build list of addresses of gigantic pages. This function is used in early
337 * boot before the buddy or bootmem allocator is setup.
338 */
add_gpage(u64 addr,u64 page_size,unsigned long number_of_pages)339 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
340 {
341 if (!addr)
342 return;
343 while (number_of_pages > 0) {
344 gpage_freearray[nr_gpages] = addr;
345 nr_gpages++;
346 number_of_pages--;
347 addr += page_size;
348 }
349 }
350
351 /* Moves the gigantic page addresses from the temporary list to the
352 * huge_boot_pages list.
353 */
alloc_bootmem_huge_page(struct hstate * hstate)354 int alloc_bootmem_huge_page(struct hstate *hstate)
355 {
356 struct huge_bootmem_page *m;
357 if (nr_gpages == 0)
358 return 0;
359 m = phys_to_virt(gpage_freearray[--nr_gpages]);
360 gpage_freearray[nr_gpages] = 0;
361 list_add(&m->list, &huge_boot_pages);
362 m->hstate = hstate;
363 return 1;
364 }
365 #endif
366
huge_pmd_unshare(struct mm_struct * mm,unsigned long * addr,pte_t * ptep)367 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
368 {
369 return 0;
370 }
371
372 #ifdef CONFIG_PPC_FSL_BOOK3E
373 #define HUGEPD_FREELIST_SIZE \
374 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
375
376 struct hugepd_freelist {
377 struct rcu_head rcu;
378 unsigned int index;
379 void *ptes[0];
380 };
381
382 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
383
hugepd_free_rcu_callback(struct rcu_head * head)384 static void hugepd_free_rcu_callback(struct rcu_head *head)
385 {
386 struct hugepd_freelist *batch =
387 container_of(head, struct hugepd_freelist, rcu);
388 unsigned int i;
389
390 for (i = 0; i < batch->index; i++)
391 kmem_cache_free(hugepte_cache, batch->ptes[i]);
392
393 free_page((unsigned long)batch);
394 }
395
hugepd_free(struct mmu_gather * tlb,void * hugepte)396 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
397 {
398 struct hugepd_freelist **batchp;
399
400 batchp = &__get_cpu_var(hugepd_freelist_cur);
401
402 if (atomic_read(&tlb->mm->mm_users) < 2 ||
403 cpumask_equal(mm_cpumask(tlb->mm),
404 cpumask_of(smp_processor_id()))) {
405 kmem_cache_free(hugepte_cache, hugepte);
406 return;
407 }
408
409 if (*batchp == NULL) {
410 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
411 (*batchp)->index = 0;
412 }
413
414 (*batchp)->ptes[(*batchp)->index++] = hugepte;
415 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
416 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
417 *batchp = NULL;
418 }
419 }
420 #endif
421
free_hugepd_range(struct mmu_gather * tlb,hugepd_t * hpdp,int pdshift,unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling)422 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
423 unsigned long start, unsigned long end,
424 unsigned long floor, unsigned long ceiling)
425 {
426 pte_t *hugepte = hugepd_page(*hpdp);
427 int i;
428
429 unsigned long pdmask = ~((1UL << pdshift) - 1);
430 unsigned int num_hugepd = 1;
431
432 #ifdef CONFIG_PPC_FSL_BOOK3E
433 /* Note: On fsl the hpdp may be the first of several */
434 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
435 #else
436 unsigned int shift = hugepd_shift(*hpdp);
437 #endif
438
439 start &= pdmask;
440 if (start < floor)
441 return;
442 if (ceiling) {
443 ceiling &= pdmask;
444 if (! ceiling)
445 return;
446 }
447 if (end - 1 > ceiling - 1)
448 return;
449
450 for (i = 0; i < num_hugepd; i++, hpdp++)
451 hpdp->pd = 0;
452
453 tlb->need_flush = 1;
454
455 #ifdef CONFIG_PPC_FSL_BOOK3E
456 hugepd_free(tlb, hugepte);
457 #else
458 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
459 #endif
460 }
461
hugetlb_free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)462 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
463 unsigned long addr, unsigned long end,
464 unsigned long floor, unsigned long ceiling)
465 {
466 pmd_t *pmd;
467 unsigned long next;
468 unsigned long start;
469
470 start = addr;
471 do {
472 pmd = pmd_offset(pud, addr);
473 next = pmd_addr_end(addr, end);
474 if (pmd_none(*pmd))
475 continue;
476 #ifdef CONFIG_PPC_FSL_BOOK3E
477 /*
478 * Increment next by the size of the huge mapping since
479 * there may be more than one entry at this level for a
480 * single hugepage, but all of them point to
481 * the same kmem cache that holds the hugepte.
482 */
483 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
484 #endif
485 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
486 addr, next, floor, ceiling);
487 } while (addr = next, addr != end);
488
489 start &= PUD_MASK;
490 if (start < floor)
491 return;
492 if (ceiling) {
493 ceiling &= PUD_MASK;
494 if (!ceiling)
495 return;
496 }
497 if (end - 1 > ceiling - 1)
498 return;
499
500 pmd = pmd_offset(pud, start);
501 pud_clear(pud);
502 pmd_free_tlb(tlb, pmd, start);
503 }
504
hugetlb_free_pud_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)505 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
506 unsigned long addr, unsigned long end,
507 unsigned long floor, unsigned long ceiling)
508 {
509 pud_t *pud;
510 unsigned long next;
511 unsigned long start;
512
513 start = addr;
514 do {
515 pud = pud_offset(pgd, addr);
516 next = pud_addr_end(addr, end);
517 if (!is_hugepd(pud)) {
518 if (pud_none_or_clear_bad(pud))
519 continue;
520 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
521 ceiling);
522 } else {
523 #ifdef CONFIG_PPC_FSL_BOOK3E
524 /*
525 * Increment next by the size of the huge mapping since
526 * there may be more than one entry at this level for a
527 * single hugepage, but all of them point to
528 * the same kmem cache that holds the hugepte.
529 */
530 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
531 #endif
532 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
533 addr, next, floor, ceiling);
534 }
535 } while (addr = next, addr != end);
536
537 start &= PGDIR_MASK;
538 if (start < floor)
539 return;
540 if (ceiling) {
541 ceiling &= PGDIR_MASK;
542 if (!ceiling)
543 return;
544 }
545 if (end - 1 > ceiling - 1)
546 return;
547
548 pud = pud_offset(pgd, start);
549 pgd_clear(pgd);
550 pud_free_tlb(tlb, pud, start);
551 }
552
553 /*
554 * This function frees user-level page tables of a process.
555 *
556 * Must be called with pagetable lock held.
557 */
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)558 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
559 unsigned long addr, unsigned long end,
560 unsigned long floor, unsigned long ceiling)
561 {
562 pgd_t *pgd;
563 unsigned long next;
564
565 /*
566 * Because there are a number of different possible pagetable
567 * layouts for hugepage ranges, we limit knowledge of how
568 * things should be laid out to the allocation path
569 * (huge_pte_alloc(), above). Everything else works out the
570 * structure as it goes from information in the hugepd
571 * pointers. That means that we can't here use the
572 * optimization used in the normal page free_pgd_range(), of
573 * checking whether we're actually covering a large enough
574 * range to have to do anything at the top level of the walk
575 * instead of at the bottom.
576 *
577 * To make sense of this, you should probably go read the big
578 * block comment at the top of the normal free_pgd_range(),
579 * too.
580 */
581
582 do {
583 next = pgd_addr_end(addr, end);
584 pgd = pgd_offset(tlb->mm, addr);
585 if (!is_hugepd(pgd)) {
586 if (pgd_none_or_clear_bad(pgd))
587 continue;
588 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
589 } else {
590 #ifdef CONFIG_PPC_FSL_BOOK3E
591 /*
592 * Increment next by the size of the huge mapping since
593 * there may be more than one entry at the pgd level
594 * for a single hugepage, but all of them point to the
595 * same kmem cache that holds the hugepte.
596 */
597 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
598 #endif
599 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
600 addr, next, floor, ceiling);
601 }
602 } while (addr = next, addr != end);
603 }
604
605 struct page *
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)606 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
607 {
608 pte_t *ptep;
609 struct page *page;
610 unsigned shift;
611 unsigned long mask;
612
613 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
614
615 /* Verify it is a huge page else bail. */
616 if (!ptep || !shift)
617 return ERR_PTR(-EINVAL);
618
619 mask = (1UL << shift) - 1;
620 page = pte_page(*ptep);
621 if (page)
622 page += (address & mask) / PAGE_SIZE;
623
624 return page;
625 }
626
pmd_huge(pmd_t pmd)627 int pmd_huge(pmd_t pmd)
628 {
629 return 0;
630 }
631
pud_huge(pud_t pud)632 int pud_huge(pud_t pud)
633 {
634 return 0;
635 }
636
637 struct page *
follow_huge_pmd(struct mm_struct * mm,unsigned long address,pmd_t * pmd,int write)638 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
639 pmd_t *pmd, int write)
640 {
641 BUG();
642 return NULL;
643 }
644
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)645 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
646 unsigned long end, int write, struct page **pages, int *nr)
647 {
648 unsigned long mask;
649 unsigned long pte_end;
650 struct page *head, *page, *tail;
651 pte_t pte;
652 int refs;
653
654 pte_end = (addr + sz) & ~(sz-1);
655 if (pte_end < end)
656 end = pte_end;
657
658 pte = *ptep;
659 mask = _PAGE_PRESENT | _PAGE_USER;
660 if (write)
661 mask |= _PAGE_RW;
662
663 if ((pte_val(pte) & mask) != mask)
664 return 0;
665
666 /* hugepages are never "special" */
667 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
668
669 refs = 0;
670 head = pte_page(pte);
671
672 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
673 tail = page;
674 do {
675 VM_BUG_ON(compound_head(page) != head);
676 pages[*nr] = page;
677 (*nr)++;
678 page++;
679 refs++;
680 } while (addr += PAGE_SIZE, addr != end);
681
682 if (!page_cache_add_speculative(head, refs)) {
683 *nr -= refs;
684 return 0;
685 }
686
687 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
688 /* Could be optimized better */
689 *nr -= refs;
690 while (refs--)
691 put_page(head);
692 return 0;
693 }
694
695 /*
696 * Any tail page need their mapcount reference taken before we
697 * return.
698 */
699 while (refs--) {
700 if (PageTail(tail))
701 get_huge_page_tail(tail);
702 tail++;
703 }
704
705 return 1;
706 }
707
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)708 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
709 unsigned long sz)
710 {
711 unsigned long __boundary = (addr + sz) & ~(sz-1);
712 return (__boundary - 1 < end - 1) ? __boundary : end;
713 }
714
gup_hugepd(hugepd_t * hugepd,unsigned pdshift,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)715 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
716 unsigned long addr, unsigned long end,
717 int write, struct page **pages, int *nr)
718 {
719 pte_t *ptep;
720 unsigned long sz = 1UL << hugepd_shift(*hugepd);
721 unsigned long next;
722
723 ptep = hugepte_offset(hugepd, addr, pdshift);
724 do {
725 next = hugepte_addr_end(addr, end, sz);
726 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
727 return 0;
728 } while (ptep++, addr = next, addr != end);
729
730 return 1;
731 }
732
733 #ifdef CONFIG_PPC_MM_SLICES
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)734 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
735 unsigned long len, unsigned long pgoff,
736 unsigned long flags)
737 {
738 struct hstate *hstate = hstate_file(file);
739 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
740
741 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
742 }
743 #endif
744
vma_mmu_pagesize(struct vm_area_struct * vma)745 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
746 {
747 #ifdef CONFIG_PPC_MM_SLICES
748 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
749
750 return 1UL << mmu_psize_to_shift(psize);
751 #else
752 if (!is_vm_hugetlb_page(vma))
753 return PAGE_SIZE;
754
755 return huge_page_size(hstate_vma(vma));
756 #endif
757 }
758
is_power_of_4(unsigned long x)759 static inline bool is_power_of_4(unsigned long x)
760 {
761 if (is_power_of_2(x))
762 return (__ilog2(x) % 2) ? false : true;
763 return false;
764 }
765
add_huge_page_size(unsigned long long size)766 static int __init add_huge_page_size(unsigned long long size)
767 {
768 int shift = __ffs(size);
769 int mmu_psize;
770
771 /* Check that it is a page size supported by the hardware and
772 * that it fits within pagetable and slice limits. */
773 #ifdef CONFIG_PPC_FSL_BOOK3E
774 if ((size < PAGE_SIZE) || !is_power_of_4(size))
775 return -EINVAL;
776 #else
777 if (!is_power_of_2(size)
778 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
779 return -EINVAL;
780 #endif
781
782 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
783 return -EINVAL;
784
785 #ifdef CONFIG_SPU_FS_64K_LS
786 /* Disable support for 64K huge pages when 64K SPU local store
787 * support is enabled as the current implementation conflicts.
788 */
789 if (shift == PAGE_SHIFT_64K)
790 return -EINVAL;
791 #endif /* CONFIG_SPU_FS_64K_LS */
792
793 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
794
795 /* Return if huge page size has already been setup */
796 if (size_to_hstate(size))
797 return 0;
798
799 hugetlb_add_hstate(shift - PAGE_SHIFT);
800
801 return 0;
802 }
803
hugepage_setup_sz(char * str)804 static int __init hugepage_setup_sz(char *str)
805 {
806 unsigned long long size;
807
808 size = memparse(str, &str);
809
810 if (add_huge_page_size(size) != 0)
811 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
812
813 return 1;
814 }
815 __setup("hugepagesz=", hugepage_setup_sz);
816
817 #ifdef CONFIG_PPC_FSL_BOOK3E
818 struct kmem_cache *hugepte_cache;
hugetlbpage_init(void)819 static int __init hugetlbpage_init(void)
820 {
821 int psize;
822
823 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
824 unsigned shift;
825
826 if (!mmu_psize_defs[psize].shift)
827 continue;
828
829 shift = mmu_psize_to_shift(psize);
830
831 /* Don't treat normal page sizes as huge... */
832 if (shift != PAGE_SHIFT)
833 if (add_huge_page_size(1ULL << shift) < 0)
834 continue;
835 }
836
837 /*
838 * Create a kmem cache for hugeptes. The bottom bits in the pte have
839 * size information encoded in them, so align them to allow this
840 */
841 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
842 HUGEPD_SHIFT_MASK + 1, 0, NULL);
843 if (hugepte_cache == NULL)
844 panic("%s: Unable to create kmem cache for hugeptes\n",
845 __func__);
846
847 /* Default hpage size = 4M */
848 if (mmu_psize_defs[MMU_PAGE_4M].shift)
849 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
850 else
851 panic("%s: Unable to set default huge page size\n", __func__);
852
853
854 return 0;
855 }
856 #else
hugetlbpage_init(void)857 static int __init hugetlbpage_init(void)
858 {
859 int psize;
860
861 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
862 return -ENODEV;
863
864 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
865 unsigned shift;
866 unsigned pdshift;
867
868 if (!mmu_psize_defs[psize].shift)
869 continue;
870
871 shift = mmu_psize_to_shift(psize);
872
873 if (add_huge_page_size(1ULL << shift) < 0)
874 continue;
875
876 if (shift < PMD_SHIFT)
877 pdshift = PMD_SHIFT;
878 else if (shift < PUD_SHIFT)
879 pdshift = PUD_SHIFT;
880 else
881 pdshift = PGDIR_SHIFT;
882
883 pgtable_cache_add(pdshift - shift, NULL);
884 if (!PGT_CACHE(pdshift - shift))
885 panic("hugetlbpage_init(): could not create "
886 "pgtable cache for %d bit pagesize\n", shift);
887 }
888
889 /* Set default large page size. Currently, we pick 16M or 1M
890 * depending on what is available
891 */
892 if (mmu_psize_defs[MMU_PAGE_16M].shift)
893 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
894 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
895 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
896
897 return 0;
898 }
899 #endif
900 module_init(hugetlbpage_init);
901
flush_dcache_icache_hugepage(struct page * page)902 void flush_dcache_icache_hugepage(struct page *page)
903 {
904 int i;
905 void *start;
906
907 BUG_ON(!PageCompound(page));
908
909 for (i = 0; i < (1UL << compound_order(page)); i++) {
910 if (!PageHighMem(page)) {
911 __flush_dcache_icache(page_address(page+i));
912 } else {
913 start = kmap_atomic(page+i, KM_PPC_SYNC_ICACHE);
914 __flush_dcache_icache(start);
915 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
916 }
917 }
918 }
919