1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20 
21 #undef DEBUG
22 #undef DEBUG_LOW
23 
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 
37 #include <asm/processor.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/page.h>
42 #include <asm/types.h>
43 #include <asm/system.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
46 #include <asm/prom.h>
47 #include <asm/abs_addr.h>
48 #include <asm/tlbflush.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/spu.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 
59 #ifdef DEBUG
60 #define DBG(fmt...) udbg_printf(fmt)
61 #else
62 #define DBG(fmt...)
63 #endif
64 
65 #ifdef DEBUG_LOW
66 #define DBG_LOW(fmt...) udbg_printf(fmt)
67 #else
68 #define DBG_LOW(fmt...)
69 #endif
70 
71 #define KB (1024)
72 #define MB (1024*KB)
73 #define GB (1024L*MB)
74 
75 /*
76  * Note:  pte   --> Linux PTE
77  *        HPTE  --> PowerPC Hashed Page Table Entry
78  *
79  * Execution context:
80  *   htab_initialize is called with the MMU off (of course), but
81  *   the kernel has been copied down to zero so it can directly
82  *   reference global data.  At this point it is very difficult
83  *   to print debug info.
84  *
85  */
86 
87 #ifdef CONFIG_U3_DART
88 extern unsigned long dart_tablebase;
89 #endif /* CONFIG_U3_DART */
90 
91 static unsigned long _SDR1;
92 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
93 
94 struct hash_pte *htab_address;
95 unsigned long htab_size_bytes;
96 unsigned long htab_hash_mask;
97 EXPORT_SYMBOL_GPL(htab_hash_mask);
98 int mmu_linear_psize = MMU_PAGE_4K;
99 int mmu_virtual_psize = MMU_PAGE_4K;
100 int mmu_vmalloc_psize = MMU_PAGE_4K;
101 #ifdef CONFIG_SPARSEMEM_VMEMMAP
102 int mmu_vmemmap_psize = MMU_PAGE_4K;
103 #endif
104 int mmu_io_psize = MMU_PAGE_4K;
105 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
106 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
107 u16 mmu_slb_size = 64;
108 EXPORT_SYMBOL_GPL(mmu_slb_size);
109 #ifdef CONFIG_PPC_64K_PAGES
110 int mmu_ci_restrictions;
111 #endif
112 #ifdef CONFIG_DEBUG_PAGEALLOC
113 static u8 *linear_map_hash_slots;
114 static unsigned long linear_map_hash_count;
115 static DEFINE_SPINLOCK(linear_map_hash_lock);
116 #endif /* CONFIG_DEBUG_PAGEALLOC */
117 
118 /* There are definitions of page sizes arrays to be used when none
119  * is provided by the firmware.
120  */
121 
122 /* Pre-POWER4 CPUs (4k pages only)
123  */
124 static struct mmu_psize_def mmu_psize_defaults_old[] = {
125 	[MMU_PAGE_4K] = {
126 		.shift	= 12,
127 		.sllp	= 0,
128 		.penc	= 0,
129 		.avpnm	= 0,
130 		.tlbiel = 0,
131 	},
132 };
133 
134 /* POWER4, GPUL, POWER5
135  *
136  * Support for 16Mb large pages
137  */
138 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
139 	[MMU_PAGE_4K] = {
140 		.shift	= 12,
141 		.sllp	= 0,
142 		.penc	= 0,
143 		.avpnm	= 0,
144 		.tlbiel = 1,
145 	},
146 	[MMU_PAGE_16M] = {
147 		.shift	= 24,
148 		.sllp	= SLB_VSID_L,
149 		.penc	= 0,
150 		.avpnm	= 0x1UL,
151 		.tlbiel = 0,
152 	},
153 };
154 
htab_convert_pte_flags(unsigned long pteflags)155 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
156 {
157 	unsigned long rflags = pteflags & 0x1fa;
158 
159 	/* _PAGE_EXEC -> NOEXEC */
160 	if ((pteflags & _PAGE_EXEC) == 0)
161 		rflags |= HPTE_R_N;
162 
163 	/* PP bits. PAGE_USER is already PP bit 0x2, so we only
164 	 * need to add in 0x1 if it's a read-only user page
165 	 */
166 	if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
167 					 (pteflags & _PAGE_DIRTY)))
168 		rflags |= 1;
169 
170 	/* Always add C */
171 	return rflags | HPTE_R_C;
172 }
173 
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)174 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
175 		      unsigned long pstart, unsigned long prot,
176 		      int psize, int ssize)
177 {
178 	unsigned long vaddr, paddr;
179 	unsigned int step, shift;
180 	int ret = 0;
181 
182 	shift = mmu_psize_defs[psize].shift;
183 	step = 1 << shift;
184 
185 	prot = htab_convert_pte_flags(prot);
186 
187 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
188 	    vstart, vend, pstart, prot, psize, ssize);
189 
190 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
191 	     vaddr += step, paddr += step) {
192 		unsigned long hash, hpteg;
193 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
194 		unsigned long va = hpt_va(vaddr, vsid, ssize);
195 		unsigned long tprot = prot;
196 
197 		/* Make kernel text executable */
198 		if (overlaps_kernel_text(vaddr, vaddr + step))
199 			tprot &= ~HPTE_R_N;
200 
201 		hash = hpt_hash(va, shift, ssize);
202 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
203 
204 		BUG_ON(!ppc_md.hpte_insert);
205 		ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
206 					 HPTE_V_BOLTED, psize, ssize);
207 
208 		if (ret < 0)
209 			break;
210 #ifdef CONFIG_DEBUG_PAGEALLOC
211 		if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
212 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
213 #endif /* CONFIG_DEBUG_PAGEALLOC */
214 	}
215 	return ret < 0 ? ret : 0;
216 }
217 
218 #ifdef CONFIG_MEMORY_HOTPLUG
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)219 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
220 		      int psize, int ssize)
221 {
222 	unsigned long vaddr;
223 	unsigned int step, shift;
224 
225 	shift = mmu_psize_defs[psize].shift;
226 	step = 1 << shift;
227 
228 	if (!ppc_md.hpte_removebolted) {
229 		printk(KERN_WARNING "Platform doesn't implement "
230 				"hpte_removebolted\n");
231 		return -EINVAL;
232 	}
233 
234 	for (vaddr = vstart; vaddr < vend; vaddr += step)
235 		ppc_md.hpte_removebolted(vaddr, psize, ssize);
236 
237 	return 0;
238 }
239 #endif /* CONFIG_MEMORY_HOTPLUG */
240 
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)241 static int __init htab_dt_scan_seg_sizes(unsigned long node,
242 					 const char *uname, int depth,
243 					 void *data)
244 {
245 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
246 	u32 *prop;
247 	unsigned long size = 0;
248 
249 	/* We are scanning "cpu" nodes only */
250 	if (type == NULL || strcmp(type, "cpu") != 0)
251 		return 0;
252 
253 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
254 					  &size);
255 	if (prop == NULL)
256 		return 0;
257 	for (; size >= 4; size -= 4, ++prop) {
258 		if (prop[0] == 40) {
259 			DBG("1T segment support detected\n");
260 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
261 			return 1;
262 		}
263 	}
264 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
265 	return 0;
266 }
267 
htab_init_seg_sizes(void)268 static void __init htab_init_seg_sizes(void)
269 {
270 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
271 }
272 
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)273 static int __init htab_dt_scan_page_sizes(unsigned long node,
274 					  const char *uname, int depth,
275 					  void *data)
276 {
277 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
278 	u32 *prop;
279 	unsigned long size = 0;
280 
281 	/* We are scanning "cpu" nodes only */
282 	if (type == NULL || strcmp(type, "cpu") != 0)
283 		return 0;
284 
285 	prop = (u32 *)of_get_flat_dt_prop(node,
286 					  "ibm,segment-page-sizes", &size);
287 	if (prop != NULL) {
288 		DBG("Page sizes from device-tree:\n");
289 		size /= 4;
290 		cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
291 		while(size > 0) {
292 			unsigned int shift = prop[0];
293 			unsigned int slbenc = prop[1];
294 			unsigned int lpnum = prop[2];
295 			unsigned int lpenc = 0;
296 			struct mmu_psize_def *def;
297 			int idx = -1;
298 
299 			size -= 3; prop += 3;
300 			while(size > 0 && lpnum) {
301 				if (prop[0] == shift)
302 					lpenc = prop[1];
303 				prop += 2; size -= 2;
304 				lpnum--;
305 			}
306 			switch(shift) {
307 			case 0xc:
308 				idx = MMU_PAGE_4K;
309 				break;
310 			case 0x10:
311 				idx = MMU_PAGE_64K;
312 				break;
313 			case 0x14:
314 				idx = MMU_PAGE_1M;
315 				break;
316 			case 0x18:
317 				idx = MMU_PAGE_16M;
318 				cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
319 				break;
320 			case 0x22:
321 				idx = MMU_PAGE_16G;
322 				break;
323 			}
324 			if (idx < 0)
325 				continue;
326 			def = &mmu_psize_defs[idx];
327 			def->shift = shift;
328 			if (shift <= 23)
329 				def->avpnm = 0;
330 			else
331 				def->avpnm = (1 << (shift - 23)) - 1;
332 			def->sllp = slbenc;
333 			def->penc = lpenc;
334 			/* We don't know for sure what's up with tlbiel, so
335 			 * for now we only set it for 4K and 64K pages
336 			 */
337 			if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
338 				def->tlbiel = 1;
339 			else
340 				def->tlbiel = 0;
341 
342 			DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
343 			    "tlbiel=%d, penc=%d\n",
344 			    idx, shift, def->sllp, def->avpnm, def->tlbiel,
345 			    def->penc);
346 		}
347 		return 1;
348 	}
349 	return 0;
350 }
351 
352 #ifdef CONFIG_HUGETLB_PAGE
353 /* Scan for 16G memory blocks that have been set aside for huge pages
354  * and reserve those blocks for 16G huge pages.
355  */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)356 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
357 					const char *uname, int depth,
358 					void *data) {
359 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
360 	unsigned long *addr_prop;
361 	u32 *page_count_prop;
362 	unsigned int expected_pages;
363 	long unsigned int phys_addr;
364 	long unsigned int block_size;
365 
366 	/* We are scanning "memory" nodes only */
367 	if (type == NULL || strcmp(type, "memory") != 0)
368 		return 0;
369 
370 	/* This property is the log base 2 of the number of virtual pages that
371 	 * will represent this memory block. */
372 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
373 	if (page_count_prop == NULL)
374 		return 0;
375 	expected_pages = (1 << page_count_prop[0]);
376 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
377 	if (addr_prop == NULL)
378 		return 0;
379 	phys_addr = addr_prop[0];
380 	block_size = addr_prop[1];
381 	if (block_size != (16 * GB))
382 		return 0;
383 	printk(KERN_INFO "Huge page(16GB) memory: "
384 			"addr = 0x%lX size = 0x%lX pages = %d\n",
385 			phys_addr, block_size, expected_pages);
386 	if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
387 		memblock_reserve(phys_addr, block_size * expected_pages);
388 		add_gpage(phys_addr, block_size, expected_pages);
389 	}
390 	return 0;
391 }
392 #endif /* CONFIG_HUGETLB_PAGE */
393 
htab_init_page_sizes(void)394 static void __init htab_init_page_sizes(void)
395 {
396 	int rc;
397 
398 	/* Default to 4K pages only */
399 	memcpy(mmu_psize_defs, mmu_psize_defaults_old,
400 	       sizeof(mmu_psize_defaults_old));
401 
402 	/*
403 	 * Try to find the available page sizes in the device-tree
404 	 */
405 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
406 	if (rc != 0)  /* Found */
407 		goto found;
408 
409 	/*
410 	 * Not in the device-tree, let's fallback on known size
411 	 * list for 16M capable GP & GR
412 	 */
413 	if (mmu_has_feature(MMU_FTR_16M_PAGE))
414 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
415 		       sizeof(mmu_psize_defaults_gp));
416  found:
417 #ifndef CONFIG_DEBUG_PAGEALLOC
418 	/*
419 	 * Pick a size for the linear mapping. Currently, we only support
420 	 * 16M, 1M and 4K which is the default
421 	 */
422 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
423 		mmu_linear_psize = MMU_PAGE_16M;
424 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
425 		mmu_linear_psize = MMU_PAGE_1M;
426 #endif /* CONFIG_DEBUG_PAGEALLOC */
427 
428 #ifdef CONFIG_PPC_64K_PAGES
429 	/*
430 	 * Pick a size for the ordinary pages. Default is 4K, we support
431 	 * 64K for user mappings and vmalloc if supported by the processor.
432 	 * We only use 64k for ioremap if the processor
433 	 * (and firmware) support cache-inhibited large pages.
434 	 * If not, we use 4k and set mmu_ci_restrictions so that
435 	 * hash_page knows to switch processes that use cache-inhibited
436 	 * mappings to 4k pages.
437 	 */
438 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
439 		mmu_virtual_psize = MMU_PAGE_64K;
440 		mmu_vmalloc_psize = MMU_PAGE_64K;
441 		if (mmu_linear_psize == MMU_PAGE_4K)
442 			mmu_linear_psize = MMU_PAGE_64K;
443 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
444 			/*
445 			 * Don't use 64k pages for ioremap on pSeries, since
446 			 * that would stop us accessing the HEA ethernet.
447 			 */
448 			if (!machine_is(pseries))
449 				mmu_io_psize = MMU_PAGE_64K;
450 		} else
451 			mmu_ci_restrictions = 1;
452 	}
453 #endif /* CONFIG_PPC_64K_PAGES */
454 
455 #ifdef CONFIG_SPARSEMEM_VMEMMAP
456 	/* We try to use 16M pages for vmemmap if that is supported
457 	 * and we have at least 1G of RAM at boot
458 	 */
459 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
460 	    memblock_phys_mem_size() >= 0x40000000)
461 		mmu_vmemmap_psize = MMU_PAGE_16M;
462 	else if (mmu_psize_defs[MMU_PAGE_64K].shift)
463 		mmu_vmemmap_psize = MMU_PAGE_64K;
464 	else
465 		mmu_vmemmap_psize = MMU_PAGE_4K;
466 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
467 
468 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
469 	       "virtual = %d, io = %d"
470 #ifdef CONFIG_SPARSEMEM_VMEMMAP
471 	       ", vmemmap = %d"
472 #endif
473 	       "\n",
474 	       mmu_psize_defs[mmu_linear_psize].shift,
475 	       mmu_psize_defs[mmu_virtual_psize].shift,
476 	       mmu_psize_defs[mmu_io_psize].shift
477 #ifdef CONFIG_SPARSEMEM_VMEMMAP
478 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
479 #endif
480 	       );
481 
482 #ifdef CONFIG_HUGETLB_PAGE
483 	/* Reserve 16G huge page memory sections for huge pages */
484 	of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
485 #endif /* CONFIG_HUGETLB_PAGE */
486 }
487 
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)488 static int __init htab_dt_scan_pftsize(unsigned long node,
489 				       const char *uname, int depth,
490 				       void *data)
491 {
492 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
493 	u32 *prop;
494 
495 	/* We are scanning "cpu" nodes only */
496 	if (type == NULL || strcmp(type, "cpu") != 0)
497 		return 0;
498 
499 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
500 	if (prop != NULL) {
501 		/* pft_size[0] is the NUMA CEC cookie */
502 		ppc64_pft_size = prop[1];
503 		return 1;
504 	}
505 	return 0;
506 }
507 
htab_get_table_size(void)508 static unsigned long __init htab_get_table_size(void)
509 {
510 	unsigned long mem_size, rnd_mem_size, pteg_count, psize;
511 
512 	/* If hash size isn't already provided by the platform, we try to
513 	 * retrieve it from the device-tree. If it's not there neither, we
514 	 * calculate it now based on the total RAM size
515 	 */
516 	if (ppc64_pft_size == 0)
517 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
518 	if (ppc64_pft_size)
519 		return 1UL << ppc64_pft_size;
520 
521 	/* round mem_size up to next power of 2 */
522 	mem_size = memblock_phys_mem_size();
523 	rnd_mem_size = 1UL << __ilog2(mem_size);
524 	if (rnd_mem_size < mem_size)
525 		rnd_mem_size <<= 1;
526 
527 	/* # pages / 2 */
528 	psize = mmu_psize_defs[mmu_virtual_psize].shift;
529 	pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
530 
531 	return pteg_count << 7;
532 }
533 
534 #ifdef CONFIG_MEMORY_HOTPLUG
create_section_mapping(unsigned long start,unsigned long end)535 int create_section_mapping(unsigned long start, unsigned long end)
536 {
537 	return htab_bolt_mapping(start, end, __pa(start),
538 				 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
539 				 mmu_kernel_ssize);
540 }
541 
remove_section_mapping(unsigned long start,unsigned long end)542 int remove_section_mapping(unsigned long start, unsigned long end)
543 {
544 	return htab_remove_mapping(start, end, mmu_linear_psize,
545 			mmu_kernel_ssize);
546 }
547 #endif /* CONFIG_MEMORY_HOTPLUG */
548 
549 #define FUNCTION_TEXT(A)	((*(unsigned long *)(A)))
550 
htab_finish_init(void)551 static void __init htab_finish_init(void)
552 {
553 	extern unsigned int *htab_call_hpte_insert1;
554 	extern unsigned int *htab_call_hpte_insert2;
555 	extern unsigned int *htab_call_hpte_remove;
556 	extern unsigned int *htab_call_hpte_updatepp;
557 
558 #ifdef CONFIG_PPC_HAS_HASH_64K
559 	extern unsigned int *ht64_call_hpte_insert1;
560 	extern unsigned int *ht64_call_hpte_insert2;
561 	extern unsigned int *ht64_call_hpte_remove;
562 	extern unsigned int *ht64_call_hpte_updatepp;
563 
564 	patch_branch(ht64_call_hpte_insert1,
565 		FUNCTION_TEXT(ppc_md.hpte_insert),
566 		BRANCH_SET_LINK);
567 	patch_branch(ht64_call_hpte_insert2,
568 		FUNCTION_TEXT(ppc_md.hpte_insert),
569 		BRANCH_SET_LINK);
570 	patch_branch(ht64_call_hpte_remove,
571 		FUNCTION_TEXT(ppc_md.hpte_remove),
572 		BRANCH_SET_LINK);
573 	patch_branch(ht64_call_hpte_updatepp,
574 		FUNCTION_TEXT(ppc_md.hpte_updatepp),
575 		BRANCH_SET_LINK);
576 
577 #endif /* CONFIG_PPC_HAS_HASH_64K */
578 
579 	patch_branch(htab_call_hpte_insert1,
580 		FUNCTION_TEXT(ppc_md.hpte_insert),
581 		BRANCH_SET_LINK);
582 	patch_branch(htab_call_hpte_insert2,
583 		FUNCTION_TEXT(ppc_md.hpte_insert),
584 		BRANCH_SET_LINK);
585 	patch_branch(htab_call_hpte_remove,
586 		FUNCTION_TEXT(ppc_md.hpte_remove),
587 		BRANCH_SET_LINK);
588 	patch_branch(htab_call_hpte_updatepp,
589 		FUNCTION_TEXT(ppc_md.hpte_updatepp),
590 		BRANCH_SET_LINK);
591 }
592 
htab_initialize(void)593 static void __init htab_initialize(void)
594 {
595 	unsigned long table;
596 	unsigned long pteg_count;
597 	unsigned long prot;
598 	unsigned long base = 0, size = 0, limit;
599 	struct memblock_region *reg;
600 
601 	DBG(" -> htab_initialize()\n");
602 
603 	/* Initialize segment sizes */
604 	htab_init_seg_sizes();
605 
606 	/* Initialize page sizes */
607 	htab_init_page_sizes();
608 
609 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
610 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
611 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
612 		printk(KERN_INFO "Using 1TB segments\n");
613 	}
614 
615 	/*
616 	 * Calculate the required size of the htab.  We want the number of
617 	 * PTEGs to equal one half the number of real pages.
618 	 */
619 	htab_size_bytes = htab_get_table_size();
620 	pteg_count = htab_size_bytes >> 7;
621 
622 	htab_hash_mask = pteg_count - 1;
623 
624 	if (firmware_has_feature(FW_FEATURE_LPAR)) {
625 		/* Using a hypervisor which owns the htab */
626 		htab_address = NULL;
627 		_SDR1 = 0;
628 	} else {
629 		/* Find storage for the HPT.  Must be contiguous in
630 		 * the absolute address space. On cell we want it to be
631 		 * in the first 2 Gig so we can use it for IOMMU hacks.
632 		 */
633 		if (machine_is(cell))
634 			limit = 0x80000000;
635 		else
636 			limit = MEMBLOCK_ALLOC_ANYWHERE;
637 
638 		table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
639 
640 		DBG("Hash table allocated at %lx, size: %lx\n", table,
641 		    htab_size_bytes);
642 
643 		htab_address = abs_to_virt(table);
644 
645 		/* htab absolute addr + encoded htabsize */
646 		_SDR1 = table + __ilog2(pteg_count) - 11;
647 
648 		/* Initialize the HPT with no entries */
649 		memset((void *)table, 0, htab_size_bytes);
650 
651 		/* Set SDR1 */
652 		mtspr(SPRN_SDR1, _SDR1);
653 	}
654 
655 	prot = pgprot_val(PAGE_KERNEL);
656 
657 #ifdef CONFIG_DEBUG_PAGEALLOC
658 	linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
659 	linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
660 						    1, ppc64_rma_size));
661 	memset(linear_map_hash_slots, 0, linear_map_hash_count);
662 #endif /* CONFIG_DEBUG_PAGEALLOC */
663 
664 	/* On U3 based machines, we need to reserve the DART area and
665 	 * _NOT_ map it to avoid cache paradoxes as it's remapped non
666 	 * cacheable later on
667 	 */
668 
669 	/* create bolted the linear mapping in the hash table */
670 	for_each_memblock(memory, reg) {
671 		base = (unsigned long)__va(reg->base);
672 		size = reg->size;
673 
674 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
675 		    base, size, prot);
676 
677 #ifdef CONFIG_U3_DART
678 		/* Do not map the DART space. Fortunately, it will be aligned
679 		 * in such a way that it will not cross two memblock regions and
680 		 * will fit within a single 16Mb page.
681 		 * The DART space is assumed to be a full 16Mb region even if
682 		 * we only use 2Mb of that space. We will use more of it later
683 		 * for AGP GART. We have to use a full 16Mb large page.
684 		 */
685 		DBG("DART base: %lx\n", dart_tablebase);
686 
687 		if (dart_tablebase != 0 && dart_tablebase >= base
688 		    && dart_tablebase < (base + size)) {
689 			unsigned long dart_table_end = dart_tablebase + 16 * MB;
690 			if (base != dart_tablebase)
691 				BUG_ON(htab_bolt_mapping(base, dart_tablebase,
692 							__pa(base), prot,
693 							mmu_linear_psize,
694 							mmu_kernel_ssize));
695 			if ((base + size) > dart_table_end)
696 				BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
697 							base + size,
698 							__pa(dart_table_end),
699 							 prot,
700 							 mmu_linear_psize,
701 							 mmu_kernel_ssize));
702 			continue;
703 		}
704 #endif /* CONFIG_U3_DART */
705 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
706 				prot, mmu_linear_psize, mmu_kernel_ssize));
707 	}
708 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
709 
710 	/*
711 	 * If we have a memory_limit and we've allocated TCEs then we need to
712 	 * explicitly map the TCE area at the top of RAM. We also cope with the
713 	 * case that the TCEs start below memory_limit.
714 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
715 	 * for either 4K or 16MB pages.
716 	 */
717 	if (tce_alloc_start) {
718 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
719 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
720 
721 		if (base + size >= tce_alloc_start)
722 			tce_alloc_start = base + size + 1;
723 
724 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
725 					 __pa(tce_alloc_start), prot,
726 					 mmu_linear_psize, mmu_kernel_ssize));
727 	}
728 
729 	htab_finish_init();
730 
731 	DBG(" <- htab_initialize()\n");
732 }
733 #undef KB
734 #undef MB
735 
early_init_mmu(void)736 void __init early_init_mmu(void)
737 {
738 	/* Setup initial STAB address in the PACA */
739 	get_paca()->stab_real = __pa((u64)&initial_stab);
740 	get_paca()->stab_addr = (u64)&initial_stab;
741 
742 	/* Initialize the MMU Hash table and create the linear mapping
743 	 * of memory. Has to be done before stab/slb initialization as
744 	 * this is currently where the page size encoding is obtained
745 	 */
746 	htab_initialize();
747 
748 	/* Initialize stab / SLB management except on iSeries
749 	 */
750 	if (mmu_has_feature(MMU_FTR_SLB))
751 		slb_initialize();
752 	else if (!firmware_has_feature(FW_FEATURE_ISERIES))
753 		stab_initialize(get_paca()->stab_real);
754 }
755 
756 #ifdef CONFIG_SMP
early_init_mmu_secondary(void)757 void __cpuinit early_init_mmu_secondary(void)
758 {
759 	/* Initialize hash table for that CPU */
760 	if (!firmware_has_feature(FW_FEATURE_LPAR))
761 		mtspr(SPRN_SDR1, _SDR1);
762 
763 	/* Initialize STAB/SLB. We use a virtual address as it works
764 	 * in real mode on pSeries and we want a virtual address on
765 	 * iSeries anyway
766 	 */
767 	if (mmu_has_feature(MMU_FTR_SLB))
768 		slb_initialize();
769 	else
770 		stab_initialize(get_paca()->stab_addr);
771 }
772 #endif /* CONFIG_SMP */
773 
774 /*
775  * Called by asm hashtable.S for doing lazy icache flush
776  */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)777 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
778 {
779 	struct page *page;
780 
781 	if (!pfn_valid(pte_pfn(pte)))
782 		return pp;
783 
784 	page = pte_page(pte);
785 
786 	/* page is dirty */
787 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
788 		if (trap == 0x400) {
789 			flush_dcache_icache_page(page);
790 			set_bit(PG_arch_1, &page->flags);
791 		} else
792 			pp |= HPTE_R_N;
793 	}
794 	return pp;
795 }
796 
797 #ifdef CONFIG_PPC_MM_SLICES
get_paca_psize(unsigned long addr)798 unsigned int get_paca_psize(unsigned long addr)
799 {
800 	unsigned long index, slices;
801 
802 	if (addr < SLICE_LOW_TOP) {
803 		slices = get_paca()->context.low_slices_psize;
804 		index = GET_LOW_SLICE_INDEX(addr);
805 	} else {
806 		slices = get_paca()->context.high_slices_psize;
807 		index = GET_HIGH_SLICE_INDEX(addr);
808 	}
809 	return (slices >> (index * 4)) & 0xF;
810 }
811 
812 #else
get_paca_psize(unsigned long addr)813 unsigned int get_paca_psize(unsigned long addr)
814 {
815 	return get_paca()->context.user_psize;
816 }
817 #endif
818 
819 /*
820  * Demote a segment to using 4k pages.
821  * For now this makes the whole process use 4k pages.
822  */
823 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)824 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
825 {
826 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
827 		return;
828 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
829 #ifdef CONFIG_SPU_BASE
830 	spu_flush_all_slbs(mm);
831 #endif
832 	if (get_paca_psize(addr) != MMU_PAGE_4K) {
833 		get_paca()->context = mm->context;
834 		slb_flush_and_rebolt();
835 	}
836 }
837 #endif /* CONFIG_PPC_64K_PAGES */
838 
839 #ifdef CONFIG_PPC_SUBPAGE_PROT
840 /*
841  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
842  * Userspace sets the subpage permissions using the subpage_prot system call.
843  *
844  * Result is 0: full permissions, _PAGE_RW: read-only,
845  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
846  */
subpage_protection(struct mm_struct * mm,unsigned long ea)847 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
848 {
849 	struct subpage_prot_table *spt = &mm->context.spt;
850 	u32 spp = 0;
851 	u32 **sbpm, *sbpp;
852 
853 	if (ea >= spt->maxaddr)
854 		return 0;
855 	if (ea < 0x100000000) {
856 		/* addresses below 4GB use spt->low_prot */
857 		sbpm = spt->low_prot;
858 	} else {
859 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
860 		if (!sbpm)
861 			return 0;
862 	}
863 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
864 	if (!sbpp)
865 		return 0;
866 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
867 
868 	/* extract 2-bit bitfield for this 4k subpage */
869 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
870 
871 	/* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
872 	spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
873 	return spp;
874 }
875 
876 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)877 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
878 {
879 	return 0;
880 }
881 #endif
882 
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,unsigned long pte)883 void hash_failure_debug(unsigned long ea, unsigned long access,
884 			unsigned long vsid, unsigned long trap,
885 			int ssize, int psize, unsigned long pte)
886 {
887 	if (!printk_ratelimit())
888 		return;
889 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
890 		ea, access, current->comm);
891 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
892 		trap, vsid, ssize, psize, pte);
893 }
894 
895 /* Result code is:
896  *  0 - handled
897  *  1 - normal page fault
898  * -1 - critical hash insertion error
899  * -2 - access not permitted by subpage protection mechanism
900  */
hash_page(unsigned long ea,unsigned long access,unsigned long trap)901 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
902 {
903 	pgd_t *pgdir;
904 	unsigned long vsid;
905 	struct mm_struct *mm;
906 	pte_t *ptep;
907 	unsigned hugeshift;
908 	const struct cpumask *tmp;
909 	int rc, user_region = 0, local = 0;
910 	int psize, ssize;
911 
912 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
913 		ea, access, trap);
914 
915 	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
916 		DBG_LOW(" out of pgtable range !\n");
917  		return 1;
918 	}
919 
920 	/* Get region & vsid */
921  	switch (REGION_ID(ea)) {
922 	case USER_REGION_ID:
923 		user_region = 1;
924 		mm = current->mm;
925 		if (! mm) {
926 			DBG_LOW(" user region with no mm !\n");
927 			return 1;
928 		}
929 		psize = get_slice_psize(mm, ea);
930 		ssize = user_segment_size(ea);
931 		vsid = get_vsid(mm->context.id, ea, ssize);
932 		break;
933 	case VMALLOC_REGION_ID:
934 		mm = &init_mm;
935 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
936 		if (ea < VMALLOC_END)
937 			psize = mmu_vmalloc_psize;
938 		else
939 			psize = mmu_io_psize;
940 		ssize = mmu_kernel_ssize;
941 		break;
942 	default:
943 		/* Not a valid range
944 		 * Send the problem up to do_page_fault
945 		 */
946 		return 1;
947 	}
948 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
949 
950 	/* Get pgdir */
951 	pgdir = mm->pgd;
952 	if (pgdir == NULL)
953 		return 1;
954 
955 	/* Check CPU locality */
956 	tmp = cpumask_of(smp_processor_id());
957 	if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
958 		local = 1;
959 
960 #ifndef CONFIG_PPC_64K_PAGES
961 	/* If we use 4K pages and our psize is not 4K, then we might
962 	 * be hitting a special driver mapping, and need to align the
963 	 * address before we fetch the PTE.
964 	 *
965 	 * It could also be a hugepage mapping, in which case this is
966 	 * not necessary, but it's not harmful, either.
967 	 */
968 	if (psize != MMU_PAGE_4K)
969 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
970 #endif /* CONFIG_PPC_64K_PAGES */
971 
972 	/* Get PTE and page size from page tables */
973 	ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
974 	if (ptep == NULL || !pte_present(*ptep)) {
975 		DBG_LOW(" no PTE !\n");
976 		return 1;
977 	}
978 
979 	/* Add _PAGE_PRESENT to the required access perm */
980 	access |= _PAGE_PRESENT;
981 
982 	/* Pre-check access permissions (will be re-checked atomically
983 	 * in __hash_page_XX but this pre-check is a fast path
984 	 */
985 	if (access & ~pte_val(*ptep)) {
986 		DBG_LOW(" no access !\n");
987 		return 1;
988 	}
989 
990 #ifdef CONFIG_HUGETLB_PAGE
991 	if (hugeshift)
992 		return __hash_page_huge(ea, access, vsid, ptep, trap, local,
993 					ssize, hugeshift, psize);
994 #endif /* CONFIG_HUGETLB_PAGE */
995 
996 #ifndef CONFIG_PPC_64K_PAGES
997 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
998 #else
999 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1000 		pte_val(*(ptep + PTRS_PER_PTE)));
1001 #endif
1002 	/* Do actual hashing */
1003 #ifdef CONFIG_PPC_64K_PAGES
1004 	/* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1005 	if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1006 		demote_segment_4k(mm, ea);
1007 		psize = MMU_PAGE_4K;
1008 	}
1009 
1010 	/* If this PTE is non-cacheable and we have restrictions on
1011 	 * using non cacheable large pages, then we switch to 4k
1012 	 */
1013 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1014 	    (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1015 		if (user_region) {
1016 			demote_segment_4k(mm, ea);
1017 			psize = MMU_PAGE_4K;
1018 		} else if (ea < VMALLOC_END) {
1019 			/*
1020 			 * some driver did a non-cacheable mapping
1021 			 * in vmalloc space, so switch vmalloc
1022 			 * to 4k pages
1023 			 */
1024 			printk(KERN_ALERT "Reducing vmalloc segment "
1025 			       "to 4kB pages because of "
1026 			       "non-cacheable mapping\n");
1027 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1028 #ifdef CONFIG_SPU_BASE
1029 			spu_flush_all_slbs(mm);
1030 #endif
1031 		}
1032 	}
1033 	if (user_region) {
1034 		if (psize != get_paca_psize(ea)) {
1035 			get_paca()->context = mm->context;
1036 			slb_flush_and_rebolt();
1037 		}
1038 	} else if (get_paca()->vmalloc_sllp !=
1039 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1040 		get_paca()->vmalloc_sllp =
1041 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1042 		slb_vmalloc_update();
1043 	}
1044 #endif /* CONFIG_PPC_64K_PAGES */
1045 
1046 #ifdef CONFIG_PPC_HAS_HASH_64K
1047 	if (psize == MMU_PAGE_64K)
1048 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1049 	else
1050 #endif /* CONFIG_PPC_HAS_HASH_64K */
1051 	{
1052 		int spp = subpage_protection(mm, ea);
1053 		if (access & spp)
1054 			rc = -2;
1055 		else
1056 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1057 					    local, ssize, spp);
1058 	}
1059 
1060 	/* Dump some info in case of hash insertion failure, they should
1061 	 * never happen so it is really useful to know if/when they do
1062 	 */
1063 	if (rc == -1)
1064 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1065 				   pte_val(*ptep));
1066 #ifndef CONFIG_PPC_64K_PAGES
1067 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1068 #else
1069 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1070 		pte_val(*(ptep + PTRS_PER_PTE)));
1071 #endif
1072 	DBG_LOW(" -> rc=%d\n", rc);
1073 	return rc;
1074 }
1075 EXPORT_SYMBOL_GPL(hash_page);
1076 
hash_preload(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap)1077 void hash_preload(struct mm_struct *mm, unsigned long ea,
1078 		  unsigned long access, unsigned long trap)
1079 {
1080 	unsigned long vsid;
1081 	pgd_t *pgdir;
1082 	pte_t *ptep;
1083 	unsigned long flags;
1084 	int rc, ssize, local = 0;
1085 
1086 	BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1087 
1088 #ifdef CONFIG_PPC_MM_SLICES
1089 	/* We only prefault standard pages for now */
1090 	if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1091 		return;
1092 #endif
1093 
1094 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1095 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1096 
1097 	/* Get Linux PTE if available */
1098 	pgdir = mm->pgd;
1099 	if (pgdir == NULL)
1100 		return;
1101 	ptep = find_linux_pte(pgdir, ea);
1102 	if (!ptep)
1103 		return;
1104 
1105 #ifdef CONFIG_PPC_64K_PAGES
1106 	/* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1107 	 * a 64K kernel), then we don't preload, hash_page() will take
1108 	 * care of it once we actually try to access the page.
1109 	 * That way we don't have to duplicate all of the logic for segment
1110 	 * page size demotion here
1111 	 */
1112 	if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1113 		return;
1114 #endif /* CONFIG_PPC_64K_PAGES */
1115 
1116 	/* Get VSID */
1117 	ssize = user_segment_size(ea);
1118 	vsid = get_vsid(mm->context.id, ea, ssize);
1119 
1120 	/* Hash doesn't like irqs */
1121 	local_irq_save(flags);
1122 
1123 	/* Is that local to this CPU ? */
1124 	if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1125 		local = 1;
1126 
1127 	/* Hash it in */
1128 #ifdef CONFIG_PPC_HAS_HASH_64K
1129 	if (mm->context.user_psize == MMU_PAGE_64K)
1130 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1131 	else
1132 #endif /* CONFIG_PPC_HAS_HASH_64K */
1133 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1134 				    subpage_protection(mm, ea));
1135 
1136 	/* Dump some info in case of hash insertion failure, they should
1137 	 * never happen so it is really useful to know if/when they do
1138 	 */
1139 	if (rc == -1)
1140 		hash_failure_debug(ea, access, vsid, trap, ssize,
1141 				   mm->context.user_psize, pte_val(*ptep));
1142 
1143 	local_irq_restore(flags);
1144 }
1145 
1146 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1147  *          do not forget to update the assembly call site !
1148  */
flush_hash_page(unsigned long va,real_pte_t pte,int psize,int ssize,int local)1149 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1150 		     int local)
1151 {
1152 	unsigned long hash, index, shift, hidx, slot;
1153 
1154 	DBG_LOW("flush_hash_page(va=%016lx)\n", va);
1155 	pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1156 		hash = hpt_hash(va, shift, ssize);
1157 		hidx = __rpte_to_hidx(pte, index);
1158 		if (hidx & _PTEIDX_SECONDARY)
1159 			hash = ~hash;
1160 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1161 		slot += hidx & _PTEIDX_GROUP_IX;
1162 		DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1163 		ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1164 	} pte_iterate_hashed_end();
1165 }
1166 
flush_hash_range(unsigned long number,int local)1167 void flush_hash_range(unsigned long number, int local)
1168 {
1169 	if (ppc_md.flush_hash_range)
1170 		ppc_md.flush_hash_range(number, local);
1171 	else {
1172 		int i;
1173 		struct ppc64_tlb_batch *batch =
1174 			&__get_cpu_var(ppc64_tlb_batch);
1175 
1176 		for (i = 0; i < number; i++)
1177 			flush_hash_page(batch->vaddr[i], batch->pte[i],
1178 					batch->psize, batch->ssize, local);
1179 	}
1180 }
1181 
1182 /*
1183  * low_hash_fault is called when we the low level hash code failed
1184  * to instert a PTE due to an hypervisor error
1185  */
low_hash_fault(struct pt_regs * regs,unsigned long address,int rc)1186 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1187 {
1188 	if (user_mode(regs)) {
1189 #ifdef CONFIG_PPC_SUBPAGE_PROT
1190 		if (rc == -2)
1191 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1192 		else
1193 #endif
1194 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1195 	} else
1196 		bad_page_fault(regs, address, SIGBUS);
1197 }
1198 
1199 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)1200 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1201 {
1202 	unsigned long hash, hpteg;
1203 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1204 	unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1205 	unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1206 	int ret;
1207 
1208 	hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1209 	hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1210 
1211 	ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1212 				 mode, HPTE_V_BOLTED,
1213 				 mmu_linear_psize, mmu_kernel_ssize);
1214 	BUG_ON (ret < 0);
1215 	spin_lock(&linear_map_hash_lock);
1216 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1217 	linear_map_hash_slots[lmi] = ret | 0x80;
1218 	spin_unlock(&linear_map_hash_lock);
1219 }
1220 
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)1221 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1222 {
1223 	unsigned long hash, hidx, slot;
1224 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1225 	unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1226 
1227 	hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1228 	spin_lock(&linear_map_hash_lock);
1229 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1230 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1231 	linear_map_hash_slots[lmi] = 0;
1232 	spin_unlock(&linear_map_hash_lock);
1233 	if (hidx & _PTEIDX_SECONDARY)
1234 		hash = ~hash;
1235 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1236 	slot += hidx & _PTEIDX_GROUP_IX;
1237 	ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1238 }
1239 
kernel_map_pages(struct page * page,int numpages,int enable)1240 void kernel_map_pages(struct page *page, int numpages, int enable)
1241 {
1242 	unsigned long flags, vaddr, lmi;
1243 	int i;
1244 
1245 	local_irq_save(flags);
1246 	for (i = 0; i < numpages; i++, page++) {
1247 		vaddr = (unsigned long)page_address(page);
1248 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1249 		if (lmi >= linear_map_hash_count)
1250 			continue;
1251 		if (enable)
1252 			kernel_map_linear_page(vaddr, lmi);
1253 		else
1254 			kernel_unmap_linear_page(vaddr, lmi);
1255 	}
1256 	local_irq_restore(flags);
1257 }
1258 #endif /* CONFIG_DEBUG_PAGEALLOC */
1259 
setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)1260 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1261 				phys_addr_t first_memblock_size)
1262 {
1263 	/* We don't currently support the first MEMBLOCK not mapping 0
1264 	 * physical on those processors
1265 	 */
1266 	BUG_ON(first_memblock_base != 0);
1267 
1268 	/* On LPAR systems, the first entry is our RMA region,
1269 	 * non-LPAR 64-bit hash MMU systems don't have a limitation
1270 	 * on real mode access, but using the first entry works well
1271 	 * enough. We also clamp it to 1G to avoid some funky things
1272 	 * such as RTAS bugs etc...
1273 	 */
1274 	ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1275 
1276 	/* Finally limit subsequent allocations */
1277 	memblock_set_current_limit(ppc64_rma_size);
1278 }
1279