1 /*
2  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
3  *
4  * Author: Yu Liu, yu.liu@freescale.com
5  *
6  * Description:
7  * This file is based on arch/powerpc/kvm/44x_tlb.c,
8  * by Hollis Blanchard <hollisb@us.ibm.com>.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  */
14 
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_host.h>
20 #include <linux/highmem.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_e500.h>
23 
24 #include "../mm/mmu_decl.h"
25 #include "e500_tlb.h"
26 #include "trace.h"
27 #include "timing.h"
28 
29 #define to_htlb1_esel(esel) (tlb1_entry_num - (esel) - 1)
30 
31 struct id {
32 	unsigned long val;
33 	struct id **pentry;
34 };
35 
36 #define NUM_TIDS 256
37 
38 /*
39  * This table provide mappings from:
40  * (guestAS,guestTID,guestPR) --> ID of physical cpu
41  * guestAS	[0..1]
42  * guestTID	[0..255]
43  * guestPR	[0..1]
44  * ID		[1..255]
45  * Each vcpu keeps one vcpu_id_table.
46  */
47 struct vcpu_id_table {
48 	struct id id[2][NUM_TIDS][2];
49 };
50 
51 /*
52  * This table provide reversed mappings of vcpu_id_table:
53  * ID --> address of vcpu_id_table item.
54  * Each physical core has one pcpu_id_table.
55  */
56 struct pcpu_id_table {
57 	struct id *entry[NUM_TIDS];
58 };
59 
60 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
61 
62 /* This variable keeps last used shadow ID on local core.
63  * The valid range of shadow ID is [1..255] */
64 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
65 
66 static unsigned int tlb1_entry_num;
67 
68 /*
69  * Allocate a free shadow id and setup a valid sid mapping in given entry.
70  * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
71  *
72  * The caller must have preemption disabled, and keep it that way until
73  * it has finished with the returned shadow id (either written into the
74  * TLB or arch.shadow_pid, or discarded).
75  */
local_sid_setup_one(struct id * entry)76 static inline int local_sid_setup_one(struct id *entry)
77 {
78 	unsigned long sid;
79 	int ret = -1;
80 
81 	sid = ++(__get_cpu_var(pcpu_last_used_sid));
82 	if (sid < NUM_TIDS) {
83 		__get_cpu_var(pcpu_sids).entry[sid] = entry;
84 		entry->val = sid;
85 		entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid];
86 		ret = sid;
87 	}
88 
89 	/*
90 	 * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
91 	 * the caller will invalidate everything and start over.
92 	 *
93 	 * sid > NUM_TIDS indicates a race, which we disable preemption to
94 	 * avoid.
95 	 */
96 	WARN_ON(sid > NUM_TIDS);
97 
98 	return ret;
99 }
100 
101 /*
102  * Check if given entry contain a valid shadow id mapping.
103  * An ID mapping is considered valid only if
104  * both vcpu and pcpu know this mapping.
105  *
106  * The caller must have preemption disabled, and keep it that way until
107  * it has finished with the returned shadow id (either written into the
108  * TLB or arch.shadow_pid, or discarded).
109  */
local_sid_lookup(struct id * entry)110 static inline int local_sid_lookup(struct id *entry)
111 {
112 	if (entry && entry->val != 0 &&
113 	    __get_cpu_var(pcpu_sids).entry[entry->val] == entry &&
114 	    entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val])
115 		return entry->val;
116 	return -1;
117 }
118 
119 /* Invalidate all id mappings on local core */
local_sid_destroy_all(void)120 static inline void local_sid_destroy_all(void)
121 {
122 	preempt_disable();
123 	__get_cpu_var(pcpu_last_used_sid) = 0;
124 	memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids)));
125 	preempt_enable();
126 }
127 
kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 * vcpu_e500)128 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
129 {
130 	vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
131 	return vcpu_e500->idt;
132 }
133 
kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 * vcpu_e500)134 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
135 {
136 	kfree(vcpu_e500->idt);
137 }
138 
139 /* Invalidate all mappings on vcpu */
kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 * vcpu_e500)140 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
141 {
142 	memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
143 
144 	/* Update shadow pid when mappings are changed */
145 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
146 }
147 
148 /* Invalidate one ID mapping on vcpu */
kvmppc_e500_id_table_reset_one(struct kvmppc_vcpu_e500 * vcpu_e500,int as,int pid,int pr)149 static inline void kvmppc_e500_id_table_reset_one(
150 			       struct kvmppc_vcpu_e500 *vcpu_e500,
151 			       int as, int pid, int pr)
152 {
153 	struct vcpu_id_table *idt = vcpu_e500->idt;
154 
155 	BUG_ON(as >= 2);
156 	BUG_ON(pid >= NUM_TIDS);
157 	BUG_ON(pr >= 2);
158 
159 	idt->id[as][pid][pr].val = 0;
160 	idt->id[as][pid][pr].pentry = NULL;
161 
162 	/* Update shadow pid when mappings are changed */
163 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
164 }
165 
166 /*
167  * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
168  * This function first lookup if a valid mapping exists,
169  * if not, then creates a new one.
170  *
171  * The caller must have preemption disabled, and keep it that way until
172  * it has finished with the returned shadow id (either written into the
173  * TLB or arch.shadow_pid, or discarded).
174  */
kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 * vcpu_e500,unsigned int as,unsigned int gid,unsigned int pr,int avoid_recursion)175 static unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
176 					unsigned int as, unsigned int gid,
177 					unsigned int pr, int avoid_recursion)
178 {
179 	struct vcpu_id_table *idt = vcpu_e500->idt;
180 	int sid;
181 
182 	BUG_ON(as >= 2);
183 	BUG_ON(gid >= NUM_TIDS);
184 	BUG_ON(pr >= 2);
185 
186 	sid = local_sid_lookup(&idt->id[as][gid][pr]);
187 
188 	while (sid <= 0) {
189 		/* No mapping yet */
190 		sid = local_sid_setup_one(&idt->id[as][gid][pr]);
191 		if (sid <= 0) {
192 			_tlbil_all();
193 			local_sid_destroy_all();
194 		}
195 
196 		/* Update shadow pid when mappings are changed */
197 		if (!avoid_recursion)
198 			kvmppc_e500_recalc_shadow_pid(vcpu_e500);
199 	}
200 
201 	return sid;
202 }
203 
204 /* Map guest pid to shadow.
205  * We use PID to keep shadow of current guest non-zero PID,
206  * and use PID1 to keep shadow of guest zero PID.
207  * So that guest tlbe with TID=0 can be accessed at any time */
kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 * vcpu_e500)208 void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
209 {
210 	preempt_disable();
211 	vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
212 			get_cur_as(&vcpu_e500->vcpu),
213 			get_cur_pid(&vcpu_e500->vcpu),
214 			get_cur_pr(&vcpu_e500->vcpu), 1);
215 	vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
216 			get_cur_as(&vcpu_e500->vcpu), 0,
217 			get_cur_pr(&vcpu_e500->vcpu), 1);
218 	preempt_enable();
219 }
220 
kvmppc_dump_tlbs(struct kvm_vcpu * vcpu)221 void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu)
222 {
223 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
224 	struct tlbe *tlbe;
225 	int i, tlbsel;
226 
227 	printk("| %8s | %8s | %8s | %8s | %8s |\n",
228 			"nr", "mas1", "mas2", "mas3", "mas7");
229 
230 	for (tlbsel = 0; tlbsel < 2; tlbsel++) {
231 		printk("Guest TLB%d:\n", tlbsel);
232 		for (i = 0; i < vcpu_e500->gtlb_size[tlbsel]; i++) {
233 			tlbe = &vcpu_e500->gtlb_arch[tlbsel][i];
234 			if (tlbe->mas1 & MAS1_VALID)
235 				printk(" G[%d][%3d] |  %08X | %08X | %08X | %08X |\n",
236 					tlbsel, i, tlbe->mas1, tlbe->mas2,
237 					tlbe->mas3, tlbe->mas7);
238 		}
239 	}
240 }
241 
tlb0_get_next_victim(struct kvmppc_vcpu_e500 * vcpu_e500)242 static inline unsigned int tlb0_get_next_victim(
243 		struct kvmppc_vcpu_e500 *vcpu_e500)
244 {
245 	unsigned int victim;
246 
247 	victim = vcpu_e500->gtlb_nv[0]++;
248 	if (unlikely(vcpu_e500->gtlb_nv[0] >= KVM_E500_TLB0_WAY_NUM))
249 		vcpu_e500->gtlb_nv[0] = 0;
250 
251 	return victim;
252 }
253 
tlb1_max_shadow_size(void)254 static inline unsigned int tlb1_max_shadow_size(void)
255 {
256 	/* reserve one entry for magic page */
257 	return tlb1_entry_num - tlbcam_index - 1;
258 }
259 
tlbe_is_writable(struct tlbe * tlbe)260 static inline int tlbe_is_writable(struct tlbe *tlbe)
261 {
262 	return tlbe->mas3 & (MAS3_SW|MAS3_UW);
263 }
264 
e500_shadow_mas3_attrib(u32 mas3,int usermode)265 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
266 {
267 	/* Mask off reserved bits. */
268 	mas3 &= MAS3_ATTRIB_MASK;
269 
270 	if (!usermode) {
271 		/* Guest is in supervisor mode,
272 		 * so we need to translate guest
273 		 * supervisor permissions into user permissions. */
274 		mas3 &= ~E500_TLB_USER_PERM_MASK;
275 		mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
276 	}
277 
278 	return mas3 | E500_TLB_SUPER_PERM_MASK;
279 }
280 
e500_shadow_mas2_attrib(u32 mas2,int usermode)281 static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
282 {
283 #ifdef CONFIG_SMP
284 	return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
285 #else
286 	return mas2 & MAS2_ATTRIB_MASK;
287 #endif
288 }
289 
290 /*
291  * writing shadow tlb entry to host TLB
292  */
__write_host_tlbe(struct tlbe * stlbe,uint32_t mas0)293 static inline void __write_host_tlbe(struct tlbe *stlbe, uint32_t mas0)
294 {
295 	unsigned long flags;
296 
297 	local_irq_save(flags);
298 	mtspr(SPRN_MAS0, mas0);
299 	mtspr(SPRN_MAS1, stlbe->mas1);
300 	mtspr(SPRN_MAS2, stlbe->mas2);
301 	mtspr(SPRN_MAS3, stlbe->mas3);
302 	mtspr(SPRN_MAS7, stlbe->mas7);
303 	asm volatile("isync; tlbwe" : : : "memory");
304 	local_irq_restore(flags);
305 }
306 
write_host_tlbe(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int esel,struct tlbe * stlbe)307 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
308 		int tlbsel, int esel, struct tlbe *stlbe)
309 {
310 	if (tlbsel == 0) {
311 		__write_host_tlbe(stlbe,
312 				  MAS0_TLBSEL(0) |
313 				  MAS0_ESEL(esel & (KVM_E500_TLB0_WAY_NUM - 1)));
314 	} else {
315 		__write_host_tlbe(stlbe,
316 				  MAS0_TLBSEL(1) |
317 				  MAS0_ESEL(to_htlb1_esel(esel)));
318 	}
319 	trace_kvm_stlb_write(index_of(tlbsel, esel), stlbe->mas1, stlbe->mas2,
320 			     stlbe->mas3, stlbe->mas7);
321 }
322 
kvmppc_map_magic(struct kvm_vcpu * vcpu)323 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
324 {
325 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
326 	struct tlbe magic;
327 	ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
328 	unsigned int stid;
329 	pfn_t pfn;
330 
331 	pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
332 	get_page(pfn_to_page(pfn));
333 
334 	preempt_disable();
335 	stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
336 
337 	magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
338 		     MAS1_TSIZE(BOOK3E_PAGESZ_4K);
339 	magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
340 	magic.mas3 = (pfn << PAGE_SHIFT) |
341 		     MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
342 	magic.mas7 = pfn >> (32 - PAGE_SHIFT);
343 
344 	__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
345 	preempt_enable();
346 }
347 
kvmppc_e500_tlb_load(struct kvm_vcpu * vcpu,int cpu)348 void kvmppc_e500_tlb_load(struct kvm_vcpu *vcpu, int cpu)
349 {
350 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
351 
352 	/* Shadow PID may be expired on local core */
353 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
354 }
355 
kvmppc_e500_tlb_put(struct kvm_vcpu * vcpu)356 void kvmppc_e500_tlb_put(struct kvm_vcpu *vcpu)
357 {
358 }
359 
kvmppc_e500_stlbe_invalidate(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int esel)360 static void kvmppc_e500_stlbe_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500,
361 					 int tlbsel, int esel)
362 {
363 	struct tlbe *gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel];
364 	struct vcpu_id_table *idt = vcpu_e500->idt;
365 	unsigned int pr, tid, ts, pid;
366 	u32 val, eaddr;
367 	unsigned long flags;
368 
369 	ts = get_tlb_ts(gtlbe);
370 	tid = get_tlb_tid(gtlbe);
371 
372 	preempt_disable();
373 
374 	/* One guest ID may be mapped to two shadow IDs */
375 	for (pr = 0; pr < 2; pr++) {
376 		/*
377 		 * The shadow PID can have a valid mapping on at most one
378 		 * host CPU.  In the common case, it will be valid on this
379 		 * CPU, in which case (for TLB0) we do a local invalidation
380 		 * of the specific address.
381 		 *
382 		 * If the shadow PID is not valid on the current host CPU, or
383 		 * if we're invalidating a TLB1 entry, we invalidate the
384 		 * entire shadow PID.
385 		 */
386 		if (tlbsel == 1 ||
387 		    (pid = local_sid_lookup(&idt->id[ts][tid][pr])) <= 0) {
388 			kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
389 			continue;
390 		}
391 
392 		/*
393 		 * The guest is invalidating a TLB0 entry which is in a PID
394 		 * that has a valid shadow mapping on this host CPU.  We
395 		 * search host TLB0 to invalidate it's shadow TLB entry,
396 		 * similar to __tlbil_va except that we need to look in AS1.
397 		 */
398 		val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
399 		eaddr = get_tlb_eaddr(gtlbe);
400 
401 		local_irq_save(flags);
402 
403 		mtspr(SPRN_MAS6, val);
404 		asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
405 		val = mfspr(SPRN_MAS1);
406 		if (val & MAS1_VALID) {
407 			mtspr(SPRN_MAS1, val & ~MAS1_VALID);
408 			asm volatile("tlbwe");
409 		}
410 
411 		local_irq_restore(flags);
412 	}
413 
414 	preempt_enable();
415 }
416 
417 /* Search the guest TLB for a matching entry. */
kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 * vcpu_e500,gva_t eaddr,int tlbsel,unsigned int pid,int as)418 static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
419 		gva_t eaddr, int tlbsel, unsigned int pid, int as)
420 {
421 	int size = vcpu_e500->gtlb_size[tlbsel];
422 	int set_base;
423 	int i;
424 
425 	if (tlbsel == 0) {
426 		int mask = size / KVM_E500_TLB0_WAY_NUM - 1;
427 		set_base = (eaddr >> PAGE_SHIFT) & mask;
428 		set_base *= KVM_E500_TLB0_WAY_NUM;
429 		size = KVM_E500_TLB0_WAY_NUM;
430 	} else {
431 		set_base = 0;
432 	}
433 
434 	for (i = 0; i < size; i++) {
435 		struct tlbe *tlbe = &vcpu_e500->gtlb_arch[tlbsel][set_base + i];
436 		unsigned int tid;
437 
438 		if (eaddr < get_tlb_eaddr(tlbe))
439 			continue;
440 
441 		if (eaddr > get_tlb_end(tlbe))
442 			continue;
443 
444 		tid = get_tlb_tid(tlbe);
445 		if (tid && (tid != pid))
446 			continue;
447 
448 		if (!get_tlb_v(tlbe))
449 			continue;
450 
451 		if (get_tlb_ts(tlbe) != as && as != -1)
452 			continue;
453 
454 		return set_base + i;
455 	}
456 
457 	return -1;
458 }
459 
kvmppc_e500_priv_setup(struct tlbe_priv * priv,struct tlbe * gtlbe,pfn_t pfn)460 static inline void kvmppc_e500_priv_setup(struct tlbe_priv *priv,
461 					  struct tlbe *gtlbe,
462 					  pfn_t pfn)
463 {
464 	priv->pfn = pfn;
465 	priv->flags = E500_TLB_VALID;
466 
467 	if (tlbe_is_writable(gtlbe))
468 		priv->flags |= E500_TLB_DIRTY;
469 }
470 
kvmppc_e500_priv_release(struct tlbe_priv * priv)471 static inline void kvmppc_e500_priv_release(struct tlbe_priv *priv)
472 {
473 	if (priv->flags & E500_TLB_VALID) {
474 		if (priv->flags & E500_TLB_DIRTY)
475 			kvm_release_pfn_dirty(priv->pfn);
476 		else
477 			kvm_release_pfn_clean(priv->pfn);
478 
479 		priv->flags = 0;
480 	}
481 }
482 
kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu * vcpu,unsigned int eaddr,int as)483 static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
484 		unsigned int eaddr, int as)
485 {
486 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
487 	unsigned int victim, pidsel, tsized;
488 	int tlbsel;
489 
490 	/* since we only have two TLBs, only lower bit is used. */
491 	tlbsel = (vcpu_e500->mas4 >> 28) & 0x1;
492 	victim = (tlbsel == 0) ? tlb0_get_next_victim(vcpu_e500) : 0;
493 	pidsel = (vcpu_e500->mas4 >> 16) & 0xf;
494 	tsized = (vcpu_e500->mas4 >> 7) & 0x1f;
495 
496 	vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
497 		| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
498 	vcpu_e500->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
499 		| MAS1_TID(vcpu_e500->pid[pidsel])
500 		| MAS1_TSIZE(tsized);
501 	vcpu_e500->mas2 = (eaddr & MAS2_EPN)
502 		| (vcpu_e500->mas4 & MAS2_ATTRIB_MASK);
503 	vcpu_e500->mas3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
504 	vcpu_e500->mas6 = (vcpu_e500->mas6 & MAS6_SPID1)
505 		| (get_cur_pid(vcpu) << 16)
506 		| (as ? MAS6_SAS : 0);
507 	vcpu_e500->mas7 = 0;
508 }
509 
kvmppc_e500_setup_stlbe(struct kvmppc_vcpu_e500 * vcpu_e500,struct tlbe * gtlbe,int tsize,struct tlbe_priv * priv,u64 gvaddr,struct tlbe * stlbe)510 static inline void kvmppc_e500_setup_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
511 					   struct tlbe *gtlbe, int tsize,
512 					   struct tlbe_priv *priv,
513 					   u64 gvaddr, struct tlbe *stlbe)
514 {
515 	pfn_t pfn = priv->pfn;
516 	unsigned int stid;
517 
518 	stid = kvmppc_e500_get_sid(vcpu_e500, get_tlb_ts(gtlbe),
519 				   get_tlb_tid(gtlbe),
520 				   get_cur_pr(&vcpu_e500->vcpu), 0);
521 
522 	/* Force TS=1 IPROT=0 for all guest mappings. */
523 	stlbe->mas1 = MAS1_TSIZE(tsize)
524 		| MAS1_TID(stid) | MAS1_TS | MAS1_VALID;
525 	stlbe->mas2 = (gvaddr & MAS2_EPN)
526 		| e500_shadow_mas2_attrib(gtlbe->mas2,
527 				vcpu_e500->vcpu.arch.shared->msr & MSR_PR);
528 	stlbe->mas3 = ((pfn << PAGE_SHIFT) & MAS3_RPN)
529 		| e500_shadow_mas3_attrib(gtlbe->mas3,
530 				vcpu_e500->vcpu.arch.shared->msr & MSR_PR);
531 	stlbe->mas7 = (pfn >> (32 - PAGE_SHIFT)) & MAS7_RPN;
532 }
533 
534 
kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 * vcpu_e500,u64 gvaddr,gfn_t gfn,struct tlbe * gtlbe,int tlbsel,int esel,struct tlbe * stlbe)535 static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
536 	u64 gvaddr, gfn_t gfn, struct tlbe *gtlbe, int tlbsel, int esel,
537 	struct tlbe *stlbe)
538 {
539 	struct kvm_memory_slot *slot;
540 	unsigned long pfn, hva;
541 	int pfnmap = 0;
542 	int tsize = BOOK3E_PAGESZ_4K;
543 	struct tlbe_priv *priv;
544 
545 	/*
546 	 * Translate guest physical to true physical, acquiring
547 	 * a page reference if it is normal, non-reserved memory.
548 	 *
549 	 * gfn_to_memslot() must succeed because otherwise we wouldn't
550 	 * have gotten this far.  Eventually we should just pass the slot
551 	 * pointer through from the first lookup.
552 	 */
553 	slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
554 	hva = gfn_to_hva_memslot(slot, gfn);
555 
556 	if (tlbsel == 1) {
557 		struct vm_area_struct *vma;
558 		down_read(&current->mm->mmap_sem);
559 
560 		vma = find_vma(current->mm, hva);
561 		if (vma && hva >= vma->vm_start &&
562 		    (vma->vm_flags & VM_PFNMAP)) {
563 			/*
564 			 * This VMA is a physically contiguous region (e.g.
565 			 * /dev/mem) that bypasses normal Linux page
566 			 * management.  Find the overlap between the
567 			 * vma and the memslot.
568 			 */
569 
570 			unsigned long start, end;
571 			unsigned long slot_start, slot_end;
572 
573 			pfnmap = 1;
574 
575 			start = vma->vm_pgoff;
576 			end = start +
577 			      ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
578 
579 			pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
580 
581 			slot_start = pfn - (gfn - slot->base_gfn);
582 			slot_end = slot_start + slot->npages;
583 
584 			if (start < slot_start)
585 				start = slot_start;
586 			if (end > slot_end)
587 				end = slot_end;
588 
589 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
590 				MAS1_TSIZE_SHIFT;
591 
592 			/*
593 			 * e500 doesn't implement the lowest tsize bit,
594 			 * or 1K pages.
595 			 */
596 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
597 
598 			/*
599 			 * Now find the largest tsize (up to what the guest
600 			 * requested) that will cover gfn, stay within the
601 			 * range, and for which gfn and pfn are mutually
602 			 * aligned.
603 			 */
604 
605 			for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
606 				unsigned long gfn_start, gfn_end, tsize_pages;
607 				tsize_pages = 1 << (tsize - 2);
608 
609 				gfn_start = gfn & ~(tsize_pages - 1);
610 				gfn_end = gfn_start + tsize_pages;
611 
612 				if (gfn_start + pfn - gfn < start)
613 					continue;
614 				if (gfn_end + pfn - gfn > end)
615 					continue;
616 				if ((gfn & (tsize_pages - 1)) !=
617 				    (pfn & (tsize_pages - 1)))
618 					continue;
619 
620 				gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
621 				pfn &= ~(tsize_pages - 1);
622 				break;
623 			}
624 		}
625 
626 		up_read(&current->mm->mmap_sem);
627 	}
628 
629 	if (likely(!pfnmap)) {
630 		pfn = gfn_to_pfn_memslot(vcpu_e500->vcpu.kvm, slot, gfn);
631 		if (is_error_pfn(pfn)) {
632 			printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
633 					(long)gfn);
634 			kvm_release_pfn_clean(pfn);
635 			return;
636 		}
637 	}
638 
639 	/* Drop old priv and setup new one. */
640 	priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
641 	kvmppc_e500_priv_release(priv);
642 	kvmppc_e500_priv_setup(priv, gtlbe, pfn);
643 
644 	kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, tsize, priv, gvaddr, stlbe);
645 }
646 
647 /* XXX only map the one-one case, for now use TLB0 */
kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 * vcpu_e500,int esel,struct tlbe * stlbe)648 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500,
649 				int esel, struct tlbe *stlbe)
650 {
651 	struct tlbe *gtlbe;
652 
653 	gtlbe = &vcpu_e500->gtlb_arch[0][esel];
654 
655 	kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
656 			get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
657 			gtlbe, 0, esel, stlbe);
658 
659 	return esel;
660 }
661 
662 /* Caller must ensure that the specified guest TLB entry is safe to insert into
663  * the shadow TLB. */
664 /* XXX for both one-one and one-to-many , for now use TLB1 */
kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 * vcpu_e500,u64 gvaddr,gfn_t gfn,struct tlbe * gtlbe,struct tlbe * stlbe)665 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
666 		u64 gvaddr, gfn_t gfn, struct tlbe *gtlbe, struct tlbe *stlbe)
667 {
668 	unsigned int victim;
669 
670 	victim = vcpu_e500->gtlb_nv[1]++;
671 
672 	if (unlikely(vcpu_e500->gtlb_nv[1] >= tlb1_max_shadow_size()))
673 		vcpu_e500->gtlb_nv[1] = 0;
674 
675 	kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, victim, stlbe);
676 
677 	return victim;
678 }
679 
kvmppc_mmu_msr_notify(struct kvm_vcpu * vcpu,u32 old_msr)680 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
681 {
682 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
683 
684 	/* Recalc shadow pid since MSR changes */
685 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
686 }
687 
kvmppc_e500_gtlbe_invalidate(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int esel)688 static inline int kvmppc_e500_gtlbe_invalidate(
689 				struct kvmppc_vcpu_e500 *vcpu_e500,
690 				int tlbsel, int esel)
691 {
692 	struct tlbe *gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel];
693 
694 	if (unlikely(get_tlb_iprot(gtlbe)))
695 		return -1;
696 
697 	gtlbe->mas1 = 0;
698 
699 	return 0;
700 }
701 
kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 * vcpu_e500,ulong value)702 int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
703 {
704 	int esel;
705 
706 	if (value & MMUCSR0_TLB0FI)
707 		for (esel = 0; esel < vcpu_e500->gtlb_size[0]; esel++)
708 			kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
709 	if (value & MMUCSR0_TLB1FI)
710 		for (esel = 0; esel < vcpu_e500->gtlb_size[1]; esel++)
711 			kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
712 
713 	/* Invalidate all vcpu id mappings */
714 	kvmppc_e500_id_table_reset_all(vcpu_e500);
715 
716 	return EMULATE_DONE;
717 }
718 
kvmppc_e500_emul_tlbivax(struct kvm_vcpu * vcpu,int ra,int rb)719 int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb)
720 {
721 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
722 	unsigned int ia;
723 	int esel, tlbsel;
724 	gva_t ea;
725 
726 	ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb);
727 
728 	ia = (ea >> 2) & 0x1;
729 
730 	/* since we only have two TLBs, only lower bit is used. */
731 	tlbsel = (ea >> 3) & 0x1;
732 
733 	if (ia) {
734 		/* invalidate all entries */
735 		for (esel = 0; esel < vcpu_e500->gtlb_size[tlbsel]; esel++)
736 			kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
737 	} else {
738 		ea &= 0xfffff000;
739 		esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
740 				get_cur_pid(vcpu), -1);
741 		if (esel >= 0)
742 			kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
743 	}
744 
745 	/* Invalidate all vcpu id mappings */
746 	kvmppc_e500_id_table_reset_all(vcpu_e500);
747 
748 	return EMULATE_DONE;
749 }
750 
kvmppc_e500_emul_tlbre(struct kvm_vcpu * vcpu)751 int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
752 {
753 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
754 	int tlbsel, esel;
755 	struct tlbe *gtlbe;
756 
757 	tlbsel = get_tlb_tlbsel(vcpu_e500);
758 	esel = get_tlb_esel(vcpu_e500, tlbsel);
759 
760 	gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel];
761 	vcpu_e500->mas0 &= ~MAS0_NV(~0);
762 	vcpu_e500->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
763 	vcpu_e500->mas1 = gtlbe->mas1;
764 	vcpu_e500->mas2 = gtlbe->mas2;
765 	vcpu_e500->mas3 = gtlbe->mas3;
766 	vcpu_e500->mas7 = gtlbe->mas7;
767 
768 	return EMULATE_DONE;
769 }
770 
kvmppc_e500_emul_tlbsx(struct kvm_vcpu * vcpu,int rb)771 int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb)
772 {
773 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
774 	int as = !!get_cur_sas(vcpu_e500);
775 	unsigned int pid = get_cur_spid(vcpu_e500);
776 	int esel, tlbsel;
777 	struct tlbe *gtlbe = NULL;
778 	gva_t ea;
779 
780 	ea = kvmppc_get_gpr(vcpu, rb);
781 
782 	for (tlbsel = 0; tlbsel < 2; tlbsel++) {
783 		esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
784 		if (esel >= 0) {
785 			gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel];
786 			break;
787 		}
788 	}
789 
790 	if (gtlbe) {
791 		vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
792 			| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
793 		vcpu_e500->mas1 = gtlbe->mas1;
794 		vcpu_e500->mas2 = gtlbe->mas2;
795 		vcpu_e500->mas3 = gtlbe->mas3;
796 		vcpu_e500->mas7 = gtlbe->mas7;
797 	} else {
798 		int victim;
799 
800 		/* since we only have two TLBs, only lower bit is used. */
801 		tlbsel = vcpu_e500->mas4 >> 28 & 0x1;
802 		victim = (tlbsel == 0) ? tlb0_get_next_victim(vcpu_e500) : 0;
803 
804 		vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
805 			| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
806 		vcpu_e500->mas1 = (vcpu_e500->mas6 & MAS6_SPID0)
807 			| (vcpu_e500->mas6 & (MAS6_SAS ? MAS1_TS : 0))
808 			| (vcpu_e500->mas4 & MAS4_TSIZED(~0));
809 		vcpu_e500->mas2 &= MAS2_EPN;
810 		vcpu_e500->mas2 |= vcpu_e500->mas4 & MAS2_ATTRIB_MASK;
811 		vcpu_e500->mas3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
812 		vcpu_e500->mas7 = 0;
813 	}
814 
815 	kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
816 	return EMULATE_DONE;
817 }
818 
kvmppc_e500_emul_tlbwe(struct kvm_vcpu * vcpu)819 int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
820 {
821 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
822 	struct tlbe *gtlbe;
823 	int tlbsel, esel;
824 
825 	tlbsel = get_tlb_tlbsel(vcpu_e500);
826 	esel = get_tlb_esel(vcpu_e500, tlbsel);
827 
828 	gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel];
829 
830 	if (get_tlb_v(gtlbe))
831 		kvmppc_e500_stlbe_invalidate(vcpu_e500, tlbsel, esel);
832 
833 	gtlbe->mas1 = vcpu_e500->mas1;
834 	gtlbe->mas2 = vcpu_e500->mas2;
835 	gtlbe->mas3 = vcpu_e500->mas3;
836 	gtlbe->mas7 = vcpu_e500->mas7;
837 
838 	trace_kvm_gtlb_write(vcpu_e500->mas0, gtlbe->mas1, gtlbe->mas2,
839 			     gtlbe->mas3, gtlbe->mas7);
840 
841 	/* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
842 	if (tlbe_is_host_safe(vcpu, gtlbe)) {
843 		struct tlbe stlbe;
844 		int stlbsel, sesel;
845 		u64 eaddr;
846 		u64 raddr;
847 
848 		preempt_disable();
849 		switch (tlbsel) {
850 		case 0:
851 			/* TLB0 */
852 			gtlbe->mas1 &= ~MAS1_TSIZE(~0);
853 			gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
854 
855 			stlbsel = 0;
856 			sesel = kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
857 
858 			break;
859 
860 		case 1:
861 			/* TLB1 */
862 			eaddr = get_tlb_eaddr(gtlbe);
863 			raddr = get_tlb_raddr(gtlbe);
864 
865 			/* Create a 4KB mapping on the host.
866 			 * If the guest wanted a large page,
867 			 * only the first 4KB is mapped here and the rest
868 			 * are mapped on the fly. */
869 			stlbsel = 1;
870 			sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr,
871 					raddr >> PAGE_SHIFT, gtlbe, &stlbe);
872 			break;
873 
874 		default:
875 			BUG();
876 		}
877 		write_host_tlbe(vcpu_e500, stlbsel, sesel, &stlbe);
878 		preempt_enable();
879 	}
880 
881 	kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
882 	return EMULATE_DONE;
883 }
884 
kvmppc_mmu_itlb_index(struct kvm_vcpu * vcpu,gva_t eaddr)885 int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
886 {
887 	unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
888 
889 	return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
890 }
891 
kvmppc_mmu_dtlb_index(struct kvm_vcpu * vcpu,gva_t eaddr)892 int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
893 {
894 	unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
895 
896 	return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
897 }
898 
kvmppc_mmu_itlb_miss(struct kvm_vcpu * vcpu)899 void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
900 {
901 	unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
902 
903 	kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
904 }
905 
kvmppc_mmu_dtlb_miss(struct kvm_vcpu * vcpu)906 void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
907 {
908 	unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
909 
910 	kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
911 }
912 
kvmppc_mmu_xlate(struct kvm_vcpu * vcpu,unsigned int index,gva_t eaddr)913 gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
914 			gva_t eaddr)
915 {
916 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
917 	struct tlbe *gtlbe =
918 		&vcpu_e500->gtlb_arch[tlbsel_of(index)][esel_of(index)];
919 	u64 pgmask = get_tlb_bytes(gtlbe) - 1;
920 
921 	return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
922 }
923 
kvmppc_mmu_destroy(struct kvm_vcpu * vcpu)924 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
925 {
926 }
927 
kvmppc_mmu_map(struct kvm_vcpu * vcpu,u64 eaddr,gpa_t gpaddr,unsigned int index)928 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
929 			unsigned int index)
930 {
931 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
932 	struct tlbe_priv *priv;
933 	struct tlbe *gtlbe, stlbe;
934 	int tlbsel = tlbsel_of(index);
935 	int esel = esel_of(index);
936 	int stlbsel, sesel;
937 
938 	gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel];
939 
940 	preempt_disable();
941 	switch (tlbsel) {
942 	case 0:
943 		stlbsel = 0;
944 		sesel = esel;
945 		priv = &vcpu_e500->gtlb_priv[stlbsel][sesel];
946 
947 		kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, BOOK3E_PAGESZ_4K,
948 					priv, eaddr, &stlbe);
949 		break;
950 
951 	case 1: {
952 		gfn_t gfn = gpaddr >> PAGE_SHIFT;
953 
954 		stlbsel = 1;
955 		sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn,
956 					     gtlbe, &stlbe);
957 		break;
958 	}
959 
960 	default:
961 		BUG();
962 		break;
963 	}
964 
965 	write_host_tlbe(vcpu_e500, stlbsel, sesel, &stlbe);
966 	preempt_enable();
967 }
968 
kvmppc_e500_tlb_search(struct kvm_vcpu * vcpu,gva_t eaddr,unsigned int pid,int as)969 int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
970 				gva_t eaddr, unsigned int pid, int as)
971 {
972 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
973 	int esel, tlbsel;
974 
975 	for (tlbsel = 0; tlbsel < 2; tlbsel++) {
976 		esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
977 		if (esel >= 0)
978 			return index_of(tlbsel, esel);
979 	}
980 
981 	return -1;
982 }
983 
kvmppc_set_pid(struct kvm_vcpu * vcpu,u32 pid)984 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
985 {
986 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
987 
988 	if (vcpu->arch.pid != pid) {
989 		vcpu_e500->pid[0] = vcpu->arch.pid = pid;
990 		kvmppc_e500_recalc_shadow_pid(vcpu_e500);
991 	}
992 }
993 
kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 * vcpu_e500)994 void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
995 {
996 	struct tlbe *tlbe;
997 
998 	/* Insert large initial mapping for guest. */
999 	tlbe = &vcpu_e500->gtlb_arch[1][0];
1000 	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
1001 	tlbe->mas2 = 0;
1002 	tlbe->mas3 = E500_TLB_SUPER_PERM_MASK;
1003 	tlbe->mas7 = 0;
1004 
1005 	/* 4K map for serial output. Used by kernel wrapper. */
1006 	tlbe = &vcpu_e500->gtlb_arch[1][1];
1007 	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
1008 	tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
1009 	tlbe->mas3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
1010 	tlbe->mas7 = 0;
1011 }
1012 
kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 * vcpu_e500)1013 int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
1014 {
1015 	tlb1_entry_num = mfspr(SPRN_TLB1CFG) & 0xFFF;
1016 
1017 	vcpu_e500->gtlb_size[0] = KVM_E500_TLB0_SIZE;
1018 	vcpu_e500->gtlb_arch[0] =
1019 		kzalloc(sizeof(struct tlbe) * KVM_E500_TLB0_SIZE, GFP_KERNEL);
1020 	if (vcpu_e500->gtlb_arch[0] == NULL)
1021 		goto err_out;
1022 
1023 	vcpu_e500->gtlb_size[1] = KVM_E500_TLB1_SIZE;
1024 	vcpu_e500->gtlb_arch[1] =
1025 		kzalloc(sizeof(struct tlbe) * KVM_E500_TLB1_SIZE, GFP_KERNEL);
1026 	if (vcpu_e500->gtlb_arch[1] == NULL)
1027 		goto err_out_guest0;
1028 
1029 	vcpu_e500->gtlb_priv[0] = (struct tlbe_priv *)
1030 		kzalloc(sizeof(struct tlbe_priv) * KVM_E500_TLB0_SIZE, GFP_KERNEL);
1031 	if (vcpu_e500->gtlb_priv[0] == NULL)
1032 		goto err_out_guest1;
1033 	vcpu_e500->gtlb_priv[1] = (struct tlbe_priv *)
1034 		kzalloc(sizeof(struct tlbe_priv) * KVM_E500_TLB1_SIZE, GFP_KERNEL);
1035 
1036 	if (vcpu_e500->gtlb_priv[1] == NULL)
1037 		goto err_out_priv0;
1038 
1039 	if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
1040 		goto err_out_priv1;
1041 
1042 	/* Init TLB configuration register */
1043 	vcpu_e500->tlb0cfg = mfspr(SPRN_TLB0CFG) & ~0xfffUL;
1044 	vcpu_e500->tlb0cfg |= vcpu_e500->gtlb_size[0];
1045 	vcpu_e500->tlb1cfg = mfspr(SPRN_TLB1CFG) & ~0xfffUL;
1046 	vcpu_e500->tlb1cfg |= vcpu_e500->gtlb_size[1];
1047 
1048 	return 0;
1049 
1050 err_out_priv1:
1051 	kfree(vcpu_e500->gtlb_priv[1]);
1052 err_out_priv0:
1053 	kfree(vcpu_e500->gtlb_priv[0]);
1054 err_out_guest1:
1055 	kfree(vcpu_e500->gtlb_arch[1]);
1056 err_out_guest0:
1057 	kfree(vcpu_e500->gtlb_arch[0]);
1058 err_out:
1059 	return -1;
1060 }
1061 
kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 * vcpu_e500)1062 void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
1063 {
1064 	int stlbsel, i;
1065 
1066 	/* release all privs */
1067 	for (stlbsel = 0; stlbsel < 2; stlbsel++)
1068 		for (i = 0; i < vcpu_e500->gtlb_size[stlbsel]; i++) {
1069 			struct tlbe_priv *priv =
1070 				&vcpu_e500->gtlb_priv[stlbsel][i];
1071 			kvmppc_e500_priv_release(priv);
1072 		}
1073 
1074 	kvmppc_e500_id_table_free(vcpu_e500);
1075 	kfree(vcpu_e500->gtlb_arch[1]);
1076 	kfree(vcpu_e500->gtlb_arch[0]);
1077 }
1078