1 /*
2  * Performance event support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21 
22 struct cpu_hw_events {
23 	int n_events;
24 	int n_percpu;
25 	int disabled;
26 	int n_added;
27 	int n_limited;
28 	u8  pmcs_enabled;
29 	struct perf_event *event[MAX_HWEVENTS];
30 	u64 events[MAX_HWEVENTS];
31 	unsigned int flags[MAX_HWEVENTS];
32 	unsigned long mmcr[3];
33 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
36 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
37 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
38 
39 	unsigned int group_flag;
40 	int n_txn_start;
41 };
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
43 
44 struct power_pmu *ppmu;
45 
46 /*
47  * Normally, to ignore kernel events we set the FCS (freeze counters
48  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
49  * hypervisor bit set in the MSR, or if we are running on a processor
50  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
51  * then we need to use the FCHV bit to ignore kernel events.
52  */
53 static unsigned int freeze_events_kernel = MMCR0_FCS;
54 
55 /*
56  * 32-bit doesn't have MMCRA but does have an MMCR2,
57  * and a few other names are different.
58  */
59 #ifdef CONFIG_PPC32
60 
61 #define MMCR0_FCHV		0
62 #define MMCR0_PMCjCE		MMCR0_PMCnCE
63 
64 #define SPRN_MMCRA		SPRN_MMCR2
65 #define MMCRA_SAMPLE_ENABLE	0
66 
perf_ip_adjust(struct pt_regs * regs)67 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
68 {
69 	return 0;
70 }
perf_get_data_addr(struct pt_regs * regs,u64 * addrp)71 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
perf_get_misc_flags(struct pt_regs * regs)72 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
73 {
74 	return 0;
75 }
perf_read_regs(struct pt_regs * regs)76 static inline void perf_read_regs(struct pt_regs *regs) { }
perf_intr_is_nmi(struct pt_regs * regs)77 static inline int perf_intr_is_nmi(struct pt_regs *regs)
78 {
79 	return 0;
80 }
81 
82 #endif /* CONFIG_PPC32 */
83 
84 /*
85  * Things that are specific to 64-bit implementations.
86  */
87 #ifdef CONFIG_PPC64
88 
perf_ip_adjust(struct pt_regs * regs)89 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
90 {
91 	unsigned long mmcra = regs->dsisr;
92 
93 	if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
94 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
95 		if (slot > 1)
96 			return 4 * (slot - 1);
97 	}
98 	return 0;
99 }
100 
101 /*
102  * The user wants a data address recorded.
103  * If we're not doing instruction sampling, give them the SDAR
104  * (sampled data address).  If we are doing instruction sampling, then
105  * only give them the SDAR if it corresponds to the instruction
106  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
107  * bit in MMCRA.
108  */
perf_get_data_addr(struct pt_regs * regs,u64 * addrp)109 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
110 {
111 	unsigned long mmcra = regs->dsisr;
112 	unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
113 		POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
114 
115 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
116 		*addrp = mfspr(SPRN_SDAR);
117 }
118 
perf_get_misc_flags(struct pt_regs * regs)119 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
120 {
121 	unsigned long mmcra = regs->dsisr;
122 	unsigned long sihv = MMCRA_SIHV;
123 	unsigned long sipr = MMCRA_SIPR;
124 
125 	if (TRAP(regs) != 0xf00)
126 		return 0;	/* not a PMU interrupt */
127 
128 	if (ppmu->flags & PPMU_ALT_SIPR) {
129 		sihv = POWER6_MMCRA_SIHV;
130 		sipr = POWER6_MMCRA_SIPR;
131 	}
132 
133 	/* PR has priority over HV, so order below is important */
134 	if (mmcra & sipr)
135 		return PERF_RECORD_MISC_USER;
136 	if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV))
137 		return PERF_RECORD_MISC_HYPERVISOR;
138 	return PERF_RECORD_MISC_KERNEL;
139 }
140 
141 /*
142  * Overload regs->dsisr to store MMCRA so we only need to read it once
143  * on each interrupt.
144  */
perf_read_regs(struct pt_regs * regs)145 static inline void perf_read_regs(struct pt_regs *regs)
146 {
147 	regs->dsisr = mfspr(SPRN_MMCRA);
148 }
149 
150 /*
151  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
152  * it as an NMI.
153  */
perf_intr_is_nmi(struct pt_regs * regs)154 static inline int perf_intr_is_nmi(struct pt_regs *regs)
155 {
156 	return !regs->softe;
157 }
158 
159 #endif /* CONFIG_PPC64 */
160 
161 static void perf_event_interrupt(struct pt_regs *regs);
162 
perf_event_print_debug(void)163 void perf_event_print_debug(void)
164 {
165 }
166 
167 /*
168  * Read one performance monitor counter (PMC).
169  */
read_pmc(int idx)170 static unsigned long read_pmc(int idx)
171 {
172 	unsigned long val;
173 
174 	switch (idx) {
175 	case 1:
176 		val = mfspr(SPRN_PMC1);
177 		break;
178 	case 2:
179 		val = mfspr(SPRN_PMC2);
180 		break;
181 	case 3:
182 		val = mfspr(SPRN_PMC3);
183 		break;
184 	case 4:
185 		val = mfspr(SPRN_PMC4);
186 		break;
187 	case 5:
188 		val = mfspr(SPRN_PMC5);
189 		break;
190 	case 6:
191 		val = mfspr(SPRN_PMC6);
192 		break;
193 #ifdef CONFIG_PPC64
194 	case 7:
195 		val = mfspr(SPRN_PMC7);
196 		break;
197 	case 8:
198 		val = mfspr(SPRN_PMC8);
199 		break;
200 #endif /* CONFIG_PPC64 */
201 	default:
202 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
203 		val = 0;
204 	}
205 	return val;
206 }
207 
208 /*
209  * Write one PMC.
210  */
write_pmc(int idx,unsigned long val)211 static void write_pmc(int idx, unsigned long val)
212 {
213 	switch (idx) {
214 	case 1:
215 		mtspr(SPRN_PMC1, val);
216 		break;
217 	case 2:
218 		mtspr(SPRN_PMC2, val);
219 		break;
220 	case 3:
221 		mtspr(SPRN_PMC3, val);
222 		break;
223 	case 4:
224 		mtspr(SPRN_PMC4, val);
225 		break;
226 	case 5:
227 		mtspr(SPRN_PMC5, val);
228 		break;
229 	case 6:
230 		mtspr(SPRN_PMC6, val);
231 		break;
232 #ifdef CONFIG_PPC64
233 	case 7:
234 		mtspr(SPRN_PMC7, val);
235 		break;
236 	case 8:
237 		mtspr(SPRN_PMC8, val);
238 		break;
239 #endif /* CONFIG_PPC64 */
240 	default:
241 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
242 	}
243 }
244 
245 /*
246  * Check if a set of events can all go on the PMU at once.
247  * If they can't, this will look at alternative codes for the events
248  * and see if any combination of alternative codes is feasible.
249  * The feasible set is returned in event_id[].
250  */
power_check_constraints(struct cpu_hw_events * cpuhw,u64 event_id[],unsigned int cflags[],int n_ev)251 static int power_check_constraints(struct cpu_hw_events *cpuhw,
252 				   u64 event_id[], unsigned int cflags[],
253 				   int n_ev)
254 {
255 	unsigned long mask, value, nv;
256 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
257 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
258 	int i, j;
259 	unsigned long addf = ppmu->add_fields;
260 	unsigned long tadd = ppmu->test_adder;
261 
262 	if (n_ev > ppmu->n_counter)
263 		return -1;
264 
265 	/* First see if the events will go on as-is */
266 	for (i = 0; i < n_ev; ++i) {
267 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
268 		    && !ppmu->limited_pmc_event(event_id[i])) {
269 			ppmu->get_alternatives(event_id[i], cflags[i],
270 					       cpuhw->alternatives[i]);
271 			event_id[i] = cpuhw->alternatives[i][0];
272 		}
273 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
274 					 &cpuhw->avalues[i][0]))
275 			return -1;
276 	}
277 	value = mask = 0;
278 	for (i = 0; i < n_ev; ++i) {
279 		nv = (value | cpuhw->avalues[i][0]) +
280 			(value & cpuhw->avalues[i][0] & addf);
281 		if ((((nv + tadd) ^ value) & mask) != 0 ||
282 		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
283 		     cpuhw->amasks[i][0]) != 0)
284 			break;
285 		value = nv;
286 		mask |= cpuhw->amasks[i][0];
287 	}
288 	if (i == n_ev)
289 		return 0;	/* all OK */
290 
291 	/* doesn't work, gather alternatives... */
292 	if (!ppmu->get_alternatives)
293 		return -1;
294 	for (i = 0; i < n_ev; ++i) {
295 		choice[i] = 0;
296 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
297 						  cpuhw->alternatives[i]);
298 		for (j = 1; j < n_alt[i]; ++j)
299 			ppmu->get_constraint(cpuhw->alternatives[i][j],
300 					     &cpuhw->amasks[i][j],
301 					     &cpuhw->avalues[i][j]);
302 	}
303 
304 	/* enumerate all possibilities and see if any will work */
305 	i = 0;
306 	j = -1;
307 	value = mask = nv = 0;
308 	while (i < n_ev) {
309 		if (j >= 0) {
310 			/* we're backtracking, restore context */
311 			value = svalues[i];
312 			mask = smasks[i];
313 			j = choice[i];
314 		}
315 		/*
316 		 * See if any alternative k for event_id i,
317 		 * where k > j, will satisfy the constraints.
318 		 */
319 		while (++j < n_alt[i]) {
320 			nv = (value | cpuhw->avalues[i][j]) +
321 				(value & cpuhw->avalues[i][j] & addf);
322 			if ((((nv + tadd) ^ value) & mask) == 0 &&
323 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
324 			     & cpuhw->amasks[i][j]) == 0)
325 				break;
326 		}
327 		if (j >= n_alt[i]) {
328 			/*
329 			 * No feasible alternative, backtrack
330 			 * to event_id i-1 and continue enumerating its
331 			 * alternatives from where we got up to.
332 			 */
333 			if (--i < 0)
334 				return -1;
335 		} else {
336 			/*
337 			 * Found a feasible alternative for event_id i,
338 			 * remember where we got up to with this event_id,
339 			 * go on to the next event_id, and start with
340 			 * the first alternative for it.
341 			 */
342 			choice[i] = j;
343 			svalues[i] = value;
344 			smasks[i] = mask;
345 			value = nv;
346 			mask |= cpuhw->amasks[i][j];
347 			++i;
348 			j = -1;
349 		}
350 	}
351 
352 	/* OK, we have a feasible combination, tell the caller the solution */
353 	for (i = 0; i < n_ev; ++i)
354 		event_id[i] = cpuhw->alternatives[i][choice[i]];
355 	return 0;
356 }
357 
358 /*
359  * Check if newly-added events have consistent settings for
360  * exclude_{user,kernel,hv} with each other and any previously
361  * added events.
362  */
check_excludes(struct perf_event ** ctrs,unsigned int cflags[],int n_prev,int n_new)363 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
364 			  int n_prev, int n_new)
365 {
366 	int eu = 0, ek = 0, eh = 0;
367 	int i, n, first;
368 	struct perf_event *event;
369 
370 	n = n_prev + n_new;
371 	if (n <= 1)
372 		return 0;
373 
374 	first = 1;
375 	for (i = 0; i < n; ++i) {
376 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
377 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
378 			continue;
379 		}
380 		event = ctrs[i];
381 		if (first) {
382 			eu = event->attr.exclude_user;
383 			ek = event->attr.exclude_kernel;
384 			eh = event->attr.exclude_hv;
385 			first = 0;
386 		} else if (event->attr.exclude_user != eu ||
387 			   event->attr.exclude_kernel != ek ||
388 			   event->attr.exclude_hv != eh) {
389 			return -EAGAIN;
390 		}
391 	}
392 
393 	if (eu || ek || eh)
394 		for (i = 0; i < n; ++i)
395 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
396 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
397 
398 	return 0;
399 }
400 
check_and_compute_delta(u64 prev,u64 val)401 static u64 check_and_compute_delta(u64 prev, u64 val)
402 {
403 	u64 delta = (val - prev) & 0xfffffffful;
404 
405 	/*
406 	 * POWER7 can roll back counter values, if the new value is smaller
407 	 * than the previous value it will cause the delta and the counter to
408 	 * have bogus values unless we rolled a counter over.  If a coutner is
409 	 * rolled back, it will be smaller, but within 256, which is the maximum
410 	 * number of events to rollback at once.  If we dectect a rollback
411 	 * return 0.  This can lead to a small lack of precision in the
412 	 * counters.
413 	 */
414 	if (prev > val && (prev - val) < 256)
415 		delta = 0;
416 
417 	return delta;
418 }
419 
power_pmu_read(struct perf_event * event)420 static void power_pmu_read(struct perf_event *event)
421 {
422 	s64 val, delta, prev;
423 
424 	if (event->hw.state & PERF_HES_STOPPED)
425 		return;
426 
427 	if (!event->hw.idx)
428 		return;
429 	/*
430 	 * Performance monitor interrupts come even when interrupts
431 	 * are soft-disabled, as long as interrupts are hard-enabled.
432 	 * Therefore we treat them like NMIs.
433 	 */
434 	do {
435 		prev = local64_read(&event->hw.prev_count);
436 		barrier();
437 		val = read_pmc(event->hw.idx);
438 		delta = check_and_compute_delta(prev, val);
439 		if (!delta)
440 			return;
441 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
442 
443 	local64_add(delta, &event->count);
444 	local64_sub(delta, &event->hw.period_left);
445 }
446 
447 /*
448  * On some machines, PMC5 and PMC6 can't be written, don't respect
449  * the freeze conditions, and don't generate interrupts.  This tells
450  * us if `event' is using such a PMC.
451  */
is_limited_pmc(int pmcnum)452 static int is_limited_pmc(int pmcnum)
453 {
454 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
455 		&& (pmcnum == 5 || pmcnum == 6);
456 }
457 
freeze_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)458 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
459 				    unsigned long pmc5, unsigned long pmc6)
460 {
461 	struct perf_event *event;
462 	u64 val, prev, delta;
463 	int i;
464 
465 	for (i = 0; i < cpuhw->n_limited; ++i) {
466 		event = cpuhw->limited_counter[i];
467 		if (!event->hw.idx)
468 			continue;
469 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
470 		prev = local64_read(&event->hw.prev_count);
471 		event->hw.idx = 0;
472 		delta = check_and_compute_delta(prev, val);
473 		if (delta)
474 			local64_add(delta, &event->count);
475 	}
476 }
477 
thaw_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)478 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
479 				  unsigned long pmc5, unsigned long pmc6)
480 {
481 	struct perf_event *event;
482 	u64 val, prev;
483 	int i;
484 
485 	for (i = 0; i < cpuhw->n_limited; ++i) {
486 		event = cpuhw->limited_counter[i];
487 		event->hw.idx = cpuhw->limited_hwidx[i];
488 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
489 		prev = local64_read(&event->hw.prev_count);
490 		if (check_and_compute_delta(prev, val))
491 			local64_set(&event->hw.prev_count, val);
492 		perf_event_update_userpage(event);
493 	}
494 }
495 
496 /*
497  * Since limited events don't respect the freeze conditions, we
498  * have to read them immediately after freezing or unfreezing the
499  * other events.  We try to keep the values from the limited
500  * events as consistent as possible by keeping the delay (in
501  * cycles and instructions) between freezing/unfreezing and reading
502  * the limited events as small and consistent as possible.
503  * Therefore, if any limited events are in use, we read them
504  * both, and always in the same order, to minimize variability,
505  * and do it inside the same asm that writes MMCR0.
506  */
write_mmcr0(struct cpu_hw_events * cpuhw,unsigned long mmcr0)507 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
508 {
509 	unsigned long pmc5, pmc6;
510 
511 	if (!cpuhw->n_limited) {
512 		mtspr(SPRN_MMCR0, mmcr0);
513 		return;
514 	}
515 
516 	/*
517 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
518 	 * To ensure we don't get a performance monitor interrupt
519 	 * between writing MMCR0 and freezing/thawing the limited
520 	 * events, we first write MMCR0 with the event overflow
521 	 * interrupt enable bits turned off.
522 	 */
523 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
524 		     : "=&r" (pmc5), "=&r" (pmc6)
525 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
526 		       "i" (SPRN_MMCR0),
527 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
528 
529 	if (mmcr0 & MMCR0_FC)
530 		freeze_limited_counters(cpuhw, pmc5, pmc6);
531 	else
532 		thaw_limited_counters(cpuhw, pmc5, pmc6);
533 
534 	/*
535 	 * Write the full MMCR0 including the event overflow interrupt
536 	 * enable bits, if necessary.
537 	 */
538 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
539 		mtspr(SPRN_MMCR0, mmcr0);
540 }
541 
542 /*
543  * Disable all events to prevent PMU interrupts and to allow
544  * events to be added or removed.
545  */
power_pmu_disable(struct pmu * pmu)546 static void power_pmu_disable(struct pmu *pmu)
547 {
548 	struct cpu_hw_events *cpuhw;
549 	unsigned long flags;
550 
551 	if (!ppmu)
552 		return;
553 	local_irq_save(flags);
554 	cpuhw = &__get_cpu_var(cpu_hw_events);
555 
556 	if (!cpuhw->disabled) {
557 		cpuhw->disabled = 1;
558 		cpuhw->n_added = 0;
559 
560 		/*
561 		 * Check if we ever enabled the PMU on this cpu.
562 		 */
563 		if (!cpuhw->pmcs_enabled) {
564 			ppc_enable_pmcs();
565 			cpuhw->pmcs_enabled = 1;
566 		}
567 
568 		/*
569 		 * Disable instruction sampling if it was enabled
570 		 */
571 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
572 			mtspr(SPRN_MMCRA,
573 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
574 			mb();
575 		}
576 
577 		/*
578 		 * Set the 'freeze counters' bit.
579 		 * The barrier is to make sure the mtspr has been
580 		 * executed and the PMU has frozen the events
581 		 * before we return.
582 		 */
583 		write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
584 		mb();
585 	}
586 	local_irq_restore(flags);
587 }
588 
589 /*
590  * Re-enable all events if disable == 0.
591  * If we were previously disabled and events were added, then
592  * put the new config on the PMU.
593  */
power_pmu_enable(struct pmu * pmu)594 static void power_pmu_enable(struct pmu *pmu)
595 {
596 	struct perf_event *event;
597 	struct cpu_hw_events *cpuhw;
598 	unsigned long flags;
599 	long i;
600 	unsigned long val;
601 	s64 left;
602 	unsigned int hwc_index[MAX_HWEVENTS];
603 	int n_lim;
604 	int idx;
605 
606 	if (!ppmu)
607 		return;
608 	local_irq_save(flags);
609 	cpuhw = &__get_cpu_var(cpu_hw_events);
610 	if (!cpuhw->disabled) {
611 		local_irq_restore(flags);
612 		return;
613 	}
614 	cpuhw->disabled = 0;
615 
616 	/*
617 	 * If we didn't change anything, or only removed events,
618 	 * no need to recalculate MMCR* settings and reset the PMCs.
619 	 * Just reenable the PMU with the current MMCR* settings
620 	 * (possibly updated for removal of events).
621 	 */
622 	if (!cpuhw->n_added) {
623 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
624 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
625 		if (cpuhw->n_events == 0)
626 			ppc_set_pmu_inuse(0);
627 		goto out_enable;
628 	}
629 
630 	/*
631 	 * Compute MMCR* values for the new set of events
632 	 */
633 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
634 			       cpuhw->mmcr)) {
635 		/* shouldn't ever get here */
636 		printk(KERN_ERR "oops compute_mmcr failed\n");
637 		goto out;
638 	}
639 
640 	/*
641 	 * Add in MMCR0 freeze bits corresponding to the
642 	 * attr.exclude_* bits for the first event.
643 	 * We have already checked that all events have the
644 	 * same values for these bits as the first event.
645 	 */
646 	event = cpuhw->event[0];
647 	if (event->attr.exclude_user)
648 		cpuhw->mmcr[0] |= MMCR0_FCP;
649 	if (event->attr.exclude_kernel)
650 		cpuhw->mmcr[0] |= freeze_events_kernel;
651 	if (event->attr.exclude_hv)
652 		cpuhw->mmcr[0] |= MMCR0_FCHV;
653 
654 	/*
655 	 * Write the new configuration to MMCR* with the freeze
656 	 * bit set and set the hardware events to their initial values.
657 	 * Then unfreeze the events.
658 	 */
659 	ppc_set_pmu_inuse(1);
660 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
661 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
662 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
663 				| MMCR0_FC);
664 
665 	/*
666 	 * Read off any pre-existing events that need to move
667 	 * to another PMC.
668 	 */
669 	for (i = 0; i < cpuhw->n_events; ++i) {
670 		event = cpuhw->event[i];
671 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
672 			power_pmu_read(event);
673 			write_pmc(event->hw.idx, 0);
674 			event->hw.idx = 0;
675 		}
676 	}
677 
678 	/*
679 	 * Initialize the PMCs for all the new and moved events.
680 	 */
681 	cpuhw->n_limited = n_lim = 0;
682 	for (i = 0; i < cpuhw->n_events; ++i) {
683 		event = cpuhw->event[i];
684 		if (event->hw.idx)
685 			continue;
686 		idx = hwc_index[i] + 1;
687 		if (is_limited_pmc(idx)) {
688 			cpuhw->limited_counter[n_lim] = event;
689 			cpuhw->limited_hwidx[n_lim] = idx;
690 			++n_lim;
691 			continue;
692 		}
693 		val = 0;
694 		if (event->hw.sample_period) {
695 			left = local64_read(&event->hw.period_left);
696 			if (left < 0x80000000L)
697 				val = 0x80000000L - left;
698 		}
699 		local64_set(&event->hw.prev_count, val);
700 		event->hw.idx = idx;
701 		if (event->hw.state & PERF_HES_STOPPED)
702 			val = 0;
703 		write_pmc(idx, val);
704 		perf_event_update_userpage(event);
705 	}
706 	cpuhw->n_limited = n_lim;
707 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
708 
709  out_enable:
710 	mb();
711 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
712 
713 	/*
714 	 * Enable instruction sampling if necessary
715 	 */
716 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
717 		mb();
718 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
719 	}
720 
721  out:
722 	local_irq_restore(flags);
723 }
724 
collect_events(struct perf_event * group,int max_count,struct perf_event * ctrs[],u64 * events,unsigned int * flags)725 static int collect_events(struct perf_event *group, int max_count,
726 			  struct perf_event *ctrs[], u64 *events,
727 			  unsigned int *flags)
728 {
729 	int n = 0;
730 	struct perf_event *event;
731 
732 	if (!is_software_event(group)) {
733 		if (n >= max_count)
734 			return -1;
735 		ctrs[n] = group;
736 		flags[n] = group->hw.event_base;
737 		events[n++] = group->hw.config;
738 	}
739 	list_for_each_entry(event, &group->sibling_list, group_entry) {
740 		if (!is_software_event(event) &&
741 		    event->state != PERF_EVENT_STATE_OFF) {
742 			if (n >= max_count)
743 				return -1;
744 			ctrs[n] = event;
745 			flags[n] = event->hw.event_base;
746 			events[n++] = event->hw.config;
747 		}
748 	}
749 	return n;
750 }
751 
752 /*
753  * Add a event to the PMU.
754  * If all events are not already frozen, then we disable and
755  * re-enable the PMU in order to get hw_perf_enable to do the
756  * actual work of reconfiguring the PMU.
757  */
power_pmu_add(struct perf_event * event,int ef_flags)758 static int power_pmu_add(struct perf_event *event, int ef_flags)
759 {
760 	struct cpu_hw_events *cpuhw;
761 	unsigned long flags;
762 	int n0;
763 	int ret = -EAGAIN;
764 
765 	local_irq_save(flags);
766 	perf_pmu_disable(event->pmu);
767 
768 	/*
769 	 * Add the event to the list (if there is room)
770 	 * and check whether the total set is still feasible.
771 	 */
772 	cpuhw = &__get_cpu_var(cpu_hw_events);
773 	n0 = cpuhw->n_events;
774 	if (n0 >= ppmu->n_counter)
775 		goto out;
776 	cpuhw->event[n0] = event;
777 	cpuhw->events[n0] = event->hw.config;
778 	cpuhw->flags[n0] = event->hw.event_base;
779 
780 	if (!(ef_flags & PERF_EF_START))
781 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
782 
783 	/*
784 	 * If group events scheduling transaction was started,
785 	 * skip the schedulability test here, it will be performed
786 	 * at commit time(->commit_txn) as a whole
787 	 */
788 	if (cpuhw->group_flag & PERF_EVENT_TXN)
789 		goto nocheck;
790 
791 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
792 		goto out;
793 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
794 		goto out;
795 	event->hw.config = cpuhw->events[n0];
796 
797 nocheck:
798 	++cpuhw->n_events;
799 	++cpuhw->n_added;
800 
801 	ret = 0;
802  out:
803 	perf_pmu_enable(event->pmu);
804 	local_irq_restore(flags);
805 	return ret;
806 }
807 
808 /*
809  * Remove a event from the PMU.
810  */
power_pmu_del(struct perf_event * event,int ef_flags)811 static void power_pmu_del(struct perf_event *event, int ef_flags)
812 {
813 	struct cpu_hw_events *cpuhw;
814 	long i;
815 	unsigned long flags;
816 
817 	local_irq_save(flags);
818 	perf_pmu_disable(event->pmu);
819 
820 	power_pmu_read(event);
821 
822 	cpuhw = &__get_cpu_var(cpu_hw_events);
823 	for (i = 0; i < cpuhw->n_events; ++i) {
824 		if (event == cpuhw->event[i]) {
825 			while (++i < cpuhw->n_events) {
826 				cpuhw->event[i-1] = cpuhw->event[i];
827 				cpuhw->events[i-1] = cpuhw->events[i];
828 				cpuhw->flags[i-1] = cpuhw->flags[i];
829 			}
830 			--cpuhw->n_events;
831 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
832 			if (event->hw.idx) {
833 				write_pmc(event->hw.idx, 0);
834 				event->hw.idx = 0;
835 			}
836 			perf_event_update_userpage(event);
837 			break;
838 		}
839 	}
840 	for (i = 0; i < cpuhw->n_limited; ++i)
841 		if (event == cpuhw->limited_counter[i])
842 			break;
843 	if (i < cpuhw->n_limited) {
844 		while (++i < cpuhw->n_limited) {
845 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
846 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
847 		}
848 		--cpuhw->n_limited;
849 	}
850 	if (cpuhw->n_events == 0) {
851 		/* disable exceptions if no events are running */
852 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
853 	}
854 
855 	perf_pmu_enable(event->pmu);
856 	local_irq_restore(flags);
857 }
858 
859 /*
860  * POWER-PMU does not support disabling individual counters, hence
861  * program their cycle counter to their max value and ignore the interrupts.
862  */
863 
power_pmu_start(struct perf_event * event,int ef_flags)864 static void power_pmu_start(struct perf_event *event, int ef_flags)
865 {
866 	unsigned long flags;
867 	s64 left;
868 	unsigned long val;
869 
870 	if (!event->hw.idx || !event->hw.sample_period)
871 		return;
872 
873 	if (!(event->hw.state & PERF_HES_STOPPED))
874 		return;
875 
876 	if (ef_flags & PERF_EF_RELOAD)
877 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
878 
879 	local_irq_save(flags);
880 	perf_pmu_disable(event->pmu);
881 
882 	event->hw.state = 0;
883 	left = local64_read(&event->hw.period_left);
884 
885 	val = 0;
886 	if (left < 0x80000000L)
887 		val = 0x80000000L - left;
888 
889 	write_pmc(event->hw.idx, val);
890 
891 	perf_event_update_userpage(event);
892 	perf_pmu_enable(event->pmu);
893 	local_irq_restore(flags);
894 }
895 
power_pmu_stop(struct perf_event * event,int ef_flags)896 static void power_pmu_stop(struct perf_event *event, int ef_flags)
897 {
898 	unsigned long flags;
899 
900 	if (!event->hw.idx || !event->hw.sample_period)
901 		return;
902 
903 	if (event->hw.state & PERF_HES_STOPPED)
904 		return;
905 
906 	local_irq_save(flags);
907 	perf_pmu_disable(event->pmu);
908 
909 	power_pmu_read(event);
910 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
911 	write_pmc(event->hw.idx, 0);
912 
913 	perf_event_update_userpage(event);
914 	perf_pmu_enable(event->pmu);
915 	local_irq_restore(flags);
916 }
917 
918 /*
919  * Start group events scheduling transaction
920  * Set the flag to make pmu::enable() not perform the
921  * schedulability test, it will be performed at commit time
922  */
power_pmu_start_txn(struct pmu * pmu)923 void power_pmu_start_txn(struct pmu *pmu)
924 {
925 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
926 
927 	perf_pmu_disable(pmu);
928 	cpuhw->group_flag |= PERF_EVENT_TXN;
929 	cpuhw->n_txn_start = cpuhw->n_events;
930 }
931 
932 /*
933  * Stop group events scheduling transaction
934  * Clear the flag and pmu::enable() will perform the
935  * schedulability test.
936  */
power_pmu_cancel_txn(struct pmu * pmu)937 void power_pmu_cancel_txn(struct pmu *pmu)
938 {
939 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
940 
941 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
942 	perf_pmu_enable(pmu);
943 }
944 
945 /*
946  * Commit group events scheduling transaction
947  * Perform the group schedulability test as a whole
948  * Return 0 if success
949  */
power_pmu_commit_txn(struct pmu * pmu)950 int power_pmu_commit_txn(struct pmu *pmu)
951 {
952 	struct cpu_hw_events *cpuhw;
953 	long i, n;
954 
955 	if (!ppmu)
956 		return -EAGAIN;
957 	cpuhw = &__get_cpu_var(cpu_hw_events);
958 	n = cpuhw->n_events;
959 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
960 		return -EAGAIN;
961 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
962 	if (i < 0)
963 		return -EAGAIN;
964 
965 	for (i = cpuhw->n_txn_start; i < n; ++i)
966 		cpuhw->event[i]->hw.config = cpuhw->events[i];
967 
968 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
969 	perf_pmu_enable(pmu);
970 	return 0;
971 }
972 
973 /*
974  * Return 1 if we might be able to put event on a limited PMC,
975  * or 0 if not.
976  * A event can only go on a limited PMC if it counts something
977  * that a limited PMC can count, doesn't require interrupts, and
978  * doesn't exclude any processor mode.
979  */
can_go_on_limited_pmc(struct perf_event * event,u64 ev,unsigned int flags)980 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
981 				 unsigned int flags)
982 {
983 	int n;
984 	u64 alt[MAX_EVENT_ALTERNATIVES];
985 
986 	if (event->attr.exclude_user
987 	    || event->attr.exclude_kernel
988 	    || event->attr.exclude_hv
989 	    || event->attr.sample_period)
990 		return 0;
991 
992 	if (ppmu->limited_pmc_event(ev))
993 		return 1;
994 
995 	/*
996 	 * The requested event_id isn't on a limited PMC already;
997 	 * see if any alternative code goes on a limited PMC.
998 	 */
999 	if (!ppmu->get_alternatives)
1000 		return 0;
1001 
1002 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1003 	n = ppmu->get_alternatives(ev, flags, alt);
1004 
1005 	return n > 0;
1006 }
1007 
1008 /*
1009  * Find an alternative event_id that goes on a normal PMC, if possible,
1010  * and return the event_id code, or 0 if there is no such alternative.
1011  * (Note: event_id code 0 is "don't count" on all machines.)
1012  */
normal_pmc_alternative(u64 ev,unsigned long flags)1013 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1014 {
1015 	u64 alt[MAX_EVENT_ALTERNATIVES];
1016 	int n;
1017 
1018 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1019 	n = ppmu->get_alternatives(ev, flags, alt);
1020 	if (!n)
1021 		return 0;
1022 	return alt[0];
1023 }
1024 
1025 /* Number of perf_events counting hardware events */
1026 static atomic_t num_events;
1027 /* Used to avoid races in calling reserve/release_pmc_hardware */
1028 static DEFINE_MUTEX(pmc_reserve_mutex);
1029 
1030 /*
1031  * Release the PMU if this is the last perf_event.
1032  */
hw_perf_event_destroy(struct perf_event * event)1033 static void hw_perf_event_destroy(struct perf_event *event)
1034 {
1035 	if (!atomic_add_unless(&num_events, -1, 1)) {
1036 		mutex_lock(&pmc_reserve_mutex);
1037 		if (atomic_dec_return(&num_events) == 0)
1038 			release_pmc_hardware();
1039 		mutex_unlock(&pmc_reserve_mutex);
1040 	}
1041 }
1042 
1043 /*
1044  * Translate a generic cache event_id config to a raw event_id code.
1045  */
hw_perf_cache_event(u64 config,u64 * eventp)1046 static int hw_perf_cache_event(u64 config, u64 *eventp)
1047 {
1048 	unsigned long type, op, result;
1049 	int ev;
1050 
1051 	if (!ppmu->cache_events)
1052 		return -EINVAL;
1053 
1054 	/* unpack config */
1055 	type = config & 0xff;
1056 	op = (config >> 8) & 0xff;
1057 	result = (config >> 16) & 0xff;
1058 
1059 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1060 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1061 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1062 		return -EINVAL;
1063 
1064 	ev = (*ppmu->cache_events)[type][op][result];
1065 	if (ev == 0)
1066 		return -EOPNOTSUPP;
1067 	if (ev == -1)
1068 		return -EINVAL;
1069 	*eventp = ev;
1070 	return 0;
1071 }
1072 
power_pmu_event_init(struct perf_event * event)1073 static int power_pmu_event_init(struct perf_event *event)
1074 {
1075 	u64 ev;
1076 	unsigned long flags;
1077 	struct perf_event *ctrs[MAX_HWEVENTS];
1078 	u64 events[MAX_HWEVENTS];
1079 	unsigned int cflags[MAX_HWEVENTS];
1080 	int n;
1081 	int err;
1082 	struct cpu_hw_events *cpuhw;
1083 
1084 	if (!ppmu)
1085 		return -ENOENT;
1086 
1087 	switch (event->attr.type) {
1088 	case PERF_TYPE_HARDWARE:
1089 		ev = event->attr.config;
1090 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1091 			return -EOPNOTSUPP;
1092 		ev = ppmu->generic_events[ev];
1093 		break;
1094 	case PERF_TYPE_HW_CACHE:
1095 		err = hw_perf_cache_event(event->attr.config, &ev);
1096 		if (err)
1097 			return err;
1098 		break;
1099 	case PERF_TYPE_RAW:
1100 		ev = event->attr.config;
1101 		break;
1102 	default:
1103 		return -ENOENT;
1104 	}
1105 
1106 	event->hw.config_base = ev;
1107 	event->hw.idx = 0;
1108 
1109 	/*
1110 	 * If we are not running on a hypervisor, force the
1111 	 * exclude_hv bit to 0 so that we don't care what
1112 	 * the user set it to.
1113 	 */
1114 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1115 		event->attr.exclude_hv = 0;
1116 
1117 	/*
1118 	 * If this is a per-task event, then we can use
1119 	 * PM_RUN_* events interchangeably with their non RUN_*
1120 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1121 	 * XXX we should check if the task is an idle task.
1122 	 */
1123 	flags = 0;
1124 	if (event->attach_state & PERF_ATTACH_TASK)
1125 		flags |= PPMU_ONLY_COUNT_RUN;
1126 
1127 	/*
1128 	 * If this machine has limited events, check whether this
1129 	 * event_id could go on a limited event.
1130 	 */
1131 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1132 		if (can_go_on_limited_pmc(event, ev, flags)) {
1133 			flags |= PPMU_LIMITED_PMC_OK;
1134 		} else if (ppmu->limited_pmc_event(ev)) {
1135 			/*
1136 			 * The requested event_id is on a limited PMC,
1137 			 * but we can't use a limited PMC; see if any
1138 			 * alternative goes on a normal PMC.
1139 			 */
1140 			ev = normal_pmc_alternative(ev, flags);
1141 			if (!ev)
1142 				return -EINVAL;
1143 		}
1144 	}
1145 
1146 	/*
1147 	 * If this is in a group, check if it can go on with all the
1148 	 * other hardware events in the group.  We assume the event
1149 	 * hasn't been linked into its leader's sibling list at this point.
1150 	 */
1151 	n = 0;
1152 	if (event->group_leader != event) {
1153 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1154 				   ctrs, events, cflags);
1155 		if (n < 0)
1156 			return -EINVAL;
1157 	}
1158 	events[n] = ev;
1159 	ctrs[n] = event;
1160 	cflags[n] = flags;
1161 	if (check_excludes(ctrs, cflags, n, 1))
1162 		return -EINVAL;
1163 
1164 	cpuhw = &get_cpu_var(cpu_hw_events);
1165 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1166 	put_cpu_var(cpu_hw_events);
1167 	if (err)
1168 		return -EINVAL;
1169 
1170 	event->hw.config = events[n];
1171 	event->hw.event_base = cflags[n];
1172 	event->hw.last_period = event->hw.sample_period;
1173 	local64_set(&event->hw.period_left, event->hw.last_period);
1174 
1175 	/*
1176 	 * See if we need to reserve the PMU.
1177 	 * If no events are currently in use, then we have to take a
1178 	 * mutex to ensure that we don't race with another task doing
1179 	 * reserve_pmc_hardware or release_pmc_hardware.
1180 	 */
1181 	err = 0;
1182 	if (!atomic_inc_not_zero(&num_events)) {
1183 		mutex_lock(&pmc_reserve_mutex);
1184 		if (atomic_read(&num_events) == 0 &&
1185 		    reserve_pmc_hardware(perf_event_interrupt))
1186 			err = -EBUSY;
1187 		else
1188 			atomic_inc(&num_events);
1189 		mutex_unlock(&pmc_reserve_mutex);
1190 	}
1191 	event->destroy = hw_perf_event_destroy;
1192 
1193 	return err;
1194 }
1195 
1196 struct pmu power_pmu = {
1197 	.pmu_enable	= power_pmu_enable,
1198 	.pmu_disable	= power_pmu_disable,
1199 	.event_init	= power_pmu_event_init,
1200 	.add		= power_pmu_add,
1201 	.del		= power_pmu_del,
1202 	.start		= power_pmu_start,
1203 	.stop		= power_pmu_stop,
1204 	.read		= power_pmu_read,
1205 	.start_txn	= power_pmu_start_txn,
1206 	.cancel_txn	= power_pmu_cancel_txn,
1207 	.commit_txn	= power_pmu_commit_txn,
1208 };
1209 
1210 /*
1211  * A counter has overflowed; update its count and record
1212  * things if requested.  Note that interrupts are hard-disabled
1213  * here so there is no possibility of being interrupted.
1214  */
record_and_restart(struct perf_event * event,unsigned long val,struct pt_regs * regs)1215 static void record_and_restart(struct perf_event *event, unsigned long val,
1216 			       struct pt_regs *regs)
1217 {
1218 	u64 period = event->hw.sample_period;
1219 	s64 prev, delta, left;
1220 	int record = 0;
1221 
1222 	if (event->hw.state & PERF_HES_STOPPED) {
1223 		write_pmc(event->hw.idx, 0);
1224 		return;
1225 	}
1226 
1227 	/* we don't have to worry about interrupts here */
1228 	prev = local64_read(&event->hw.prev_count);
1229 	delta = check_and_compute_delta(prev, val);
1230 	local64_add(delta, &event->count);
1231 
1232 	/*
1233 	 * See if the total period for this event has expired,
1234 	 * and update for the next period.
1235 	 */
1236 	val = 0;
1237 	left = local64_read(&event->hw.period_left) - delta;
1238 	if (period) {
1239 		if (left <= 0) {
1240 			left += period;
1241 			if (left <= 0)
1242 				left = period;
1243 			record = 1;
1244 			event->hw.last_period = event->hw.sample_period;
1245 		}
1246 		if (left < 0x80000000LL)
1247 			val = 0x80000000LL - left;
1248 	}
1249 
1250 	write_pmc(event->hw.idx, val);
1251 	local64_set(&event->hw.prev_count, val);
1252 	local64_set(&event->hw.period_left, left);
1253 	perf_event_update_userpage(event);
1254 
1255 	/*
1256 	 * Finally record data if requested.
1257 	 */
1258 	if (record) {
1259 		struct perf_sample_data data;
1260 
1261 		perf_sample_data_init(&data, ~0ULL);
1262 		data.period = event->hw.last_period;
1263 
1264 		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1265 			perf_get_data_addr(regs, &data.addr);
1266 
1267 		if (perf_event_overflow(event, &data, regs))
1268 			power_pmu_stop(event, 0);
1269 	}
1270 }
1271 
1272 /*
1273  * Called from generic code to get the misc flags (i.e. processor mode)
1274  * for an event_id.
1275  */
perf_misc_flags(struct pt_regs * regs)1276 unsigned long perf_misc_flags(struct pt_regs *regs)
1277 {
1278 	u32 flags = perf_get_misc_flags(regs);
1279 
1280 	if (flags)
1281 		return flags;
1282 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
1283 		PERF_RECORD_MISC_KERNEL;
1284 }
1285 
1286 /*
1287  * Called from generic code to get the instruction pointer
1288  * for an event_id.
1289  */
perf_instruction_pointer(struct pt_regs * regs)1290 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1291 {
1292 	unsigned long ip;
1293 
1294 	if (TRAP(regs) != 0xf00)
1295 		return regs->nip;	/* not a PMU interrupt */
1296 
1297 	ip = mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1298 	return ip;
1299 }
1300 
pmc_overflow(unsigned long val)1301 static bool pmc_overflow(unsigned long val)
1302 {
1303 	if ((int)val < 0)
1304 		return true;
1305 
1306 	/*
1307 	 * Events on POWER7 can roll back if a speculative event doesn't
1308 	 * eventually complete. Unfortunately in some rare cases they will
1309 	 * raise a performance monitor exception. We need to catch this to
1310 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1311 	 * cycles from overflow.
1312 	 *
1313 	 * We only do this if the first pass fails to find any overflowing
1314 	 * PMCs because a user might set a period of less than 256 and we
1315 	 * don't want to mistakenly reset them.
1316 	 */
1317 	if (__is_processor(PV_POWER7) && ((0x80000000 - val) <= 256))
1318 		return true;
1319 
1320 	return false;
1321 }
1322 
1323 /*
1324  * Performance monitor interrupt stuff
1325  */
perf_event_interrupt(struct pt_regs * regs)1326 static void perf_event_interrupt(struct pt_regs *regs)
1327 {
1328 	int i;
1329 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1330 	struct perf_event *event;
1331 	unsigned long val;
1332 	int found = 0;
1333 	int nmi;
1334 
1335 	if (cpuhw->n_limited)
1336 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1337 					mfspr(SPRN_PMC6));
1338 
1339 	perf_read_regs(regs);
1340 
1341 	nmi = perf_intr_is_nmi(regs);
1342 	if (nmi)
1343 		nmi_enter();
1344 	else
1345 		irq_enter();
1346 
1347 	for (i = 0; i < cpuhw->n_events; ++i) {
1348 		event = cpuhw->event[i];
1349 		if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1350 			continue;
1351 		val = read_pmc(event->hw.idx);
1352 		if ((int)val < 0) {
1353 			/* event has overflowed */
1354 			found = 1;
1355 			record_and_restart(event, val, regs);
1356 		}
1357 	}
1358 
1359 	/*
1360 	 * In case we didn't find and reset the event that caused
1361 	 * the interrupt, scan all events and reset any that are
1362 	 * negative, to avoid getting continual interrupts.
1363 	 * Any that we processed in the previous loop will not be negative.
1364 	 */
1365 	if (!found) {
1366 		for (i = 0; i < ppmu->n_counter; ++i) {
1367 			if (is_limited_pmc(i + 1))
1368 				continue;
1369 			val = read_pmc(i + 1);
1370 			if (pmc_overflow(val))
1371 				write_pmc(i + 1, 0);
1372 		}
1373 	}
1374 
1375 	/*
1376 	 * Reset MMCR0 to its normal value.  This will set PMXE and
1377 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1378 	 * and thus allow interrupts to occur again.
1379 	 * XXX might want to use MSR.PM to keep the events frozen until
1380 	 * we get back out of this interrupt.
1381 	 */
1382 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1383 
1384 	if (nmi)
1385 		nmi_exit();
1386 	else
1387 		irq_exit();
1388 }
1389 
power_pmu_setup(int cpu)1390 static void power_pmu_setup(int cpu)
1391 {
1392 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1393 
1394 	if (!ppmu)
1395 		return;
1396 	memset(cpuhw, 0, sizeof(*cpuhw));
1397 	cpuhw->mmcr[0] = MMCR0_FC;
1398 }
1399 
1400 static int __cpuinit
power_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1401 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1402 {
1403 	unsigned int cpu = (long)hcpu;
1404 
1405 	switch (action & ~CPU_TASKS_FROZEN) {
1406 	case CPU_UP_PREPARE:
1407 		power_pmu_setup(cpu);
1408 		break;
1409 
1410 	default:
1411 		break;
1412 	}
1413 
1414 	return NOTIFY_OK;
1415 }
1416 
register_power_pmu(struct power_pmu * pmu)1417 int __cpuinit register_power_pmu(struct power_pmu *pmu)
1418 {
1419 	if (ppmu)
1420 		return -EBUSY;		/* something's already registered */
1421 
1422 	ppmu = pmu;
1423 	pr_info("%s performance monitor hardware support registered\n",
1424 		pmu->name);
1425 
1426 #ifdef MSR_HV
1427 	/*
1428 	 * Use FCHV to ignore kernel events if MSR.HV is set.
1429 	 */
1430 	if (mfmsr() & MSR_HV)
1431 		freeze_events_kernel = MMCR0_FCHV;
1432 #endif /* CONFIG_PPC64 */
1433 
1434 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1435 	perf_cpu_notifier(power_pmu_notifier);
1436 
1437 	return 0;
1438 }
1439