1 /*
2  *  linux/arch/m68knommu/kernel/process.c
3  *
4  *  Copyright (C) 1995  Hamish Macdonald
5  *
6  *  68060 fixes by Jesper Skov
7  *
8  *  uClinux changes
9  *  Copyright (C) 2000-2002, David McCullough <davidm@snapgear.com>
10  */
11 
12 /*
13  * This file handles the architecture-dependent parts of process handling..
14  */
15 
16 #include <linux/module.h>
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/reboot.h>
28 #include <linux/fs.h>
29 #include <linux/slab.h>
30 
31 #include <asm/uaccess.h>
32 #include <asm/system.h>
33 #include <asm/traps.h>
34 #include <asm/machdep.h>
35 #include <asm/setup.h>
36 #include <asm/pgtable.h>
37 
38 asmlinkage void ret_from_fork(void);
39 
40 /*
41  * The following aren't currently used.
42  */
43 void (*pm_idle)(void);
44 EXPORT_SYMBOL(pm_idle);
45 
46 void (*pm_power_off)(void);
47 EXPORT_SYMBOL(pm_power_off);
48 
49 /*
50  * The idle loop on an m68knommu..
51  */
default_idle(void)52 static void default_idle(void)
53 {
54 	local_irq_disable();
55  	while (!need_resched()) {
56 		/* This stop will re-enable interrupts */
57  		__asm__("stop #0x2000" : : : "cc");
58 		local_irq_disable();
59 	}
60 	local_irq_enable();
61 }
62 
63 void (*idle)(void) = default_idle;
64 
65 /*
66  * The idle thread. There's no useful work to be
67  * done, so just try to conserve power and have a
68  * low exit latency (ie sit in a loop waiting for
69  * somebody to say that they'd like to reschedule)
70  */
cpu_idle(void)71 void cpu_idle(void)
72 {
73 	/* endless idle loop with no priority at all */
74 	while (1) {
75 		idle();
76 		preempt_enable_no_resched();
77 		schedule();
78 		preempt_disable();
79 	}
80 }
81 
machine_restart(char * __unused)82 void machine_restart(char * __unused)
83 {
84 	if (mach_reset)
85 		mach_reset();
86 	for (;;);
87 }
88 
machine_halt(void)89 void machine_halt(void)
90 {
91 	if (mach_halt)
92 		mach_halt();
93 	for (;;);
94 }
95 
machine_power_off(void)96 void machine_power_off(void)
97 {
98 	if (mach_power_off)
99 		mach_power_off();
100 	for (;;);
101 }
102 
show_regs(struct pt_regs * regs)103 void show_regs(struct pt_regs * regs)
104 {
105 	printk(KERN_NOTICE "\n");
106 	printk(KERN_NOTICE "Format %02x  Vector: %04x  PC: %08lx  Status: %04x    %s\n",
107 	       regs->format, regs->vector, regs->pc, regs->sr, print_tainted());
108 	printk(KERN_NOTICE "ORIG_D0: %08lx  D0: %08lx  A2: %08lx  A1: %08lx\n",
109 	       regs->orig_d0, regs->d0, regs->a2, regs->a1);
110 	printk(KERN_NOTICE "A0: %08lx  D5: %08lx  D4: %08lx\n",
111 	       regs->a0, regs->d5, regs->d4);
112 	printk(KERN_NOTICE "D3: %08lx  D2: %08lx  D1: %08lx\n",
113 	       regs->d3, regs->d2, regs->d1);
114 	if (!(regs->sr & PS_S))
115 		printk(KERN_NOTICE "USP: %08lx\n", rdusp());
116 }
117 
118 /*
119  * Create a kernel thread
120  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)121 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
122 {
123 	int retval;
124 	long clone_arg = flags | CLONE_VM;
125 	mm_segment_t fs;
126 
127 	fs = get_fs();
128 	set_fs(KERNEL_DS);
129 
130 	__asm__ __volatile__ (
131 			"movel	%%sp, %%d2\n\t"
132 			"movel	%5, %%d1\n\t"
133 			"movel	%1, %%d0\n\t"
134 			"trap	#0\n\t"
135 			"cmpl	%%sp, %%d2\n\t"
136 			"jeq	1f\n\t"
137 			"movel	%3, %%sp@-\n\t"
138 			"jsr	%4@\n\t"
139 			"movel	%2, %%d0\n\t"
140 			"trap	#0\n"
141 			"1:\n\t"
142 			"movel	%%d0, %0\n"
143 		: "=d" (retval)
144 		: "i" (__NR_clone),
145 		  "i" (__NR_exit),
146 		  "a" (arg),
147 		  "a" (fn),
148 		  "a" (clone_arg)
149 		: "cc", "%d0", "%d1", "%d2");
150 
151 	set_fs(fs);
152 	return retval;
153 }
154 EXPORT_SYMBOL(kernel_thread);
155 
flush_thread(void)156 void flush_thread(void)
157 {
158 #ifdef CONFIG_FPU
159 	unsigned long zero = 0;
160 #endif
161 
162 	current->thread.fs = __USER_DS;
163 #ifdef CONFIG_FPU
164 	if (!FPU_IS_EMU)
165 		asm volatile (".chip 68k/68881\n\t"
166 			      "frestore %0\n\t"
167 			      ".chip 68k" : : "m" (zero));
168 #endif
169 }
170 
171 /*
172  * "m68k_fork()".. By the time we get here, the
173  * non-volatile registers have also been saved on the
174  * stack. We do some ugly pointer stuff here.. (see
175  * also copy_thread)
176  */
177 
m68k_fork(struct pt_regs * regs)178 asmlinkage int m68k_fork(struct pt_regs *regs)
179 {
180 	/* fork almost works, enough to trick you into looking elsewhere :-( */
181 	return(-EINVAL);
182 }
183 
m68k_vfork(struct pt_regs * regs)184 asmlinkage int m68k_vfork(struct pt_regs *regs)
185 {
186 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL, NULL);
187 }
188 
m68k_clone(struct pt_regs * regs)189 asmlinkage int m68k_clone(struct pt_regs *regs)
190 {
191 	unsigned long clone_flags;
192 	unsigned long newsp;
193 
194 	/* syscall2 puts clone_flags in d1 and usp in d2 */
195 	clone_flags = regs->d1;
196 	newsp = regs->d2;
197 	if (!newsp)
198 		newsp = rdusp();
199         return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
200 }
201 
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long topstk,struct task_struct * p,struct pt_regs * regs)202 int copy_thread(unsigned long clone_flags,
203 		unsigned long usp, unsigned long topstk,
204 		struct task_struct * p, struct pt_regs * regs)
205 {
206 	struct pt_regs * childregs;
207 	struct switch_stack * childstack, *stack;
208 	unsigned long *retp;
209 
210 	childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
211 
212 	*childregs = *regs;
213 	childregs->d0 = 0;
214 
215 	retp = ((unsigned long *) regs);
216 	stack = ((struct switch_stack *) retp) - 1;
217 
218 	childstack = ((struct switch_stack *) childregs) - 1;
219 	*childstack = *stack;
220 	childstack->retpc = (unsigned long)ret_from_fork;
221 
222 	p->thread.usp = usp;
223 	p->thread.ksp = (unsigned long)childstack;
224 
225 	if (clone_flags & CLONE_SETTLS)
226 		task_thread_info(p)->tp_value = regs->d5;
227 
228 	/*
229 	 * Must save the current SFC/DFC value, NOT the value when
230 	 * the parent was last descheduled - RGH  10-08-96
231 	 */
232 	p->thread.fs = get_fs().seg;
233 
234 #ifdef CONFIG_FPU
235 	if (!FPU_IS_EMU) {
236 		/* Copy the current fpu state */
237 		asm volatile ("fsave %0" : : "m" (p->thread.fpstate[0]) : "memory");
238 
239 		if (p->thread.fpstate[0])
240 		  asm volatile ("fmovemx %/fp0-%/fp7,%0\n\t"
241 				"fmoveml %/fpiar/%/fpcr/%/fpsr,%1"
242 				: : "m" (p->thread.fp[0]), "m" (p->thread.fpcntl[0])
243 				: "memory");
244 		/* Restore the state in case the fpu was busy */
245 		asm volatile ("frestore %0" : : "m" (p->thread.fpstate[0]));
246 	}
247 #endif
248 
249 	return 0;
250 }
251 
252 /* Fill in the fpu structure for a core dump.  */
253 
dump_fpu(struct pt_regs * regs,struct user_m68kfp_struct * fpu)254 int dump_fpu(struct pt_regs *regs, struct user_m68kfp_struct *fpu)
255 {
256 #ifdef CONFIG_FPU
257 	char fpustate[216];
258 
259 	if (FPU_IS_EMU) {
260 		int i;
261 
262 		memcpy(fpu->fpcntl, current->thread.fpcntl, 12);
263 		memcpy(fpu->fpregs, current->thread.fp, 96);
264 		/* Convert internal fpu reg representation
265 		 * into long double format
266 		 */
267 		for (i = 0; i < 24; i += 3)
268 			fpu->fpregs[i] = ((fpu->fpregs[i] & 0xffff0000) << 15) |
269 			                 ((fpu->fpregs[i] & 0x0000ffff) << 16);
270 		return 1;
271 	}
272 
273 	/* First dump the fpu context to avoid protocol violation.  */
274 	asm volatile ("fsave %0" :: "m" (fpustate[0]) : "memory");
275 	if (!fpustate[0])
276 		return 0;
277 
278 	asm volatile ("fmovem %/fpiar/%/fpcr/%/fpsr,%0"
279 		:: "m" (fpu->fpcntl[0])
280 		: "memory");
281 	asm volatile ("fmovemx %/fp0-%/fp7,%0"
282 		:: "m" (fpu->fpregs[0])
283 		: "memory");
284 #endif
285 	return 1;
286 }
287 EXPORT_SYMBOL(dump_fpu);
288 
289 /*
290  *	Generic dumping code. Used for panic and debug.
291  */
dump(struct pt_regs * fp)292 void dump(struct pt_regs *fp)
293 {
294 	unsigned long	*sp;
295 	unsigned char	*tp;
296 	int		i;
297 
298 	printk(KERN_EMERG "\nCURRENT PROCESS:\n\n");
299 	printk(KERN_EMERG "COMM=%s PID=%d\n", current->comm, current->pid);
300 
301 	if (current->mm) {
302 		printk(KERN_EMERG "TEXT=%08x-%08x DATA=%08x-%08x BSS=%08x-%08x\n",
303 			(int) current->mm->start_code,
304 			(int) current->mm->end_code,
305 			(int) current->mm->start_data,
306 			(int) current->mm->end_data,
307 			(int) current->mm->end_data,
308 			(int) current->mm->brk);
309 		printk(KERN_EMERG "USER-STACK=%08x KERNEL-STACK=%08x\n\n",
310 			(int) current->mm->start_stack,
311 			(int)(((unsigned long) current) + THREAD_SIZE));
312 	}
313 
314 	printk(KERN_EMERG "PC: %08lx\n", fp->pc);
315 	printk(KERN_EMERG "SR: %08lx    SP: %08lx\n", (long) fp->sr, (long) fp);
316 	printk(KERN_EMERG "d0: %08lx    d1: %08lx    d2: %08lx    d3: %08lx\n",
317 		fp->d0, fp->d1, fp->d2, fp->d3);
318 	printk(KERN_EMERG "d4: %08lx    d5: %08lx    a0: %08lx    a1: %08lx\n",
319 		fp->d4, fp->d5, fp->a0, fp->a1);
320 	printk(KERN_EMERG "\nUSP: %08x   TRAPFRAME: %p\n",
321 		(unsigned int) rdusp(), fp);
322 
323 	printk(KERN_EMERG "\nCODE:");
324 	tp = ((unsigned char *) fp->pc) - 0x20;
325 	for (sp = (unsigned long *) tp, i = 0; (i < 0x40);  i += 4) {
326 		if ((i % 0x10) == 0)
327 			printk(KERN_EMERG "%p: ", tp + i);
328 		printk("%08x ", (int) *sp++);
329 	}
330 	printk(KERN_EMERG "\n");
331 
332 	printk(KERN_EMERG "KERNEL STACK:");
333 	tp = ((unsigned char *) fp) - 0x40;
334 	for (sp = (unsigned long *) tp, i = 0; (i < 0xc0); i += 4) {
335 		if ((i % 0x10) == 0)
336 			printk(KERN_EMERG "%p: ", tp + i);
337 		printk("%08x ", (int) *sp++);
338 	}
339 	printk(KERN_EMERG "\n");
340 
341 	printk(KERN_EMERG "USER STACK:");
342 	tp = (unsigned char *) (rdusp() - 0x10);
343 	for (sp = (unsigned long *) tp, i = 0; (i < 0x80); i += 4) {
344 		if ((i % 0x10) == 0)
345 			printk(KERN_EMERG "%p: ", tp + i);
346 		printk("%08x ", (int) *sp++);
347 	}
348 	printk(KERN_EMERG "\n");
349 }
350 
351 /*
352  * sys_execve() executes a new program.
353  */
sys_execve(const char * name,const char * const * argv,const char * const * envp)354 asmlinkage int sys_execve(const char *name,
355 			  const char *const *argv,
356 			  const char *const *envp)
357 {
358 	int error;
359 	char * filename;
360 	struct pt_regs *regs = (struct pt_regs *) &name;
361 
362 	filename = getname(name);
363 	error = PTR_ERR(filename);
364 	if (IS_ERR(filename))
365 		return error;
366 	error = do_execve(filename, argv, envp, regs);
367 	putname(filename);
368 	return error;
369 }
370 
get_wchan(struct task_struct * p)371 unsigned long get_wchan(struct task_struct *p)
372 {
373 	unsigned long fp, pc;
374 	unsigned long stack_page;
375 	int count = 0;
376 	if (!p || p == current || p->state == TASK_RUNNING)
377 		return 0;
378 
379 	stack_page = (unsigned long)p;
380 	fp = ((struct switch_stack *)p->thread.ksp)->a6;
381 	do {
382 		if (fp < stack_page+sizeof(struct thread_info) ||
383 		    fp >= THREAD_SIZE-8+stack_page)
384 			return 0;
385 		pc = ((unsigned long *)fp)[1];
386 		if (!in_sched_functions(pc))
387 			return pc;
388 		fp = *(unsigned long *) fp;
389 	} while (count++ < 16);
390 	return 0;
391 }
392 
393 /*
394  * Return saved PC of a blocked thread.
395  */
thread_saved_pc(struct task_struct * tsk)396 unsigned long thread_saved_pc(struct task_struct *tsk)
397 {
398 	struct switch_stack *sw = (struct switch_stack *)tsk->thread.ksp;
399 
400 	/* Check whether the thread is blocked in resume() */
401 	if (in_sched_functions(sw->retpc))
402 		return ((unsigned long *)sw->a6)[1];
403 	else
404 		return sw->retpc;
405 }
406 
407