1 /*
2  * pci.c - Low-Level PCI Access in IA-64
3  *
4  * Derived from bios32.c of i386 tree.
5  *
6  * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
9  * Copyright (C) 2004 Silicon Graphics, Inc.
10  *
11  * Note: Above list of copyright holders is incomplete...
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/bootmem.h>
23 #include <linux/export.h>
24 
25 #include <asm/machvec.h>
26 #include <asm/page.h>
27 #include <asm/system.h>
28 #include <asm/io.h>
29 #include <asm/sal.h>
30 #include <asm/smp.h>
31 #include <asm/irq.h>
32 #include <asm/hw_irq.h>
33 
34 /*
35  * Low-level SAL-based PCI configuration access functions. Note that SAL
36  * calls are already serialized (via sal_lock), so we don't need another
37  * synchronization mechanism here.
38  */
39 
40 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
41 	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
42 
43 /* SAL 3.2 adds support for extended config space. */
44 
45 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
46 	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
47 
raw_pci_read(unsigned int seg,unsigned int bus,unsigned int devfn,int reg,int len,u32 * value)48 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
49 	      int reg, int len, u32 *value)
50 {
51 	u64 addr, data = 0;
52 	int mode, result;
53 
54 	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
55 		return -EINVAL;
56 
57 	if ((seg | reg) <= 255) {
58 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
59 		mode = 0;
60 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
61 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
62 		mode = 1;
63 	} else {
64 		return -EINVAL;
65 	}
66 
67 	result = ia64_sal_pci_config_read(addr, mode, len, &data);
68 	if (result != 0)
69 		return -EINVAL;
70 
71 	*value = (u32) data;
72 	return 0;
73 }
74 
raw_pci_write(unsigned int seg,unsigned int bus,unsigned int devfn,int reg,int len,u32 value)75 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
76 	       int reg, int len, u32 value)
77 {
78 	u64 addr;
79 	int mode, result;
80 
81 	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
82 		return -EINVAL;
83 
84 	if ((seg | reg) <= 255) {
85 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
86 		mode = 0;
87 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
88 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
89 		mode = 1;
90 	} else {
91 		return -EINVAL;
92 	}
93 	result = ia64_sal_pci_config_write(addr, mode, len, value);
94 	if (result != 0)
95 		return -EINVAL;
96 	return 0;
97 }
98 
pci_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * value)99 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
100 							int size, u32 *value)
101 {
102 	return raw_pci_read(pci_domain_nr(bus), bus->number,
103 				 devfn, where, size, value);
104 }
105 
pci_write(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 value)106 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
107 							int size, u32 value)
108 {
109 	return raw_pci_write(pci_domain_nr(bus), bus->number,
110 				  devfn, where, size, value);
111 }
112 
113 struct pci_ops pci_root_ops = {
114 	.read = pci_read,
115 	.write = pci_write,
116 };
117 
118 /* Called by ACPI when it finds a new root bus.  */
119 
120 static struct pci_controller * __devinit
alloc_pci_controller(int seg)121 alloc_pci_controller (int seg)
122 {
123 	struct pci_controller *controller;
124 
125 	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
126 	if (!controller)
127 		return NULL;
128 
129 	controller->segment = seg;
130 	controller->node = -1;
131 	return controller;
132 }
133 
134 struct pci_root_info {
135 	struct acpi_device *bridge;
136 	struct pci_controller *controller;
137 	struct list_head resources;
138 	char *name;
139 };
140 
141 static unsigned int
new_space(u64 phys_base,int sparse)142 new_space (u64 phys_base, int sparse)
143 {
144 	u64 mmio_base;
145 	int i;
146 
147 	if (phys_base == 0)
148 		return 0;	/* legacy I/O port space */
149 
150 	mmio_base = (u64) ioremap(phys_base, 0);
151 	for (i = 0; i < num_io_spaces; i++)
152 		if (io_space[i].mmio_base == mmio_base &&
153 		    io_space[i].sparse == sparse)
154 			return i;
155 
156 	if (num_io_spaces == MAX_IO_SPACES) {
157 		printk(KERN_ERR "PCI: Too many IO port spaces "
158 			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
159 		return ~0;
160 	}
161 
162 	i = num_io_spaces++;
163 	io_space[i].mmio_base = mmio_base;
164 	io_space[i].sparse = sparse;
165 
166 	return i;
167 }
168 
169 static u64 __devinit
add_io_space(struct pci_root_info * info,struct acpi_resource_address64 * addr)170 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
171 {
172 	struct resource *resource;
173 	char *name;
174 	unsigned long base, min, max, base_port;
175 	unsigned int sparse = 0, space_nr, len;
176 
177 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
178 	if (!resource) {
179 		printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
180 			info->name);
181 		goto out;
182 	}
183 
184 	len = strlen(info->name) + 32;
185 	name = kzalloc(len, GFP_KERNEL);
186 	if (!name) {
187 		printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
188 			info->name);
189 		goto free_resource;
190 	}
191 
192 	min = addr->minimum;
193 	max = min + addr->address_length - 1;
194 	if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
195 		sparse = 1;
196 
197 	space_nr = new_space(addr->translation_offset, sparse);
198 	if (space_nr == ~0)
199 		goto free_name;
200 
201 	base = __pa(io_space[space_nr].mmio_base);
202 	base_port = IO_SPACE_BASE(space_nr);
203 	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
204 		base_port + min, base_port + max);
205 
206 	/*
207 	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
208 	 * mapping is done by the processor (not the bridge), ACPI may not
209 	 * mark it as sparse.
210 	 */
211 	if (space_nr == 0)
212 		sparse = 1;
213 
214 	resource->name  = name;
215 	resource->flags = IORESOURCE_MEM;
216 	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
217 	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
218 	insert_resource(&iomem_resource, resource);
219 
220 	return base_port;
221 
222 free_name:
223 	kfree(name);
224 free_resource:
225 	kfree(resource);
226 out:
227 	return ~0;
228 }
229 
resource_to_window(struct acpi_resource * resource,struct acpi_resource_address64 * addr)230 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
231 	struct acpi_resource_address64 *addr)
232 {
233 	acpi_status status;
234 
235 	/*
236 	 * We're only interested in _CRS descriptors that are
237 	 *	- address space descriptors for memory or I/O space
238 	 *	- non-zero size
239 	 *	- producers, i.e., the address space is routed downstream,
240 	 *	  not consumed by the bridge itself
241 	 */
242 	status = acpi_resource_to_address64(resource, addr);
243 	if (ACPI_SUCCESS(status) &&
244 	    (addr->resource_type == ACPI_MEMORY_RANGE ||
245 	     addr->resource_type == ACPI_IO_RANGE) &&
246 	    addr->address_length &&
247 	    addr->producer_consumer == ACPI_PRODUCER)
248 		return AE_OK;
249 
250 	return AE_ERROR;
251 }
252 
253 static acpi_status __devinit
count_window(struct acpi_resource * resource,void * data)254 count_window (struct acpi_resource *resource, void *data)
255 {
256 	unsigned int *windows = (unsigned int *) data;
257 	struct acpi_resource_address64 addr;
258 	acpi_status status;
259 
260 	status = resource_to_window(resource, &addr);
261 	if (ACPI_SUCCESS(status))
262 		(*windows)++;
263 
264 	return AE_OK;
265 }
266 
add_window(struct acpi_resource * res,void * data)267 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
268 {
269 	struct pci_root_info *info = data;
270 	struct pci_window *window;
271 	struct acpi_resource_address64 addr;
272 	acpi_status status;
273 	unsigned long flags, offset = 0;
274 	struct resource *root;
275 
276 	/* Return AE_OK for non-window resources to keep scanning for more */
277 	status = resource_to_window(res, &addr);
278 	if (!ACPI_SUCCESS(status))
279 		return AE_OK;
280 
281 	if (addr.resource_type == ACPI_MEMORY_RANGE) {
282 		flags = IORESOURCE_MEM;
283 		root = &iomem_resource;
284 		offset = addr.translation_offset;
285 	} else if (addr.resource_type == ACPI_IO_RANGE) {
286 		flags = IORESOURCE_IO;
287 		root = &ioport_resource;
288 		offset = add_io_space(info, &addr);
289 		if (offset == ~0)
290 			return AE_OK;
291 	} else
292 		return AE_OK;
293 
294 	window = &info->controller->window[info->controller->windows++];
295 	window->resource.name = info->name;
296 	window->resource.flags = flags;
297 	window->resource.start = addr.minimum + offset;
298 	window->resource.end = window->resource.start + addr.address_length - 1;
299 	window->resource.child = NULL;
300 	window->offset = offset;
301 
302 	if (insert_resource(root, &window->resource)) {
303 		dev_err(&info->bridge->dev,
304 			"can't allocate host bridge window %pR\n",
305 			&window->resource);
306 	} else {
307 		if (offset)
308 			dev_info(&info->bridge->dev, "host bridge window %pR "
309 				 "(PCI address [%#llx-%#llx])\n",
310 				 &window->resource,
311 				 window->resource.start - offset,
312 				 window->resource.end - offset);
313 		else
314 			dev_info(&info->bridge->dev,
315 				 "host bridge window %pR\n",
316 				 &window->resource);
317 	}
318 
319 	/* HP's firmware has a hack to work around a Windows bug.
320 	 * Ignore these tiny memory ranges */
321 	if (!((window->resource.flags & IORESOURCE_MEM) &&
322 	      (window->resource.end - window->resource.start < 16)))
323 		pci_add_resource(&info->resources, &window->resource);
324 
325 	return AE_OK;
326 }
327 
328 struct pci_bus * __devinit
pci_acpi_scan_root(struct acpi_pci_root * root)329 pci_acpi_scan_root(struct acpi_pci_root *root)
330 {
331 	struct acpi_device *device = root->device;
332 	int domain = root->segment;
333 	int bus = root->secondary.start;
334 	struct pci_controller *controller;
335 	unsigned int windows = 0;
336 	struct pci_root_info info;
337 	struct pci_bus *pbus;
338 	char *name;
339 	int pxm;
340 
341 	controller = alloc_pci_controller(domain);
342 	if (!controller)
343 		goto out1;
344 
345 	controller->acpi_handle = device->handle;
346 
347 	pxm = acpi_get_pxm(controller->acpi_handle);
348 #ifdef CONFIG_NUMA
349 	if (pxm >= 0)
350 		controller->node = pxm_to_node(pxm);
351 #endif
352 
353 	INIT_LIST_HEAD(&info.resources);
354 	acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
355 			&windows);
356 	if (windows) {
357 		controller->window =
358 			kmalloc_node(sizeof(*controller->window) * windows,
359 				     GFP_KERNEL, controller->node);
360 		if (!controller->window)
361 			goto out2;
362 
363 		name = kmalloc(16, GFP_KERNEL);
364 		if (!name)
365 			goto out3;
366 
367 		sprintf(name, "PCI Bus %04x:%02x", domain, bus);
368 		info.bridge = device;
369 		info.controller = controller;
370 		info.name = name;
371 		acpi_walk_resources(device->handle, METHOD_NAME__CRS,
372 			add_window, &info);
373 	}
374 	/*
375 	 * See arch/x86/pci/acpi.c.
376 	 * The desired pci bus might already be scanned in a quirk. We
377 	 * should handle the case here, but it appears that IA64 hasn't
378 	 * such quirk. So we just ignore the case now.
379 	 */
380 	pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
381 				   &info.resources);
382 	if (!pbus) {
383 		pci_free_resource_list(&info.resources);
384 		return NULL;
385 	}
386 
387 	pbus->subordinate = pci_scan_child_bus(pbus);
388 	return pbus;
389 
390 out3:
391 	kfree(controller->window);
392 out2:
393 	kfree(controller);
394 out1:
395 	return NULL;
396 }
397 
pcibios_resource_to_bus(struct pci_dev * dev,struct pci_bus_region * region,struct resource * res)398 void pcibios_resource_to_bus(struct pci_dev *dev,
399 		struct pci_bus_region *region, struct resource *res)
400 {
401 	struct pci_controller *controller = PCI_CONTROLLER(dev);
402 	unsigned long offset = 0;
403 	int i;
404 
405 	for (i = 0; i < controller->windows; i++) {
406 		struct pci_window *window = &controller->window[i];
407 		if (!(window->resource.flags & res->flags))
408 			continue;
409 		if (window->resource.start > res->start)
410 			continue;
411 		if (window->resource.end < res->end)
412 			continue;
413 		offset = window->offset;
414 		break;
415 	}
416 
417 	region->start = res->start - offset;
418 	region->end = res->end - offset;
419 }
420 EXPORT_SYMBOL(pcibios_resource_to_bus);
421 
pcibios_bus_to_resource(struct pci_dev * dev,struct resource * res,struct pci_bus_region * region)422 void pcibios_bus_to_resource(struct pci_dev *dev,
423 		struct resource *res, struct pci_bus_region *region)
424 {
425 	struct pci_controller *controller = PCI_CONTROLLER(dev);
426 	unsigned long offset = 0;
427 	int i;
428 
429 	for (i = 0; i < controller->windows; i++) {
430 		struct pci_window *window = &controller->window[i];
431 		if (!(window->resource.flags & res->flags))
432 			continue;
433 		if (window->resource.start - window->offset > region->start)
434 			continue;
435 		if (window->resource.end - window->offset < region->end)
436 			continue;
437 		offset = window->offset;
438 		break;
439 	}
440 
441 	res->start = region->start + offset;
442 	res->end = region->end + offset;
443 }
444 EXPORT_SYMBOL(pcibios_bus_to_resource);
445 
is_valid_resource(struct pci_dev * dev,int idx)446 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
447 {
448 	unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
449 	struct resource *devr = &dev->resource[idx], *busr;
450 
451 	if (!dev->bus)
452 		return 0;
453 
454 	pci_bus_for_each_resource(dev->bus, busr, i) {
455 		if (!busr || ((busr->flags ^ devr->flags) & type_mask))
456 			continue;
457 		if ((devr->start) && (devr->start >= busr->start) &&
458 				(devr->end <= busr->end))
459 			return 1;
460 	}
461 	return 0;
462 }
463 
464 static void __devinit
pcibios_fixup_resources(struct pci_dev * dev,int start,int limit)465 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
466 {
467 	struct pci_bus_region region;
468 	int i;
469 
470 	for (i = start; i < limit; i++) {
471 		if (!dev->resource[i].flags)
472 			continue;
473 		region.start = dev->resource[i].start;
474 		region.end = dev->resource[i].end;
475 		pcibios_bus_to_resource(dev, &dev->resource[i], &region);
476 		if ((is_valid_resource(dev, i)))
477 			pci_claim_resource(dev, i);
478 	}
479 }
480 
pcibios_fixup_device_resources(struct pci_dev * dev)481 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
482 {
483 	pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
484 }
485 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
486 
pcibios_fixup_bridge_resources(struct pci_dev * dev)487 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
488 {
489 	pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
490 }
491 
492 /*
493  *  Called after each bus is probed, but before its children are examined.
494  */
495 void __devinit
pcibios_fixup_bus(struct pci_bus * b)496 pcibios_fixup_bus (struct pci_bus *b)
497 {
498 	struct pci_dev *dev;
499 
500 	if (b->self) {
501 		pci_read_bridge_bases(b);
502 		pcibios_fixup_bridge_resources(b->self);
503 	}
504 	list_for_each_entry(dev, &b->devices, bus_list)
505 		pcibios_fixup_device_resources(dev);
506 	platform_pci_fixup_bus(b);
507 }
508 
pcibios_set_master(struct pci_dev * dev)509 void pcibios_set_master (struct pci_dev *dev)
510 {
511 	/* No special bus mastering setup handling */
512 }
513 
514 void __devinit
pcibios_update_irq(struct pci_dev * dev,int irq)515 pcibios_update_irq (struct pci_dev *dev, int irq)
516 {
517 	pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
518 
519 	/* ??? FIXME -- record old value for shutdown.  */
520 }
521 
522 int
pcibios_enable_device(struct pci_dev * dev,int mask)523 pcibios_enable_device (struct pci_dev *dev, int mask)
524 {
525 	int ret;
526 
527 	ret = pci_enable_resources(dev, mask);
528 	if (ret < 0)
529 		return ret;
530 
531 	if (!dev->msi_enabled)
532 		return acpi_pci_irq_enable(dev);
533 	return 0;
534 }
535 
536 void
pcibios_disable_device(struct pci_dev * dev)537 pcibios_disable_device (struct pci_dev *dev)
538 {
539 	BUG_ON(atomic_read(&dev->enable_cnt));
540 	if (!dev->msi_enabled)
541 		acpi_pci_irq_disable(dev);
542 }
543 
544 resource_size_t
pcibios_align_resource(void * data,const struct resource * res,resource_size_t size,resource_size_t align)545 pcibios_align_resource (void *data, const struct resource *res,
546 		        resource_size_t size, resource_size_t align)
547 {
548 	return res->start;
549 }
550 
551 /*
552  * PCI BIOS setup, always defaults to SAL interface
553  */
554 char * __init
pcibios_setup(char * str)555 pcibios_setup (char *str)
556 {
557 	return str;
558 }
559 
560 int
pci_mmap_page_range(struct pci_dev * dev,struct vm_area_struct * vma,enum pci_mmap_state mmap_state,int write_combine)561 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
562 		     enum pci_mmap_state mmap_state, int write_combine)
563 {
564 	unsigned long size = vma->vm_end - vma->vm_start;
565 	pgprot_t prot;
566 
567 	/*
568 	 * I/O space cannot be accessed via normal processor loads and
569 	 * stores on this platform.
570 	 */
571 	if (mmap_state == pci_mmap_io)
572 		/*
573 		 * XXX we could relax this for I/O spaces for which ACPI
574 		 * indicates that the space is 1-to-1 mapped.  But at the
575 		 * moment, we don't support multiple PCI address spaces and
576 		 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
577 		 */
578 		return -EINVAL;
579 
580 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
581 		return -EINVAL;
582 
583 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
584 				    vma->vm_page_prot);
585 
586 	/*
587 	 * If the user requested WC, the kernel uses UC or WC for this region,
588 	 * and the chipset supports WC, we can use WC. Otherwise, we have to
589 	 * use the same attribute the kernel uses.
590 	 */
591 	if (write_combine &&
592 	    ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
593 	     (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
594 	    efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
595 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
596 	else
597 		vma->vm_page_prot = prot;
598 
599 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
600 			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
601 		return -EAGAIN;
602 
603 	return 0;
604 }
605 
606 /**
607  * ia64_pci_get_legacy_mem - generic legacy mem routine
608  * @bus: bus to get legacy memory base address for
609  *
610  * Find the base of legacy memory for @bus.  This is typically the first
611  * megabyte of bus address space for @bus or is simply 0 on platforms whose
612  * chipsets support legacy I/O and memory routing.  Returns the base address
613  * or an error pointer if an error occurred.
614  *
615  * This is the ia64 generic version of this routine.  Other platforms
616  * are free to override it with a machine vector.
617  */
ia64_pci_get_legacy_mem(struct pci_bus * bus)618 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
619 {
620 	return (char *)__IA64_UNCACHED_OFFSET;
621 }
622 
623 /**
624  * pci_mmap_legacy_page_range - map legacy memory space to userland
625  * @bus: bus whose legacy space we're mapping
626  * @vma: vma passed in by mmap
627  *
628  * Map legacy memory space for this device back to userspace using a machine
629  * vector to get the base address.
630  */
631 int
pci_mmap_legacy_page_range(struct pci_bus * bus,struct vm_area_struct * vma,enum pci_mmap_state mmap_state)632 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
633 			   enum pci_mmap_state mmap_state)
634 {
635 	unsigned long size = vma->vm_end - vma->vm_start;
636 	pgprot_t prot;
637 	char *addr;
638 
639 	/* We only support mmap'ing of legacy memory space */
640 	if (mmap_state != pci_mmap_mem)
641 		return -ENOSYS;
642 
643 	/*
644 	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.txt
645 	 * for more details.
646 	 */
647 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
648 		return -EINVAL;
649 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
650 				    vma->vm_page_prot);
651 
652 	addr = pci_get_legacy_mem(bus);
653 	if (IS_ERR(addr))
654 		return PTR_ERR(addr);
655 
656 	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
657 	vma->vm_page_prot = prot;
658 
659 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
660 			    size, vma->vm_page_prot))
661 		return -EAGAIN;
662 
663 	return 0;
664 }
665 
666 /**
667  * ia64_pci_legacy_read - read from legacy I/O space
668  * @bus: bus to read
669  * @port: legacy port value
670  * @val: caller allocated storage for returned value
671  * @size: number of bytes to read
672  *
673  * Simply reads @size bytes from @port and puts the result in @val.
674  *
675  * Again, this (and the write routine) are generic versions that can be
676  * overridden by the platform.  This is necessary on platforms that don't
677  * support legacy I/O routing or that hard fail on legacy I/O timeouts.
678  */
ia64_pci_legacy_read(struct pci_bus * bus,u16 port,u32 * val,u8 size)679 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
680 {
681 	int ret = size;
682 
683 	switch (size) {
684 	case 1:
685 		*val = inb(port);
686 		break;
687 	case 2:
688 		*val = inw(port);
689 		break;
690 	case 4:
691 		*val = inl(port);
692 		break;
693 	default:
694 		ret = -EINVAL;
695 		break;
696 	}
697 
698 	return ret;
699 }
700 
701 /**
702  * ia64_pci_legacy_write - perform a legacy I/O write
703  * @bus: bus pointer
704  * @port: port to write
705  * @val: value to write
706  * @size: number of bytes to write from @val
707  *
708  * Simply writes @size bytes of @val to @port.
709  */
ia64_pci_legacy_write(struct pci_bus * bus,u16 port,u32 val,u8 size)710 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
711 {
712 	int ret = size;
713 
714 	switch (size) {
715 	case 1:
716 		outb(val, port);
717 		break;
718 	case 2:
719 		outw(val, port);
720 		break;
721 	case 4:
722 		outl(val, port);
723 		break;
724 	default:
725 		ret = -EINVAL;
726 		break;
727 	}
728 
729 	return ret;
730 }
731 
732 /**
733  * set_pci_cacheline_size - determine cacheline size for PCI devices
734  *
735  * We want to use the line-size of the outer-most cache.  We assume
736  * that this line-size is the same for all CPUs.
737  *
738  * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
739  */
set_pci_dfl_cacheline_size(void)740 static void __init set_pci_dfl_cacheline_size(void)
741 {
742 	unsigned long levels, unique_caches;
743 	long status;
744 	pal_cache_config_info_t cci;
745 
746 	status = ia64_pal_cache_summary(&levels, &unique_caches);
747 	if (status != 0) {
748 		printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
749 			"(status=%ld)\n", __func__, status);
750 		return;
751 	}
752 
753 	status = ia64_pal_cache_config_info(levels - 1,
754 				/* cache_type (data_or_unified)= */ 2, &cci);
755 	if (status != 0) {
756 		printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
757 			"(status=%ld)\n", __func__, status);
758 		return;
759 	}
760 	pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
761 }
762 
ia64_dma_get_required_mask(struct device * dev)763 u64 ia64_dma_get_required_mask(struct device *dev)
764 {
765 	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
766 	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
767 	u64 mask;
768 
769 	if (!high_totalram) {
770 		/* convert to mask just covering totalram */
771 		low_totalram = (1 << (fls(low_totalram) - 1));
772 		low_totalram += low_totalram - 1;
773 		mask = low_totalram;
774 	} else {
775 		high_totalram = (1 << (fls(high_totalram) - 1));
776 		high_totalram += high_totalram - 1;
777 		mask = (((u64)high_totalram) << 32) + 0xffffffff;
778 	}
779 	return mask;
780 }
781 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
782 
dma_get_required_mask(struct device * dev)783 u64 dma_get_required_mask(struct device *dev)
784 {
785 	return platform_dma_get_required_mask(dev);
786 }
787 EXPORT_SYMBOL_GPL(dma_get_required_mask);
788 
pcibios_init(void)789 static int __init pcibios_init(void)
790 {
791 	set_pci_dfl_cacheline_size();
792 	return 0;
793 }
794 
795 subsys_initcall(pcibios_init);
796