1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  * 	Copyright (C) 2007, Intel Corporation.
6  *  	Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22 
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36 #include <linux/pci.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/gcc_intrin.h>
40 #include <asm/pal.h>
41 #include <asm/cacheflush.h>
42 #include <asm/div64.h>
43 #include <asm/tlb.h>
44 #include <asm/elf.h>
45 #include <asm/sn/addrs.h>
46 #include <asm/sn/clksupport.h>
47 #include <asm/sn/shub_mmr.h>
48 
49 #include "misc.h"
50 #include "vti.h"
51 #include "iodev.h"
52 #include "ioapic.h"
53 #include "lapic.h"
54 #include "irq.h"
55 
56 static unsigned long kvm_vmm_base;
57 static unsigned long kvm_vsa_base;
58 static unsigned long kvm_vm_buffer;
59 static unsigned long kvm_vm_buffer_size;
60 unsigned long kvm_vmm_gp;
61 
62 static long vp_env_info;
63 
64 static struct kvm_vmm_info *kvm_vmm_info;
65 
66 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
67 
68 struct kvm_stats_debugfs_item debugfs_entries[] = {
69 	{ NULL }
70 };
71 
kvm_get_itc(struct kvm_vcpu * vcpu)72 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
73 {
74 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
75 	if (vcpu->kvm->arch.is_sn2)
76 		return rtc_time();
77 	else
78 #endif
79 		return ia64_getreg(_IA64_REG_AR_ITC);
80 }
81 
kvm_flush_icache(unsigned long start,unsigned long len)82 static void kvm_flush_icache(unsigned long start, unsigned long len)
83 {
84 	int l;
85 
86 	for (l = 0; l < (len + 32); l += 32)
87 		ia64_fc((void *)(start + l));
88 
89 	ia64_sync_i();
90 	ia64_srlz_i();
91 }
92 
kvm_flush_tlb_all(void)93 static void kvm_flush_tlb_all(void)
94 {
95 	unsigned long i, j, count0, count1, stride0, stride1, addr;
96 	long flags;
97 
98 	addr    = local_cpu_data->ptce_base;
99 	count0  = local_cpu_data->ptce_count[0];
100 	count1  = local_cpu_data->ptce_count[1];
101 	stride0 = local_cpu_data->ptce_stride[0];
102 	stride1 = local_cpu_data->ptce_stride[1];
103 
104 	local_irq_save(flags);
105 	for (i = 0; i < count0; ++i) {
106 		for (j = 0; j < count1; ++j) {
107 			ia64_ptce(addr);
108 			addr += stride1;
109 		}
110 		addr += stride0;
111 	}
112 	local_irq_restore(flags);
113 	ia64_srlz_i();			/* srlz.i implies srlz.d */
114 }
115 
ia64_pal_vp_create(u64 * vpd,u64 * host_iva,u64 * opt_handler)116 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
117 {
118 	struct ia64_pal_retval iprv;
119 
120 	PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
121 			(u64)opt_handler);
122 
123 	return iprv.status;
124 }
125 
126 static  DEFINE_SPINLOCK(vp_lock);
127 
kvm_arch_hardware_enable(void * garbage)128 int kvm_arch_hardware_enable(void *garbage)
129 {
130 	long  status;
131 	long  tmp_base;
132 	unsigned long pte;
133 	unsigned long saved_psr;
134 	int slot;
135 
136 	pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
137 	local_irq_save(saved_psr);
138 	slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
139 	local_irq_restore(saved_psr);
140 	if (slot < 0)
141 		return -EINVAL;
142 
143 	spin_lock(&vp_lock);
144 	status = ia64_pal_vp_init_env(kvm_vsa_base ?
145 				VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
146 			__pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
147 	if (status != 0) {
148 		spin_unlock(&vp_lock);
149 		printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
150 		return -EINVAL;
151 	}
152 
153 	if (!kvm_vsa_base) {
154 		kvm_vsa_base = tmp_base;
155 		printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
156 	}
157 	spin_unlock(&vp_lock);
158 	ia64_ptr_entry(0x3, slot);
159 
160 	return 0;
161 }
162 
kvm_arch_hardware_disable(void * garbage)163 void kvm_arch_hardware_disable(void *garbage)
164 {
165 
166 	long status;
167 	int slot;
168 	unsigned long pte;
169 	unsigned long saved_psr;
170 	unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
171 
172 	pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
173 				PAGE_KERNEL));
174 
175 	local_irq_save(saved_psr);
176 	slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
177 	local_irq_restore(saved_psr);
178 	if (slot < 0)
179 		return;
180 
181 	status = ia64_pal_vp_exit_env(host_iva);
182 	if (status)
183 		printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
184 				status);
185 	ia64_ptr_entry(0x3, slot);
186 }
187 
kvm_arch_check_processor_compat(void * rtn)188 void kvm_arch_check_processor_compat(void *rtn)
189 {
190 	*(int *)rtn = 0;
191 }
192 
kvm_dev_ioctl_check_extension(long ext)193 int kvm_dev_ioctl_check_extension(long ext)
194 {
195 
196 	int r;
197 
198 	switch (ext) {
199 	case KVM_CAP_IRQCHIP:
200 	case KVM_CAP_MP_STATE:
201 	case KVM_CAP_IRQ_INJECT_STATUS:
202 		r = 1;
203 		break;
204 	case KVM_CAP_COALESCED_MMIO:
205 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
206 		break;
207 	case KVM_CAP_IOMMU:
208 		r = iommu_present(&pci_bus_type);
209 		break;
210 	default:
211 		r = 0;
212 	}
213 	return r;
214 
215 }
216 
handle_vm_error(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)217 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
218 {
219 	kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
220 	kvm_run->hw.hardware_exit_reason = 1;
221 	return 0;
222 }
223 
handle_mmio(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)224 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
225 {
226 	struct kvm_mmio_req *p;
227 	struct kvm_io_device *mmio_dev;
228 	int r;
229 
230 	p = kvm_get_vcpu_ioreq(vcpu);
231 
232 	if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
233 		goto mmio;
234 	vcpu->mmio_needed = 1;
235 	vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
236 	vcpu->mmio_size = kvm_run->mmio.len = p->size;
237 	vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
238 
239 	if (vcpu->mmio_is_write)
240 		memcpy(vcpu->mmio_data, &p->data, p->size);
241 	memcpy(kvm_run->mmio.data, &p->data, p->size);
242 	kvm_run->exit_reason = KVM_EXIT_MMIO;
243 	return 0;
244 mmio:
245 	if (p->dir)
246 		r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
247 				    p->size, &p->data);
248 	else
249 		r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
250 				     p->size, &p->data);
251 	if (r)
252 		printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
253 	p->state = STATE_IORESP_READY;
254 
255 	return 1;
256 }
257 
handle_pal_call(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)258 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
259 {
260 	struct exit_ctl_data *p;
261 
262 	p = kvm_get_exit_data(vcpu);
263 
264 	if (p->exit_reason == EXIT_REASON_PAL_CALL)
265 		return kvm_pal_emul(vcpu, kvm_run);
266 	else {
267 		kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
268 		kvm_run->hw.hardware_exit_reason = 2;
269 		return 0;
270 	}
271 }
272 
handle_sal_call(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)273 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
274 {
275 	struct exit_ctl_data *p;
276 
277 	p = kvm_get_exit_data(vcpu);
278 
279 	if (p->exit_reason == EXIT_REASON_SAL_CALL) {
280 		kvm_sal_emul(vcpu);
281 		return 1;
282 	} else {
283 		kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
284 		kvm_run->hw.hardware_exit_reason = 3;
285 		return 0;
286 	}
287 
288 }
289 
__apic_accept_irq(struct kvm_vcpu * vcpu,uint64_t vector)290 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
291 {
292 	struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
293 
294 	if (!test_and_set_bit(vector, &vpd->irr[0])) {
295 		vcpu->arch.irq_new_pending = 1;
296 		kvm_vcpu_kick(vcpu);
297 		return 1;
298 	}
299 	return 0;
300 }
301 
302 /*
303  *  offset: address offset to IPI space.
304  *  value:  deliver value.
305  */
vcpu_deliver_ipi(struct kvm_vcpu * vcpu,uint64_t dm,uint64_t vector)306 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
307 				uint64_t vector)
308 {
309 	switch (dm) {
310 	case SAPIC_FIXED:
311 		break;
312 	case SAPIC_NMI:
313 		vector = 2;
314 		break;
315 	case SAPIC_EXTINT:
316 		vector = 0;
317 		break;
318 	case SAPIC_INIT:
319 	case SAPIC_PMI:
320 	default:
321 		printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
322 		return;
323 	}
324 	__apic_accept_irq(vcpu, vector);
325 }
326 
lid_to_vcpu(struct kvm * kvm,unsigned long id,unsigned long eid)327 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
328 			unsigned long eid)
329 {
330 	union ia64_lid lid;
331 	int i;
332 	struct kvm_vcpu *vcpu;
333 
334 	kvm_for_each_vcpu(i, vcpu, kvm) {
335 		lid.val = VCPU_LID(vcpu);
336 		if (lid.id == id && lid.eid == eid)
337 			return vcpu;
338 	}
339 
340 	return NULL;
341 }
342 
handle_ipi(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)343 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
344 {
345 	struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
346 	struct kvm_vcpu *target_vcpu;
347 	struct kvm_pt_regs *regs;
348 	union ia64_ipi_a addr = p->u.ipi_data.addr;
349 	union ia64_ipi_d data = p->u.ipi_data.data;
350 
351 	target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
352 	if (!target_vcpu)
353 		return handle_vm_error(vcpu, kvm_run);
354 
355 	if (!target_vcpu->arch.launched) {
356 		regs = vcpu_regs(target_vcpu);
357 
358 		regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
359 		regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
360 
361 		target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
362 		if (waitqueue_active(&target_vcpu->wq))
363 			wake_up_interruptible(&target_vcpu->wq);
364 	} else {
365 		vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
366 		if (target_vcpu != vcpu)
367 			kvm_vcpu_kick(target_vcpu);
368 	}
369 
370 	return 1;
371 }
372 
373 struct call_data {
374 	struct kvm_ptc_g ptc_g_data;
375 	struct kvm_vcpu *vcpu;
376 };
377 
vcpu_global_purge(void * info)378 static void vcpu_global_purge(void *info)
379 {
380 	struct call_data *p = (struct call_data *)info;
381 	struct kvm_vcpu *vcpu = p->vcpu;
382 
383 	if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
384 		return;
385 
386 	set_bit(KVM_REQ_PTC_G, &vcpu->requests);
387 	if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
388 		vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
389 							p->ptc_g_data;
390 	} else {
391 		clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
392 		vcpu->arch.ptc_g_count = 0;
393 		set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
394 	}
395 }
396 
handle_global_purge(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)397 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
398 {
399 	struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
400 	struct kvm *kvm = vcpu->kvm;
401 	struct call_data call_data;
402 	int i;
403 	struct kvm_vcpu *vcpui;
404 
405 	call_data.ptc_g_data = p->u.ptc_g_data;
406 
407 	kvm_for_each_vcpu(i, vcpui, kvm) {
408 		if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
409 				vcpu == vcpui)
410 			continue;
411 
412 		if (waitqueue_active(&vcpui->wq))
413 			wake_up_interruptible(&vcpui->wq);
414 
415 		if (vcpui->cpu != -1) {
416 			call_data.vcpu = vcpui;
417 			smp_call_function_single(vcpui->cpu,
418 					vcpu_global_purge, &call_data, 1);
419 		} else
420 			printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
421 
422 	}
423 	return 1;
424 }
425 
handle_switch_rr6(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)426 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
427 {
428 	return 1;
429 }
430 
kvm_sn2_setup_mappings(struct kvm_vcpu * vcpu)431 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
432 {
433 	unsigned long pte, rtc_phys_addr, map_addr;
434 	int slot;
435 
436 	map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
437 	rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
438 	pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
439 	slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
440 	vcpu->arch.sn_rtc_tr_slot = slot;
441 	if (slot < 0) {
442 		printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
443 		slot = 0;
444 	}
445 	return slot;
446 }
447 
kvm_emulate_halt(struct kvm_vcpu * vcpu)448 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
449 {
450 
451 	ktime_t kt;
452 	long itc_diff;
453 	unsigned long vcpu_now_itc;
454 	unsigned long expires;
455 	struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
456 	unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
457 	struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
458 
459 	if (irqchip_in_kernel(vcpu->kvm)) {
460 
461 		vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
462 
463 		if (time_after(vcpu_now_itc, vpd->itm)) {
464 			vcpu->arch.timer_check = 1;
465 			return 1;
466 		}
467 		itc_diff = vpd->itm - vcpu_now_itc;
468 		if (itc_diff < 0)
469 			itc_diff = -itc_diff;
470 
471 		expires = div64_u64(itc_diff, cyc_per_usec);
472 		kt = ktime_set(0, 1000 * expires);
473 
474 		vcpu->arch.ht_active = 1;
475 		hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
476 
477 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
478 		kvm_vcpu_block(vcpu);
479 		hrtimer_cancel(p_ht);
480 		vcpu->arch.ht_active = 0;
481 
482 		if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
483 				kvm_cpu_has_pending_timer(vcpu))
484 			if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
485 				vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
486 
487 		if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
488 			return -EINTR;
489 		return 1;
490 	} else {
491 		printk(KERN_ERR"kvm: Unsupported userspace halt!");
492 		return 0;
493 	}
494 }
495 
handle_vm_shutdown(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)496 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
497 		struct kvm_run *kvm_run)
498 {
499 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
500 	return 0;
501 }
502 
handle_external_interrupt(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)503 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
504 		struct kvm_run *kvm_run)
505 {
506 	return 1;
507 }
508 
handle_vcpu_debug(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)509 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
510 				struct kvm_run *kvm_run)
511 {
512 	printk("VMM: %s", vcpu->arch.log_buf);
513 	return 1;
514 }
515 
516 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
517 		struct kvm_run *kvm_run) = {
518 	[EXIT_REASON_VM_PANIC]              = handle_vm_error,
519 	[EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
520 	[EXIT_REASON_PAL_CALL]              = handle_pal_call,
521 	[EXIT_REASON_SAL_CALL]              = handle_sal_call,
522 	[EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
523 	[EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
524 	[EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
525 	[EXIT_REASON_IPI]		    = handle_ipi,
526 	[EXIT_REASON_PTC_G]		    = handle_global_purge,
527 	[EXIT_REASON_DEBUG]		    = handle_vcpu_debug,
528 
529 };
530 
531 static const int kvm_vti_max_exit_handlers =
532 		sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
533 
kvm_get_exit_reason(struct kvm_vcpu * vcpu)534 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
535 {
536 	struct exit_ctl_data *p_exit_data;
537 
538 	p_exit_data = kvm_get_exit_data(vcpu);
539 	return p_exit_data->exit_reason;
540 }
541 
542 /*
543  * The guest has exited.  See if we can fix it or if we need userspace
544  * assistance.
545  */
kvm_handle_exit(struct kvm_run * kvm_run,struct kvm_vcpu * vcpu)546 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
547 {
548 	u32 exit_reason = kvm_get_exit_reason(vcpu);
549 	vcpu->arch.last_exit = exit_reason;
550 
551 	if (exit_reason < kvm_vti_max_exit_handlers
552 			&& kvm_vti_exit_handlers[exit_reason])
553 		return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
554 	else {
555 		kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
556 		kvm_run->hw.hardware_exit_reason = exit_reason;
557 	}
558 	return 0;
559 }
560 
vti_set_rr6(unsigned long rr6)561 static inline void vti_set_rr6(unsigned long rr6)
562 {
563 	ia64_set_rr(RR6, rr6);
564 	ia64_srlz_i();
565 }
566 
kvm_insert_vmm_mapping(struct kvm_vcpu * vcpu)567 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
568 {
569 	unsigned long pte;
570 	struct kvm *kvm = vcpu->kvm;
571 	int r;
572 
573 	/*Insert a pair of tr to map vmm*/
574 	pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
575 	r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
576 	if (r < 0)
577 		goto out;
578 	vcpu->arch.vmm_tr_slot = r;
579 	/*Insert a pairt of tr to map data of vm*/
580 	pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
581 	r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
582 					pte, KVM_VM_DATA_SHIFT);
583 	if (r < 0)
584 		goto out;
585 	vcpu->arch.vm_tr_slot = r;
586 
587 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
588 	if (kvm->arch.is_sn2) {
589 		r = kvm_sn2_setup_mappings(vcpu);
590 		if (r < 0)
591 			goto out;
592 	}
593 #endif
594 
595 	r = 0;
596 out:
597 	return r;
598 }
599 
kvm_purge_vmm_mapping(struct kvm_vcpu * vcpu)600 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
601 {
602 	struct kvm *kvm = vcpu->kvm;
603 	ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
604 	ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
605 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
606 	if (kvm->arch.is_sn2)
607 		ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
608 #endif
609 }
610 
kvm_vcpu_pre_transition(struct kvm_vcpu * vcpu)611 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
612 {
613 	unsigned long psr;
614 	int r;
615 	int cpu = smp_processor_id();
616 
617 	if (vcpu->arch.last_run_cpu != cpu ||
618 			per_cpu(last_vcpu, cpu) != vcpu) {
619 		per_cpu(last_vcpu, cpu) = vcpu;
620 		vcpu->arch.last_run_cpu = cpu;
621 		kvm_flush_tlb_all();
622 	}
623 
624 	vcpu->arch.host_rr6 = ia64_get_rr(RR6);
625 	vti_set_rr6(vcpu->arch.vmm_rr);
626 	local_irq_save(psr);
627 	r = kvm_insert_vmm_mapping(vcpu);
628 	local_irq_restore(psr);
629 	return r;
630 }
631 
kvm_vcpu_post_transition(struct kvm_vcpu * vcpu)632 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
633 {
634 	kvm_purge_vmm_mapping(vcpu);
635 	vti_set_rr6(vcpu->arch.host_rr6);
636 }
637 
__vcpu_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)638 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
639 {
640 	union context *host_ctx, *guest_ctx;
641 	int r, idx;
642 
643 	idx = srcu_read_lock(&vcpu->kvm->srcu);
644 
645 again:
646 	if (signal_pending(current)) {
647 		r = -EINTR;
648 		kvm_run->exit_reason = KVM_EXIT_INTR;
649 		goto out;
650 	}
651 
652 	preempt_disable();
653 	local_irq_disable();
654 
655 	/*Get host and guest context with guest address space.*/
656 	host_ctx = kvm_get_host_context(vcpu);
657 	guest_ctx = kvm_get_guest_context(vcpu);
658 
659 	clear_bit(KVM_REQ_KICK, &vcpu->requests);
660 
661 	r = kvm_vcpu_pre_transition(vcpu);
662 	if (r < 0)
663 		goto vcpu_run_fail;
664 
665 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
666 	vcpu->mode = IN_GUEST_MODE;
667 	kvm_guest_enter();
668 
669 	/*
670 	 * Transition to the guest
671 	 */
672 	kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
673 
674 	kvm_vcpu_post_transition(vcpu);
675 
676 	vcpu->arch.launched = 1;
677 	set_bit(KVM_REQ_KICK, &vcpu->requests);
678 	local_irq_enable();
679 
680 	/*
681 	 * We must have an instruction between local_irq_enable() and
682 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
683 	 * the interrupt shadow.  The stat.exits increment will do nicely.
684 	 * But we need to prevent reordering, hence this barrier():
685 	 */
686 	barrier();
687 	kvm_guest_exit();
688 	vcpu->mode = OUTSIDE_GUEST_MODE;
689 	preempt_enable();
690 
691 	idx = srcu_read_lock(&vcpu->kvm->srcu);
692 
693 	r = kvm_handle_exit(kvm_run, vcpu);
694 
695 	if (r > 0) {
696 		if (!need_resched())
697 			goto again;
698 	}
699 
700 out:
701 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
702 	if (r > 0) {
703 		kvm_resched(vcpu);
704 		idx = srcu_read_lock(&vcpu->kvm->srcu);
705 		goto again;
706 	}
707 
708 	return r;
709 
710 vcpu_run_fail:
711 	local_irq_enable();
712 	preempt_enable();
713 	kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
714 	goto out;
715 }
716 
kvm_set_mmio_data(struct kvm_vcpu * vcpu)717 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
718 {
719 	struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
720 
721 	if (!vcpu->mmio_is_write)
722 		memcpy(&p->data, vcpu->mmio_data, 8);
723 	p->state = STATE_IORESP_READY;
724 }
725 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)726 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
727 {
728 	int r;
729 	sigset_t sigsaved;
730 
731 	if (vcpu->sigset_active)
732 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
733 
734 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
735 		kvm_vcpu_block(vcpu);
736 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
737 		r = -EAGAIN;
738 		goto out;
739 	}
740 
741 	if (vcpu->mmio_needed) {
742 		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
743 		kvm_set_mmio_data(vcpu);
744 		vcpu->mmio_read_completed = 1;
745 		vcpu->mmio_needed = 0;
746 	}
747 	r = __vcpu_run(vcpu, kvm_run);
748 out:
749 	if (vcpu->sigset_active)
750 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
751 
752 	return r;
753 }
754 
kvm_arch_alloc_vm(void)755 struct kvm *kvm_arch_alloc_vm(void)
756 {
757 
758 	struct kvm *kvm;
759 	uint64_t  vm_base;
760 
761 	BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
762 
763 	vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
764 
765 	if (!vm_base)
766 		return NULL;
767 
768 	memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
769 	kvm = (struct kvm *)(vm_base +
770 			offsetof(struct kvm_vm_data, kvm_vm_struct));
771 	kvm->arch.vm_base = vm_base;
772 	printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
773 
774 	return kvm;
775 }
776 
777 struct kvm_ia64_io_range {
778 	unsigned long start;
779 	unsigned long size;
780 	unsigned long type;
781 };
782 
783 static const struct kvm_ia64_io_range io_ranges[] = {
784 	{VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
785 	{MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
786 	{LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
787 	{IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
788 	{PIB_START, PIB_SIZE, GPFN_PIB},
789 };
790 
kvm_build_io_pmt(struct kvm * kvm)791 static void kvm_build_io_pmt(struct kvm *kvm)
792 {
793 	unsigned long i, j;
794 
795 	/* Mark I/O ranges */
796 	for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
797 							i++) {
798 		for (j = io_ranges[i].start;
799 				j < io_ranges[i].start + io_ranges[i].size;
800 				j += PAGE_SIZE)
801 			kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
802 					io_ranges[i].type, 0);
803 	}
804 
805 }
806 
807 /*Use unused rids to virtualize guest rid.*/
808 #define GUEST_PHYSICAL_RR0	0x1739
809 #define GUEST_PHYSICAL_RR4	0x2739
810 #define VMM_INIT_RR		0x1660
811 
kvm_arch_init_vm(struct kvm * kvm)812 int kvm_arch_init_vm(struct kvm *kvm)
813 {
814 	BUG_ON(!kvm);
815 
816 	kvm->arch.is_sn2 = ia64_platform_is("sn2");
817 
818 	kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
819 	kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
820 	kvm->arch.vmm_init_rr = VMM_INIT_RR;
821 
822 	/*
823 	 *Fill P2M entries for MMIO/IO ranges
824 	 */
825 	kvm_build_io_pmt(kvm);
826 
827 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
828 
829 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
830 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
831 
832 	return 0;
833 }
834 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)835 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
836 					struct kvm_irqchip *chip)
837 {
838 	int r;
839 
840 	r = 0;
841 	switch (chip->chip_id) {
842 	case KVM_IRQCHIP_IOAPIC:
843 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
844 		break;
845 	default:
846 		r = -EINVAL;
847 		break;
848 	}
849 	return r;
850 }
851 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)852 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
853 {
854 	int r;
855 
856 	r = 0;
857 	switch (chip->chip_id) {
858 	case KVM_IRQCHIP_IOAPIC:
859 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
860 		break;
861 	default:
862 		r = -EINVAL;
863 		break;
864 	}
865 	return r;
866 }
867 
868 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
869 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)870 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
871 {
872 	struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
873 	int i;
874 
875 	for (i = 0; i < 16; i++) {
876 		vpd->vgr[i] = regs->vpd.vgr[i];
877 		vpd->vbgr[i] = regs->vpd.vbgr[i];
878 	}
879 	for (i = 0; i < 128; i++)
880 		vpd->vcr[i] = regs->vpd.vcr[i];
881 	vpd->vhpi = regs->vpd.vhpi;
882 	vpd->vnat = regs->vpd.vnat;
883 	vpd->vbnat = regs->vpd.vbnat;
884 	vpd->vpsr = regs->vpd.vpsr;
885 
886 	vpd->vpr = regs->vpd.vpr;
887 
888 	memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
889 
890 	RESTORE_REGS(mp_state);
891 	RESTORE_REGS(vmm_rr);
892 	memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
893 	memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
894 	RESTORE_REGS(itr_regions);
895 	RESTORE_REGS(dtr_regions);
896 	RESTORE_REGS(tc_regions);
897 	RESTORE_REGS(irq_check);
898 	RESTORE_REGS(itc_check);
899 	RESTORE_REGS(timer_check);
900 	RESTORE_REGS(timer_pending);
901 	RESTORE_REGS(last_itc);
902 	for (i = 0; i < 8; i++) {
903 		vcpu->arch.vrr[i] = regs->vrr[i];
904 		vcpu->arch.ibr[i] = regs->ibr[i];
905 		vcpu->arch.dbr[i] = regs->dbr[i];
906 	}
907 	for (i = 0; i < 4; i++)
908 		vcpu->arch.insvc[i] = regs->insvc[i];
909 	RESTORE_REGS(xtp);
910 	RESTORE_REGS(metaphysical_rr0);
911 	RESTORE_REGS(metaphysical_rr4);
912 	RESTORE_REGS(metaphysical_saved_rr0);
913 	RESTORE_REGS(metaphysical_saved_rr4);
914 	RESTORE_REGS(fp_psr);
915 	RESTORE_REGS(saved_gp);
916 
917 	vcpu->arch.irq_new_pending = 1;
918 	vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
919 	set_bit(KVM_REQ_RESUME, &vcpu->requests);
920 
921 	return 0;
922 }
923 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)924 long kvm_arch_vm_ioctl(struct file *filp,
925 		unsigned int ioctl, unsigned long arg)
926 {
927 	struct kvm *kvm = filp->private_data;
928 	void __user *argp = (void __user *)arg;
929 	int r = -ENOTTY;
930 
931 	switch (ioctl) {
932 	case KVM_SET_MEMORY_REGION: {
933 		struct kvm_memory_region kvm_mem;
934 		struct kvm_userspace_memory_region kvm_userspace_mem;
935 
936 		r = -EFAULT;
937 		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
938 			goto out;
939 		kvm_userspace_mem.slot = kvm_mem.slot;
940 		kvm_userspace_mem.flags = kvm_mem.flags;
941 		kvm_userspace_mem.guest_phys_addr =
942 					kvm_mem.guest_phys_addr;
943 		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
944 		r = kvm_vm_ioctl_set_memory_region(kvm,
945 					&kvm_userspace_mem, 0);
946 		if (r)
947 			goto out;
948 		break;
949 		}
950 	case KVM_CREATE_IRQCHIP:
951 		r = -EFAULT;
952 		r = kvm_ioapic_init(kvm);
953 		if (r)
954 			goto out;
955 		r = kvm_setup_default_irq_routing(kvm);
956 		if (r) {
957 			mutex_lock(&kvm->slots_lock);
958 			kvm_ioapic_destroy(kvm);
959 			mutex_unlock(&kvm->slots_lock);
960 			goto out;
961 		}
962 		break;
963 	case KVM_IRQ_LINE_STATUS:
964 	case KVM_IRQ_LINE: {
965 		struct kvm_irq_level irq_event;
966 
967 		r = -EFAULT;
968 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
969 			goto out;
970 		r = -ENXIO;
971 		if (irqchip_in_kernel(kvm)) {
972 			__s32 status;
973 			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
974 				    irq_event.irq, irq_event.level);
975 			if (ioctl == KVM_IRQ_LINE_STATUS) {
976 				r = -EFAULT;
977 				irq_event.status = status;
978 				if (copy_to_user(argp, &irq_event,
979 							sizeof irq_event))
980 					goto out;
981 			}
982 			r = 0;
983 		}
984 		break;
985 		}
986 	case KVM_GET_IRQCHIP: {
987 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
988 		struct kvm_irqchip chip;
989 
990 		r = -EFAULT;
991 		if (copy_from_user(&chip, argp, sizeof chip))
992 				goto out;
993 		r = -ENXIO;
994 		if (!irqchip_in_kernel(kvm))
995 			goto out;
996 		r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
997 		if (r)
998 			goto out;
999 		r = -EFAULT;
1000 		if (copy_to_user(argp, &chip, sizeof chip))
1001 				goto out;
1002 		r = 0;
1003 		break;
1004 		}
1005 	case KVM_SET_IRQCHIP: {
1006 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1007 		struct kvm_irqchip chip;
1008 
1009 		r = -EFAULT;
1010 		if (copy_from_user(&chip, argp, sizeof chip))
1011 				goto out;
1012 		r = -ENXIO;
1013 		if (!irqchip_in_kernel(kvm))
1014 			goto out;
1015 		r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1016 		if (r)
1017 			goto out;
1018 		r = 0;
1019 		break;
1020 		}
1021 	default:
1022 		;
1023 	}
1024 out:
1025 	return r;
1026 }
1027 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1028 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1029 		struct kvm_sregs *sregs)
1030 {
1031 	return -EINVAL;
1032 }
1033 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1034 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1035 		struct kvm_sregs *sregs)
1036 {
1037 	return -EINVAL;
1038 
1039 }
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)1040 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1041 		struct kvm_translation *tr)
1042 {
1043 
1044 	return -EINVAL;
1045 }
1046 
kvm_alloc_vmm_area(void)1047 static int kvm_alloc_vmm_area(void)
1048 {
1049 	if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1050 		kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1051 				get_order(KVM_VMM_SIZE));
1052 		if (!kvm_vmm_base)
1053 			return -ENOMEM;
1054 
1055 		memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1056 		kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1057 
1058 		printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1059 				kvm_vmm_base, kvm_vm_buffer);
1060 	}
1061 
1062 	return 0;
1063 }
1064 
kvm_free_vmm_area(void)1065 static void kvm_free_vmm_area(void)
1066 {
1067 	if (kvm_vmm_base) {
1068 		/*Zero this area before free to avoid bits leak!!*/
1069 		memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1070 		free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1071 		kvm_vmm_base  = 0;
1072 		kvm_vm_buffer = 0;
1073 		kvm_vsa_base = 0;
1074 	}
1075 }
1076 
vti_init_vpd(struct kvm_vcpu * vcpu)1077 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1078 {
1079 	int i;
1080 	union cpuid3_t cpuid3;
1081 	struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1082 
1083 	if (IS_ERR(vpd))
1084 		return PTR_ERR(vpd);
1085 
1086 	/* CPUID init */
1087 	for (i = 0; i < 5; i++)
1088 		vpd->vcpuid[i] = ia64_get_cpuid(i);
1089 
1090 	/* Limit the CPUID number to 5 */
1091 	cpuid3.value = vpd->vcpuid[3];
1092 	cpuid3.number = 4;	/* 5 - 1 */
1093 	vpd->vcpuid[3] = cpuid3.value;
1094 
1095 	/*Set vac and vdc fields*/
1096 	vpd->vac.a_from_int_cr = 1;
1097 	vpd->vac.a_to_int_cr = 1;
1098 	vpd->vac.a_from_psr = 1;
1099 	vpd->vac.a_from_cpuid = 1;
1100 	vpd->vac.a_cover = 1;
1101 	vpd->vac.a_bsw = 1;
1102 	vpd->vac.a_int = 1;
1103 	vpd->vdc.d_vmsw = 1;
1104 
1105 	/*Set virtual buffer*/
1106 	vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1107 
1108 	return 0;
1109 }
1110 
vti_create_vp(struct kvm_vcpu * vcpu)1111 static int vti_create_vp(struct kvm_vcpu *vcpu)
1112 {
1113 	long ret;
1114 	struct vpd *vpd = vcpu->arch.vpd;
1115 	unsigned long  vmm_ivt;
1116 
1117 	vmm_ivt = kvm_vmm_info->vmm_ivt;
1118 
1119 	printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1120 
1121 	ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1122 
1123 	if (ret) {
1124 		printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1125 		return -EINVAL;
1126 	}
1127 	return 0;
1128 }
1129 
init_ptce_info(struct kvm_vcpu * vcpu)1130 static void init_ptce_info(struct kvm_vcpu *vcpu)
1131 {
1132 	ia64_ptce_info_t ptce = {0};
1133 
1134 	ia64_get_ptce(&ptce);
1135 	vcpu->arch.ptce_base = ptce.base;
1136 	vcpu->arch.ptce_count[0] = ptce.count[0];
1137 	vcpu->arch.ptce_count[1] = ptce.count[1];
1138 	vcpu->arch.ptce_stride[0] = ptce.stride[0];
1139 	vcpu->arch.ptce_stride[1] = ptce.stride[1];
1140 }
1141 
kvm_migrate_hlt_timer(struct kvm_vcpu * vcpu)1142 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1143 {
1144 	struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1145 
1146 	if (hrtimer_cancel(p_ht))
1147 		hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1148 }
1149 
hlt_timer_fn(struct hrtimer * data)1150 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1151 {
1152 	struct kvm_vcpu *vcpu;
1153 	wait_queue_head_t *q;
1154 
1155 	vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1156 	q = &vcpu->wq;
1157 
1158 	if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1159 		goto out;
1160 
1161 	if (waitqueue_active(q))
1162 		wake_up_interruptible(q);
1163 
1164 out:
1165 	vcpu->arch.timer_fired = 1;
1166 	vcpu->arch.timer_check = 1;
1167 	return HRTIMER_NORESTART;
1168 }
1169 
1170 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1171 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)1172 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1173 {
1174 	struct kvm_vcpu *v;
1175 	int r;
1176 	int i;
1177 	long itc_offset;
1178 	struct kvm *kvm = vcpu->kvm;
1179 	struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1180 
1181 	union context *p_ctx = &vcpu->arch.guest;
1182 	struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1183 
1184 	/*Init vcpu context for first run.*/
1185 	if (IS_ERR(vmm_vcpu))
1186 		return PTR_ERR(vmm_vcpu);
1187 
1188 	if (kvm_vcpu_is_bsp(vcpu)) {
1189 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1190 
1191 		/*Set entry address for first run.*/
1192 		regs->cr_iip = PALE_RESET_ENTRY;
1193 
1194 		/*Initialize itc offset for vcpus*/
1195 		itc_offset = 0UL - kvm_get_itc(vcpu);
1196 		for (i = 0; i < KVM_MAX_VCPUS; i++) {
1197 			v = (struct kvm_vcpu *)((char *)vcpu +
1198 					sizeof(struct kvm_vcpu_data) * i);
1199 			v->arch.itc_offset = itc_offset;
1200 			v->arch.last_itc = 0;
1201 		}
1202 	} else
1203 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1204 
1205 	r = -ENOMEM;
1206 	vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1207 	if (!vcpu->arch.apic)
1208 		goto out;
1209 	vcpu->arch.apic->vcpu = vcpu;
1210 
1211 	p_ctx->gr[1] = 0;
1212 	p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1213 	p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1214 	p_ctx->psr = 0x1008522000UL;
1215 	p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1216 	p_ctx->caller_unat = 0;
1217 	p_ctx->pr = 0x0;
1218 	p_ctx->ar[36] = 0x0; /*unat*/
1219 	p_ctx->ar[19] = 0x0; /*rnat*/
1220 	p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1221 				((sizeof(struct kvm_vcpu)+15) & ~15);
1222 	p_ctx->ar[64] = 0x0; /*pfs*/
1223 	p_ctx->cr[0] = 0x7e04UL;
1224 	p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1225 	p_ctx->cr[8] = 0x3c;
1226 
1227 	/*Initialize region register*/
1228 	p_ctx->rr[0] = 0x30;
1229 	p_ctx->rr[1] = 0x30;
1230 	p_ctx->rr[2] = 0x30;
1231 	p_ctx->rr[3] = 0x30;
1232 	p_ctx->rr[4] = 0x30;
1233 	p_ctx->rr[5] = 0x30;
1234 	p_ctx->rr[7] = 0x30;
1235 
1236 	/*Initialize branch register 0*/
1237 	p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1238 
1239 	vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1240 	vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1241 	vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1242 
1243 	hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1244 	vcpu->arch.hlt_timer.function = hlt_timer_fn;
1245 
1246 	vcpu->arch.last_run_cpu = -1;
1247 	vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1248 	vcpu->arch.vsa_base = kvm_vsa_base;
1249 	vcpu->arch.__gp = kvm_vmm_gp;
1250 	vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1251 	vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1252 	vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1253 	init_ptce_info(vcpu);
1254 
1255 	r = 0;
1256 out:
1257 	return r;
1258 }
1259 
vti_vcpu_setup(struct kvm_vcpu * vcpu,int id)1260 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1261 {
1262 	unsigned long psr;
1263 	int r;
1264 
1265 	local_irq_save(psr);
1266 	r = kvm_insert_vmm_mapping(vcpu);
1267 	local_irq_restore(psr);
1268 	if (r)
1269 		goto fail;
1270 	r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1271 	if (r)
1272 		goto fail;
1273 
1274 	r = vti_init_vpd(vcpu);
1275 	if (r) {
1276 		printk(KERN_DEBUG"kvm: vpd init error!!\n");
1277 		goto uninit;
1278 	}
1279 
1280 	r = vti_create_vp(vcpu);
1281 	if (r)
1282 		goto uninit;
1283 
1284 	kvm_purge_vmm_mapping(vcpu);
1285 
1286 	return 0;
1287 uninit:
1288 	kvm_vcpu_uninit(vcpu);
1289 fail:
1290 	return r;
1291 }
1292 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)1293 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1294 		unsigned int id)
1295 {
1296 	struct kvm_vcpu *vcpu;
1297 	unsigned long vm_base = kvm->arch.vm_base;
1298 	int r;
1299 	int cpu;
1300 
1301 	BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1302 
1303 	r = -EINVAL;
1304 	if (id >= KVM_MAX_VCPUS) {
1305 		printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1306 				KVM_MAX_VCPUS);
1307 		goto fail;
1308 	}
1309 
1310 	r = -ENOMEM;
1311 	if (!vm_base) {
1312 		printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1313 		goto fail;
1314 	}
1315 	vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1316 					vcpu_data[id].vcpu_struct));
1317 	vcpu->kvm = kvm;
1318 
1319 	cpu = get_cpu();
1320 	r = vti_vcpu_setup(vcpu, id);
1321 	put_cpu();
1322 
1323 	if (r) {
1324 		printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1325 		goto fail;
1326 	}
1327 
1328 	return vcpu;
1329 fail:
1330 	return ERR_PTR(r);
1331 }
1332 
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)1333 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1334 {
1335 	return 0;
1336 }
1337 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)1338 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1339 {
1340 	return -EINVAL;
1341 }
1342 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)1343 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1344 {
1345 	return -EINVAL;
1346 }
1347 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)1348 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1349 					struct kvm_guest_debug *dbg)
1350 {
1351 	return -EINVAL;
1352 }
1353 
kvm_arch_free_vm(struct kvm * kvm)1354 void kvm_arch_free_vm(struct kvm *kvm)
1355 {
1356 	unsigned long vm_base = kvm->arch.vm_base;
1357 
1358 	if (vm_base) {
1359 		memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1360 		free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1361 	}
1362 
1363 }
1364 
kvm_release_vm_pages(struct kvm * kvm)1365 static void kvm_release_vm_pages(struct kvm *kvm)
1366 {
1367 	struct kvm_memslots *slots;
1368 	struct kvm_memory_slot *memslot;
1369 	int j;
1370 	unsigned long base_gfn;
1371 
1372 	slots = kvm_memslots(kvm);
1373 	kvm_for_each_memslot(memslot, slots) {
1374 		base_gfn = memslot->base_gfn;
1375 		for (j = 0; j < memslot->npages; j++) {
1376 			if (memslot->rmap[j])
1377 				put_page((struct page *)memslot->rmap[j]);
1378 		}
1379 	}
1380 }
1381 
kvm_arch_sync_events(struct kvm * kvm)1382 void kvm_arch_sync_events(struct kvm *kvm)
1383 {
1384 }
1385 
kvm_arch_destroy_vm(struct kvm * kvm)1386 void kvm_arch_destroy_vm(struct kvm *kvm)
1387 {
1388 	kvm_iommu_unmap_guest(kvm);
1389 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1390 	kvm_free_all_assigned_devices(kvm);
1391 #endif
1392 	kfree(kvm->arch.vioapic);
1393 	kvm_release_vm_pages(kvm);
1394 }
1395 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)1396 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1397 {
1398 }
1399 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1400 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1401 {
1402 	if (cpu != vcpu->cpu) {
1403 		vcpu->cpu = cpu;
1404 		if (vcpu->arch.ht_active)
1405 			kvm_migrate_hlt_timer(vcpu);
1406 	}
1407 }
1408 
1409 #define SAVE_REGS(_x) 	regs->_x = vcpu->arch._x
1410 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)1411 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1412 {
1413 	struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1414 	int i;
1415 
1416 	vcpu_load(vcpu);
1417 
1418 	for (i = 0; i < 16; i++) {
1419 		regs->vpd.vgr[i] = vpd->vgr[i];
1420 		regs->vpd.vbgr[i] = vpd->vbgr[i];
1421 	}
1422 	for (i = 0; i < 128; i++)
1423 		regs->vpd.vcr[i] = vpd->vcr[i];
1424 	regs->vpd.vhpi = vpd->vhpi;
1425 	regs->vpd.vnat = vpd->vnat;
1426 	regs->vpd.vbnat = vpd->vbnat;
1427 	regs->vpd.vpsr = vpd->vpsr;
1428 	regs->vpd.vpr = vpd->vpr;
1429 
1430 	memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1431 
1432 	SAVE_REGS(mp_state);
1433 	SAVE_REGS(vmm_rr);
1434 	memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1435 	memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1436 	SAVE_REGS(itr_regions);
1437 	SAVE_REGS(dtr_regions);
1438 	SAVE_REGS(tc_regions);
1439 	SAVE_REGS(irq_check);
1440 	SAVE_REGS(itc_check);
1441 	SAVE_REGS(timer_check);
1442 	SAVE_REGS(timer_pending);
1443 	SAVE_REGS(last_itc);
1444 	for (i = 0; i < 8; i++) {
1445 		regs->vrr[i] = vcpu->arch.vrr[i];
1446 		regs->ibr[i] = vcpu->arch.ibr[i];
1447 		regs->dbr[i] = vcpu->arch.dbr[i];
1448 	}
1449 	for (i = 0; i < 4; i++)
1450 		regs->insvc[i] = vcpu->arch.insvc[i];
1451 	regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1452 	SAVE_REGS(xtp);
1453 	SAVE_REGS(metaphysical_rr0);
1454 	SAVE_REGS(metaphysical_rr4);
1455 	SAVE_REGS(metaphysical_saved_rr0);
1456 	SAVE_REGS(metaphysical_saved_rr4);
1457 	SAVE_REGS(fp_psr);
1458 	SAVE_REGS(saved_gp);
1459 
1460 	vcpu_put(vcpu);
1461 	return 0;
1462 }
1463 
kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu * vcpu,struct kvm_ia64_vcpu_stack * stack)1464 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1465 				  struct kvm_ia64_vcpu_stack *stack)
1466 {
1467 	memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1468 	return 0;
1469 }
1470 
kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu * vcpu,struct kvm_ia64_vcpu_stack * stack)1471 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1472 				  struct kvm_ia64_vcpu_stack *stack)
1473 {
1474 	memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1475 	       sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1476 
1477 	vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1478 	return 0;
1479 }
1480 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)1481 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1482 {
1483 
1484 	hrtimer_cancel(&vcpu->arch.hlt_timer);
1485 	kfree(vcpu->arch.apic);
1486 }
1487 
1488 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1489 long kvm_arch_vcpu_ioctl(struct file *filp,
1490 			 unsigned int ioctl, unsigned long arg)
1491 {
1492 	struct kvm_vcpu *vcpu = filp->private_data;
1493 	void __user *argp = (void __user *)arg;
1494 	struct kvm_ia64_vcpu_stack *stack = NULL;
1495 	long r;
1496 
1497 	switch (ioctl) {
1498 	case KVM_IA64_VCPU_GET_STACK: {
1499 		struct kvm_ia64_vcpu_stack __user *user_stack;
1500 	        void __user *first_p = argp;
1501 
1502 		r = -EFAULT;
1503 		if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1504 			goto out;
1505 
1506 		if (!access_ok(VERIFY_WRITE, user_stack,
1507 			       sizeof(struct kvm_ia64_vcpu_stack))) {
1508 			printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1509 			       "Illegal user destination address for stack\n");
1510 			goto out;
1511 		}
1512 		stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1513 		if (!stack) {
1514 			r = -ENOMEM;
1515 			goto out;
1516 		}
1517 
1518 		r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1519 		if (r)
1520 			goto out;
1521 
1522 		if (copy_to_user(user_stack, stack,
1523 				 sizeof(struct kvm_ia64_vcpu_stack))) {
1524 			r = -EFAULT;
1525 			goto out;
1526 		}
1527 
1528 		break;
1529 	}
1530 	case KVM_IA64_VCPU_SET_STACK: {
1531 		struct kvm_ia64_vcpu_stack __user *user_stack;
1532 	        void __user *first_p = argp;
1533 
1534 		r = -EFAULT;
1535 		if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1536 			goto out;
1537 
1538 		if (!access_ok(VERIFY_READ, user_stack,
1539 			    sizeof(struct kvm_ia64_vcpu_stack))) {
1540 			printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1541 			       "Illegal user address for stack\n");
1542 			goto out;
1543 		}
1544 		stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1545 		if (!stack) {
1546 			r = -ENOMEM;
1547 			goto out;
1548 		}
1549 		if (copy_from_user(stack, user_stack,
1550 				   sizeof(struct kvm_ia64_vcpu_stack)))
1551 			goto out;
1552 
1553 		r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1554 		break;
1555 	}
1556 
1557 	default:
1558 		r = -EINVAL;
1559 	}
1560 
1561 out:
1562 	kfree(stack);
1563 	return r;
1564 }
1565 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_memory_slot old,struct kvm_userspace_memory_region * mem,int user_alloc)1566 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1567 		struct kvm_memory_slot *memslot,
1568 		struct kvm_memory_slot old,
1569 		struct kvm_userspace_memory_region *mem,
1570 		int user_alloc)
1571 {
1572 	unsigned long i;
1573 	unsigned long pfn;
1574 	int npages = memslot->npages;
1575 	unsigned long base_gfn = memslot->base_gfn;
1576 
1577 	if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1578 		return -ENOMEM;
1579 
1580 	for (i = 0; i < npages; i++) {
1581 		pfn = gfn_to_pfn(kvm, base_gfn + i);
1582 		if (!kvm_is_mmio_pfn(pfn)) {
1583 			kvm_set_pmt_entry(kvm, base_gfn + i,
1584 					pfn << PAGE_SHIFT,
1585 				_PAGE_AR_RWX | _PAGE_MA_WB);
1586 			memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1587 		} else {
1588 			kvm_set_pmt_entry(kvm, base_gfn + i,
1589 					GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1590 					_PAGE_MA_UC);
1591 			memslot->rmap[i] = 0;
1592 			}
1593 	}
1594 
1595 	return 0;
1596 }
1597 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,struct kvm_memory_slot old,int user_alloc)1598 void kvm_arch_commit_memory_region(struct kvm *kvm,
1599 		struct kvm_userspace_memory_region *mem,
1600 		struct kvm_memory_slot old,
1601 		int user_alloc)
1602 {
1603 	return;
1604 }
1605 
kvm_arch_flush_shadow(struct kvm * kvm)1606 void kvm_arch_flush_shadow(struct kvm *kvm)
1607 {
1608 	kvm_flush_remote_tlbs(kvm);
1609 }
1610 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1611 long kvm_arch_dev_ioctl(struct file *filp,
1612 			unsigned int ioctl, unsigned long arg)
1613 {
1614 	return -EINVAL;
1615 }
1616 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)1617 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1618 {
1619 	kvm_vcpu_uninit(vcpu);
1620 }
1621 
vti_cpu_has_kvm_support(void)1622 static int vti_cpu_has_kvm_support(void)
1623 {
1624 	long  avail = 1, status = 1, control = 1;
1625 	long ret;
1626 
1627 	ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1628 	if (ret)
1629 		goto out;
1630 
1631 	if (!(avail & PAL_PROC_VM_BIT))
1632 		goto out;
1633 
1634 	printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1635 
1636 	ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1637 	if (ret)
1638 		goto out;
1639 	printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1640 
1641 	if (!(vp_env_info & VP_OPCODE)) {
1642 		printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1643 				"vm_env_info:0x%lx\n", vp_env_info);
1644 	}
1645 
1646 	return 1;
1647 out:
1648 	return 0;
1649 }
1650 
1651 
1652 /*
1653  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1654  * SN2 RTC, replacing the ITC based default verion.
1655  */
kvm_patch_vmm(struct kvm_vmm_info * vmm_info,struct module * module)1656 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1657 			  struct module *module)
1658 {
1659 	unsigned long new_ar, new_ar_sn2;
1660 	unsigned long module_base;
1661 
1662 	if (!ia64_platform_is("sn2"))
1663 		return;
1664 
1665 	module_base = (unsigned long)module->module_core;
1666 
1667 	new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1668 	new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1669 
1670 	printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1671 	       "as source\n");
1672 
1673 	/*
1674 	 * Copy the SN2 version of mov_ar into place. They are both
1675 	 * the same size, so 6 bundles is sufficient (6 * 0x10).
1676 	 */
1677 	memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1678 }
1679 
kvm_relocate_vmm(struct kvm_vmm_info * vmm_info,struct module * module)1680 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1681 			    struct module *module)
1682 {
1683 	unsigned long module_base;
1684 	unsigned long vmm_size;
1685 
1686 	unsigned long vmm_offset, func_offset, fdesc_offset;
1687 	struct fdesc *p_fdesc;
1688 
1689 	BUG_ON(!module);
1690 
1691 	if (!kvm_vmm_base) {
1692 		printk("kvm: kvm area hasn't been initialized yet!!\n");
1693 		return -EFAULT;
1694 	}
1695 
1696 	/*Calculate new position of relocated vmm module.*/
1697 	module_base = (unsigned long)module->module_core;
1698 	vmm_size = module->core_size;
1699 	if (unlikely(vmm_size > KVM_VMM_SIZE))
1700 		return -EFAULT;
1701 
1702 	memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1703 	kvm_patch_vmm(vmm_info, module);
1704 	kvm_flush_icache(kvm_vmm_base, vmm_size);
1705 
1706 	/*Recalculate kvm_vmm_info based on new VMM*/
1707 	vmm_offset = vmm_info->vmm_ivt - module_base;
1708 	kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1709 	printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1710 			kvm_vmm_info->vmm_ivt);
1711 
1712 	fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1713 	kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1714 							fdesc_offset);
1715 	func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1716 	p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1717 	p_fdesc->ip = KVM_VMM_BASE + func_offset;
1718 	p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1719 
1720 	printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1721 			KVM_VMM_BASE+func_offset);
1722 
1723 	fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1724 	kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1725 			fdesc_offset);
1726 	func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1727 	p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1728 	p_fdesc->ip = KVM_VMM_BASE + func_offset;
1729 	p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1730 
1731 	kvm_vmm_gp = p_fdesc->gp;
1732 
1733 	printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1734 						kvm_vmm_info->vmm_entry);
1735 	printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1736 						KVM_VMM_BASE + func_offset);
1737 
1738 	return 0;
1739 }
1740 
kvm_arch_init(void * opaque)1741 int kvm_arch_init(void *opaque)
1742 {
1743 	int r;
1744 	struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1745 
1746 	if (!vti_cpu_has_kvm_support()) {
1747 		printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1748 		r = -EOPNOTSUPP;
1749 		goto out;
1750 	}
1751 
1752 	if (kvm_vmm_info) {
1753 		printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1754 		r = -EEXIST;
1755 		goto out;
1756 	}
1757 
1758 	r = -ENOMEM;
1759 	kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1760 	if (!kvm_vmm_info)
1761 		goto out;
1762 
1763 	if (kvm_alloc_vmm_area())
1764 		goto out_free0;
1765 
1766 	r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1767 	if (r)
1768 		goto out_free1;
1769 
1770 	return 0;
1771 
1772 out_free1:
1773 	kvm_free_vmm_area();
1774 out_free0:
1775 	kfree(kvm_vmm_info);
1776 out:
1777 	return r;
1778 }
1779 
kvm_arch_exit(void)1780 void kvm_arch_exit(void)
1781 {
1782 	kvm_free_vmm_area();
1783 	kfree(kvm_vmm_info);
1784 	kvm_vmm_info = NULL;
1785 }
1786 
kvm_ia64_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1787 static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1788 				    struct kvm_memory_slot *memslot)
1789 {
1790 	int i;
1791 	long base;
1792 	unsigned long n;
1793 	unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1794 			offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1795 
1796 	n = kvm_dirty_bitmap_bytes(memslot);
1797 	base = memslot->base_gfn / BITS_PER_LONG;
1798 
1799 	spin_lock(&kvm->arch.dirty_log_lock);
1800 	for (i = 0; i < n/sizeof(long); ++i) {
1801 		memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1802 		dirty_bitmap[base + i] = 0;
1803 	}
1804 	spin_unlock(&kvm->arch.dirty_log_lock);
1805 }
1806 
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)1807 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1808 		struct kvm_dirty_log *log)
1809 {
1810 	int r;
1811 	unsigned long n;
1812 	struct kvm_memory_slot *memslot;
1813 	int is_dirty = 0;
1814 
1815 	mutex_lock(&kvm->slots_lock);
1816 
1817 	r = -EINVAL;
1818 	if (log->slot >= KVM_MEMORY_SLOTS)
1819 		goto out;
1820 
1821 	memslot = id_to_memslot(kvm->memslots, log->slot);
1822 	r = -ENOENT;
1823 	if (!memslot->dirty_bitmap)
1824 		goto out;
1825 
1826 	kvm_ia64_sync_dirty_log(kvm, memslot);
1827 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
1828 	if (r)
1829 		goto out;
1830 
1831 	/* If nothing is dirty, don't bother messing with page tables. */
1832 	if (is_dirty) {
1833 		kvm_flush_remote_tlbs(kvm);
1834 		n = kvm_dirty_bitmap_bytes(memslot);
1835 		memset(memslot->dirty_bitmap, 0, n);
1836 	}
1837 	r = 0;
1838 out:
1839 	mutex_unlock(&kvm->slots_lock);
1840 	return r;
1841 }
1842 
kvm_arch_hardware_setup(void)1843 int kvm_arch_hardware_setup(void)
1844 {
1845 	return 0;
1846 }
1847 
kvm_arch_hardware_unsetup(void)1848 void kvm_arch_hardware_unsetup(void)
1849 {
1850 }
1851 
kvm_vcpu_kick(struct kvm_vcpu * vcpu)1852 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1853 {
1854 	int me;
1855 	int cpu = vcpu->cpu;
1856 
1857 	if (waitqueue_active(&vcpu->wq))
1858 		wake_up_interruptible(&vcpu->wq);
1859 
1860 	me = get_cpu();
1861 	if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
1862 		if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
1863 			smp_send_reschedule(cpu);
1864 	put_cpu();
1865 }
1866 
kvm_apic_set_irq(struct kvm_vcpu * vcpu,struct kvm_lapic_irq * irq)1867 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1868 {
1869 	return __apic_accept_irq(vcpu, irq->vector);
1870 }
1871 
kvm_apic_match_physical_addr(struct kvm_lapic * apic,u16 dest)1872 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1873 {
1874 	return apic->vcpu->vcpu_id == dest;
1875 }
1876 
kvm_apic_match_logical_addr(struct kvm_lapic * apic,u8 mda)1877 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1878 {
1879 	return 0;
1880 }
1881 
kvm_apic_compare_prio(struct kvm_vcpu * vcpu1,struct kvm_vcpu * vcpu2)1882 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1883 {
1884 	return vcpu1->arch.xtp - vcpu2->arch.xtp;
1885 }
1886 
kvm_apic_match_dest(struct kvm_vcpu * vcpu,struct kvm_lapic * source,int short_hand,int dest,int dest_mode)1887 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1888 		int short_hand, int dest, int dest_mode)
1889 {
1890 	struct kvm_lapic *target = vcpu->arch.apic;
1891 	return (dest_mode == 0) ?
1892 		kvm_apic_match_physical_addr(target, dest) :
1893 		kvm_apic_match_logical_addr(target, dest);
1894 }
1895 
find_highest_bits(int * dat)1896 static int find_highest_bits(int *dat)
1897 {
1898 	u32  bits, bitnum;
1899 	int i;
1900 
1901 	/* loop for all 256 bits */
1902 	for (i = 7; i >= 0 ; i--) {
1903 		bits = dat[i];
1904 		if (bits) {
1905 			bitnum = fls(bits);
1906 			return i * 32 + bitnum - 1;
1907 		}
1908 	}
1909 
1910 	return -1;
1911 }
1912 
kvm_highest_pending_irq(struct kvm_vcpu * vcpu)1913 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1914 {
1915     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1916 
1917     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1918 		return NMI_VECTOR;
1919     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1920 		return ExtINT_VECTOR;
1921 
1922     return find_highest_bits((int *)&vpd->irr[0]);
1923 }
1924 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)1925 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1926 {
1927 	return vcpu->arch.timer_fired;
1928 }
1929 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)1930 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1931 {
1932 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1933 		(kvm_highest_pending_irq(vcpu) != -1);
1934 }
1935 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1936 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1937 				    struct kvm_mp_state *mp_state)
1938 {
1939 	mp_state->mp_state = vcpu->arch.mp_state;
1940 	return 0;
1941 }
1942 
vcpu_reset(struct kvm_vcpu * vcpu)1943 static int vcpu_reset(struct kvm_vcpu *vcpu)
1944 {
1945 	int r;
1946 	long psr;
1947 	local_irq_save(psr);
1948 	r = kvm_insert_vmm_mapping(vcpu);
1949 	local_irq_restore(psr);
1950 	if (r)
1951 		goto fail;
1952 
1953 	vcpu->arch.launched = 0;
1954 	kvm_arch_vcpu_uninit(vcpu);
1955 	r = kvm_arch_vcpu_init(vcpu);
1956 	if (r)
1957 		goto fail;
1958 
1959 	kvm_purge_vmm_mapping(vcpu);
1960 	r = 0;
1961 fail:
1962 	return r;
1963 }
1964 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1965 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1966 				    struct kvm_mp_state *mp_state)
1967 {
1968 	int r = 0;
1969 
1970 	vcpu->arch.mp_state = mp_state->mp_state;
1971 	if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1972 		r = vcpu_reset(vcpu);
1973 	return r;
1974 }
1975