1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	Stephane Eranian <eranian@hpl.hp.com>
6  *	David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23 #include <linux/platform_device.h>
24 
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32 #include <asm/system.h>
33 
34 #include "fsyscall_gtod_data.h"
35 
36 static cycle_t itc_get_cycles(struct clocksource *cs);
37 
38 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
39 	.lock = __SEQLOCK_UNLOCKED(fsyscall_gtod_data.lock),
40 };
41 
42 struct itc_jitter_data_t itc_jitter_data;
43 
44 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
45 
46 #ifdef CONFIG_IA64_DEBUG_IRQ
47 
48 unsigned long last_cli_ip;
49 EXPORT_SYMBOL(last_cli_ip);
50 
51 #endif
52 
53 #ifdef CONFIG_PARAVIRT
54 /* We need to define a real function for sched_clock, to override the
55    weak default version */
sched_clock(void)56 unsigned long long sched_clock(void)
57 {
58         return paravirt_sched_clock();
59 }
60 #endif
61 
62 #ifdef CONFIG_PARAVIRT
63 static void
paravirt_clocksource_resume(struct clocksource * cs)64 paravirt_clocksource_resume(struct clocksource *cs)
65 {
66 	if (pv_time_ops.clocksource_resume)
67 		pv_time_ops.clocksource_resume();
68 }
69 #endif
70 
71 static struct clocksource clocksource_itc = {
72 	.name           = "itc",
73 	.rating         = 350,
74 	.read           = itc_get_cycles,
75 	.mask           = CLOCKSOURCE_MASK(64),
76 	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
77 #ifdef CONFIG_PARAVIRT
78 	.resume		= paravirt_clocksource_resume,
79 #endif
80 };
81 static struct clocksource *itc_clocksource;
82 
83 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
84 
85 #include <linux/kernel_stat.h>
86 
87 extern cputime_t cycle_to_cputime(u64 cyc);
88 
89 /*
90  * Called from the context switch with interrupts disabled, to charge all
91  * accumulated times to the current process, and to prepare accounting on
92  * the next process.
93  */
ia64_account_on_switch(struct task_struct * prev,struct task_struct * next)94 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
95 {
96 	struct thread_info *pi = task_thread_info(prev);
97 	struct thread_info *ni = task_thread_info(next);
98 	cputime_t delta_stime, delta_utime;
99 	__u64 now;
100 
101 	now = ia64_get_itc();
102 
103 	delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
104 	if (idle_task(smp_processor_id()) != prev)
105 		account_system_time(prev, 0, delta_stime, delta_stime);
106 	else
107 		account_idle_time(delta_stime);
108 
109 	if (pi->ac_utime) {
110 		delta_utime = cycle_to_cputime(pi->ac_utime);
111 		account_user_time(prev, delta_utime, delta_utime);
112 	}
113 
114 	pi->ac_stamp = ni->ac_stamp = now;
115 	ni->ac_stime = ni->ac_utime = 0;
116 }
117 
118 /*
119  * Account time for a transition between system, hard irq or soft irq state.
120  * Note that this function is called with interrupts enabled.
121  */
account_system_vtime(struct task_struct * tsk)122 void account_system_vtime(struct task_struct *tsk)
123 {
124 	struct thread_info *ti = task_thread_info(tsk);
125 	unsigned long flags;
126 	cputime_t delta_stime;
127 	__u64 now;
128 
129 	local_irq_save(flags);
130 
131 	now = ia64_get_itc();
132 
133 	delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
134 	if (irq_count() || idle_task(smp_processor_id()) != tsk)
135 		account_system_time(tsk, 0, delta_stime, delta_stime);
136 	else
137 		account_idle_time(delta_stime);
138 	ti->ac_stime = 0;
139 
140 	ti->ac_stamp = now;
141 
142 	local_irq_restore(flags);
143 }
144 EXPORT_SYMBOL_GPL(account_system_vtime);
145 
146 /*
147  * Called from the timer interrupt handler to charge accumulated user time
148  * to the current process.  Must be called with interrupts disabled.
149  */
account_process_tick(struct task_struct * p,int user_tick)150 void account_process_tick(struct task_struct *p, int user_tick)
151 {
152 	struct thread_info *ti = task_thread_info(p);
153 	cputime_t delta_utime;
154 
155 	if (ti->ac_utime) {
156 		delta_utime = cycle_to_cputime(ti->ac_utime);
157 		account_user_time(p, delta_utime, delta_utime);
158 		ti->ac_utime = 0;
159 	}
160 }
161 
162 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
163 
164 static irqreturn_t
timer_interrupt(int irq,void * dev_id)165 timer_interrupt (int irq, void *dev_id)
166 {
167 	unsigned long new_itm;
168 
169 	if (cpu_is_offline(smp_processor_id())) {
170 		return IRQ_HANDLED;
171 	}
172 
173 	platform_timer_interrupt(irq, dev_id);
174 
175 	new_itm = local_cpu_data->itm_next;
176 
177 	if (!time_after(ia64_get_itc(), new_itm))
178 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
179 		       ia64_get_itc(), new_itm);
180 
181 	profile_tick(CPU_PROFILING);
182 
183 	if (paravirt_do_steal_accounting(&new_itm))
184 		goto skip_process_time_accounting;
185 
186 	while (1) {
187 		update_process_times(user_mode(get_irq_regs()));
188 
189 		new_itm += local_cpu_data->itm_delta;
190 
191 		if (smp_processor_id() == time_keeper_id)
192 			xtime_update(1);
193 
194 		local_cpu_data->itm_next = new_itm;
195 
196 		if (time_after(new_itm, ia64_get_itc()))
197 			break;
198 
199 		/*
200 		 * Allow IPIs to interrupt the timer loop.
201 		 */
202 		local_irq_enable();
203 		local_irq_disable();
204 	}
205 
206 skip_process_time_accounting:
207 
208 	do {
209 		/*
210 		 * If we're too close to the next clock tick for
211 		 * comfort, we increase the safety margin by
212 		 * intentionally dropping the next tick(s).  We do NOT
213 		 * update itm.next because that would force us to call
214 		 * xtime_update() which in turn would let our clock run
215 		 * too fast (with the potentially devastating effect
216 		 * of losing monotony of time).
217 		 */
218 		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
219 			new_itm += local_cpu_data->itm_delta;
220 		ia64_set_itm(new_itm);
221 		/* double check, in case we got hit by a (slow) PMI: */
222 	} while (time_after_eq(ia64_get_itc(), new_itm));
223 	return IRQ_HANDLED;
224 }
225 
226 /*
227  * Encapsulate access to the itm structure for SMP.
228  */
229 void
ia64_cpu_local_tick(void)230 ia64_cpu_local_tick (void)
231 {
232 	int cpu = smp_processor_id();
233 	unsigned long shift = 0, delta;
234 
235 	/* arrange for the cycle counter to generate a timer interrupt: */
236 	ia64_set_itv(IA64_TIMER_VECTOR);
237 
238 	delta = local_cpu_data->itm_delta;
239 	/*
240 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
241 	 * same time:
242 	 */
243 	if (cpu) {
244 		unsigned long hi = 1UL << ia64_fls(cpu);
245 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
246 	}
247 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
248 	ia64_set_itm(local_cpu_data->itm_next);
249 }
250 
251 static int nojitter;
252 
nojitter_setup(char * str)253 static int __init nojitter_setup(char *str)
254 {
255 	nojitter = 1;
256 	printk("Jitter checking for ITC timers disabled\n");
257 	return 1;
258 }
259 
260 __setup("nojitter", nojitter_setup);
261 
262 
263 void __devinit
ia64_init_itm(void)264 ia64_init_itm (void)
265 {
266 	unsigned long platform_base_freq, itc_freq;
267 	struct pal_freq_ratio itc_ratio, proc_ratio;
268 	long status, platform_base_drift, itc_drift;
269 
270 	/*
271 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
272 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
273 	 * and the base frequency.
274 	 */
275 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
276 				    &platform_base_freq, &platform_base_drift);
277 	if (status != 0) {
278 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
279 	} else {
280 		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
281 		if (status != 0)
282 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
283 	}
284 	if (status != 0) {
285 		/* invent "random" values */
286 		printk(KERN_ERR
287 		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
288 		platform_base_freq = 100000000;
289 		platform_base_drift = -1;	/* no drift info */
290 		itc_ratio.num = 3;
291 		itc_ratio.den = 1;
292 	}
293 	if (platform_base_freq < 40000000) {
294 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
295 		       platform_base_freq);
296 		platform_base_freq = 75000000;
297 		platform_base_drift = -1;
298 	}
299 	if (!proc_ratio.den)
300 		proc_ratio.den = 1;	/* avoid division by zero */
301 	if (!itc_ratio.den)
302 		itc_ratio.den = 1;	/* avoid division by zero */
303 
304 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
305 
306 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
307 	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
308 	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
309 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
310 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
311 
312 	if (platform_base_drift != -1) {
313 		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
314 		printk("+/-%ldppm\n", itc_drift);
315 	} else {
316 		itc_drift = -1;
317 		printk("\n");
318 	}
319 
320 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
321 	local_cpu_data->itc_freq = itc_freq;
322 	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
323 	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
324 					+ itc_freq/2)/itc_freq;
325 
326 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
327 #ifdef CONFIG_SMP
328 		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
329 		 * Jitter compensation requires a cmpxchg which may limit
330 		 * the scalability of the syscalls for retrieving time.
331 		 * The ITC synchronization is usually successful to within a few
332 		 * ITC ticks but this is not a sure thing. If you need to improve
333 		 * timer performance in SMP situations then boot the kernel with the
334 		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
335 		 * even going backward) if the ITC offsets between the individual CPUs
336 		 * are too large.
337 		 */
338 		if (!nojitter)
339 			itc_jitter_data.itc_jitter = 1;
340 #endif
341 	} else
342 		/*
343 		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
344 		 * ITC values may fluctuate significantly between processors.
345 		 * Clock should not be used for hrtimers. Mark itc as only
346 		 * useful for boot and testing.
347 		 *
348 		 * Note that jitter compensation is off! There is no point of
349 		 * synchronizing ITCs since they may be large differentials
350 		 * that change over time.
351 		 *
352 		 * The only way to fix this would be to repeatedly sync the
353 		 * ITCs. Until that time we have to avoid ITC.
354 		 */
355 		clocksource_itc.rating = 50;
356 
357 	paravirt_init_missing_ticks_accounting(smp_processor_id());
358 
359 	/* avoid softlock up message when cpu is unplug and plugged again. */
360 	touch_softlockup_watchdog();
361 
362 	/* Setup the CPU local timer tick */
363 	ia64_cpu_local_tick();
364 
365 	if (!itc_clocksource) {
366 		clocksource_register_hz(&clocksource_itc,
367 						local_cpu_data->itc_freq);
368 		itc_clocksource = &clocksource_itc;
369 	}
370 }
371 
itc_get_cycles(struct clocksource * cs)372 static cycle_t itc_get_cycles(struct clocksource *cs)
373 {
374 	unsigned long lcycle, now, ret;
375 
376 	if (!itc_jitter_data.itc_jitter)
377 		return get_cycles();
378 
379 	lcycle = itc_jitter_data.itc_lastcycle;
380 	now = get_cycles();
381 	if (lcycle && time_after(lcycle, now))
382 		return lcycle;
383 
384 	/*
385 	 * Keep track of the last timer value returned.
386 	 * In an SMP environment, you could lose out in contention of
387 	 * cmpxchg. If so, your cmpxchg returns new value which the
388 	 * winner of contention updated to. Use the new value instead.
389 	 */
390 	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
391 	if (unlikely(ret != lcycle))
392 		return ret;
393 
394 	return now;
395 }
396 
397 
398 static struct irqaction timer_irqaction = {
399 	.handler =	timer_interrupt,
400 	.flags =	IRQF_DISABLED | IRQF_IRQPOLL,
401 	.name =		"timer"
402 };
403 
404 static struct platform_device rtc_efi_dev = {
405 	.name = "rtc-efi",
406 	.id = -1,
407 };
408 
rtc_init(void)409 static int __init rtc_init(void)
410 {
411 	if (platform_device_register(&rtc_efi_dev) < 0)
412 		printk(KERN_ERR "unable to register rtc device...\n");
413 
414 	/* not necessarily an error */
415 	return 0;
416 }
417 module_init(rtc_init);
418 
read_persistent_clock(struct timespec * ts)419 void read_persistent_clock(struct timespec *ts)
420 {
421 	efi_gettimeofday(ts);
422 }
423 
424 void __init
time_init(void)425 time_init (void)
426 {
427 	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
428 	ia64_init_itm();
429 }
430 
431 /*
432  * Generic udelay assumes that if preemption is allowed and the thread
433  * migrates to another CPU, that the ITC values are synchronized across
434  * all CPUs.
435  */
436 static void
ia64_itc_udelay(unsigned long usecs)437 ia64_itc_udelay (unsigned long usecs)
438 {
439 	unsigned long start = ia64_get_itc();
440 	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
441 
442 	while (time_before(ia64_get_itc(), end))
443 		cpu_relax();
444 }
445 
446 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
447 
448 void
udelay(unsigned long usecs)449 udelay (unsigned long usecs)
450 {
451 	(*ia64_udelay)(usecs);
452 }
453 EXPORT_SYMBOL(udelay);
454 
455 /* IA64 doesn't cache the timezone */
update_vsyscall_tz(void)456 void update_vsyscall_tz(void)
457 {
458 }
459 
update_vsyscall(struct timespec * wall,struct timespec * wtm,struct clocksource * c,u32 mult)460 void update_vsyscall(struct timespec *wall, struct timespec *wtm,
461 			struct clocksource *c, u32 mult)
462 {
463         unsigned long flags;
464 
465         write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
466 
467         /* copy fsyscall clock data */
468         fsyscall_gtod_data.clk_mask = c->mask;
469         fsyscall_gtod_data.clk_mult = mult;
470         fsyscall_gtod_data.clk_shift = c->shift;
471         fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
472         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
473 
474 	/* copy kernel time structures */
475         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
476         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
477 	fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
478 							+ wall->tv_sec;
479 	fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
480 							+ wall->tv_nsec;
481 
482 	/* normalize */
483 	while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
484 		fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
485 		fsyscall_gtod_data.monotonic_time.tv_sec++;
486 	}
487 
488         write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
489 }
490 
491