1 /*
2  * Copyright 2004-2010 Analog Devices Inc.
3  *
4  * Licensed under the GPL-2 or later.
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
16 
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
23 
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
32 #include <asm/irq_handler.h>
33 
34 u16 _bfin_swrst;
35 EXPORT_SYMBOL(_bfin_swrst);
36 
37 unsigned long memory_start, memory_end, physical_mem_end;
38 unsigned long _rambase, _ramstart, _ramend;
39 unsigned long reserved_mem_dcache_on;
40 unsigned long reserved_mem_icache_on;
41 EXPORT_SYMBOL(memory_start);
42 EXPORT_SYMBOL(memory_end);
43 EXPORT_SYMBOL(physical_mem_end);
44 EXPORT_SYMBOL(_ramend);
45 EXPORT_SYMBOL(reserved_mem_dcache_on);
46 
47 #ifdef CONFIG_MTD_UCLINUX
48 extern struct map_info uclinux_ram_map;
49 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
50 unsigned long _ebss;
51 EXPORT_SYMBOL(memory_mtd_end);
52 EXPORT_SYMBOL(memory_mtd_start);
53 EXPORT_SYMBOL(mtd_size);
54 #endif
55 
56 char __initdata command_line[COMMAND_LINE_SIZE];
57 struct blackfin_initial_pda __initdata initial_pda;
58 
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX		128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM		1
62 #define BFIN_MEMMAP_RESERVED	2
63 static struct bfin_memmap {
64 	int nr_map;
65 	struct bfin_memmap_entry {
66 		unsigned long long addr; /* start of memory segment */
67 		unsigned long long size;
68 		unsigned long type;
69 	} map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
71 
72 /* for memmap sanitization */
73 struct change_member {
74 	struct bfin_memmap_entry *pentry; /* pointer to original entry */
75 	unsigned long long addr; /* address for this change point */
76 };
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
81 
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
83 
84 static int early_init_clkin_hz(char *buf);
85 
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
generate_cplb_tables(void)87 void __init generate_cplb_tables(void)
88 {
89 	unsigned int cpu;
90 
91 	generate_cplb_tables_all();
92 	/* Generate per-CPU I&D CPLB tables */
93 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94 		generate_cplb_tables_cpu(cpu);
95 }
96 #endif
97 
bfin_setup_caches(unsigned int cpu)98 void __cpuinit bfin_setup_caches(unsigned int cpu)
99 {
100 #ifdef CONFIG_BFIN_ICACHE
101 	bfin_icache_init(icplb_tbl[cpu]);
102 #endif
103 
104 #ifdef CONFIG_BFIN_DCACHE
105 	bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
107 
108 	bfin_setup_cpudata(cpu);
109 
110 	/*
111 	 * In cache coherence emulation mode, we need to have the
112 	 * D-cache enabled before running any atomic operation which
113 	 * might involve cache invalidation (i.e. spinlock, rwlock).
114 	 * So printk's are deferred until then.
115 	 */
116 #ifdef CONFIG_BFIN_ICACHE
117 	printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
118 	printk(KERN_INFO "  External memory:"
119 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
120 	       " cacheable"
121 # else
122 	       " uncacheable"
123 # endif
124 	       " in instruction cache\n");
125 	if (L2_LENGTH)
126 		printk(KERN_INFO "  L2 SRAM        :"
127 # ifdef CONFIG_BFIN_L2_ICACHEABLE
128 		       " cacheable"
129 # else
130 		       " uncacheable"
131 # endif
132 		       " in instruction cache\n");
133 
134 #else
135 	printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
136 #endif
137 
138 #ifdef CONFIG_BFIN_DCACHE
139 	printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
140 	printk(KERN_INFO "  External memory:"
141 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
142 	       " cacheable (write-back)"
143 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
144 	       " cacheable (write-through)"
145 # else
146 	       " uncacheable"
147 # endif
148 	       " in data cache\n");
149 	if (L2_LENGTH)
150 		printk(KERN_INFO "  L2 SRAM        :"
151 # if defined CONFIG_BFIN_L2_WRITEBACK
152 		       " cacheable (write-back)"
153 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
154 		       " cacheable (write-through)"
155 # else
156 		       " uncacheable"
157 # endif
158 		       " in data cache\n");
159 #else
160 	printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
161 #endif
162 }
163 
bfin_setup_cpudata(unsigned int cpu)164 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
165 {
166 	struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
167 
168 	cpudata->imemctl = bfin_read_IMEM_CONTROL();
169 	cpudata->dmemctl = bfin_read_DMEM_CONTROL();
170 }
171 
bfin_cache_init(void)172 void __init bfin_cache_init(void)
173 {
174 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
175 	generate_cplb_tables();
176 #endif
177 	bfin_setup_caches(0);
178 }
179 
bfin_relocate_l1_mem(void)180 void __init bfin_relocate_l1_mem(void)
181 {
182 	unsigned long text_l1_len = (unsigned long)_text_l1_len;
183 	unsigned long data_l1_len = (unsigned long)_data_l1_len;
184 	unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
185 	unsigned long l2_len = (unsigned long)_l2_len;
186 
187 	early_shadow_stamp();
188 
189 	/*
190 	 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
191 	 * we know that everything about l1 text/data is nice and aligned,
192 	 * so copy by 4 byte chunks, and don't worry about overlapping
193 	 * src/dest.
194 	 *
195 	 * We can't use the dma_memcpy functions, since they can call
196 	 * scheduler functions which might be in L1 :( and core writes
197 	 * into L1 instruction cause bad access errors, so we are stuck,
198 	 * we are required to use DMA, but can't use the common dma
199 	 * functions. We can't use memcpy either - since that might be
200 	 * going to be in the relocated L1
201 	 */
202 
203 	blackfin_dma_early_init();
204 
205 	/* if necessary, copy L1 text to L1 instruction SRAM */
206 	if (L1_CODE_LENGTH && text_l1_len)
207 		early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
208 
209 	/* if necessary, copy L1 data to L1 data bank A SRAM */
210 	if (L1_DATA_A_LENGTH && data_l1_len)
211 		early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
212 
213 	/* if necessary, copy L1 data B to L1 data bank B SRAM */
214 	if (L1_DATA_B_LENGTH && data_b_l1_len)
215 		early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
216 
217 	early_dma_memcpy_done();
218 
219 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
220 	blackfin_iflush_l1_entry[0] = (unsigned long)blackfin_icache_flush_range_l1;
221 #endif
222 
223 	/* if necessary, copy L2 text/data to L2 SRAM */
224 	if (L2_LENGTH && l2_len)
225 		memcpy(_stext_l2, _l2_lma, l2_len);
226 }
227 
228 #ifdef CONFIG_SMP
bfin_relocate_coreb_l1_mem(void)229 void __init bfin_relocate_coreb_l1_mem(void)
230 {
231 	unsigned long text_l1_len = (unsigned long)_text_l1_len;
232 	unsigned long data_l1_len = (unsigned long)_data_l1_len;
233 	unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
234 
235 	blackfin_dma_early_init();
236 
237 	/* if necessary, copy L1 text to L1 instruction SRAM */
238 	if (L1_CODE_LENGTH && text_l1_len)
239 		early_dma_memcpy((void *)COREB_L1_CODE_START, _text_l1_lma,
240 				text_l1_len);
241 
242 	/* if necessary, copy L1 data to L1 data bank A SRAM */
243 	if (L1_DATA_A_LENGTH && data_l1_len)
244 		early_dma_memcpy((void *)COREB_L1_DATA_A_START, _data_l1_lma,
245 				data_l1_len);
246 
247 	/* if necessary, copy L1 data B to L1 data bank B SRAM */
248 	if (L1_DATA_B_LENGTH && data_b_l1_len)
249 		early_dma_memcpy((void *)COREB_L1_DATA_B_START, _data_b_l1_lma,
250 				data_b_l1_len);
251 
252 	early_dma_memcpy_done();
253 
254 #ifdef CONFIG_ICACHE_FLUSH_L1
255 	blackfin_iflush_l1_entry[1] = (unsigned long)blackfin_icache_flush_range_l1 -
256 			(unsigned long)_stext_l1 + COREB_L1_CODE_START;
257 #endif
258 }
259 #endif
260 
261 #ifdef CONFIG_ROMKERNEL
bfin_relocate_xip_data(void)262 void __init bfin_relocate_xip_data(void)
263 {
264 	early_shadow_stamp();
265 
266 	memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info));
267 	memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len);
268 }
269 #endif
270 
271 /* add_memory_region to memmap */
add_memory_region(unsigned long long start,unsigned long long size,int type)272 static void __init add_memory_region(unsigned long long start,
273 			      unsigned long long size, int type)
274 {
275 	int i;
276 
277 	i = bfin_memmap.nr_map;
278 
279 	if (i == BFIN_MEMMAP_MAX) {
280 		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
281 		return;
282 	}
283 
284 	bfin_memmap.map[i].addr = start;
285 	bfin_memmap.map[i].size = size;
286 	bfin_memmap.map[i].type = type;
287 	bfin_memmap.nr_map++;
288 }
289 
290 /*
291  * Sanitize the boot memmap, removing overlaps.
292  */
sanitize_memmap(struct bfin_memmap_entry * map,int * pnr_map)293 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
294 {
295 	struct change_member *change_tmp;
296 	unsigned long current_type, last_type;
297 	unsigned long long last_addr;
298 	int chgidx, still_changing;
299 	int overlap_entries;
300 	int new_entry;
301 	int old_nr, new_nr, chg_nr;
302 	int i;
303 
304 	/*
305 		Visually we're performing the following (1,2,3,4 = memory types)
306 
307 		Sample memory map (w/overlaps):
308 		   ____22__________________
309 		   ______________________4_
310 		   ____1111________________
311 		   _44_____________________
312 		   11111111________________
313 		   ____________________33__
314 		   ___________44___________
315 		   __________33333_________
316 		   ______________22________
317 		   ___________________2222_
318 		   _________111111111______
319 		   _____________________11_
320 		   _________________4______
321 
322 		Sanitized equivalent (no overlap):
323 		   1_______________________
324 		   _44_____________________
325 		   ___1____________________
326 		   ____22__________________
327 		   ______11________________
328 		   _________1______________
329 		   __________3_____________
330 		   ___________44___________
331 		   _____________33_________
332 		   _______________2________
333 		   ________________1_______
334 		   _________________4______
335 		   ___________________2____
336 		   ____________________33__
337 		   ______________________4_
338 	*/
339 	/* if there's only one memory region, don't bother */
340 	if (*pnr_map < 2)
341 		return -1;
342 
343 	old_nr = *pnr_map;
344 
345 	/* bail out if we find any unreasonable addresses in memmap */
346 	for (i = 0; i < old_nr; i++)
347 		if (map[i].addr + map[i].size < map[i].addr)
348 			return -1;
349 
350 	/* create pointers for initial change-point information (for sorting) */
351 	for (i = 0; i < 2*old_nr; i++)
352 		change_point[i] = &change_point_list[i];
353 
354 	/* record all known change-points (starting and ending addresses),
355 	   omitting those that are for empty memory regions */
356 	chgidx = 0;
357 	for (i = 0; i < old_nr; i++) {
358 		if (map[i].size != 0) {
359 			change_point[chgidx]->addr = map[i].addr;
360 			change_point[chgidx++]->pentry = &map[i];
361 			change_point[chgidx]->addr = map[i].addr + map[i].size;
362 			change_point[chgidx++]->pentry = &map[i];
363 		}
364 	}
365 	chg_nr = chgidx;	/* true number of change-points */
366 
367 	/* sort change-point list by memory addresses (low -> high) */
368 	still_changing = 1;
369 	while (still_changing) {
370 		still_changing = 0;
371 		for (i = 1; i < chg_nr; i++) {
372 			/* if <current_addr> > <last_addr>, swap */
373 			/* or, if current=<start_addr> & last=<end_addr>, swap */
374 			if ((change_point[i]->addr < change_point[i-1]->addr) ||
375 				((change_point[i]->addr == change_point[i-1]->addr) &&
376 				 (change_point[i]->addr == change_point[i]->pentry->addr) &&
377 				 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
378 			   ) {
379 				change_tmp = change_point[i];
380 				change_point[i] = change_point[i-1];
381 				change_point[i-1] = change_tmp;
382 				still_changing = 1;
383 			}
384 		}
385 	}
386 
387 	/* create a new memmap, removing overlaps */
388 	overlap_entries = 0;	/* number of entries in the overlap table */
389 	new_entry = 0;		/* index for creating new memmap entries */
390 	last_type = 0;		/* start with undefined memory type */
391 	last_addr = 0;		/* start with 0 as last starting address */
392 	/* loop through change-points, determining affect on the new memmap */
393 	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
394 		/* keep track of all overlapping memmap entries */
395 		if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
396 			/* add map entry to overlap list (> 1 entry implies an overlap) */
397 			overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
398 		} else {
399 			/* remove entry from list (order independent, so swap with last) */
400 			for (i = 0; i < overlap_entries; i++) {
401 				if (overlap_list[i] == change_point[chgidx]->pentry)
402 					overlap_list[i] = overlap_list[overlap_entries-1];
403 			}
404 			overlap_entries--;
405 		}
406 		/* if there are overlapping entries, decide which "type" to use */
407 		/* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
408 		current_type = 0;
409 		for (i = 0; i < overlap_entries; i++)
410 			if (overlap_list[i]->type > current_type)
411 				current_type = overlap_list[i]->type;
412 		/* continue building up new memmap based on this information */
413 		if (current_type != last_type) {
414 			if (last_type != 0) {
415 				new_map[new_entry].size =
416 					change_point[chgidx]->addr - last_addr;
417 				/* move forward only if the new size was non-zero */
418 				if (new_map[new_entry].size != 0)
419 					if (++new_entry >= BFIN_MEMMAP_MAX)
420 						break;	/* no more space left for new entries */
421 			}
422 			if (current_type != 0) {
423 				new_map[new_entry].addr = change_point[chgidx]->addr;
424 				new_map[new_entry].type = current_type;
425 				last_addr = change_point[chgidx]->addr;
426 			}
427 			last_type = current_type;
428 		}
429 	}
430 	new_nr = new_entry;	/* retain count for new entries */
431 
432 	/* copy new mapping into original location */
433 	memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
434 	*pnr_map = new_nr;
435 
436 	return 0;
437 }
438 
print_memory_map(char * who)439 static void __init print_memory_map(char *who)
440 {
441 	int i;
442 
443 	for (i = 0; i < bfin_memmap.nr_map; i++) {
444 		printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
445 			bfin_memmap.map[i].addr,
446 			bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
447 		switch (bfin_memmap.map[i].type) {
448 		case BFIN_MEMMAP_RAM:
449 			printk(KERN_CONT "(usable)\n");
450 			break;
451 		case BFIN_MEMMAP_RESERVED:
452 			printk(KERN_CONT "(reserved)\n");
453 			break;
454 		default:
455 			printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
456 			break;
457 		}
458 	}
459 }
460 
parse_memmap(char * arg)461 static __init int parse_memmap(char *arg)
462 {
463 	unsigned long long start_at, mem_size;
464 
465 	if (!arg)
466 		return -EINVAL;
467 
468 	mem_size = memparse(arg, &arg);
469 	if (*arg == '@') {
470 		start_at = memparse(arg+1, &arg);
471 		add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
472 	} else if (*arg == '$') {
473 		start_at = memparse(arg+1, &arg);
474 		add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
475 	}
476 
477 	return 0;
478 }
479 
480 /*
481  * Initial parsing of the command line.  Currently, we support:
482  *  - Controlling the linux memory size: mem=xxx[KMG]
483  *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
484  *       $ -> reserved memory is dcacheable
485  *       # -> reserved memory is icacheable
486  *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
487  *       @ from <start> to <start>+<mem>, type RAM
488  *       $ from <start> to <start>+<mem>, type RESERVED
489  */
parse_cmdline_early(char * cmdline_p)490 static __init void parse_cmdline_early(char *cmdline_p)
491 {
492 	char c = ' ', *to = cmdline_p;
493 	unsigned int memsize;
494 	for (;;) {
495 		if (c == ' ') {
496 			if (!memcmp(to, "mem=", 4)) {
497 				to += 4;
498 				memsize = memparse(to, &to);
499 				if (memsize)
500 					_ramend = memsize;
501 
502 			} else if (!memcmp(to, "max_mem=", 8)) {
503 				to += 8;
504 				memsize = memparse(to, &to);
505 				if (memsize) {
506 					physical_mem_end = memsize;
507 					if (*to != ' ') {
508 						if (*to == '$'
509 						    || *(to + 1) == '$')
510 							reserved_mem_dcache_on = 1;
511 						if (*to == '#'
512 						    || *(to + 1) == '#')
513 							reserved_mem_icache_on = 1;
514 					}
515 				}
516 			} else if (!memcmp(to, "clkin_hz=", 9)) {
517 				to += 9;
518 				early_init_clkin_hz(to);
519 #ifdef CONFIG_EARLY_PRINTK
520 			} else if (!memcmp(to, "earlyprintk=", 12)) {
521 				to += 12;
522 				setup_early_printk(to);
523 #endif
524 			} else if (!memcmp(to, "memmap=", 7)) {
525 				to += 7;
526 				parse_memmap(to);
527 			}
528 		}
529 		c = *(to++);
530 		if (!c)
531 			break;
532 	}
533 }
534 
535 /*
536  * Setup memory defaults from user config.
537  * The physical memory layout looks like:
538  *
539  *  [_rambase, _ramstart]:		kernel image
540  *  [memory_start, memory_end]:		dynamic memory managed by kernel
541  *  [memory_end, _ramend]:		reserved memory
542  *  	[memory_mtd_start(memory_end),
543  *  		memory_mtd_start + mtd_size]:	rootfs (if any)
544  *	[_ramend - DMA_UNCACHED_REGION,
545  *		_ramend]:			uncached DMA region
546  *  [_ramend, physical_mem_end]:	memory not managed by kernel
547  */
memory_setup(void)548 static __init void memory_setup(void)
549 {
550 #ifdef CONFIG_MTD_UCLINUX
551 	unsigned long mtd_phys = 0;
552 #endif
553 	unsigned long max_mem;
554 
555 	_rambase = CONFIG_BOOT_LOAD;
556 	_ramstart = (unsigned long)_end;
557 
558 	if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
559 		console_init();
560 		panic("DMA region exceeds memory limit: %lu.",
561 			_ramend - _ramstart);
562 	}
563 	max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
564 
565 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
566 	/* Due to a Hardware Anomaly we need to limit the size of usable
567 	 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
568 	 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
569 	 */
570 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
571 	if (max_mem >= 56 * 1024 * 1024)
572 		max_mem = 56 * 1024 * 1024;
573 # else
574 	if (max_mem >= 60 * 1024 * 1024)
575 		max_mem = 60 * 1024 * 1024;
576 # endif				/* CONFIG_DEBUG_HUNT_FOR_ZERO */
577 #endif				/* ANOMALY_05000263 */
578 
579 
580 #ifdef CONFIG_MPU
581 	/* Round up to multiple of 4MB */
582 	memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
583 #else
584 	memory_start = PAGE_ALIGN(_ramstart);
585 #endif
586 
587 #if defined(CONFIG_MTD_UCLINUX)
588 	/* generic memory mapped MTD driver */
589 	memory_mtd_end = memory_end;
590 
591 	mtd_phys = _ramstart;
592 	mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
593 
594 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
595 	if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
596 		mtd_size =
597 		    PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
598 # endif
599 
600 # if defined(CONFIG_CRAMFS)
601 	if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
602 		mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
603 # endif
604 
605 # if defined(CONFIG_ROMFS_FS)
606 	if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
607 	    && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
608 		mtd_size =
609 		    PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
610 
611 		/* ROM_FS is XIP, so if we found it, we need to limit memory */
612 		if (memory_end > max_mem) {
613 			pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
614 			memory_end = max_mem;
615 		}
616 	}
617 # endif				/* CONFIG_ROMFS_FS */
618 
619 	/* Since the default MTD_UCLINUX has no magic number, we just blindly
620 	 * read 8 past the end of the kernel's image, and look at it.
621 	 * When no image is attached, mtd_size is set to a random number
622 	 * Do some basic sanity checks before operating on things
623 	 */
624 	if (mtd_size == 0 || memory_end <= mtd_size) {
625 		pr_emerg("Could not find valid ram mtd attached.\n");
626 	} else {
627 		memory_end -= mtd_size;
628 
629 		/* Relocate MTD image to the top of memory after the uncached memory area */
630 		uclinux_ram_map.phys = memory_mtd_start = memory_end;
631 		uclinux_ram_map.size = mtd_size;
632 		pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
633 			_end, mtd_size, (void *)memory_mtd_start);
634 		dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
635 	}
636 #endif				/* CONFIG_MTD_UCLINUX */
637 
638 	/* We need lo limit memory, since everything could have a text section
639 	 * of userspace in it, and expose anomaly 05000263. If the anomaly
640 	 * doesn't exist, or we don't need to - then dont.
641 	 */
642 	if (memory_end > max_mem) {
643 		pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
644 		memory_end = max_mem;
645 	}
646 
647 #ifdef CONFIG_MPU
648 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
649 	page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE -
650 					ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32;
651 #else
652 	page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
653 #endif
654 	page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
655 #endif
656 
657 	init_mm.start_code = (unsigned long)_stext;
658 	init_mm.end_code = (unsigned long)_etext;
659 	init_mm.end_data = (unsigned long)_edata;
660 	init_mm.brk = (unsigned long)0;
661 
662 	printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
663 	printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
664 
665 	printk(KERN_INFO "Memory map:\n"
666 	       "  fixedcode = 0x%p-0x%p\n"
667 	       "  text      = 0x%p-0x%p\n"
668 	       "  rodata    = 0x%p-0x%p\n"
669 	       "  bss       = 0x%p-0x%p\n"
670 	       "  data      = 0x%p-0x%p\n"
671 	       "    stack   = 0x%p-0x%p\n"
672 	       "  init      = 0x%p-0x%p\n"
673 	       "  available = 0x%p-0x%p\n"
674 #ifdef CONFIG_MTD_UCLINUX
675 	       "  rootfs    = 0x%p-0x%p\n"
676 #endif
677 #if DMA_UNCACHED_REGION > 0
678 	       "  DMA Zone  = 0x%p-0x%p\n"
679 #endif
680 		, (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
681 		_stext, _etext,
682 		__start_rodata, __end_rodata,
683 		__bss_start, __bss_stop,
684 		_sdata, _edata,
685 		(void *)&init_thread_union,
686 		(void *)((int)(&init_thread_union) + THREAD_SIZE),
687 		__init_begin, __init_end,
688 		(void *)_ramstart, (void *)memory_end
689 #ifdef CONFIG_MTD_UCLINUX
690 		, (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
691 #endif
692 #if DMA_UNCACHED_REGION > 0
693 		, (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
694 #endif
695 		);
696 }
697 
698 /*
699  * Find the lowest, highest page frame number we have available
700  */
find_min_max_pfn(void)701 void __init find_min_max_pfn(void)
702 {
703 	int i;
704 
705 	max_pfn = 0;
706 	min_low_pfn = memory_end;
707 
708 	for (i = 0; i < bfin_memmap.nr_map; i++) {
709 		unsigned long start, end;
710 		/* RAM? */
711 		if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
712 			continue;
713 		start = PFN_UP(bfin_memmap.map[i].addr);
714 		end = PFN_DOWN(bfin_memmap.map[i].addr +
715 				bfin_memmap.map[i].size);
716 		if (start >= end)
717 			continue;
718 		if (end > max_pfn)
719 			max_pfn = end;
720 		if (start < min_low_pfn)
721 			min_low_pfn = start;
722 	}
723 }
724 
setup_bootmem_allocator(void)725 static __init void setup_bootmem_allocator(void)
726 {
727 	int bootmap_size;
728 	int i;
729 	unsigned long start_pfn, end_pfn;
730 	unsigned long curr_pfn, last_pfn, size;
731 
732 	/* mark memory between memory_start and memory_end usable */
733 	add_memory_region(memory_start,
734 		memory_end - memory_start, BFIN_MEMMAP_RAM);
735 	/* sanity check for overlap */
736 	sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
737 	print_memory_map("boot memmap");
738 
739 	/* initialize globals in linux/bootmem.h */
740 	find_min_max_pfn();
741 	/* pfn of the last usable page frame */
742 	if (max_pfn > memory_end >> PAGE_SHIFT)
743 		max_pfn = memory_end >> PAGE_SHIFT;
744 	/* pfn of last page frame directly mapped by kernel */
745 	max_low_pfn = max_pfn;
746 	/* pfn of the first usable page frame after kernel image*/
747 	if (min_low_pfn < memory_start >> PAGE_SHIFT)
748 		min_low_pfn = memory_start >> PAGE_SHIFT;
749 
750 	start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
751 	end_pfn = memory_end >> PAGE_SHIFT;
752 
753 	/*
754 	 * give all the memory to the bootmap allocator, tell it to put the
755 	 * boot mem_map at the start of memory.
756 	 */
757 	bootmap_size = init_bootmem_node(NODE_DATA(0),
758 			memory_start >> PAGE_SHIFT,	/* map goes here */
759 			start_pfn, end_pfn);
760 
761 	/* register the memmap regions with the bootmem allocator */
762 	for (i = 0; i < bfin_memmap.nr_map; i++) {
763 		/*
764 		 * Reserve usable memory
765 		 */
766 		if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
767 			continue;
768 		/*
769 		 * We are rounding up the start address of usable memory:
770 		 */
771 		curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
772 		if (curr_pfn >= end_pfn)
773 			continue;
774 		/*
775 		 * ... and at the end of the usable range downwards:
776 		 */
777 		last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
778 					 bfin_memmap.map[i].size);
779 
780 		if (last_pfn > end_pfn)
781 			last_pfn = end_pfn;
782 
783 		/*
784 		 * .. finally, did all the rounding and playing
785 		 * around just make the area go away?
786 		 */
787 		if (last_pfn <= curr_pfn)
788 			continue;
789 
790 		size = last_pfn - curr_pfn;
791 		free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
792 	}
793 
794 	/* reserve memory before memory_start, including bootmap */
795 	reserve_bootmem(PAGE_OFFSET,
796 		memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
797 		BOOTMEM_DEFAULT);
798 }
799 
800 #define EBSZ_TO_MEG(ebsz) \
801 ({ \
802 	int meg = 0; \
803 	switch (ebsz & 0xf) { \
804 		case 0x1: meg =  16; break; \
805 		case 0x3: meg =  32; break; \
806 		case 0x5: meg =  64; break; \
807 		case 0x7: meg = 128; break; \
808 		case 0x9: meg = 256; break; \
809 		case 0xb: meg = 512; break; \
810 	} \
811 	meg; \
812 })
get_mem_size(void)813 static inline int __init get_mem_size(void)
814 {
815 #if defined(EBIU_SDBCTL)
816 # if defined(BF561_FAMILY)
817 	int ret = 0;
818 	u32 sdbctl = bfin_read_EBIU_SDBCTL();
819 	ret += EBSZ_TO_MEG(sdbctl >>  0);
820 	ret += EBSZ_TO_MEG(sdbctl >>  8);
821 	ret += EBSZ_TO_MEG(sdbctl >> 16);
822 	ret += EBSZ_TO_MEG(sdbctl >> 24);
823 	return ret;
824 # else
825 	return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
826 # endif
827 #elif defined(EBIU_DDRCTL1)
828 	u32 ddrctl = bfin_read_EBIU_DDRCTL1();
829 	int ret = 0;
830 	switch (ddrctl & 0xc0000) {
831 	case DEVSZ_64:
832 		ret = 64 / 8;
833 		break;
834 	case DEVSZ_128:
835 		ret = 128 / 8;
836 		break;
837 	case DEVSZ_256:
838 		ret = 256 / 8;
839 		break;
840 	case DEVSZ_512:
841 		ret = 512 / 8;
842 		break;
843 	}
844 	switch (ddrctl & 0x30000) {
845 		case DEVWD_4:  ret *= 2;
846 		case DEVWD_8:  ret *= 2;
847 		case DEVWD_16: break;
848 	}
849 	if ((ddrctl & 0xc000) == 0x4000)
850 		ret *= 2;
851 	return ret;
852 #endif
853 	BUG();
854 }
855 
856 __attribute__((weak))
native_machine_early_platform_add_devices(void)857 void __init native_machine_early_platform_add_devices(void)
858 {
859 }
860 
setup_arch(char ** cmdline_p)861 void __init setup_arch(char **cmdline_p)
862 {
863 	u32 mmr;
864 	unsigned long sclk, cclk;
865 
866 	native_machine_early_platform_add_devices();
867 
868 	enable_shadow_console();
869 
870 	/* Check to make sure we are running on the right processor */
871 	if (unlikely(CPUID != bfin_cpuid()))
872 		printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
873 			CPU, bfin_cpuid(), bfin_revid());
874 
875 #ifdef CONFIG_DUMMY_CONSOLE
876 	conswitchp = &dummy_con;
877 #endif
878 
879 #if defined(CONFIG_CMDLINE_BOOL)
880 	strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
881 	command_line[sizeof(command_line) - 1] = 0;
882 #endif
883 
884 	/* Keep a copy of command line */
885 	*cmdline_p = &command_line[0];
886 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
887 	boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
888 
889 	memset(&bfin_memmap, 0, sizeof(bfin_memmap));
890 
891 	/* If the user does not specify things on the command line, use
892 	 * what the bootloader set things up as
893 	 */
894 	physical_mem_end = 0;
895 	parse_cmdline_early(&command_line[0]);
896 
897 	if (_ramend == 0)
898 		_ramend = get_mem_size() * 1024 * 1024;
899 
900 	if (physical_mem_end == 0)
901 		physical_mem_end = _ramend;
902 
903 	memory_setup();
904 
905 	/* Initialize Async memory banks */
906 	bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
907 	bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
908 	bfin_write_EBIU_AMGCTL(AMGCTLVAL);
909 #ifdef CONFIG_EBIU_MBSCTLVAL
910 	bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
911 	bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
912 	bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
913 #endif
914 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
915 	bfin_write_PORTF_HYSTERESIS(HYST_PORTF_0_15);
916 	bfin_write_PORTG_HYSTERESIS(HYST_PORTG_0_15);
917 	bfin_write_PORTH_HYSTERESIS(HYST_PORTH_0_15);
918 	bfin_write_MISCPORT_HYSTERESIS((bfin_read_MISCPORT_HYSTERESIS() &
919 					~HYST_NONEGPIO_MASK) | HYST_NONEGPIO);
920 #endif
921 
922 	cclk = get_cclk();
923 	sclk = get_sclk();
924 
925 	if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
926 		panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
927 
928 #ifdef BF561_FAMILY
929 	if (ANOMALY_05000266) {
930 		bfin_read_IMDMA_D0_IRQ_STATUS();
931 		bfin_read_IMDMA_D1_IRQ_STATUS();
932 	}
933 #endif
934 
935 	mmr = bfin_read_TBUFCTL();
936 	printk(KERN_INFO "Hardware Trace %s and %sabled\n",
937 		(mmr & 0x1) ? "active" : "off",
938 		(mmr & 0x2) ? "en" : "dis");
939 
940 	mmr = bfin_read_SYSCR();
941 	printk(KERN_INFO "Boot Mode: %i\n", mmr & 0xF);
942 
943 	/* Newer parts mirror SWRST bits in SYSCR */
944 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
945     defined(CONFIG_BF538) || defined(CONFIG_BF539)
946 	_bfin_swrst = bfin_read_SWRST();
947 #else
948 	/* Clear boot mode field */
949 	_bfin_swrst = mmr & ~0xf;
950 #endif
951 
952 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
953 	bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
954 #endif
955 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
956 	bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
957 #endif
958 
959 #ifdef CONFIG_SMP
960 	if (_bfin_swrst & SWRST_DBL_FAULT_A) {
961 #else
962 	if (_bfin_swrst & RESET_DOUBLE) {
963 #endif
964 		printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
965 #ifdef CONFIG_DEBUG_DOUBLEFAULT
966 		/* We assume the crashing kernel, and the current symbol table match */
967 		printk(KERN_EMERG " While handling exception (EXCAUSE = %#x) at %pF\n",
968 			initial_pda.seqstat_doublefault & SEQSTAT_EXCAUSE,
969 			initial_pda.retx_doublefault);
970 		printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n",
971 			initial_pda.dcplb_doublefault_addr);
972 		printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n",
973 			initial_pda.icplb_doublefault_addr);
974 #endif
975 		printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
976 			initial_pda.retx);
977 	} else if (_bfin_swrst & RESET_WDOG)
978 		printk(KERN_INFO "Recovering from Watchdog event\n");
979 	else if (_bfin_swrst & RESET_SOFTWARE)
980 		printk(KERN_NOTICE "Reset caused by Software reset\n");
981 
982 	printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
983 	if (bfin_compiled_revid() == 0xffff)
984 		printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
985 	else if (bfin_compiled_revid() == -1)
986 		printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
987 	else
988 		printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
989 
990 	if (likely(CPUID == bfin_cpuid())) {
991 		if (bfin_revid() != bfin_compiled_revid()) {
992 			if (bfin_compiled_revid() == -1)
993 				printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
994 				       bfin_revid());
995 			else if (bfin_compiled_revid() != 0xffff) {
996 				printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
997 				       bfin_compiled_revid(), bfin_revid());
998 				if (bfin_compiled_revid() > bfin_revid())
999 					panic("Error: you are missing anomaly workarounds for this rev");
1000 			}
1001 		}
1002 		if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
1003 			printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
1004 			       CPU, bfin_revid());
1005 	}
1006 
1007 	printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
1008 
1009 	printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1010 	       cclk / 1000000, sclk / 1000000);
1011 
1012 	setup_bootmem_allocator();
1013 
1014 	paging_init();
1015 
1016 	/* Copy atomic sequences to their fixed location, and sanity check that
1017 	   these locations are the ones that we advertise to userspace.  */
1018 	memcpy((void *)FIXED_CODE_START, &fixed_code_start,
1019 	       FIXED_CODE_END - FIXED_CODE_START);
1020 	BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
1021 	       != SIGRETURN_STUB - FIXED_CODE_START);
1022 	BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
1023 	       != ATOMIC_XCHG32 - FIXED_CODE_START);
1024 	BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
1025 	       != ATOMIC_CAS32 - FIXED_CODE_START);
1026 	BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
1027 	       != ATOMIC_ADD32 - FIXED_CODE_START);
1028 	BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
1029 	       != ATOMIC_SUB32 - FIXED_CODE_START);
1030 	BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
1031 	       != ATOMIC_IOR32 - FIXED_CODE_START);
1032 	BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
1033 	       != ATOMIC_AND32 - FIXED_CODE_START);
1034 	BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
1035 	       != ATOMIC_XOR32 - FIXED_CODE_START);
1036 	BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
1037 		!= SAFE_USER_INSTRUCTION - FIXED_CODE_START);
1038 
1039 #ifdef CONFIG_SMP
1040 	platform_init_cpus();
1041 #endif
1042 	init_exception_vectors();
1043 	bfin_cache_init();	/* Initialize caches for the boot CPU */
1044 }
1045 
1046 static int __init topology_init(void)
1047 {
1048 	unsigned int cpu;
1049 
1050 	for_each_possible_cpu(cpu) {
1051 		register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 subsys_initcall(topology_init);
1058 
1059 /* Get the input clock frequency */
1060 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
1061 static u_long get_clkin_hz(void)
1062 {
1063 	return cached_clkin_hz;
1064 }
1065 static int __init early_init_clkin_hz(char *buf)
1066 {
1067 	cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1068 #ifdef BFIN_KERNEL_CLOCK
1069 	if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1070 		panic("cannot change clkin_hz when reprogramming clocks");
1071 #endif
1072 	return 1;
1073 }
1074 early_param("clkin_hz=", early_init_clkin_hz);
1075 
1076 /* Get the voltage input multiplier */
1077 static u_long get_vco(void)
1078 {
1079 	static u_long cached_vco;
1080 	u_long msel, pll_ctl;
1081 
1082 	/* The assumption here is that VCO never changes at runtime.
1083 	 * If, someday, we support that, then we'll have to change this.
1084 	 */
1085 	if (cached_vco)
1086 		return cached_vco;
1087 
1088 	pll_ctl = bfin_read_PLL_CTL();
1089 	msel = (pll_ctl >> 9) & 0x3F;
1090 	if (0 == msel)
1091 		msel = 64;
1092 
1093 	cached_vco = get_clkin_hz();
1094 	cached_vco >>= (1 & pll_ctl);	/* DF bit */
1095 	cached_vco *= msel;
1096 	return cached_vco;
1097 }
1098 
1099 /* Get the Core clock */
1100 u_long get_cclk(void)
1101 {
1102 	static u_long cached_cclk_pll_div, cached_cclk;
1103 	u_long csel, ssel;
1104 
1105 	if (bfin_read_PLL_STAT() & 0x1)
1106 		return get_clkin_hz();
1107 
1108 	ssel = bfin_read_PLL_DIV();
1109 	if (ssel == cached_cclk_pll_div)
1110 		return cached_cclk;
1111 	else
1112 		cached_cclk_pll_div = ssel;
1113 
1114 	csel = ((ssel >> 4) & 0x03);
1115 	ssel &= 0xf;
1116 	if (ssel && ssel < (1 << csel))	/* SCLK > CCLK */
1117 		cached_cclk = get_vco() / ssel;
1118 	else
1119 		cached_cclk = get_vco() >> csel;
1120 	return cached_cclk;
1121 }
1122 EXPORT_SYMBOL(get_cclk);
1123 
1124 /* Get the System clock */
1125 u_long get_sclk(void)
1126 {
1127 	static u_long cached_sclk;
1128 	u_long ssel;
1129 
1130 	/* The assumption here is that SCLK never changes at runtime.
1131 	 * If, someday, we support that, then we'll have to change this.
1132 	 */
1133 	if (cached_sclk)
1134 		return cached_sclk;
1135 
1136 	if (bfin_read_PLL_STAT() & 0x1)
1137 		return get_clkin_hz();
1138 
1139 	ssel = bfin_read_PLL_DIV() & 0xf;
1140 	if (0 == ssel) {
1141 		printk(KERN_WARNING "Invalid System Clock\n");
1142 		ssel = 1;
1143 	}
1144 
1145 	cached_sclk = get_vco() / ssel;
1146 	return cached_sclk;
1147 }
1148 EXPORT_SYMBOL(get_sclk);
1149 
1150 unsigned long sclk_to_usecs(unsigned long sclk)
1151 {
1152 	u64 tmp = USEC_PER_SEC * (u64)sclk;
1153 	do_div(tmp, get_sclk());
1154 	return tmp;
1155 }
1156 EXPORT_SYMBOL(sclk_to_usecs);
1157 
1158 unsigned long usecs_to_sclk(unsigned long usecs)
1159 {
1160 	u64 tmp = get_sclk() * (u64)usecs;
1161 	do_div(tmp, USEC_PER_SEC);
1162 	return tmp;
1163 }
1164 EXPORT_SYMBOL(usecs_to_sclk);
1165 
1166 /*
1167  *	Get CPU information for use by the procfs.
1168  */
1169 static int show_cpuinfo(struct seq_file *m, void *v)
1170 {
1171 	char *cpu, *mmu, *fpu, *vendor, *cache;
1172 	uint32_t revid;
1173 	int cpu_num = *(unsigned int *)v;
1174 	u_long sclk, cclk;
1175 	u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1176 	struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1177 
1178 	cpu = CPU;
1179 	mmu = "none";
1180 	fpu = "none";
1181 	revid = bfin_revid();
1182 
1183 	sclk = get_sclk();
1184 	cclk = get_cclk();
1185 
1186 	switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1187 	case 0xca:
1188 		vendor = "Analog Devices";
1189 		break;
1190 	default:
1191 		vendor = "unknown";
1192 		break;
1193 	}
1194 
1195 	seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1196 
1197 	if (CPUID == bfin_cpuid())
1198 		seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1199 	else
1200 		seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1201 			CPUID, bfin_cpuid());
1202 
1203 	seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1204 		"stepping\t: %d ",
1205 		cpu, cclk/1000000, sclk/1000000,
1206 #ifdef CONFIG_MPU
1207 		"mpu on",
1208 #else
1209 		"mpu off",
1210 #endif
1211 		revid);
1212 
1213 	if (bfin_revid() != bfin_compiled_revid()) {
1214 		if (bfin_compiled_revid() == -1)
1215 			seq_printf(m, "(Compiled for Rev none)");
1216 		else if (bfin_compiled_revid() == 0xffff)
1217 			seq_printf(m, "(Compiled for Rev any)");
1218 		else
1219 			seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1220 	}
1221 
1222 	seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1223 		cclk/1000000, cclk%1000000,
1224 		sclk/1000000, sclk%1000000);
1225 	seq_printf(m, "bogomips\t: %lu.%02lu\n"
1226 		"Calibration\t: %lu loops\n",
1227 		(loops_per_jiffy * HZ) / 500000,
1228 		((loops_per_jiffy * HZ) / 5000) % 100,
1229 		(loops_per_jiffy * HZ));
1230 
1231 	/* Check Cache configutation */
1232 	switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1233 	case ACACHE_BSRAM:
1234 		cache = "dbank-A/B\t: cache/sram";
1235 		dcache_size = 16;
1236 		dsup_banks = 1;
1237 		break;
1238 	case ACACHE_BCACHE:
1239 		cache = "dbank-A/B\t: cache/cache";
1240 		dcache_size = 32;
1241 		dsup_banks = 2;
1242 		break;
1243 	case ASRAM_BSRAM:
1244 		cache = "dbank-A/B\t: sram/sram";
1245 		dcache_size = 0;
1246 		dsup_banks = 0;
1247 		break;
1248 	default:
1249 		cache = "unknown";
1250 		dcache_size = 0;
1251 		dsup_banks = 0;
1252 		break;
1253 	}
1254 
1255 	/* Is it turned on? */
1256 	if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1257 		dcache_size = 0;
1258 
1259 	if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1260 		icache_size = 0;
1261 
1262 	seq_printf(m, "cache size\t: %d KB(L1 icache) "
1263 		"%d KB(L1 dcache) %d KB(L2 cache)\n",
1264 		icache_size, dcache_size, 0);
1265 	seq_printf(m, "%s\n", cache);
1266 	seq_printf(m, "external memory\t: "
1267 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1268 		   "cacheable"
1269 #else
1270 		   "uncacheable"
1271 #endif
1272 		   " in instruction cache\n");
1273 	seq_printf(m, "external memory\t: "
1274 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1275 		      "cacheable (write-back)"
1276 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1277 		      "cacheable (write-through)"
1278 #else
1279 		      "uncacheable"
1280 #endif
1281 		      " in data cache\n");
1282 
1283 	if (icache_size)
1284 		seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1285 			   BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1286 	else
1287 		seq_printf(m, "icache setup\t: off\n");
1288 
1289 	seq_printf(m,
1290 		   "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1291 		   dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1292 		   BFIN_DLINES);
1293 #ifdef __ARCH_SYNC_CORE_DCACHE
1294 	seq_printf(m, "dcache flushes\t: %lu\n", dcache_invld_count[cpu_num]);
1295 #endif
1296 #ifdef __ARCH_SYNC_CORE_ICACHE
1297 	seq_printf(m, "icache flushes\t: %lu\n", icache_invld_count[cpu_num]);
1298 #endif
1299 
1300 	seq_printf(m, "\n");
1301 
1302 	if (cpu_num != num_possible_cpus() - 1)
1303 		return 0;
1304 
1305 	if (L2_LENGTH) {
1306 		seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1307 		seq_printf(m, "L2 SRAM\t\t: "
1308 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1309 			      "cacheable"
1310 #else
1311 			      "uncacheable"
1312 #endif
1313 			      " in instruction cache\n");
1314 		seq_printf(m, "L2 SRAM\t\t: "
1315 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1316 			      "cacheable (write-back)"
1317 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1318 			      "cacheable (write-through)"
1319 #else
1320 			      "uncacheable"
1321 #endif
1322 			      " in data cache\n");
1323 	}
1324 	seq_printf(m, "board name\t: %s\n", bfin_board_name);
1325 	seq_printf(m, "board memory\t: %ld kB (0x%08lx -> 0x%08lx)\n",
1326 		physical_mem_end >> 10, 0ul, physical_mem_end);
1327 	seq_printf(m, "kernel memory\t: %d kB (0x%08lx -> 0x%08lx)\n",
1328 		((int)memory_end - (int)_rambase) >> 10,
1329 		_rambase, memory_end);
1330 
1331 	return 0;
1332 }
1333 
1334 static void *c_start(struct seq_file *m, loff_t *pos)
1335 {
1336 	if (*pos == 0)
1337 		*pos = cpumask_first(cpu_online_mask);
1338 	if (*pos >= num_online_cpus())
1339 		return NULL;
1340 
1341 	return pos;
1342 }
1343 
1344 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1345 {
1346 	*pos = cpumask_next(*pos, cpu_online_mask);
1347 
1348 	return c_start(m, pos);
1349 }
1350 
1351 static void c_stop(struct seq_file *m, void *v)
1352 {
1353 }
1354 
1355 const struct seq_operations cpuinfo_op = {
1356 	.start = c_start,
1357 	.next = c_next,
1358 	.stop = c_stop,
1359 	.show = show_cpuinfo,
1360 };
1361 
1362 void __init cmdline_init(const char *r0)
1363 {
1364 	early_shadow_stamp();
1365 	if (r0)
1366 		strncpy(command_line, r0, COMMAND_LINE_SIZE);
1367 }
1368