1 /*
2  * Blackfin architecture-dependent process handling
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later
7  */
8 
9 #include <linux/module.h>
10 #include <linux/unistd.h>
11 #include <linux/user.h>
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/tick.h>
16 #include <linux/fs.h>
17 #include <linux/err.h>
18 
19 #include <asm/blackfin.h>
20 #include <asm/fixed_code.h>
21 #include <asm/mem_map.h>
22 
23 asmlinkage void ret_from_fork(void);
24 
25 /* Points to the SDRAM backup memory for the stack that is currently in
26  * L1 scratchpad memory.
27  */
28 void *current_l1_stack_save;
29 
30 /* The number of tasks currently using a L1 stack area.  The SRAM is
31  * allocated/deallocated whenever this changes from/to zero.
32  */
33 int nr_l1stack_tasks;
34 
35 /* Start and length of the area in L1 scratchpad memory which we've allocated
36  * for process stacks.
37  */
38 void *l1_stack_base;
39 unsigned long l1_stack_len;
40 
41 /*
42  * Powermanagement idle function, if any..
43  */
44 void (*pm_idle)(void) = NULL;
45 EXPORT_SYMBOL(pm_idle);
46 
47 void (*pm_power_off)(void) = NULL;
48 EXPORT_SYMBOL(pm_power_off);
49 
50 /*
51  * The idle loop on BFIN
52  */
53 #ifdef CONFIG_IDLE_L1
54 static void default_idle(void)__attribute__((l1_text));
55 void cpu_idle(void)__attribute__((l1_text));
56 #endif
57 
58 /*
59  * This is our default idle handler.  We need to disable
60  * interrupts here to ensure we don't miss a wakeup call.
61  */
default_idle(void)62 static void default_idle(void)
63 {
64 #ifdef CONFIG_IPIPE
65 	ipipe_suspend_domain();
66 #endif
67 	hard_local_irq_disable();
68 	if (!need_resched())
69 		idle_with_irq_disabled();
70 
71 	hard_local_irq_enable();
72 }
73 
74 /*
75  * The idle thread.  We try to conserve power, while trying to keep
76  * overall latency low.  The architecture specific idle is passed
77  * a value to indicate the level of "idleness" of the system.
78  */
cpu_idle(void)79 void cpu_idle(void)
80 {
81 	/* endless idle loop with no priority at all */
82 	while (1) {
83 		void (*idle)(void) = pm_idle;
84 
85 #ifdef CONFIG_HOTPLUG_CPU
86 		if (cpu_is_offline(smp_processor_id()))
87 			cpu_die();
88 #endif
89 		if (!idle)
90 			idle = default_idle;
91 		tick_nohz_idle_enter();
92 		rcu_idle_enter();
93 		while (!need_resched())
94 			idle();
95 		rcu_idle_exit();
96 		tick_nohz_idle_exit();
97 		preempt_enable_no_resched();
98 		schedule();
99 		preempt_disable();
100 	}
101 }
102 
103 /*
104  * This gets run with P1 containing the
105  * function to call, and R1 containing
106  * the "args".  Note P0 is clobbered on the way here.
107  */
108 void kernel_thread_helper(void);
109 __asm__(".section .text\n"
110 	".align 4\n"
111 	"_kernel_thread_helper:\n\t"
112 	"\tsp += -12;\n\t"
113 	"\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
114 
115 /*
116  * Create a kernel thread.
117  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)118 pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
119 {
120 	struct pt_regs regs;
121 
122 	memset(&regs, 0, sizeof(regs));
123 
124 	regs.r1 = (unsigned long)arg;
125 	regs.p1 = (unsigned long)fn;
126 	regs.pc = (unsigned long)kernel_thread_helper;
127 	regs.orig_p0 = -1;
128 	/* Set bit 2 to tell ret_from_fork we should be returning to kernel
129 	   mode.  */
130 	regs.ipend = 0x8002;
131 	__asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
132 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,
133 		       NULL);
134 }
135 EXPORT_SYMBOL(kernel_thread);
136 
137 /*
138  * Do necessary setup to start up a newly executed thread.
139  *
140  * pass the data segment into user programs if it exists,
141  * it can't hurt anything as far as I can tell
142  */
start_thread(struct pt_regs * regs,unsigned long new_ip,unsigned long new_sp)143 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
144 {
145 	regs->pc = new_ip;
146 	if (current->mm)
147 		regs->p5 = current->mm->start_data;
148 #ifndef CONFIG_SMP
149 	task_thread_info(current)->l1_task_info.stack_start =
150 		(void *)current->mm->context.stack_start;
151 	task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
152 	memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
153 	       sizeof(*L1_SCRATCH_TASK_INFO));
154 #endif
155 	wrusp(new_sp);
156 }
157 EXPORT_SYMBOL_GPL(start_thread);
158 
flush_thread(void)159 void flush_thread(void)
160 {
161 }
162 
bfin_vfork(struct pt_regs * regs)163 asmlinkage int bfin_vfork(struct pt_regs *regs)
164 {
165 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
166 		       NULL);
167 }
168 
bfin_clone(struct pt_regs * regs)169 asmlinkage int bfin_clone(struct pt_regs *regs)
170 {
171 	unsigned long clone_flags;
172 	unsigned long newsp;
173 
174 #ifdef __ARCH_SYNC_CORE_DCACHE
175 	if (current->rt.nr_cpus_allowed == num_possible_cpus())
176 		set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
177 #endif
178 
179 	/* syscall2 puts clone_flags in r0 and usp in r1 */
180 	clone_flags = regs->r0;
181 	newsp = regs->r1;
182 	if (!newsp)
183 		newsp = rdusp();
184 	else
185 		newsp -= 12;
186 	return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
187 }
188 
189 int
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long topstk,struct task_struct * p,struct pt_regs * regs)190 copy_thread(unsigned long clone_flags,
191 	    unsigned long usp, unsigned long topstk,
192 	    struct task_struct *p, struct pt_regs *regs)
193 {
194 	struct pt_regs *childregs;
195 
196 	childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
197 	*childregs = *regs;
198 	childregs->r0 = 0;
199 
200 	p->thread.usp = usp;
201 	p->thread.ksp = (unsigned long)childregs;
202 	p->thread.pc = (unsigned long)ret_from_fork;
203 
204 	return 0;
205 }
206 
207 /*
208  * sys_execve() executes a new program.
209  */
sys_execve(const char __user * name,const char __user * const __user * argv,const char __user * const __user * envp)210 asmlinkage int sys_execve(const char __user *name,
211 			  const char __user *const __user *argv,
212 			  const char __user *const __user *envp)
213 {
214 	int error;
215 	char *filename;
216 	struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
217 
218 	filename = getname(name);
219 	error = PTR_ERR(filename);
220 	if (IS_ERR(filename))
221 		return error;
222 	error = do_execve(filename, argv, envp, regs);
223 	putname(filename);
224 	return error;
225 }
226 
get_wchan(struct task_struct * p)227 unsigned long get_wchan(struct task_struct *p)
228 {
229 	unsigned long fp, pc;
230 	unsigned long stack_page;
231 	int count = 0;
232 	if (!p || p == current || p->state == TASK_RUNNING)
233 		return 0;
234 
235 	stack_page = (unsigned long)p;
236 	fp = p->thread.usp;
237 	do {
238 		if (fp < stack_page + sizeof(struct thread_info) ||
239 		    fp >= 8184 + stack_page)
240 			return 0;
241 		pc = ((unsigned long *)fp)[1];
242 		if (!in_sched_functions(pc))
243 			return pc;
244 		fp = *(unsigned long *)fp;
245 	}
246 	while (count++ < 16);
247 	return 0;
248 }
249 
finish_atomic_sections(struct pt_regs * regs)250 void finish_atomic_sections (struct pt_regs *regs)
251 {
252 	int __user *up0 = (int __user *)regs->p0;
253 
254 	switch (regs->pc) {
255 	default:
256 		/* not in middle of an atomic step, so resume like normal */
257 		return;
258 
259 	case ATOMIC_XCHG32 + 2:
260 		put_user(regs->r1, up0);
261 		break;
262 
263 	case ATOMIC_CAS32 + 2:
264 	case ATOMIC_CAS32 + 4:
265 		if (regs->r0 == regs->r1)
266 	case ATOMIC_CAS32 + 6:
267 			put_user(regs->r2, up0);
268 		break;
269 
270 	case ATOMIC_ADD32 + 2:
271 		regs->r0 = regs->r1 + regs->r0;
272 		/* fall through */
273 	case ATOMIC_ADD32 + 4:
274 		put_user(regs->r0, up0);
275 		break;
276 
277 	case ATOMIC_SUB32 + 2:
278 		regs->r0 = regs->r1 - regs->r0;
279 		/* fall through */
280 	case ATOMIC_SUB32 + 4:
281 		put_user(regs->r0, up0);
282 		break;
283 
284 	case ATOMIC_IOR32 + 2:
285 		regs->r0 = regs->r1 | regs->r0;
286 		/* fall through */
287 	case ATOMIC_IOR32 + 4:
288 		put_user(regs->r0, up0);
289 		break;
290 
291 	case ATOMIC_AND32 + 2:
292 		regs->r0 = regs->r1 & regs->r0;
293 		/* fall through */
294 	case ATOMIC_AND32 + 4:
295 		put_user(regs->r0, up0);
296 		break;
297 
298 	case ATOMIC_XOR32 + 2:
299 		regs->r0 = regs->r1 ^ regs->r0;
300 		/* fall through */
301 	case ATOMIC_XOR32 + 4:
302 		put_user(regs->r0, up0);
303 		break;
304 	}
305 
306 	/*
307 	 * We've finished the atomic section, and the only thing left for
308 	 * userspace is to do a RTS, so we might as well handle that too
309 	 * since we need to update the PC anyways.
310 	 */
311 	regs->pc = regs->rets;
312 }
313 
314 static inline
in_mem(unsigned long addr,unsigned long size,unsigned long start,unsigned long end)315 int in_mem(unsigned long addr, unsigned long size,
316            unsigned long start, unsigned long end)
317 {
318 	return addr >= start && addr + size <= end;
319 }
320 static inline
in_mem_const_off(unsigned long addr,unsigned long size,unsigned long off,unsigned long const_addr,unsigned long const_size)321 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
322                      unsigned long const_addr, unsigned long const_size)
323 {
324 	return const_size &&
325 	       in_mem(addr, size, const_addr + off, const_addr + const_size);
326 }
327 static inline
in_mem_const(unsigned long addr,unsigned long size,unsigned long const_addr,unsigned long const_size)328 int in_mem_const(unsigned long addr, unsigned long size,
329                  unsigned long const_addr, unsigned long const_size)
330 {
331 	return in_mem_const_off(addr, size, 0, const_addr, const_size);
332 }
333 #define ASYNC_ENABLED(bnum, bctlnum) \
334 ({ \
335 	(bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
336 	bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
337 	1; \
338 })
339 /*
340  * We can't read EBIU banks that aren't enabled or we end up hanging
341  * on the access to the async space.  Make sure we validate accesses
342  * that cross async banks too.
343  *	0 - found, but unusable
344  *	1 - found & usable
345  *	2 - not found
346  */
347 static
in_async(unsigned long addr,unsigned long size)348 int in_async(unsigned long addr, unsigned long size)
349 {
350 	if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
351 		if (!ASYNC_ENABLED(0, 0))
352 			return 0;
353 		if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
354 			return 1;
355 		size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
356 		addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
357 	}
358 	if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
359 		if (!ASYNC_ENABLED(1, 0))
360 			return 0;
361 		if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
362 			return 1;
363 		size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
364 		addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
365 	}
366 	if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
367 		if (!ASYNC_ENABLED(2, 1))
368 			return 0;
369 		if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
370 			return 1;
371 		size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
372 		addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
373 	}
374 	if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
375 		if (ASYNC_ENABLED(3, 1))
376 			return 0;
377 		if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
378 			return 1;
379 		return 0;
380 	}
381 
382 	/* not within async bounds */
383 	return 2;
384 }
385 
bfin_mem_access_type(unsigned long addr,unsigned long size)386 int bfin_mem_access_type(unsigned long addr, unsigned long size)
387 {
388 	int cpu = raw_smp_processor_id();
389 
390 	/* Check that things do not wrap around */
391 	if (addr > ULONG_MAX - size)
392 		return -EFAULT;
393 
394 	if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
395 		return BFIN_MEM_ACCESS_CORE;
396 
397 	if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
398 		return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
399 	if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
400 		return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
401 	if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
402 		return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
403 	if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
404 		return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
405 #ifdef COREB_L1_CODE_START
406 	if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
407 		return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
408 	if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
409 		return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
410 	if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
411 		return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
412 	if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
413 		return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
414 #endif
415 	if (in_mem_const(addr, size, L2_START, L2_LENGTH))
416 		return BFIN_MEM_ACCESS_CORE;
417 
418 	if (addr >= SYSMMR_BASE)
419 		return BFIN_MEM_ACCESS_CORE_ONLY;
420 
421 	switch (in_async(addr, size)) {
422 	case 0: return -EFAULT;
423 	case 1: return BFIN_MEM_ACCESS_CORE;
424 	case 2: /* fall through */;
425 	}
426 
427 	if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
428 		return BFIN_MEM_ACCESS_CORE;
429 	if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
430 		return BFIN_MEM_ACCESS_DMA;
431 
432 	return -EFAULT;
433 }
434 
435 #if defined(CONFIG_ACCESS_CHECK)
436 #ifdef CONFIG_ACCESS_OK_L1
437 __attribute__((l1_text))
438 #endif
439 /* Return 1 if access to memory range is OK, 0 otherwise */
_access_ok(unsigned long addr,unsigned long size)440 int _access_ok(unsigned long addr, unsigned long size)
441 {
442 	int aret;
443 
444 	if (size == 0)
445 		return 1;
446 	/* Check that things do not wrap around */
447 	if (addr > ULONG_MAX - size)
448 		return 0;
449 	if (segment_eq(get_fs(), KERNEL_DS))
450 		return 1;
451 #ifdef CONFIG_MTD_UCLINUX
452 	if (1)
453 #else
454 	if (0)
455 #endif
456 	{
457 		if (in_mem(addr, size, memory_start, memory_end))
458 			return 1;
459 		if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
460 			return 1;
461 # ifndef CONFIG_ROMFS_ON_MTD
462 		if (0)
463 # endif
464 			/* For XIP, allow user space to use pointers within the ROMFS.  */
465 			if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
466 				return 1;
467 	} else {
468 		if (in_mem(addr, size, memory_start, physical_mem_end))
469 			return 1;
470 	}
471 
472 	if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
473 		return 1;
474 
475 	if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
476 		return 1;
477 	if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
478 		return 1;
479 	if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
480 		return 1;
481 	if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
482 		return 1;
483 #ifdef COREB_L1_CODE_START
484 	if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
485 		return 1;
486 	if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
487 		return 1;
488 	if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
489 		return 1;
490 	if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
491 		return 1;
492 #endif
493 
494 #ifndef CONFIG_EXCEPTION_L1_SCRATCH
495 	if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
496 		return 1;
497 #endif
498 
499 	aret = in_async(addr, size);
500 	if (aret < 2)
501 		return aret;
502 
503 	if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
504 		return 1;
505 
506 	if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
507 		return 1;
508 	if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
509 		return 1;
510 
511 	return 0;
512 }
513 EXPORT_SYMBOL(_access_ok);
514 #endif /* CONFIG_ACCESS_CHECK */
515