1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12 
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/percpu.h>
22 
23 #include <asm/hardware/gic.h>
24 
25 #include <plat/cpu.h>
26 
27 #include <mach/map.h>
28 #include <mach/irqs.h>
29 #include <mach/regs-mct.h>
30 #include <asm/mach/time.h>
31 
32 enum {
33 	MCT_INT_SPI,
34 	MCT_INT_PPI
35 };
36 
37 static unsigned long clk_cnt_per_tick;
38 static unsigned long clk_rate;
39 static unsigned int mct_int_type;
40 
41 struct mct_clock_event_device {
42 	struct clock_event_device *evt;
43 	void __iomem *base;
44 	char name[10];
45 };
46 
exynos4_mct_write(unsigned int value,void * addr)47 static void exynos4_mct_write(unsigned int value, void *addr)
48 {
49 	void __iomem *stat_addr;
50 	u32 mask;
51 	u32 i;
52 
53 	__raw_writel(value, addr);
54 
55 	if (likely(addr >= EXYNOS4_MCT_L_BASE(0))) {
56 		u32 base = (u32) addr & EXYNOS4_MCT_L_MASK;
57 		switch ((u32) addr & ~EXYNOS4_MCT_L_MASK) {
58 		case (u32) MCT_L_TCON_OFFSET:
59 			stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
60 			mask = 1 << 3;		/* L_TCON write status */
61 			break;
62 		case (u32) MCT_L_ICNTB_OFFSET:
63 			stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
64 			mask = 1 << 1;		/* L_ICNTB write status */
65 			break;
66 		case (u32) MCT_L_TCNTB_OFFSET:
67 			stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
68 			mask = 1 << 0;		/* L_TCNTB write status */
69 			break;
70 		default:
71 			return;
72 		}
73 	} else {
74 		switch ((u32) addr) {
75 		case (u32) EXYNOS4_MCT_G_TCON:
76 			stat_addr = EXYNOS4_MCT_G_WSTAT;
77 			mask = 1 << 16;		/* G_TCON write status */
78 			break;
79 		case (u32) EXYNOS4_MCT_G_COMP0_L:
80 			stat_addr = EXYNOS4_MCT_G_WSTAT;
81 			mask = 1 << 0;		/* G_COMP0_L write status */
82 			break;
83 		case (u32) EXYNOS4_MCT_G_COMP0_U:
84 			stat_addr = EXYNOS4_MCT_G_WSTAT;
85 			mask = 1 << 1;		/* G_COMP0_U write status */
86 			break;
87 		case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
88 			stat_addr = EXYNOS4_MCT_G_WSTAT;
89 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
90 			break;
91 		case (u32) EXYNOS4_MCT_G_CNT_L:
92 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
93 			mask = 1 << 0;		/* G_CNT_L write status */
94 			break;
95 		case (u32) EXYNOS4_MCT_G_CNT_U:
96 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
97 			mask = 1 << 1;		/* G_CNT_U write status */
98 			break;
99 		default:
100 			return;
101 		}
102 	}
103 
104 	/* Wait maximum 1 ms until written values are applied */
105 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
106 		if (__raw_readl(stat_addr) & mask) {
107 			__raw_writel(mask, stat_addr);
108 			return;
109 		}
110 
111 	panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
112 }
113 
114 /* Clocksource handling */
exynos4_mct_frc_start(u32 hi,u32 lo)115 static void exynos4_mct_frc_start(u32 hi, u32 lo)
116 {
117 	u32 reg;
118 
119 	exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
120 	exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
121 
122 	reg = __raw_readl(EXYNOS4_MCT_G_TCON);
123 	reg |= MCT_G_TCON_START;
124 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
125 }
126 
exynos4_frc_read(struct clocksource * cs)127 static cycle_t exynos4_frc_read(struct clocksource *cs)
128 {
129 	unsigned int lo, hi;
130 	u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
131 
132 	do {
133 		hi = hi2;
134 		lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
135 		hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
136 	} while (hi != hi2);
137 
138 	return ((cycle_t)hi << 32) | lo;
139 }
140 
exynos4_frc_resume(struct clocksource * cs)141 static void exynos4_frc_resume(struct clocksource *cs)
142 {
143 	exynos4_mct_frc_start(0, 0);
144 }
145 
146 struct clocksource mct_frc = {
147 	.name		= "mct-frc",
148 	.rating		= 400,
149 	.read		= exynos4_frc_read,
150 	.mask		= CLOCKSOURCE_MASK(64),
151 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
152 	.resume		= exynos4_frc_resume,
153 };
154 
exynos4_clocksource_init(void)155 static void __init exynos4_clocksource_init(void)
156 {
157 	exynos4_mct_frc_start(0, 0);
158 
159 	if (clocksource_register_hz(&mct_frc, clk_rate))
160 		panic("%s: can't register clocksource\n", mct_frc.name);
161 }
162 
exynos4_mct_comp0_stop(void)163 static void exynos4_mct_comp0_stop(void)
164 {
165 	unsigned int tcon;
166 
167 	tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
168 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
169 
170 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
171 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
172 }
173 
exynos4_mct_comp0_start(enum clock_event_mode mode,unsigned long cycles)174 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
175 				    unsigned long cycles)
176 {
177 	unsigned int tcon;
178 	cycle_t comp_cycle;
179 
180 	tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
181 
182 	if (mode == CLOCK_EVT_MODE_PERIODIC) {
183 		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
184 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
185 	}
186 
187 	comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
188 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
189 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
190 
191 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
192 
193 	tcon |= MCT_G_TCON_COMP0_ENABLE;
194 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
195 }
196 
exynos4_comp_set_next_event(unsigned long cycles,struct clock_event_device * evt)197 static int exynos4_comp_set_next_event(unsigned long cycles,
198 				       struct clock_event_device *evt)
199 {
200 	exynos4_mct_comp0_start(evt->mode, cycles);
201 
202 	return 0;
203 }
204 
exynos4_comp_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)205 static void exynos4_comp_set_mode(enum clock_event_mode mode,
206 				  struct clock_event_device *evt)
207 {
208 	exynos4_mct_comp0_stop();
209 
210 	switch (mode) {
211 	case CLOCK_EVT_MODE_PERIODIC:
212 		exynos4_mct_comp0_start(mode, clk_cnt_per_tick);
213 		break;
214 
215 	case CLOCK_EVT_MODE_ONESHOT:
216 	case CLOCK_EVT_MODE_UNUSED:
217 	case CLOCK_EVT_MODE_SHUTDOWN:
218 	case CLOCK_EVT_MODE_RESUME:
219 		break;
220 	}
221 }
222 
223 static struct clock_event_device mct_comp_device = {
224 	.name		= "mct-comp",
225 	.features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
226 	.rating		= 250,
227 	.set_next_event	= exynos4_comp_set_next_event,
228 	.set_mode	= exynos4_comp_set_mode,
229 };
230 
exynos4_mct_comp_isr(int irq,void * dev_id)231 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
232 {
233 	struct clock_event_device *evt = dev_id;
234 
235 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
236 
237 	evt->event_handler(evt);
238 
239 	return IRQ_HANDLED;
240 }
241 
242 static struct irqaction mct_comp_event_irq = {
243 	.name		= "mct_comp_irq",
244 	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
245 	.handler	= exynos4_mct_comp_isr,
246 	.dev_id		= &mct_comp_device,
247 };
248 
exynos4_clockevent_init(void)249 static void exynos4_clockevent_init(void)
250 {
251 	clk_cnt_per_tick = clk_rate / 2	/ HZ;
252 
253 	clockevents_calc_mult_shift(&mct_comp_device, clk_rate / 2, 5);
254 	mct_comp_device.max_delta_ns =
255 		clockevent_delta2ns(0xffffffff, &mct_comp_device);
256 	mct_comp_device.min_delta_ns =
257 		clockevent_delta2ns(0xf, &mct_comp_device);
258 	mct_comp_device.cpumask = cpumask_of(0);
259 	clockevents_register_device(&mct_comp_device);
260 
261 	setup_irq(IRQ_MCT_G0, &mct_comp_event_irq);
262 }
263 
264 #ifdef CONFIG_LOCAL_TIMERS
265 
266 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
267 
268 /* Clock event handling */
exynos4_mct_tick_stop(struct mct_clock_event_device * mevt)269 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
270 {
271 	unsigned long tmp;
272 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
273 	void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;
274 
275 	tmp = __raw_readl(addr);
276 	if (tmp & mask) {
277 		tmp &= ~mask;
278 		exynos4_mct_write(tmp, addr);
279 	}
280 }
281 
exynos4_mct_tick_start(unsigned long cycles,struct mct_clock_event_device * mevt)282 static void exynos4_mct_tick_start(unsigned long cycles,
283 				   struct mct_clock_event_device *mevt)
284 {
285 	unsigned long tmp;
286 
287 	exynos4_mct_tick_stop(mevt);
288 
289 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
290 
291 	/* update interrupt count buffer */
292 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
293 
294 	/* enable MCT tick interrupt */
295 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
296 
297 	tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
298 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
299 	       MCT_L_TCON_INTERVAL_MODE;
300 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
301 }
302 
exynos4_tick_set_next_event(unsigned long cycles,struct clock_event_device * evt)303 static int exynos4_tick_set_next_event(unsigned long cycles,
304 				       struct clock_event_device *evt)
305 {
306 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
307 
308 	exynos4_mct_tick_start(cycles, mevt);
309 
310 	return 0;
311 }
312 
exynos4_tick_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)313 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
314 					 struct clock_event_device *evt)
315 {
316 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
317 
318 	exynos4_mct_tick_stop(mevt);
319 
320 	switch (mode) {
321 	case CLOCK_EVT_MODE_PERIODIC:
322 		exynos4_mct_tick_start(clk_cnt_per_tick, mevt);
323 		break;
324 
325 	case CLOCK_EVT_MODE_ONESHOT:
326 	case CLOCK_EVT_MODE_UNUSED:
327 	case CLOCK_EVT_MODE_SHUTDOWN:
328 	case CLOCK_EVT_MODE_RESUME:
329 		break;
330 	}
331 }
332 
exynos4_mct_tick_clear(struct mct_clock_event_device * mevt)333 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
334 {
335 	struct clock_event_device *evt = mevt->evt;
336 
337 	/*
338 	 * This is for supporting oneshot mode.
339 	 * Mct would generate interrupt periodically
340 	 * without explicit stopping.
341 	 */
342 	if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
343 		exynos4_mct_tick_stop(mevt);
344 
345 	/* Clear the MCT tick interrupt */
346 	if (__raw_readl(mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
347 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
348 		return 1;
349 	} else {
350 		return 0;
351 	}
352 }
353 
exynos4_mct_tick_isr(int irq,void * dev_id)354 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
355 {
356 	struct mct_clock_event_device *mevt = dev_id;
357 	struct clock_event_device *evt = mevt->evt;
358 
359 	exynos4_mct_tick_clear(mevt);
360 
361 	evt->event_handler(evt);
362 
363 	return IRQ_HANDLED;
364 }
365 
366 static struct irqaction mct_tick0_event_irq = {
367 	.name		= "mct_tick0_irq",
368 	.flags		= IRQF_TIMER | IRQF_NOBALANCING,
369 	.handler	= exynos4_mct_tick_isr,
370 };
371 
372 static struct irqaction mct_tick1_event_irq = {
373 	.name		= "mct_tick1_irq",
374 	.flags		= IRQF_TIMER | IRQF_NOBALANCING,
375 	.handler	= exynos4_mct_tick_isr,
376 };
377 
exynos4_mct_tick_init(struct clock_event_device * evt)378 static void exynos4_mct_tick_init(struct clock_event_device *evt)
379 {
380 	struct mct_clock_event_device *mevt;
381 	unsigned int cpu = smp_processor_id();
382 
383 	mevt = this_cpu_ptr(&percpu_mct_tick);
384 	mevt->evt = evt;
385 
386 	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
387 	sprintf(mevt->name, "mct_tick%d", cpu);
388 
389 	evt->name = mevt->name;
390 	evt->cpumask = cpumask_of(cpu);
391 	evt->set_next_event = exynos4_tick_set_next_event;
392 	evt->set_mode = exynos4_tick_set_mode;
393 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
394 	evt->rating = 450;
395 
396 	clockevents_calc_mult_shift(evt, clk_rate / 2, 5);
397 	evt->max_delta_ns =
398 		clockevent_delta2ns(0x7fffffff, evt);
399 	evt->min_delta_ns =
400 		clockevent_delta2ns(0xf, evt);
401 
402 	clockevents_register_device(evt);
403 
404 	exynos4_mct_write(0x1, mevt->base + MCT_L_TCNTB_OFFSET);
405 
406 	if (mct_int_type == MCT_INT_SPI) {
407 		if (cpu == 0) {
408 			mct_tick0_event_irq.dev_id = mevt;
409 			evt->irq = IRQ_MCT_L0;
410 			setup_irq(IRQ_MCT_L0, &mct_tick0_event_irq);
411 		} else {
412 			mct_tick1_event_irq.dev_id = mevt;
413 			evt->irq = IRQ_MCT_L1;
414 			setup_irq(IRQ_MCT_L1, &mct_tick1_event_irq);
415 			irq_set_affinity(IRQ_MCT_L1, cpumask_of(1));
416 		}
417 	} else {
418 		enable_percpu_irq(IRQ_MCT_LOCALTIMER, 0);
419 	}
420 }
421 
422 /* Setup the local clock events for a CPU */
local_timer_setup(struct clock_event_device * evt)423 int __cpuinit local_timer_setup(struct clock_event_device *evt)
424 {
425 	exynos4_mct_tick_init(evt);
426 
427 	return 0;
428 }
429 
local_timer_stop(struct clock_event_device * evt)430 void local_timer_stop(struct clock_event_device *evt)
431 {
432 	unsigned int cpu = smp_processor_id();
433 	evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
434 	if (mct_int_type == MCT_INT_SPI)
435 		if (cpu == 0)
436 			remove_irq(evt->irq, &mct_tick0_event_irq);
437 		else
438 			remove_irq(evt->irq, &mct_tick1_event_irq);
439 	else
440 		disable_percpu_irq(IRQ_MCT_LOCALTIMER);
441 }
442 #endif /* CONFIG_LOCAL_TIMERS */
443 
exynos4_timer_resources(void)444 static void __init exynos4_timer_resources(void)
445 {
446 	struct clk *mct_clk;
447 	mct_clk = clk_get(NULL, "xtal");
448 
449 	clk_rate = clk_get_rate(mct_clk);
450 
451 #ifdef CONFIG_LOCAL_TIMERS
452 	if (mct_int_type == MCT_INT_PPI) {
453 		int err;
454 
455 		err = request_percpu_irq(IRQ_MCT_LOCALTIMER,
456 					 exynos4_mct_tick_isr, "MCT",
457 					 &percpu_mct_tick);
458 		WARN(err, "MCT: can't request IRQ %d (%d)\n",
459 		     IRQ_MCT_LOCALTIMER, err);
460 	}
461 #endif /* CONFIG_LOCAL_TIMERS */
462 }
463 
exynos4_timer_init(void)464 static void __init exynos4_timer_init(void)
465 {
466 	if (soc_is_exynos4210())
467 		mct_int_type = MCT_INT_SPI;
468 	else
469 		mct_int_type = MCT_INT_PPI;
470 
471 	exynos4_timer_resources();
472 	exynos4_clocksource_init();
473 	exynos4_clockevent_init();
474 }
475 
476 struct sys_timer exynos4_timer = {
477 	.init		= exynos4_timer_init,
478 };
479