1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/cacheflush.h>
31 #include <asm/cpu.h>
32 #include <asm/cputype.h>
33 #include <asm/exception.h>
34 #include <asm/idmap.h>
35 #include <asm/topology.h>
36 #include <asm/mmu_context.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/sections.h>
41 #include <asm/tlbflush.h>
42 #include <asm/ptrace.h>
43 #include <asm/localtimer.h>
44 #include <asm/smp_plat.h>
45 
46 /*
47  * as from 2.5, kernels no longer have an init_tasks structure
48  * so we need some other way of telling a new secondary core
49  * where to place its SVC stack
50  */
51 struct secondary_data secondary_data;
52 
53 enum ipi_msg_type {
54 	IPI_TIMER = 2,
55 	IPI_RESCHEDULE,
56 	IPI_CALL_FUNC,
57 	IPI_CALL_FUNC_SINGLE,
58 	IPI_CPU_STOP,
59 };
60 
__cpu_up(unsigned int cpu)61 int __cpuinit __cpu_up(unsigned int cpu)
62 {
63 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
64 	struct task_struct *idle = ci->idle;
65 	int ret;
66 
67 	/*
68 	 * Spawn a new process manually, if not already done.
69 	 * Grab a pointer to its task struct so we can mess with it
70 	 */
71 	if (!idle) {
72 		idle = fork_idle(cpu);
73 		if (IS_ERR(idle)) {
74 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
75 			return PTR_ERR(idle);
76 		}
77 		ci->idle = idle;
78 	} else {
79 		/*
80 		 * Since this idle thread is being re-used, call
81 		 * init_idle() to reinitialize the thread structure.
82 		 */
83 		init_idle(idle, cpu);
84 	}
85 
86 	/*
87 	 * We need to tell the secondary core where to find
88 	 * its stack and the page tables.
89 	 */
90 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
91 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
92 	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
93 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
94 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
95 
96 	/*
97 	 * Now bring the CPU into our world.
98 	 */
99 	ret = boot_secondary(cpu, idle);
100 	if (ret == 0) {
101 		unsigned long timeout;
102 
103 		/*
104 		 * CPU was successfully started, wait for it
105 		 * to come online or time out.
106 		 */
107 		timeout = jiffies + HZ;
108 		while (time_before(jiffies, timeout)) {
109 			if (cpu_online(cpu))
110 				break;
111 
112 			udelay(10);
113 			barrier();
114 		}
115 
116 		if (!cpu_online(cpu)) {
117 			pr_crit("CPU%u: failed to come online\n", cpu);
118 			ret = -EIO;
119 		}
120 	} else {
121 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
122 	}
123 
124 	secondary_data.stack = NULL;
125 	secondary_data.pgdir = 0;
126 
127 	return ret;
128 }
129 
130 #ifdef CONFIG_HOTPLUG_CPU
131 static void percpu_timer_stop(void);
132 
133 /*
134  * __cpu_disable runs on the processor to be shutdown.
135  */
__cpu_disable(void)136 int __cpu_disable(void)
137 {
138 	unsigned int cpu = smp_processor_id();
139 	struct task_struct *p;
140 	int ret;
141 
142 	ret = platform_cpu_disable(cpu);
143 	if (ret)
144 		return ret;
145 
146 	/*
147 	 * Take this CPU offline.  Once we clear this, we can't return,
148 	 * and we must not schedule until we're ready to give up the cpu.
149 	 */
150 	set_cpu_online(cpu, false);
151 
152 	/*
153 	 * OK - migrate IRQs away from this CPU
154 	 */
155 	migrate_irqs();
156 
157 	/*
158 	 * Stop the local timer for this CPU.
159 	 */
160 	percpu_timer_stop();
161 
162 	/*
163 	 * Flush user cache and TLB mappings, and then remove this CPU
164 	 * from the vm mask set of all processes.
165 	 */
166 	flush_cache_all();
167 	local_flush_tlb_all();
168 
169 	read_lock(&tasklist_lock);
170 	for_each_process(p) {
171 		if (p->mm)
172 			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
173 	}
174 	read_unlock(&tasklist_lock);
175 
176 	return 0;
177 }
178 
179 static DECLARE_COMPLETION(cpu_died);
180 
181 /*
182  * called on the thread which is asking for a CPU to be shutdown -
183  * waits until shutdown has completed, or it is timed out.
184  */
__cpu_die(unsigned int cpu)185 void __cpu_die(unsigned int cpu)
186 {
187 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
188 		pr_err("CPU%u: cpu didn't die\n", cpu);
189 		return;
190 	}
191 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
192 
193 	if (!platform_cpu_kill(cpu))
194 		printk("CPU%u: unable to kill\n", cpu);
195 }
196 
197 /*
198  * Called from the idle thread for the CPU which has been shutdown.
199  *
200  * Note that we disable IRQs here, but do not re-enable them
201  * before returning to the caller. This is also the behaviour
202  * of the other hotplug-cpu capable cores, so presumably coming
203  * out of idle fixes this.
204  */
cpu_die(void)205 void __ref cpu_die(void)
206 {
207 	unsigned int cpu = smp_processor_id();
208 
209 	idle_task_exit();
210 
211 	local_irq_disable();
212 	mb();
213 
214 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
215 	complete(&cpu_died);
216 
217 	/*
218 	 * actual CPU shutdown procedure is at least platform (if not
219 	 * CPU) specific.
220 	 */
221 	platform_cpu_die(cpu);
222 
223 	/*
224 	 * Do not return to the idle loop - jump back to the secondary
225 	 * cpu initialisation.  There's some initialisation which needs
226 	 * to be repeated to undo the effects of taking the CPU offline.
227 	 */
228 	__asm__("mov	sp, %0\n"
229 	"	mov	fp, #0\n"
230 	"	b	secondary_start_kernel"
231 		:
232 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
233 }
234 #endif /* CONFIG_HOTPLUG_CPU */
235 
236 /*
237  * Called by both boot and secondaries to move global data into
238  * per-processor storage.
239  */
smp_store_cpu_info(unsigned int cpuid)240 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
241 {
242 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
243 
244 	cpu_info->loops_per_jiffy = loops_per_jiffy;
245 
246 	store_cpu_topology(cpuid);
247 }
248 
249 /*
250  * This is the secondary CPU boot entry.  We're using this CPUs
251  * idle thread stack, but a set of temporary page tables.
252  */
secondary_start_kernel(void)253 asmlinkage void __cpuinit secondary_start_kernel(void)
254 {
255 	struct mm_struct *mm = &init_mm;
256 	unsigned int cpu = smp_processor_id();
257 
258 	printk("CPU%u: Booted secondary processor\n", cpu);
259 
260 	/*
261 	 * All kernel threads share the same mm context; grab a
262 	 * reference and switch to it.
263 	 */
264 	atomic_inc(&mm->mm_count);
265 	current->active_mm = mm;
266 	cpumask_set_cpu(cpu, mm_cpumask(mm));
267 	cpu_switch_mm(mm->pgd, mm);
268 	enter_lazy_tlb(mm, current);
269 	local_flush_tlb_all();
270 
271 	cpu_init();
272 	preempt_disable();
273 	trace_hardirqs_off();
274 
275 	/*
276 	 * Give the platform a chance to do its own initialisation.
277 	 */
278 	platform_secondary_init(cpu);
279 
280 	notify_cpu_starting(cpu);
281 
282 	calibrate_delay();
283 
284 	smp_store_cpu_info(cpu);
285 
286 	/*
287 	 * OK, now it's safe to let the boot CPU continue.  Wait for
288 	 * the CPU migration code to notice that the CPU is online
289 	 * before we continue.
290 	 */
291 	set_cpu_online(cpu, true);
292 
293 	/*
294 	 * Setup the percpu timer for this CPU.
295 	 */
296 	percpu_timer_setup();
297 
298 	while (!cpu_active(cpu))
299 		cpu_relax();
300 
301 	/*
302 	 * cpu_active bit is set, so it's safe to enalbe interrupts
303 	 * now.
304 	 */
305 	local_irq_enable();
306 	local_fiq_enable();
307 
308 	/*
309 	 * OK, it's off to the idle thread for us
310 	 */
311 	cpu_idle();
312 }
313 
smp_cpus_done(unsigned int max_cpus)314 void __init smp_cpus_done(unsigned int max_cpus)
315 {
316 	int cpu;
317 	unsigned long bogosum = 0;
318 
319 	for_each_online_cpu(cpu)
320 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
321 
322 	printk(KERN_INFO "SMP: Total of %d processors activated "
323 	       "(%lu.%02lu BogoMIPS).\n",
324 	       num_online_cpus(),
325 	       bogosum / (500000/HZ),
326 	       (bogosum / (5000/HZ)) % 100);
327 }
328 
smp_prepare_boot_cpu(void)329 void __init smp_prepare_boot_cpu(void)
330 {
331 	unsigned int cpu = smp_processor_id();
332 
333 	per_cpu(cpu_data, cpu).idle = current;
334 }
335 
smp_prepare_cpus(unsigned int max_cpus)336 void __init smp_prepare_cpus(unsigned int max_cpus)
337 {
338 	unsigned int ncores = num_possible_cpus();
339 
340 	init_cpu_topology();
341 
342 	smp_store_cpu_info(smp_processor_id());
343 
344 	/*
345 	 * are we trying to boot more cores than exist?
346 	 */
347 	if (max_cpus > ncores)
348 		max_cpus = ncores;
349 	if (ncores > 1 && max_cpus) {
350 		/*
351 		 * Enable the local timer or broadcast device for the
352 		 * boot CPU, but only if we have more than one CPU.
353 		 */
354 		percpu_timer_setup();
355 
356 		/*
357 		 * Initialise the present map, which describes the set of CPUs
358 		 * actually populated at the present time. A platform should
359 		 * re-initialize the map in platform_smp_prepare_cpus() if
360 		 * present != possible (e.g. physical hotplug).
361 		 */
362 		init_cpu_present(&cpu_possible_map);
363 
364 		/*
365 		 * Initialise the SCU if there are more than one CPU
366 		 * and let them know where to start.
367 		 */
368 		platform_smp_prepare_cpus(max_cpus);
369 	}
370 }
371 
372 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
373 
set_smp_cross_call(void (* fn)(const struct cpumask *,unsigned int))374 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
375 {
376 	smp_cross_call = fn;
377 }
378 
arch_send_call_function_ipi_mask(const struct cpumask * mask)379 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
380 {
381 	smp_cross_call(mask, IPI_CALL_FUNC);
382 }
383 
arch_send_call_function_single_ipi(int cpu)384 void arch_send_call_function_single_ipi(int cpu)
385 {
386 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
387 }
388 
389 static const char *ipi_types[NR_IPI] = {
390 #define S(x,s)	[x - IPI_TIMER] = s
391 	S(IPI_TIMER, "Timer broadcast interrupts"),
392 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
393 	S(IPI_CALL_FUNC, "Function call interrupts"),
394 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
395 	S(IPI_CPU_STOP, "CPU stop interrupts"),
396 };
397 
show_ipi_list(struct seq_file * p,int prec)398 void show_ipi_list(struct seq_file *p, int prec)
399 {
400 	unsigned int cpu, i;
401 
402 	for (i = 0; i < NR_IPI; i++) {
403 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
404 
405 		for_each_present_cpu(cpu)
406 			seq_printf(p, "%10u ",
407 				   __get_irq_stat(cpu, ipi_irqs[i]));
408 
409 		seq_printf(p, " %s\n", ipi_types[i]);
410 	}
411 }
412 
smp_irq_stat_cpu(unsigned int cpu)413 u64 smp_irq_stat_cpu(unsigned int cpu)
414 {
415 	u64 sum = 0;
416 	int i;
417 
418 	for (i = 0; i < NR_IPI; i++)
419 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
420 
421 	return sum;
422 }
423 
424 /*
425  * Timer (local or broadcast) support
426  */
427 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
428 
ipi_timer(void)429 static void ipi_timer(void)
430 {
431 	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
432 	evt->event_handler(evt);
433 }
434 
435 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
smp_timer_broadcast(const struct cpumask * mask)436 static void smp_timer_broadcast(const struct cpumask *mask)
437 {
438 	smp_cross_call(mask, IPI_TIMER);
439 }
440 #else
441 #define smp_timer_broadcast	NULL
442 #endif
443 
broadcast_timer_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)444 static void broadcast_timer_set_mode(enum clock_event_mode mode,
445 	struct clock_event_device *evt)
446 {
447 }
448 
broadcast_timer_setup(struct clock_event_device * evt)449 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
450 {
451 	evt->name	= "dummy_timer";
452 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
453 			  CLOCK_EVT_FEAT_PERIODIC |
454 			  CLOCK_EVT_FEAT_DUMMY;
455 	evt->rating	= 400;
456 	evt->mult	= 1;
457 	evt->set_mode	= broadcast_timer_set_mode;
458 
459 	clockevents_register_device(evt);
460 }
461 
percpu_timer_setup(void)462 void __cpuinit percpu_timer_setup(void)
463 {
464 	unsigned int cpu = smp_processor_id();
465 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
466 
467 	evt->cpumask = cpumask_of(cpu);
468 	evt->broadcast = smp_timer_broadcast;
469 
470 	if (local_timer_setup(evt))
471 		broadcast_timer_setup(evt);
472 }
473 
474 #ifdef CONFIG_HOTPLUG_CPU
475 /*
476  * The generic clock events code purposely does not stop the local timer
477  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
478  * manually here.
479  */
percpu_timer_stop(void)480 static void percpu_timer_stop(void)
481 {
482 	unsigned int cpu = smp_processor_id();
483 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
484 
485 	local_timer_stop(evt);
486 }
487 #endif
488 
489 static DEFINE_RAW_SPINLOCK(stop_lock);
490 
491 /*
492  * ipi_cpu_stop - handle IPI from smp_send_stop()
493  */
ipi_cpu_stop(unsigned int cpu)494 static void ipi_cpu_stop(unsigned int cpu)
495 {
496 	if (system_state == SYSTEM_BOOTING ||
497 	    system_state == SYSTEM_RUNNING) {
498 		raw_spin_lock(&stop_lock);
499 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
500 		dump_stack();
501 		raw_spin_unlock(&stop_lock);
502 	}
503 
504 	set_cpu_online(cpu, false);
505 
506 	local_fiq_disable();
507 	local_irq_disable();
508 
509 #ifdef CONFIG_HOTPLUG_CPU
510 	platform_cpu_kill(cpu);
511 #endif
512 
513 	while (1)
514 		cpu_relax();
515 }
516 
517 /*
518  * Main handler for inter-processor interrupts
519  */
do_IPI(int ipinr,struct pt_regs * regs)520 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
521 {
522 	handle_IPI(ipinr, regs);
523 }
524 
handle_IPI(int ipinr,struct pt_regs * regs)525 void handle_IPI(int ipinr, struct pt_regs *regs)
526 {
527 	unsigned int cpu = smp_processor_id();
528 	struct pt_regs *old_regs = set_irq_regs(regs);
529 
530 	if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
531 		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
532 
533 	switch (ipinr) {
534 	case IPI_TIMER:
535 		irq_enter();
536 		ipi_timer();
537 		irq_exit();
538 		break;
539 
540 	case IPI_RESCHEDULE:
541 		scheduler_ipi();
542 		break;
543 
544 	case IPI_CALL_FUNC:
545 		irq_enter();
546 		generic_smp_call_function_interrupt();
547 		irq_exit();
548 		break;
549 
550 	case IPI_CALL_FUNC_SINGLE:
551 		irq_enter();
552 		generic_smp_call_function_single_interrupt();
553 		irq_exit();
554 		break;
555 
556 	case IPI_CPU_STOP:
557 		irq_enter();
558 		ipi_cpu_stop(cpu);
559 		irq_exit();
560 		break;
561 
562 	default:
563 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
564 		       cpu, ipinr);
565 		break;
566 	}
567 	set_irq_regs(old_regs);
568 }
569 
smp_send_reschedule(int cpu)570 void smp_send_reschedule(int cpu)
571 {
572 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
573 }
574 
smp_send_stop(void)575 void smp_send_stop(void)
576 {
577 	unsigned long timeout;
578 
579 	if (num_online_cpus() > 1) {
580 		cpumask_t mask = cpu_online_map;
581 		cpu_clear(smp_processor_id(), mask);
582 
583 		smp_cross_call(&mask, IPI_CPU_STOP);
584 	}
585 
586 	/* Wait up to one second for other CPUs to stop */
587 	timeout = USEC_PER_SEC;
588 	while (num_online_cpus() > 1 && timeout--)
589 		udelay(1);
590 
591 	if (num_online_cpus() > 1)
592 		pr_warning("SMP: failed to stop secondary CPUs\n");
593 }
594 
595 /*
596  * not supported here
597  */
setup_profiling_timer(unsigned int multiplier)598 int setup_profiling_timer(unsigned int multiplier)
599 {
600 	return -EINVAL;
601 }
602