1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28
29 #include <linux/atomic.h>
30 #include <asm/cacheflush.h>
31 #include <asm/cpu.h>
32 #include <asm/cputype.h>
33 #include <asm/exception.h>
34 #include <asm/idmap.h>
35 #include <asm/topology.h>
36 #include <asm/mmu_context.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/sections.h>
41 #include <asm/tlbflush.h>
42 #include <asm/ptrace.h>
43 #include <asm/localtimer.h>
44 #include <asm/smp_plat.h>
45
46 /*
47 * as from 2.5, kernels no longer have an init_tasks structure
48 * so we need some other way of telling a new secondary core
49 * where to place its SVC stack
50 */
51 struct secondary_data secondary_data;
52
53 enum ipi_msg_type {
54 IPI_TIMER = 2,
55 IPI_RESCHEDULE,
56 IPI_CALL_FUNC,
57 IPI_CALL_FUNC_SINGLE,
58 IPI_CPU_STOP,
59 };
60
__cpu_up(unsigned int cpu)61 int __cpuinit __cpu_up(unsigned int cpu)
62 {
63 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
64 struct task_struct *idle = ci->idle;
65 int ret;
66
67 /*
68 * Spawn a new process manually, if not already done.
69 * Grab a pointer to its task struct so we can mess with it
70 */
71 if (!idle) {
72 idle = fork_idle(cpu);
73 if (IS_ERR(idle)) {
74 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
75 return PTR_ERR(idle);
76 }
77 ci->idle = idle;
78 } else {
79 /*
80 * Since this idle thread is being re-used, call
81 * init_idle() to reinitialize the thread structure.
82 */
83 init_idle(idle, cpu);
84 }
85
86 /*
87 * We need to tell the secondary core where to find
88 * its stack and the page tables.
89 */
90 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
91 secondary_data.pgdir = virt_to_phys(idmap_pgd);
92 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
93 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
94 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
95
96 /*
97 * Now bring the CPU into our world.
98 */
99 ret = boot_secondary(cpu, idle);
100 if (ret == 0) {
101 unsigned long timeout;
102
103 /*
104 * CPU was successfully started, wait for it
105 * to come online or time out.
106 */
107 timeout = jiffies + HZ;
108 while (time_before(jiffies, timeout)) {
109 if (cpu_online(cpu))
110 break;
111
112 udelay(10);
113 barrier();
114 }
115
116 if (!cpu_online(cpu)) {
117 pr_crit("CPU%u: failed to come online\n", cpu);
118 ret = -EIO;
119 }
120 } else {
121 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
122 }
123
124 secondary_data.stack = NULL;
125 secondary_data.pgdir = 0;
126
127 return ret;
128 }
129
130 #ifdef CONFIG_HOTPLUG_CPU
131 static void percpu_timer_stop(void);
132
133 /*
134 * __cpu_disable runs on the processor to be shutdown.
135 */
__cpu_disable(void)136 int __cpu_disable(void)
137 {
138 unsigned int cpu = smp_processor_id();
139 struct task_struct *p;
140 int ret;
141
142 ret = platform_cpu_disable(cpu);
143 if (ret)
144 return ret;
145
146 /*
147 * Take this CPU offline. Once we clear this, we can't return,
148 * and we must not schedule until we're ready to give up the cpu.
149 */
150 set_cpu_online(cpu, false);
151
152 /*
153 * OK - migrate IRQs away from this CPU
154 */
155 migrate_irqs();
156
157 /*
158 * Stop the local timer for this CPU.
159 */
160 percpu_timer_stop();
161
162 /*
163 * Flush user cache and TLB mappings, and then remove this CPU
164 * from the vm mask set of all processes.
165 */
166 flush_cache_all();
167 local_flush_tlb_all();
168
169 read_lock(&tasklist_lock);
170 for_each_process(p) {
171 if (p->mm)
172 cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
173 }
174 read_unlock(&tasklist_lock);
175
176 return 0;
177 }
178
179 static DECLARE_COMPLETION(cpu_died);
180
181 /*
182 * called on the thread which is asking for a CPU to be shutdown -
183 * waits until shutdown has completed, or it is timed out.
184 */
__cpu_die(unsigned int cpu)185 void __cpu_die(unsigned int cpu)
186 {
187 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
188 pr_err("CPU%u: cpu didn't die\n", cpu);
189 return;
190 }
191 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
192
193 if (!platform_cpu_kill(cpu))
194 printk("CPU%u: unable to kill\n", cpu);
195 }
196
197 /*
198 * Called from the idle thread for the CPU which has been shutdown.
199 *
200 * Note that we disable IRQs here, but do not re-enable them
201 * before returning to the caller. This is also the behaviour
202 * of the other hotplug-cpu capable cores, so presumably coming
203 * out of idle fixes this.
204 */
cpu_die(void)205 void __ref cpu_die(void)
206 {
207 unsigned int cpu = smp_processor_id();
208
209 idle_task_exit();
210
211 local_irq_disable();
212 mb();
213
214 /* Tell __cpu_die() that this CPU is now safe to dispose of */
215 complete(&cpu_died);
216
217 /*
218 * actual CPU shutdown procedure is at least platform (if not
219 * CPU) specific.
220 */
221 platform_cpu_die(cpu);
222
223 /*
224 * Do not return to the idle loop - jump back to the secondary
225 * cpu initialisation. There's some initialisation which needs
226 * to be repeated to undo the effects of taking the CPU offline.
227 */
228 __asm__("mov sp, %0\n"
229 " mov fp, #0\n"
230 " b secondary_start_kernel"
231 :
232 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
233 }
234 #endif /* CONFIG_HOTPLUG_CPU */
235
236 /*
237 * Called by both boot and secondaries to move global data into
238 * per-processor storage.
239 */
smp_store_cpu_info(unsigned int cpuid)240 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
241 {
242 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
243
244 cpu_info->loops_per_jiffy = loops_per_jiffy;
245
246 store_cpu_topology(cpuid);
247 }
248
249 /*
250 * This is the secondary CPU boot entry. We're using this CPUs
251 * idle thread stack, but a set of temporary page tables.
252 */
secondary_start_kernel(void)253 asmlinkage void __cpuinit secondary_start_kernel(void)
254 {
255 struct mm_struct *mm = &init_mm;
256 unsigned int cpu = smp_processor_id();
257
258 printk("CPU%u: Booted secondary processor\n", cpu);
259
260 /*
261 * All kernel threads share the same mm context; grab a
262 * reference and switch to it.
263 */
264 atomic_inc(&mm->mm_count);
265 current->active_mm = mm;
266 cpumask_set_cpu(cpu, mm_cpumask(mm));
267 cpu_switch_mm(mm->pgd, mm);
268 enter_lazy_tlb(mm, current);
269 local_flush_tlb_all();
270
271 cpu_init();
272 preempt_disable();
273 trace_hardirqs_off();
274
275 /*
276 * Give the platform a chance to do its own initialisation.
277 */
278 platform_secondary_init(cpu);
279
280 notify_cpu_starting(cpu);
281
282 calibrate_delay();
283
284 smp_store_cpu_info(cpu);
285
286 /*
287 * OK, now it's safe to let the boot CPU continue. Wait for
288 * the CPU migration code to notice that the CPU is online
289 * before we continue.
290 */
291 set_cpu_online(cpu, true);
292
293 /*
294 * Setup the percpu timer for this CPU.
295 */
296 percpu_timer_setup();
297
298 while (!cpu_active(cpu))
299 cpu_relax();
300
301 /*
302 * cpu_active bit is set, so it's safe to enalbe interrupts
303 * now.
304 */
305 local_irq_enable();
306 local_fiq_enable();
307
308 /*
309 * OK, it's off to the idle thread for us
310 */
311 cpu_idle();
312 }
313
smp_cpus_done(unsigned int max_cpus)314 void __init smp_cpus_done(unsigned int max_cpus)
315 {
316 int cpu;
317 unsigned long bogosum = 0;
318
319 for_each_online_cpu(cpu)
320 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
321
322 printk(KERN_INFO "SMP: Total of %d processors activated "
323 "(%lu.%02lu BogoMIPS).\n",
324 num_online_cpus(),
325 bogosum / (500000/HZ),
326 (bogosum / (5000/HZ)) % 100);
327 }
328
smp_prepare_boot_cpu(void)329 void __init smp_prepare_boot_cpu(void)
330 {
331 unsigned int cpu = smp_processor_id();
332
333 per_cpu(cpu_data, cpu).idle = current;
334 }
335
smp_prepare_cpus(unsigned int max_cpus)336 void __init smp_prepare_cpus(unsigned int max_cpus)
337 {
338 unsigned int ncores = num_possible_cpus();
339
340 init_cpu_topology();
341
342 smp_store_cpu_info(smp_processor_id());
343
344 /*
345 * are we trying to boot more cores than exist?
346 */
347 if (max_cpus > ncores)
348 max_cpus = ncores;
349 if (ncores > 1 && max_cpus) {
350 /*
351 * Enable the local timer or broadcast device for the
352 * boot CPU, but only if we have more than one CPU.
353 */
354 percpu_timer_setup();
355
356 /*
357 * Initialise the present map, which describes the set of CPUs
358 * actually populated at the present time. A platform should
359 * re-initialize the map in platform_smp_prepare_cpus() if
360 * present != possible (e.g. physical hotplug).
361 */
362 init_cpu_present(&cpu_possible_map);
363
364 /*
365 * Initialise the SCU if there are more than one CPU
366 * and let them know where to start.
367 */
368 platform_smp_prepare_cpus(max_cpus);
369 }
370 }
371
372 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
373
set_smp_cross_call(void (* fn)(const struct cpumask *,unsigned int))374 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
375 {
376 smp_cross_call = fn;
377 }
378
arch_send_call_function_ipi_mask(const struct cpumask * mask)379 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
380 {
381 smp_cross_call(mask, IPI_CALL_FUNC);
382 }
383
arch_send_call_function_single_ipi(int cpu)384 void arch_send_call_function_single_ipi(int cpu)
385 {
386 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
387 }
388
389 static const char *ipi_types[NR_IPI] = {
390 #define S(x,s) [x - IPI_TIMER] = s
391 S(IPI_TIMER, "Timer broadcast interrupts"),
392 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
393 S(IPI_CALL_FUNC, "Function call interrupts"),
394 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
395 S(IPI_CPU_STOP, "CPU stop interrupts"),
396 };
397
show_ipi_list(struct seq_file * p,int prec)398 void show_ipi_list(struct seq_file *p, int prec)
399 {
400 unsigned int cpu, i;
401
402 for (i = 0; i < NR_IPI; i++) {
403 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
404
405 for_each_present_cpu(cpu)
406 seq_printf(p, "%10u ",
407 __get_irq_stat(cpu, ipi_irqs[i]));
408
409 seq_printf(p, " %s\n", ipi_types[i]);
410 }
411 }
412
smp_irq_stat_cpu(unsigned int cpu)413 u64 smp_irq_stat_cpu(unsigned int cpu)
414 {
415 u64 sum = 0;
416 int i;
417
418 for (i = 0; i < NR_IPI; i++)
419 sum += __get_irq_stat(cpu, ipi_irqs[i]);
420
421 return sum;
422 }
423
424 /*
425 * Timer (local or broadcast) support
426 */
427 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
428
ipi_timer(void)429 static void ipi_timer(void)
430 {
431 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
432 evt->event_handler(evt);
433 }
434
435 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
smp_timer_broadcast(const struct cpumask * mask)436 static void smp_timer_broadcast(const struct cpumask *mask)
437 {
438 smp_cross_call(mask, IPI_TIMER);
439 }
440 #else
441 #define smp_timer_broadcast NULL
442 #endif
443
broadcast_timer_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)444 static void broadcast_timer_set_mode(enum clock_event_mode mode,
445 struct clock_event_device *evt)
446 {
447 }
448
broadcast_timer_setup(struct clock_event_device * evt)449 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
450 {
451 evt->name = "dummy_timer";
452 evt->features = CLOCK_EVT_FEAT_ONESHOT |
453 CLOCK_EVT_FEAT_PERIODIC |
454 CLOCK_EVT_FEAT_DUMMY;
455 evt->rating = 400;
456 evt->mult = 1;
457 evt->set_mode = broadcast_timer_set_mode;
458
459 clockevents_register_device(evt);
460 }
461
percpu_timer_setup(void)462 void __cpuinit percpu_timer_setup(void)
463 {
464 unsigned int cpu = smp_processor_id();
465 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
466
467 evt->cpumask = cpumask_of(cpu);
468 evt->broadcast = smp_timer_broadcast;
469
470 if (local_timer_setup(evt))
471 broadcast_timer_setup(evt);
472 }
473
474 #ifdef CONFIG_HOTPLUG_CPU
475 /*
476 * The generic clock events code purposely does not stop the local timer
477 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
478 * manually here.
479 */
percpu_timer_stop(void)480 static void percpu_timer_stop(void)
481 {
482 unsigned int cpu = smp_processor_id();
483 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
484
485 local_timer_stop(evt);
486 }
487 #endif
488
489 static DEFINE_RAW_SPINLOCK(stop_lock);
490
491 /*
492 * ipi_cpu_stop - handle IPI from smp_send_stop()
493 */
ipi_cpu_stop(unsigned int cpu)494 static void ipi_cpu_stop(unsigned int cpu)
495 {
496 if (system_state == SYSTEM_BOOTING ||
497 system_state == SYSTEM_RUNNING) {
498 raw_spin_lock(&stop_lock);
499 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
500 dump_stack();
501 raw_spin_unlock(&stop_lock);
502 }
503
504 set_cpu_online(cpu, false);
505
506 local_fiq_disable();
507 local_irq_disable();
508
509 #ifdef CONFIG_HOTPLUG_CPU
510 platform_cpu_kill(cpu);
511 #endif
512
513 while (1)
514 cpu_relax();
515 }
516
517 /*
518 * Main handler for inter-processor interrupts
519 */
do_IPI(int ipinr,struct pt_regs * regs)520 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
521 {
522 handle_IPI(ipinr, regs);
523 }
524
handle_IPI(int ipinr,struct pt_regs * regs)525 void handle_IPI(int ipinr, struct pt_regs *regs)
526 {
527 unsigned int cpu = smp_processor_id();
528 struct pt_regs *old_regs = set_irq_regs(regs);
529
530 if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
531 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
532
533 switch (ipinr) {
534 case IPI_TIMER:
535 irq_enter();
536 ipi_timer();
537 irq_exit();
538 break;
539
540 case IPI_RESCHEDULE:
541 scheduler_ipi();
542 break;
543
544 case IPI_CALL_FUNC:
545 irq_enter();
546 generic_smp_call_function_interrupt();
547 irq_exit();
548 break;
549
550 case IPI_CALL_FUNC_SINGLE:
551 irq_enter();
552 generic_smp_call_function_single_interrupt();
553 irq_exit();
554 break;
555
556 case IPI_CPU_STOP:
557 irq_enter();
558 ipi_cpu_stop(cpu);
559 irq_exit();
560 break;
561
562 default:
563 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
564 cpu, ipinr);
565 break;
566 }
567 set_irq_regs(old_regs);
568 }
569
smp_send_reschedule(int cpu)570 void smp_send_reschedule(int cpu)
571 {
572 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
573 }
574
smp_send_stop(void)575 void smp_send_stop(void)
576 {
577 unsigned long timeout;
578
579 if (num_online_cpus() > 1) {
580 cpumask_t mask = cpu_online_map;
581 cpu_clear(smp_processor_id(), mask);
582
583 smp_cross_call(&mask, IPI_CPU_STOP);
584 }
585
586 /* Wait up to one second for other CPUs to stop */
587 timeout = USEC_PER_SEC;
588 while (num_online_cpus() > 1 && timeout--)
589 udelay(1);
590
591 if (num_online_cpus() > 1)
592 pr_warning("SMP: failed to stop secondary CPUs\n");
593 }
594
595 /*
596 * not supported here
597 */
setup_profiling_timer(unsigned int multiplier)598 int setup_profiling_timer(unsigned int multiplier)
599 {
600 return -EINVAL;
601 }
602