1 #undef DEBUG
2 
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11  * code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14 
15 #include <linux/bitmap.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/spinlock.h>
22 #include <linux/uaccess.h>
23 
24 #include <asm/cputype.h>
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/pmu.h>
28 #include <asm/stacktrace.h>
29 
30 /*
31  * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
32  * another platform that supports more, we need to increase this to be the
33  * largest of all platforms.
34  *
35  * ARMv7 supports up to 32 events:
36  *  cycle counter CCNT + 31 events counters CNT0..30.
37  *  Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
38  */
39 #define ARMPMU_MAX_HWEVENTS		32
40 
41 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
42 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
43 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
44 
45 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
46 
47 /* Set at runtime when we know what CPU type we are. */
48 static struct arm_pmu *cpu_pmu;
49 
50 enum arm_perf_pmu_ids
armpmu_get_pmu_id(void)51 armpmu_get_pmu_id(void)
52 {
53 	int id = -ENODEV;
54 
55 	if (cpu_pmu != NULL)
56 		id = cpu_pmu->id;
57 
58 	return id;
59 }
60 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
61 
perf_num_counters(void)62 int perf_num_counters(void)
63 {
64 	int max_events = 0;
65 
66 	if (cpu_pmu != NULL)
67 		max_events = cpu_pmu->num_events;
68 
69 	return max_events;
70 }
71 EXPORT_SYMBOL_GPL(perf_num_counters);
72 
73 #define HW_OP_UNSUPPORTED		0xFFFF
74 
75 #define C(_x) \
76 	PERF_COUNT_HW_CACHE_##_x
77 
78 #define CACHE_OP_UNSUPPORTED		0xFFFF
79 
80 static int
armpmu_map_cache_event(const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u64 config)81 armpmu_map_cache_event(const unsigned (*cache_map)
82 				      [PERF_COUNT_HW_CACHE_MAX]
83 				      [PERF_COUNT_HW_CACHE_OP_MAX]
84 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
85 		       u64 config)
86 {
87 	unsigned int cache_type, cache_op, cache_result, ret;
88 
89 	cache_type = (config >>  0) & 0xff;
90 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
91 		return -EINVAL;
92 
93 	cache_op = (config >>  8) & 0xff;
94 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
95 		return -EINVAL;
96 
97 	cache_result = (config >> 16) & 0xff;
98 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
99 		return -EINVAL;
100 
101 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
102 
103 	if (ret == CACHE_OP_UNSUPPORTED)
104 		return -ENOENT;
105 
106 	return ret;
107 }
108 
109 static int
armpmu_map_event(const unsigned (* event_map)[PERF_COUNT_HW_MAX],u64 config)110 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
111 {
112 	int mapping = (*event_map)[config];
113 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
114 }
115 
116 static int
armpmu_map_raw_event(u32 raw_event_mask,u64 config)117 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
118 {
119 	return (int)(config & raw_event_mask);
120 }
121 
map_cpu_event(struct perf_event * event,const unsigned (* event_map)[PERF_COUNT_HW_MAX],const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)122 static int map_cpu_event(struct perf_event *event,
123 			 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
124 			 const unsigned (*cache_map)
125 					[PERF_COUNT_HW_CACHE_MAX]
126 					[PERF_COUNT_HW_CACHE_OP_MAX]
127 					[PERF_COUNT_HW_CACHE_RESULT_MAX],
128 			 u32 raw_event_mask)
129 {
130 	u64 config = event->attr.config;
131 
132 	switch (event->attr.type) {
133 	case PERF_TYPE_HARDWARE:
134 		return armpmu_map_event(event_map, config);
135 	case PERF_TYPE_HW_CACHE:
136 		return armpmu_map_cache_event(cache_map, config);
137 	case PERF_TYPE_RAW:
138 		return armpmu_map_raw_event(raw_event_mask, config);
139 	}
140 
141 	return -ENOENT;
142 }
143 
144 int
armpmu_event_set_period(struct perf_event * event,struct hw_perf_event * hwc,int idx)145 armpmu_event_set_period(struct perf_event *event,
146 			struct hw_perf_event *hwc,
147 			int idx)
148 {
149 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
150 	s64 left = local64_read(&hwc->period_left);
151 	s64 period = hwc->sample_period;
152 	int ret = 0;
153 
154 	if (unlikely(left <= -period)) {
155 		left = period;
156 		local64_set(&hwc->period_left, left);
157 		hwc->last_period = period;
158 		ret = 1;
159 	}
160 
161 	if (unlikely(left <= 0)) {
162 		left += period;
163 		local64_set(&hwc->period_left, left);
164 		hwc->last_period = period;
165 		ret = 1;
166 	}
167 
168 	if (left > (s64)armpmu->max_period)
169 		left = armpmu->max_period;
170 
171 	local64_set(&hwc->prev_count, (u64)-left);
172 
173 	armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
174 
175 	perf_event_update_userpage(event);
176 
177 	return ret;
178 }
179 
180 u64
armpmu_event_update(struct perf_event * event,struct hw_perf_event * hwc,int idx)181 armpmu_event_update(struct perf_event *event,
182 		    struct hw_perf_event *hwc,
183 		    int idx)
184 {
185 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
186 	u64 delta, prev_raw_count, new_raw_count;
187 
188 again:
189 	prev_raw_count = local64_read(&hwc->prev_count);
190 	new_raw_count = armpmu->read_counter(idx);
191 
192 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
193 			     new_raw_count) != prev_raw_count)
194 		goto again;
195 
196 	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
197 
198 	local64_add(delta, &event->count);
199 	local64_sub(delta, &hwc->period_left);
200 
201 	return new_raw_count;
202 }
203 
204 static void
armpmu_read(struct perf_event * event)205 armpmu_read(struct perf_event *event)
206 {
207 	struct hw_perf_event *hwc = &event->hw;
208 
209 	/* Don't read disabled counters! */
210 	if (hwc->idx < 0)
211 		return;
212 
213 	armpmu_event_update(event, hwc, hwc->idx);
214 }
215 
216 static void
armpmu_stop(struct perf_event * event,int flags)217 armpmu_stop(struct perf_event *event, int flags)
218 {
219 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
220 	struct hw_perf_event *hwc = &event->hw;
221 
222 	/*
223 	 * ARM pmu always has to update the counter, so ignore
224 	 * PERF_EF_UPDATE, see comments in armpmu_start().
225 	 */
226 	if (!(hwc->state & PERF_HES_STOPPED)) {
227 		armpmu->disable(hwc, hwc->idx);
228 		barrier(); /* why? */
229 		armpmu_event_update(event, hwc, hwc->idx);
230 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
231 	}
232 }
233 
234 static void
armpmu_start(struct perf_event * event,int flags)235 armpmu_start(struct perf_event *event, int flags)
236 {
237 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
238 	struct hw_perf_event *hwc = &event->hw;
239 
240 	/*
241 	 * ARM pmu always has to reprogram the period, so ignore
242 	 * PERF_EF_RELOAD, see the comment below.
243 	 */
244 	if (flags & PERF_EF_RELOAD)
245 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
246 
247 	hwc->state = 0;
248 	/*
249 	 * Set the period again. Some counters can't be stopped, so when we
250 	 * were stopped we simply disabled the IRQ source and the counter
251 	 * may have been left counting. If we don't do this step then we may
252 	 * get an interrupt too soon or *way* too late if the overflow has
253 	 * happened since disabling.
254 	 */
255 	armpmu_event_set_period(event, hwc, hwc->idx);
256 	armpmu->enable(hwc, hwc->idx);
257 }
258 
259 static void
armpmu_del(struct perf_event * event,int flags)260 armpmu_del(struct perf_event *event, int flags)
261 {
262 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
263 	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
264 	struct hw_perf_event *hwc = &event->hw;
265 	int idx = hwc->idx;
266 
267 	WARN_ON(idx < 0);
268 
269 	armpmu_stop(event, PERF_EF_UPDATE);
270 	hw_events->events[idx] = NULL;
271 	clear_bit(idx, hw_events->used_mask);
272 
273 	perf_event_update_userpage(event);
274 }
275 
276 static int
armpmu_add(struct perf_event * event,int flags)277 armpmu_add(struct perf_event *event, int flags)
278 {
279 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
280 	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
281 	struct hw_perf_event *hwc = &event->hw;
282 	int idx;
283 	int err = 0;
284 
285 	perf_pmu_disable(event->pmu);
286 
287 	/* If we don't have a space for the counter then finish early. */
288 	idx = armpmu->get_event_idx(hw_events, hwc);
289 	if (idx < 0) {
290 		err = idx;
291 		goto out;
292 	}
293 
294 	/*
295 	 * If there is an event in the counter we are going to use then make
296 	 * sure it is disabled.
297 	 */
298 	event->hw.idx = idx;
299 	armpmu->disable(hwc, idx);
300 	hw_events->events[idx] = event;
301 
302 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
303 	if (flags & PERF_EF_START)
304 		armpmu_start(event, PERF_EF_RELOAD);
305 
306 	/* Propagate our changes to the userspace mapping. */
307 	perf_event_update_userpage(event);
308 
309 out:
310 	perf_pmu_enable(event->pmu);
311 	return err;
312 }
313 
314 static int
validate_event(struct pmu_hw_events * hw_events,struct perf_event * event)315 validate_event(struct pmu_hw_events *hw_events,
316 	       struct perf_event *event)
317 {
318 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
319 	struct hw_perf_event fake_event = event->hw;
320 	struct pmu *leader_pmu = event->group_leader->pmu;
321 
322 	if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
323 		return 1;
324 
325 	return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
326 }
327 
328 static int
validate_group(struct perf_event * event)329 validate_group(struct perf_event *event)
330 {
331 	struct perf_event *sibling, *leader = event->group_leader;
332 	struct pmu_hw_events fake_pmu;
333 	DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
334 
335 	/*
336 	 * Initialise the fake PMU. We only need to populate the
337 	 * used_mask for the purposes of validation.
338 	 */
339 	memset(fake_used_mask, 0, sizeof(fake_used_mask));
340 	fake_pmu.used_mask = fake_used_mask;
341 
342 	if (!validate_event(&fake_pmu, leader))
343 		return -EINVAL;
344 
345 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
346 		if (!validate_event(&fake_pmu, sibling))
347 			return -EINVAL;
348 	}
349 
350 	if (!validate_event(&fake_pmu, event))
351 		return -EINVAL;
352 
353 	return 0;
354 }
355 
armpmu_platform_irq(int irq,void * dev)356 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
357 {
358 	struct arm_pmu *armpmu = (struct arm_pmu *) dev;
359 	struct platform_device *plat_device = armpmu->plat_device;
360 	struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
361 
362 	return plat->handle_irq(irq, dev, armpmu->handle_irq);
363 }
364 
365 static void
armpmu_release_hardware(struct arm_pmu * armpmu)366 armpmu_release_hardware(struct arm_pmu *armpmu)
367 {
368 	int i, irq, irqs;
369 	struct platform_device *pmu_device = armpmu->plat_device;
370 	struct arm_pmu_platdata *plat =
371 		dev_get_platdata(&pmu_device->dev);
372 
373 	irqs = min(pmu_device->num_resources, num_possible_cpus());
374 
375 	for (i = 0; i < irqs; ++i) {
376 		if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
377 			continue;
378 		irq = platform_get_irq(pmu_device, i);
379 		if (irq >= 0) {
380 			if (plat && plat->disable_irq)
381 				plat->disable_irq(irq);
382 			free_irq(irq, armpmu);
383 		}
384 	}
385 
386 	release_pmu(armpmu->type);
387 }
388 
389 static int
armpmu_reserve_hardware(struct arm_pmu * armpmu)390 armpmu_reserve_hardware(struct arm_pmu *armpmu)
391 {
392 	struct arm_pmu_platdata *plat;
393 	irq_handler_t handle_irq;
394 	int i, err, irq, irqs;
395 	struct platform_device *pmu_device = armpmu->plat_device;
396 
397 	if (!pmu_device)
398 		return -ENODEV;
399 
400 	err = reserve_pmu(armpmu->type);
401 	if (err) {
402 		pr_warning("unable to reserve pmu\n");
403 		return err;
404 	}
405 
406 	plat = dev_get_platdata(&pmu_device->dev);
407 	if (plat && plat->handle_irq)
408 		handle_irq = armpmu_platform_irq;
409 	else
410 		handle_irq = armpmu->handle_irq;
411 
412 	irqs = min(pmu_device->num_resources, num_possible_cpus());
413 	if (irqs < 1) {
414 		pr_err("no irqs for PMUs defined\n");
415 		return -ENODEV;
416 	}
417 
418 	for (i = 0; i < irqs; ++i) {
419 		err = 0;
420 		irq = platform_get_irq(pmu_device, i);
421 		if (irq < 0)
422 			continue;
423 
424 		/*
425 		 * If we have a single PMU interrupt that we can't shift,
426 		 * assume that we're running on a uniprocessor machine and
427 		 * continue. Otherwise, continue without this interrupt.
428 		 */
429 		if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
430 			pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
431 				    irq, i);
432 			continue;
433 		}
434 
435 		err = request_irq(irq, handle_irq,
436 				  IRQF_DISABLED | IRQF_NOBALANCING,
437 				  "arm-pmu", armpmu);
438 		if (err) {
439 			pr_err("unable to request IRQ%d for ARM PMU counters\n",
440 				irq);
441 			armpmu_release_hardware(armpmu);
442 			return err;
443 		} else if (plat && plat->enable_irq)
444 			plat->enable_irq(irq);
445 
446 		cpumask_set_cpu(i, &armpmu->active_irqs);
447 	}
448 
449 	return 0;
450 }
451 
452 static void
hw_perf_event_destroy(struct perf_event * event)453 hw_perf_event_destroy(struct perf_event *event)
454 {
455 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
456 	atomic_t *active_events	 = &armpmu->active_events;
457 	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
458 
459 	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
460 		armpmu_release_hardware(armpmu);
461 		mutex_unlock(pmu_reserve_mutex);
462 	}
463 }
464 
465 static int
event_requires_mode_exclusion(struct perf_event_attr * attr)466 event_requires_mode_exclusion(struct perf_event_attr *attr)
467 {
468 	return attr->exclude_idle || attr->exclude_user ||
469 	       attr->exclude_kernel || attr->exclude_hv;
470 }
471 
472 static int
__hw_perf_event_init(struct perf_event * event)473 __hw_perf_event_init(struct perf_event *event)
474 {
475 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
476 	struct hw_perf_event *hwc = &event->hw;
477 	int mapping, err;
478 
479 	mapping = armpmu->map_event(event);
480 
481 	if (mapping < 0) {
482 		pr_debug("event %x:%llx not supported\n", event->attr.type,
483 			 event->attr.config);
484 		return mapping;
485 	}
486 
487 	/*
488 	 * We don't assign an index until we actually place the event onto
489 	 * hardware. Use -1 to signify that we haven't decided where to put it
490 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
491 	 * clever allocation or constraints checking at this point.
492 	 */
493 	hwc->idx		= -1;
494 	hwc->config_base	= 0;
495 	hwc->config		= 0;
496 	hwc->event_base		= 0;
497 
498 	/*
499 	 * Check whether we need to exclude the counter from certain modes.
500 	 */
501 	if ((!armpmu->set_event_filter ||
502 	     armpmu->set_event_filter(hwc, &event->attr)) &&
503 	     event_requires_mode_exclusion(&event->attr)) {
504 		pr_debug("ARM performance counters do not support "
505 			 "mode exclusion\n");
506 		return -EPERM;
507 	}
508 
509 	/*
510 	 * Store the event encoding into the config_base field.
511 	 */
512 	hwc->config_base	    |= (unsigned long)mapping;
513 
514 	if (!hwc->sample_period) {
515 		/*
516 		 * For non-sampling runs, limit the sample_period to half
517 		 * of the counter width. That way, the new counter value
518 		 * is far less likely to overtake the previous one unless
519 		 * you have some serious IRQ latency issues.
520 		 */
521 		hwc->sample_period  = armpmu->max_period >> 1;
522 		hwc->last_period    = hwc->sample_period;
523 		local64_set(&hwc->period_left, hwc->sample_period);
524 	}
525 
526 	err = 0;
527 	if (event->group_leader != event) {
528 		err = validate_group(event);
529 		if (err)
530 			return -EINVAL;
531 	}
532 
533 	return err;
534 }
535 
armpmu_event_init(struct perf_event * event)536 static int armpmu_event_init(struct perf_event *event)
537 {
538 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
539 	int err = 0;
540 	atomic_t *active_events = &armpmu->active_events;
541 
542 	if (armpmu->map_event(event) == -ENOENT)
543 		return -ENOENT;
544 
545 	event->destroy = hw_perf_event_destroy;
546 
547 	if (!atomic_inc_not_zero(active_events)) {
548 		mutex_lock(&armpmu->reserve_mutex);
549 		if (atomic_read(active_events) == 0)
550 			err = armpmu_reserve_hardware(armpmu);
551 
552 		if (!err)
553 			atomic_inc(active_events);
554 		mutex_unlock(&armpmu->reserve_mutex);
555 	}
556 
557 	if (err)
558 		return err;
559 
560 	err = __hw_perf_event_init(event);
561 	if (err)
562 		hw_perf_event_destroy(event);
563 
564 	return err;
565 }
566 
armpmu_enable(struct pmu * pmu)567 static void armpmu_enable(struct pmu *pmu)
568 {
569 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
570 	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
571 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
572 
573 	if (enabled)
574 		armpmu->start();
575 }
576 
armpmu_disable(struct pmu * pmu)577 static void armpmu_disable(struct pmu *pmu)
578 {
579 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
580 	armpmu->stop();
581 }
582 
armpmu_init(struct arm_pmu * armpmu)583 static void __init armpmu_init(struct arm_pmu *armpmu)
584 {
585 	atomic_set(&armpmu->active_events, 0);
586 	mutex_init(&armpmu->reserve_mutex);
587 
588 	armpmu->pmu = (struct pmu) {
589 		.pmu_enable	= armpmu_enable,
590 		.pmu_disable	= armpmu_disable,
591 		.event_init	= armpmu_event_init,
592 		.add		= armpmu_add,
593 		.del		= armpmu_del,
594 		.start		= armpmu_start,
595 		.stop		= armpmu_stop,
596 		.read		= armpmu_read,
597 	};
598 }
599 
armpmu_register(struct arm_pmu * armpmu,char * name,int type)600 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
601 {
602 	armpmu_init(armpmu);
603 	return perf_pmu_register(&armpmu->pmu, name, type);
604 }
605 
606 /* Include the PMU-specific implementations. */
607 #include "perf_event_xscale.c"
608 #include "perf_event_v6.c"
609 #include "perf_event_v7.c"
610 
611 /*
612  * Ensure the PMU has sane values out of reset.
613  * This requires SMP to be available, so exists as a separate initcall.
614  */
615 static int __init
cpu_pmu_reset(void)616 cpu_pmu_reset(void)
617 {
618 	if (cpu_pmu && cpu_pmu->reset)
619 		return on_each_cpu(cpu_pmu->reset, NULL, 1);
620 	return 0;
621 }
622 arch_initcall(cpu_pmu_reset);
623 
624 /*
625  * PMU platform driver and devicetree bindings.
626  */
627 static struct of_device_id armpmu_of_device_ids[] = {
628 	{.compatible = "arm,cortex-a9-pmu"},
629 	{.compatible = "arm,cortex-a8-pmu"},
630 	{.compatible = "arm,arm1136-pmu"},
631 	{.compatible = "arm,arm1176-pmu"},
632 	{},
633 };
634 
635 static struct platform_device_id armpmu_plat_device_ids[] = {
636 	{.name = "arm-pmu"},
637 	{},
638 };
639 
armpmu_device_probe(struct platform_device * pdev)640 static int __devinit armpmu_device_probe(struct platform_device *pdev)
641 {
642 	if (!cpu_pmu)
643 		return -ENODEV;
644 
645 	cpu_pmu->plat_device = pdev;
646 	return 0;
647 }
648 
649 static struct platform_driver armpmu_driver = {
650 	.driver		= {
651 		.name	= "arm-pmu",
652 		.of_match_table = armpmu_of_device_ids,
653 	},
654 	.probe		= armpmu_device_probe,
655 	.id_table	= armpmu_plat_device_ids,
656 };
657 
register_pmu_driver(void)658 static int __init register_pmu_driver(void)
659 {
660 	return platform_driver_register(&armpmu_driver);
661 }
662 device_initcall(register_pmu_driver);
663 
armpmu_get_cpu_events(void)664 static struct pmu_hw_events *armpmu_get_cpu_events(void)
665 {
666 	return &__get_cpu_var(cpu_hw_events);
667 }
668 
cpu_pmu_init(struct arm_pmu * armpmu)669 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
670 {
671 	int cpu;
672 	for_each_possible_cpu(cpu) {
673 		struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
674 		events->events = per_cpu(hw_events, cpu);
675 		events->used_mask = per_cpu(used_mask, cpu);
676 		raw_spin_lock_init(&events->pmu_lock);
677 	}
678 	armpmu->get_hw_events = armpmu_get_cpu_events;
679 	armpmu->type = ARM_PMU_DEVICE_CPU;
680 }
681 
682 /*
683  * PMU hardware loses all context when a CPU goes offline.
684  * When a CPU is hotplugged back in, since some hardware registers are
685  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
686  * junk values out of them.
687  */
pmu_cpu_notify(struct notifier_block * b,unsigned long action,void * hcpu)688 static int __cpuinit pmu_cpu_notify(struct notifier_block *b,
689 					unsigned long action, void *hcpu)
690 {
691 	if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
692 		return NOTIFY_DONE;
693 
694 	if (cpu_pmu && cpu_pmu->reset)
695 		cpu_pmu->reset(NULL);
696 
697 	return NOTIFY_OK;
698 }
699 
700 static struct notifier_block __cpuinitdata pmu_cpu_notifier = {
701 	.notifier_call = pmu_cpu_notify,
702 };
703 
704 /*
705  * CPU PMU identification and registration.
706  */
707 static int __init
init_hw_perf_events(void)708 init_hw_perf_events(void)
709 {
710 	unsigned long cpuid = read_cpuid_id();
711 	unsigned long implementor = (cpuid & 0xFF000000) >> 24;
712 	unsigned long part_number = (cpuid & 0xFFF0);
713 
714 	/* ARM Ltd CPUs. */
715 	if (0x41 == implementor) {
716 		switch (part_number) {
717 		case 0xB360:	/* ARM1136 */
718 		case 0xB560:	/* ARM1156 */
719 		case 0xB760:	/* ARM1176 */
720 			cpu_pmu = armv6pmu_init();
721 			break;
722 		case 0xB020:	/* ARM11mpcore */
723 			cpu_pmu = armv6mpcore_pmu_init();
724 			break;
725 		case 0xC080:	/* Cortex-A8 */
726 			cpu_pmu = armv7_a8_pmu_init();
727 			break;
728 		case 0xC090:	/* Cortex-A9 */
729 			cpu_pmu = armv7_a9_pmu_init();
730 			break;
731 		case 0xC050:	/* Cortex-A5 */
732 			cpu_pmu = armv7_a5_pmu_init();
733 			break;
734 		case 0xC0F0:	/* Cortex-A15 */
735 			cpu_pmu = armv7_a15_pmu_init();
736 			break;
737 		}
738 	/* Intel CPUs [xscale]. */
739 	} else if (0x69 == implementor) {
740 		part_number = (cpuid >> 13) & 0x7;
741 		switch (part_number) {
742 		case 1:
743 			cpu_pmu = xscale1pmu_init();
744 			break;
745 		case 2:
746 			cpu_pmu = xscale2pmu_init();
747 			break;
748 		}
749 	}
750 
751 	if (cpu_pmu) {
752 		pr_info("enabled with %s PMU driver, %d counters available\n",
753 			cpu_pmu->name, cpu_pmu->num_events);
754 		cpu_pmu_init(cpu_pmu);
755 		register_cpu_notifier(&pmu_cpu_notifier);
756 		armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
757 	} else {
758 		pr_info("no hardware support available\n");
759 	}
760 
761 	return 0;
762 }
763 early_initcall(init_hw_perf_events);
764 
765 /*
766  * Callchain handling code.
767  */
768 
769 /*
770  * The registers we're interested in are at the end of the variable
771  * length saved register structure. The fp points at the end of this
772  * structure so the address of this struct is:
773  * (struct frame_tail *)(xxx->fp)-1
774  *
775  * This code has been adapted from the ARM OProfile support.
776  */
777 struct frame_tail {
778 	struct frame_tail __user *fp;
779 	unsigned long sp;
780 	unsigned long lr;
781 } __attribute__((packed));
782 
783 /*
784  * Get the return address for a single stackframe and return a pointer to the
785  * next frame tail.
786  */
787 static struct frame_tail __user *
user_backtrace(struct frame_tail __user * tail,struct perf_callchain_entry * entry)788 user_backtrace(struct frame_tail __user *tail,
789 	       struct perf_callchain_entry *entry)
790 {
791 	struct frame_tail buftail;
792 
793 	/* Also check accessibility of one struct frame_tail beyond */
794 	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
795 		return NULL;
796 	if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
797 		return NULL;
798 
799 	perf_callchain_store(entry, buftail.lr);
800 
801 	/*
802 	 * Frame pointers should strictly progress back up the stack
803 	 * (towards higher addresses).
804 	 */
805 	if (tail + 1 >= buftail.fp)
806 		return NULL;
807 
808 	return buftail.fp - 1;
809 }
810 
811 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)812 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
813 {
814 	struct frame_tail __user *tail;
815 
816 
817 	tail = (struct frame_tail __user *)regs->ARM_fp - 1;
818 
819 	while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
820 	       tail && !((unsigned long)tail & 0x3))
821 		tail = user_backtrace(tail, entry);
822 }
823 
824 /*
825  * Gets called by walk_stackframe() for every stackframe. This will be called
826  * whist unwinding the stackframe and is like a subroutine return so we use
827  * the PC.
828  */
829 static int
callchain_trace(struct stackframe * fr,void * data)830 callchain_trace(struct stackframe *fr,
831 		void *data)
832 {
833 	struct perf_callchain_entry *entry = data;
834 	perf_callchain_store(entry, fr->pc);
835 	return 0;
836 }
837 
838 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)839 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
840 {
841 	struct stackframe fr;
842 
843 	fr.fp = regs->ARM_fp;
844 	fr.sp = regs->ARM_sp;
845 	fr.lr = regs->ARM_lr;
846 	fr.pc = regs->ARM_pc;
847 	walk_stackframe(&fr, callchain_trace, entry);
848 }
849