xref: /kvmtool/pci.c (revision 9cb1b46cb765972326a46bdba867d441a842af56)
1 #include "kvm/devices.h"
2 #include "kvm/pci.h"
3 #include "kvm/ioport.h"
4 #include "kvm/irq.h"
5 #include "kvm/util.h"
6 #include "kvm/kvm.h"
7 
8 #include <linux/err.h>
9 #include <assert.h>
10 
11 static u32 pci_config_address_bits;
12 
13 /* This is within our PCI gap - in an unused area.
14  * Note this is a PCI *bus address*, is used to assign BARs etc.!
15  * (That's why it can still 32bit even with 64bit guests-- 64bit
16  * PCI isn't currently supported.)
17  */
18 static u32 mmio_blocks			= KVM_PCI_MMIO_AREA;
19 static u16 io_port_blocks		= PCI_IOPORT_START;
20 
pci_get_io_port_block(u32 size)21 u16 pci_get_io_port_block(u32 size)
22 {
23 	u16 port = ALIGN(io_port_blocks, PCI_IO_SIZE);
24 
25 	io_port_blocks = port + size;
26 	return port;
27 }
28 
29 /*
30  * BARs must be naturally aligned, so enforce this in the allocator.
31  */
pci_get_mmio_block(u32 size)32 u32 pci_get_mmio_block(u32 size)
33 {
34 	u32 block = ALIGN(mmio_blocks, size);
35 	mmio_blocks = block + size;
36 	return block;
37 }
38 
pci_find_cap(struct pci_device_header * hdr,u8 cap_type)39 void *pci_find_cap(struct pci_device_header *hdr, u8 cap_type)
40 {
41 	u8 pos;
42 	struct pci_cap_hdr *cap;
43 
44 	pci_for_each_cap(pos, cap, hdr) {
45 		if (cap->type == cap_type)
46 			return cap;
47 	}
48 
49 	return NULL;
50 }
51 
pci__assign_irq(struct pci_device_header * pci_hdr)52 int pci__assign_irq(struct pci_device_header *pci_hdr)
53 {
54 	/*
55 	 * PCI supports only INTA#,B#,C#,D# per device.
56 	 *
57 	 * A#,B#,C#,D# are allowed for multifunctional devices so stick
58 	 * with A# for our single function devices.
59 	 */
60 	pci_hdr->irq_pin	= 1;
61 	pci_hdr->irq_line	= irq__alloc_line();
62 
63 	if (!pci_hdr->irq_type)
64 		pci_hdr->irq_type = IRQ_TYPE_LEVEL_HIGH;
65 
66 	return pci_hdr->irq_line;
67 }
68 
pci_bar_is_implemented(struct pci_device_header * pci_hdr,int bar_num)69 static bool pci_bar_is_implemented(struct pci_device_header *pci_hdr, int bar_num)
70 {
71 	return pci__bar_size(pci_hdr, bar_num);
72 }
73 
pci_bar_is_active(struct pci_device_header * pci_hdr,int bar_num)74 static bool pci_bar_is_active(struct pci_device_header *pci_hdr, int bar_num)
75 {
76 	return  pci_hdr->bar_active[bar_num];
77 }
78 
pci_config_address_ptr(u16 port)79 static void *pci_config_address_ptr(u16 port)
80 {
81 	unsigned long offset;
82 	void *base;
83 
84 	offset	= port - PCI_CONFIG_ADDRESS;
85 	base	= &pci_config_address_bits;
86 
87 	return base + offset;
88 }
89 
pci_config_address_mmio(struct kvm_cpu * vcpu,u64 addr,u8 * data,u32 len,u8 is_write,void * ptr)90 static void pci_config_address_mmio(struct kvm_cpu *vcpu, u64 addr, u8 *data,
91 				    u32 len, u8 is_write, void *ptr)
92 {
93 	void *p = pci_config_address_ptr(addr);
94 
95 	if (is_write)
96 		memcpy(p, data, len);
97 	else
98 		memcpy(data, p, len);
99 }
pci_device_exists(u8 bus_number,u8 device_number,u8 function_number)100 static bool pci_device_exists(u8 bus_number, u8 device_number, u8 function_number)
101 {
102 	union pci_config_address pci_config_address;
103 
104 	pci_config_address.w = ioport__read32(&pci_config_address_bits);
105 
106 	if (pci_config_address.bus_number != bus_number)
107 		return false;
108 
109 	if (pci_config_address.function_number != function_number)
110 		return false;
111 
112 	return !IS_ERR_OR_NULL(device__find_dev(DEVICE_BUS_PCI, device_number));
113 }
114 
pci_config_data_mmio(struct kvm_cpu * vcpu,u64 addr,u8 * data,u32 len,u8 is_write,void * kvm)115 static void pci_config_data_mmio(struct kvm_cpu *vcpu, u64 addr, u8 *data,
116 				 u32 len, u8 is_write, void *kvm)
117 {
118 	union pci_config_address pci_config_address;
119 
120 	pci_config_address.w = ioport__read32(&pci_config_address_bits);
121 	/*
122 	 * If someone accesses PCI configuration space offsets that are not
123 	 * aligned to 4 bytes, it uses ioports to signify that.
124 	 */
125 	pci_config_address.reg_offset = addr - PCI_CONFIG_DATA;
126 
127 	/* Ensure the access does not cross a 4-byte boundary */
128 	len = min(len, 4U - pci_config_address.reg_offset);
129 
130 	if (is_write)
131 		pci__config_wr(vcpu->kvm, pci_config_address, data, len);
132 	else
133 		pci__config_rd(vcpu->kvm, pci_config_address, data, len);
134 }
135 
pci_activate_bar(struct kvm * kvm,struct pci_device_header * pci_hdr,int bar_num)136 static int pci_activate_bar(struct kvm *kvm, struct pci_device_header *pci_hdr,
137 			    int bar_num)
138 {
139 	int r = 0;
140 
141 	if (pci_bar_is_active(pci_hdr, bar_num))
142 		goto out;
143 
144 	r = pci_hdr->bar_activate_fn(kvm, pci_hdr, bar_num, pci_hdr->data);
145 	if (r < 0) {
146 		pci_dev_warn(pci_hdr, "Error activating emulation for BAR %d",
147 			     bar_num);
148 		goto out;
149 	}
150 	pci_hdr->bar_active[bar_num] = true;
151 
152 out:
153 	return r;
154 }
155 
pci_deactivate_bar(struct kvm * kvm,struct pci_device_header * pci_hdr,int bar_num)156 static int pci_deactivate_bar(struct kvm *kvm, struct pci_device_header *pci_hdr,
157 			      int bar_num)
158 {
159 	int r = 0;
160 
161 	if (!pci_bar_is_active(pci_hdr, bar_num))
162 		goto out;
163 
164 	r = pci_hdr->bar_deactivate_fn(kvm, pci_hdr, bar_num, pci_hdr->data);
165 	if (r < 0) {
166 		pci_dev_warn(pci_hdr, "Error deactivating emulation for BAR %d",
167 			     bar_num);
168 		goto out;
169 	}
170 	pci_hdr->bar_active[bar_num] = false;
171 
172 out:
173 	return r;
174 }
175 
pci_config_command_wr(struct kvm * kvm,struct pci_device_header * pci_hdr,u16 new_command)176 static void pci_config_command_wr(struct kvm *kvm,
177 				  struct pci_device_header *pci_hdr,
178 				  u16 new_command)
179 {
180 	int i;
181 	bool toggle_io, toggle_mem;
182 
183 	toggle_io = (pci_hdr->command ^ new_command) & PCI_COMMAND_IO;
184 	toggle_mem = (pci_hdr->command ^ new_command) & PCI_COMMAND_MEMORY;
185 
186 	for (i = 0; i < 6; i++) {
187 		if (!pci_bar_is_implemented(pci_hdr, i))
188 			continue;
189 
190 		if (toggle_io && pci__bar_is_io(pci_hdr, i)) {
191 			if (__pci__io_space_enabled(new_command))
192 				pci_activate_bar(kvm, pci_hdr, i);
193 			else
194 				pci_deactivate_bar(kvm, pci_hdr, i);
195 		}
196 
197 		if (toggle_mem && pci__bar_is_memory(pci_hdr, i)) {
198 			if (__pci__memory_space_enabled(new_command))
199 				pci_activate_bar(kvm, pci_hdr, i);
200 			else
201 				pci_deactivate_bar(kvm, pci_hdr, i);
202 		}
203 	}
204 
205 	pci_hdr->command = new_command;
206 }
207 
pci_toggle_bar_regions(bool activate,struct kvm * kvm,u32 start,u32 size)208 static int pci_toggle_bar_regions(bool activate, struct kvm *kvm, u32 start, u32 size)
209 {
210 	struct device_header *dev_hdr;
211 	struct pci_device_header *tmp_hdr;
212 	u32 tmp_start, tmp_size;
213 	int i, r;
214 
215 	dev_hdr = device__first_dev(DEVICE_BUS_PCI);
216 	while (dev_hdr) {
217 		tmp_hdr = dev_hdr->data;
218 		for (i = 0; i < 6; i++) {
219 			if (!pci_bar_is_implemented(tmp_hdr, i))
220 				continue;
221 
222 			tmp_start = pci__bar_address(tmp_hdr, i);
223 			tmp_size = pci__bar_size(tmp_hdr, i);
224 			if (tmp_start + tmp_size <= start ||
225 			    tmp_start >= start + size)
226 				continue;
227 
228 			if (activate)
229 				r = pci_activate_bar(kvm, tmp_hdr, i);
230 			else
231 				r = pci_deactivate_bar(kvm, tmp_hdr, i);
232 			if (r < 0)
233 				return r;
234 		}
235 		dev_hdr = device__next_dev(dev_hdr);
236 	}
237 
238 	return 0;
239 }
240 
pci_activate_bar_regions(struct kvm * kvm,u32 start,u32 size)241 static inline int pci_activate_bar_regions(struct kvm *kvm, u32 start, u32 size)
242 {
243 	return pci_toggle_bar_regions(true, kvm, start, size);
244 }
245 
pci_deactivate_bar_regions(struct kvm * kvm,u32 start,u32 size)246 static inline int pci_deactivate_bar_regions(struct kvm *kvm, u32 start, u32 size)
247 {
248 	return pci_toggle_bar_regions(false, kvm, start, size);
249 }
250 
pci_config_bar_wr(struct kvm * kvm,struct pci_device_header * pci_hdr,int bar_num,u32 value)251 static void pci_config_bar_wr(struct kvm *kvm,
252 			      struct pci_device_header *pci_hdr, int bar_num,
253 			      u32 value)
254 {
255 	u32 old_addr, new_addr, bar_size;
256 	u32 mask;
257 	int r;
258 
259 	if (pci__bar_is_io(pci_hdr, bar_num))
260 		mask = (u32)PCI_BASE_ADDRESS_IO_MASK;
261 	else
262 		mask = (u32)PCI_BASE_ADDRESS_MEM_MASK;
263 
264 	/*
265 	 * If the kernel masks the BAR, it will expect to find the size of the
266 	 * BAR there next time it reads from it. After the kernel reads the
267 	 * size, it will write the address back.
268 	 *
269 	 * According to the PCI local bus specification REV 3.0: The number of
270 	 * upper bits that a device actually implements depends on how much of
271 	 * the address space the device will respond to. A device that wants a 1
272 	 * MB memory address space (using a 32-bit base address register) would
273 	 * build the top 12 bits of the address register, hardwiring the other
274 	 * bits to 0.
275 	 *
276 	 * Furthermore, software can determine how much address space the device
277 	 * requires by writing a value of all 1's to the register and then
278 	 * reading the value back. The device will return 0's in all don't-care
279 	 * address bits, effectively specifying the address space required.
280 	 *
281 	 * Software computes the size of the address space with the formula
282 	 * S =  ~B + 1, where S is the memory size and B is the value read from
283 	 * the BAR. This means that the BAR value that kvmtool should return is
284 	 * B = ~(S - 1).
285 	 */
286 	if (value == 0xffffffff) {
287 		value = ~(pci__bar_size(pci_hdr, bar_num) - 1);
288 		/* Preserve the special bits. */
289 		value = (value & mask) | (pci_hdr->bar[bar_num] & ~mask);
290 		pci_hdr->bar[bar_num] = value;
291 		return;
292 	}
293 
294 	value = (value & mask) | (pci_hdr->bar[bar_num] & ~mask);
295 
296 	/* Don't toggle emulation when region type access is disbled. */
297 	if (pci__bar_is_io(pci_hdr, bar_num) &&
298 	    !pci__io_space_enabled(pci_hdr)) {
299 		pci_hdr->bar[bar_num] = value;
300 		return;
301 	}
302 
303 	if (pci__bar_is_memory(pci_hdr, bar_num) &&
304 	    !pci__memory_space_enabled(pci_hdr)) {
305 		pci_hdr->bar[bar_num] = value;
306 		return;
307 	}
308 
309 	/*
310 	 * BAR reassignment can be done while device access is enabled and
311 	 * memory regions for different devices can overlap as long as no access
312 	 * is made to the overlapping memory regions. To implement BAR
313 	 * reasignment, we deactivate emulation for the region described by the
314 	 * BAR value that the guest is changing, we disable emulation for the
315 	 * regions that overlap with the new one (by scanning through all PCI
316 	 * devices), we enable emulation for the new BAR value and finally we
317 	 * enable emulation for all device regions that were overlapping with
318 	 * the old value.
319 	 */
320 	old_addr = pci__bar_address(pci_hdr, bar_num);
321 	new_addr = __pci__bar_address(value);
322 	bar_size = pci__bar_size(pci_hdr, bar_num);
323 
324 	r = pci_deactivate_bar(kvm, pci_hdr, bar_num);
325 	if (r < 0)
326 		return;
327 
328 	r = pci_deactivate_bar_regions(kvm, new_addr, bar_size);
329 	if (r < 0) {
330 		/*
331 		 * We cannot update the BAR because of an overlapping region
332 		 * that failed to deactivate emulation, so keep the old BAR
333 		 * value and re-activate emulation for it.
334 		 */
335 		pci_activate_bar(kvm, pci_hdr, bar_num);
336 		return;
337 	}
338 
339 	pci_hdr->bar[bar_num] = value;
340 	r = pci_activate_bar(kvm, pci_hdr, bar_num);
341 	if (r < 0) {
342 		/*
343 		 * New region cannot be emulated, re-enable the regions that
344 		 * were overlapping.
345 		 */
346 		pci_activate_bar_regions(kvm, new_addr, bar_size);
347 		return;
348 	}
349 
350 	pci_activate_bar_regions(kvm, old_addr, bar_size);
351 }
352 
353 /*
354  * Bits that are writable in the config space header.
355  * Write-1-to-clear Status bits are missing since we never set them.
356  */
357 static const u8 pci_config_writable[PCI_STD_HEADER_SIZEOF] = {
358 	[PCI_COMMAND] =
359 		PCI_COMMAND_IO |
360 		PCI_COMMAND_MEMORY |
361 		PCI_COMMAND_MASTER |
362 		PCI_COMMAND_PARITY,
363 	[PCI_COMMAND + 1] =
364 		(PCI_COMMAND_SERR |
365 		 PCI_COMMAND_INTX_DISABLE) >> 8,
366 	[PCI_INTERRUPT_LINE] = 0xff,
367 	[PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_5 + 3] = 0xff,
368 	[PCI_CACHE_LINE_SIZE] = 0xff,
369 };
370 
pci__config_wr(struct kvm * kvm,union pci_config_address addr,void * data,int size)371 void pci__config_wr(struct kvm *kvm, union pci_config_address addr, void *data, int size)
372 {
373 	void *base;
374 	u8 bar;
375 	u16 offset;
376 	struct pci_device_header *pci_hdr;
377 	u8 dev_num = addr.device_number;
378 	u32 value = 0, mask = 0;
379 
380 	if (!pci_device_exists(addr.bus_number, dev_num, 0))
381 		return;
382 
383 	offset = addr.w & PCI_DEV_CFG_MASK;
384 	base = pci_hdr = device__find_dev(DEVICE_BUS_PCI, dev_num)->data;
385 
386 	/* We don't sanity-check capabilities for the moment */
387 	if (offset < PCI_STD_HEADER_SIZEOF) {
388 		memcpy(&mask, pci_config_writable + offset, size);
389 		if (!mask)
390 			return;
391 	}
392 
393 	if (pci_hdr->cfg_ops.write)
394 		pci_hdr->cfg_ops.write(kvm, pci_hdr, offset, data, size);
395 
396 	if (offset == PCI_COMMAND) {
397 		memcpy(&value, data, size);
398 		pci_config_command_wr(kvm, pci_hdr, (u16)value & mask);
399 		return;
400 	}
401 
402 	bar = (offset - PCI_BAR_OFFSET(0)) / sizeof(u32);
403 	if (bar < 6) {
404 		memcpy(&value, data, size);
405 		pci_config_bar_wr(kvm, pci_hdr, bar, value);
406 		return;
407 	}
408 
409 	memcpy(base + offset, data, size);
410 }
411 
pci__config_rd(struct kvm * kvm,union pci_config_address addr,void * data,int size)412 void pci__config_rd(struct kvm *kvm, union pci_config_address addr, void *data, int size)
413 {
414 	u16 offset;
415 	struct pci_device_header *pci_hdr;
416 	u8 dev_num = addr.device_number;
417 
418 	if (pci_device_exists(addr.bus_number, dev_num, 0)) {
419 		pci_hdr = device__find_dev(DEVICE_BUS_PCI, dev_num)->data;
420 		offset = addr.w & PCI_DEV_CFG_MASK;
421 
422 		if (pci_hdr->cfg_ops.read)
423 			pci_hdr->cfg_ops.read(kvm, pci_hdr, offset, data, size);
424 
425 		memcpy(data, (void *)pci_hdr + offset, size);
426 	} else {
427 		memset(data, 0xff, size);
428 	}
429 }
430 
pci_config_mmio_access(struct kvm_cpu * vcpu,u64 addr,u8 * data,u32 len,u8 is_write,void * kvm)431 static void pci_config_mmio_access(struct kvm_cpu *vcpu, u64 addr, u8 *data,
432 				   u32 len, u8 is_write, void *kvm)
433 {
434 	union pci_config_address cfg_addr;
435 
436 	addr			-= KVM_PCI_CFG_AREA;
437 	cfg_addr.w		= (u32)addr;
438 	cfg_addr.enable_bit	= 1;
439 
440 	/*
441 	 * To prevent some overflows, reject accesses that cross a 4-byte
442 	 * boundary. The PCIe specification says:
443 	 *
444 	 *  "Root Complex implementations are not required to support the
445 	 *  generation of Configuration Requests from accesses that cross DW
446 	 *  [4 bytes] boundaries."
447 	 */
448 	if ((addr & 3) + len > 4)
449 		return;
450 
451 	if (is_write)
452 		pci__config_wr(kvm, cfg_addr, data, len);
453 	else
454 		pci__config_rd(kvm, cfg_addr, data, len);
455 }
456 
pci__find_dev(u8 dev_num)457 struct pci_device_header *pci__find_dev(u8 dev_num)
458 {
459 	struct device_header *hdr = device__find_dev(DEVICE_BUS_PCI, dev_num);
460 
461 	if (IS_ERR_OR_NULL(hdr))
462 		return NULL;
463 
464 	return hdr->data;
465 }
466 
pci__register_bar_regions(struct kvm * kvm,struct pci_device_header * pci_hdr,bar_activate_fn_t bar_activate_fn,bar_deactivate_fn_t bar_deactivate_fn,void * data)467 int pci__register_bar_regions(struct kvm *kvm, struct pci_device_header *pci_hdr,
468 			      bar_activate_fn_t bar_activate_fn,
469 			      bar_deactivate_fn_t bar_deactivate_fn, void *data)
470 {
471 	int i, r;
472 
473 	assert(bar_activate_fn && bar_deactivate_fn);
474 
475 	pci_hdr->bar_activate_fn = bar_activate_fn;
476 	pci_hdr->bar_deactivate_fn = bar_deactivate_fn;
477 	pci_hdr->data = data;
478 
479 	for (i = 0; i < 6; i++) {
480 		if (!pci_bar_is_implemented(pci_hdr, i))
481 			continue;
482 
483 		assert(!pci_bar_is_active(pci_hdr, i));
484 
485 		if (pci__bar_is_io(pci_hdr, i) &&
486 		    pci__io_space_enabled(pci_hdr)) {
487 			r = pci_activate_bar(kvm, pci_hdr, i);
488 			if (r < 0)
489 				return r;
490 		}
491 
492 		if (pci__bar_is_memory(pci_hdr, i) &&
493 		    pci__memory_space_enabled(pci_hdr)) {
494 			r = pci_activate_bar(kvm, pci_hdr, i);
495 			if (r < 0)
496 				return r;
497 		}
498 	}
499 
500 	return 0;
501 }
502 
pci__init(struct kvm * kvm)503 int pci__init(struct kvm *kvm)
504 {
505 	int r;
506 
507 	r = kvm__register_pio(kvm, PCI_CONFIG_DATA, 4,
508 				 pci_config_data_mmio, NULL);
509 	if (r < 0)
510 		return r;
511 	r = kvm__register_pio(kvm, PCI_CONFIG_ADDRESS, 4,
512 				 pci_config_address_mmio, NULL);
513 	if (r < 0)
514 		goto err_unregister_data;
515 
516 	r = kvm__register_mmio(kvm, KVM_PCI_CFG_AREA, PCI_CFG_SIZE, false,
517 			       pci_config_mmio_access, kvm);
518 	if (r < 0)
519 		goto err_unregister_addr;
520 
521 	return 0;
522 
523 err_unregister_addr:
524 	kvm__deregister_pio(kvm, PCI_CONFIG_ADDRESS);
525 err_unregister_data:
526 	kvm__deregister_pio(kvm, PCI_CONFIG_DATA);
527 	return r;
528 }
529 dev_base_init(pci__init);
530 
pci__exit(struct kvm * kvm)531 int pci__exit(struct kvm *kvm)
532 {
533 	kvm__deregister_pio(kvm, PCI_CONFIG_DATA);
534 	kvm__deregister_pio(kvm, PCI_CONFIG_ADDRESS);
535 	kvm__deregister_mmio(kvm, KVM_PCI_CFG_AREA);
536 
537 	return 0;
538 }
539 dev_base_exit(pci__exit);
540