xref: /kvm-unit-tests/x86/vmx_tests.c (revision 7c0ce8fa44cf523a0152f5461c88b2579cd2d49c)
1 /*
2  * All test cases of nested virtualization should be in this file
3  *
4  * Author : Arthur Chunqi Li <yzt356@gmail.com>
5  */
6 
7 #include <asm/debugreg.h>
8 
9 #include "vmx.h"
10 #include "msr.h"
11 #include "processor.h"
12 #include "vm.h"
13 #include "pci.h"
14 #include "fwcfg.h"
15 #include "isr.h"
16 #include "desc.h"
17 #include "apic.h"
18 #include "types.h"
19 #include "vmalloc.h"
20 #include "alloc_page.h"
21 #include "smp.h"
22 #include "delay.h"
23 
24 #define NONCANONICAL            0xaaaaaaaaaaaaaaaaull
25 
26 #define VPID_CAP_INVVPID_TYPES_SHIFT 40
27 
28 u64 ia32_pat;
29 u64 ia32_efer;
30 void *io_bitmap_a, *io_bitmap_b;
31 u16 ioport;
32 
33 unsigned long *pml4;
34 u64 eptp;
35 void *data_page1, *data_page2;
36 
37 phys_addr_t pci_physaddr;
38 
39 void *pml_log;
40 #define PML_INDEX 512
41 
42 static inline unsigned ffs(unsigned x)
43 {
44 	int pos = -1;
45 
46 	__asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0"
47 			     : "+r"(pos) : "rm"(x) : "eax");
48 	return pos + 1;
49 }
50 
51 static inline void vmcall(void)
52 {
53 	asm volatile("vmcall");
54 }
55 
56 static void basic_guest_main(void)
57 {
58 	report("Basic VMX test", 1);
59 }
60 
61 static int basic_exit_handler(void)
62 {
63 	report("Basic VMX test", 0);
64 	print_vmexit_info();
65 	return VMX_TEST_EXIT;
66 }
67 
68 static void vmenter_main(void)
69 {
70 	u64 rax;
71 	u64 rsp, resume_rsp;
72 
73 	report("test vmlaunch", 1);
74 
75 	asm volatile(
76 		"mov %%rsp, %0\n\t"
77 		"mov %3, %%rax\n\t"
78 		"vmcall\n\t"
79 		"mov %%rax, %1\n\t"
80 		"mov %%rsp, %2\n\t"
81 		: "=r"(rsp), "=r"(rax), "=r"(resume_rsp)
82 		: "g"(0xABCD));
83 	report("test vmresume", (rax == 0xFFFF) && (rsp == resume_rsp));
84 }
85 
86 static int vmenter_exit_handler(void)
87 {
88 	u64 guest_rip;
89 	ulong reason;
90 
91 	guest_rip = vmcs_read(GUEST_RIP);
92 	reason = vmcs_read(EXI_REASON) & 0xff;
93 	switch (reason) {
94 	case VMX_VMCALL:
95 		if (regs.rax != 0xABCD) {
96 			report("test vmresume", 0);
97 			return VMX_TEST_VMEXIT;
98 		}
99 		regs.rax = 0xFFFF;
100 		vmcs_write(GUEST_RIP, guest_rip + 3);
101 		return VMX_TEST_RESUME;
102 	default:
103 		report("test vmresume", 0);
104 		print_vmexit_info();
105 	}
106 	return VMX_TEST_VMEXIT;
107 }
108 
109 u32 preempt_scale;
110 volatile unsigned long long tsc_val;
111 volatile u32 preempt_val;
112 u64 saved_rip;
113 
114 static int preemption_timer_init(struct vmcs *vmcs)
115 {
116 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
117 		printf("\tPreemption timer is not supported\n");
118 		return VMX_TEST_EXIT;
119 	}
120 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
121 	preempt_val = 10000000;
122 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
123 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
124 
125 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
126 		printf("\tSave preemption value is not supported\n");
127 
128 	return VMX_TEST_START;
129 }
130 
131 static void preemption_timer_main(void)
132 {
133 	tsc_val = rdtsc();
134 	if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) {
135 		vmx_set_test_stage(0);
136 		vmcall();
137 		if (vmx_get_test_stage() == 1)
138 			vmcall();
139 	}
140 	vmx_set_test_stage(1);
141 	while (vmx_get_test_stage() == 1) {
142 		if (((rdtsc() - tsc_val) >> preempt_scale)
143 				> 10 * preempt_val) {
144 			vmx_set_test_stage(2);
145 			vmcall();
146 		}
147 	}
148 	tsc_val = rdtsc();
149 	asm volatile ("hlt");
150 	vmcall();
151 	vmx_set_test_stage(5);
152 	vmcall();
153 }
154 
155 static int preemption_timer_exit_handler(void)
156 {
157 	bool guest_halted;
158 	u64 guest_rip;
159 	ulong reason;
160 	u32 insn_len;
161 	u32 ctrl_exit;
162 
163 	guest_rip = vmcs_read(GUEST_RIP);
164 	reason = vmcs_read(EXI_REASON) & 0xff;
165 	insn_len = vmcs_read(EXI_INST_LEN);
166 	switch (reason) {
167 	case VMX_PREEMPT:
168 		switch (vmx_get_test_stage()) {
169 		case 1:
170 		case 2:
171 			report("busy-wait for preemption timer",
172 			       ((rdtsc() - tsc_val) >> preempt_scale) >=
173 			       preempt_val);
174 			vmx_set_test_stage(3);
175 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
176 			return VMX_TEST_RESUME;
177 		case 3:
178 			guest_halted =
179 				(vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT);
180 			report("preemption timer during hlt",
181 			       ((rdtsc() - tsc_val) >> preempt_scale) >=
182 			       preempt_val && guest_halted);
183 			vmx_set_test_stage(4);
184 			vmcs_write(PIN_CONTROLS,
185 				   vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
186 			vmcs_write(EXI_CONTROLS,
187 				   vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_PREEMPT);
188 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
189 			return VMX_TEST_RESUME;
190 		case 4:
191 			report("preemption timer with 0 value",
192 			       saved_rip == guest_rip);
193 			break;
194 		default:
195 			report("Invalid stage.", false);
196 			print_vmexit_info();
197 			break;
198 		}
199 		break;
200 	case VMX_VMCALL:
201 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
202 		switch (vmx_get_test_stage()) {
203 		case 0:
204 			report("Keep preemption value",
205 			       vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val);
206 			vmx_set_test_stage(1);
207 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
208 			ctrl_exit = (vmcs_read(EXI_CONTROLS) |
209 				EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr;
210 			vmcs_write(EXI_CONTROLS, ctrl_exit);
211 			return VMX_TEST_RESUME;
212 		case 1:
213 			report("Save preemption value",
214 			       vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val);
215 			return VMX_TEST_RESUME;
216 		case 2:
217 			report("busy-wait for preemption timer", 0);
218 			vmx_set_test_stage(3);
219 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
220 			return VMX_TEST_RESUME;
221 		case 3:
222 			report("preemption timer during hlt", 0);
223 			vmx_set_test_stage(4);
224 			/* fall through */
225 		case 4:
226 			vmcs_write(PIN_CONTROLS,
227 				   vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
228 			vmcs_write(PREEMPT_TIMER_VALUE, 0);
229 			saved_rip = guest_rip + insn_len;
230 			return VMX_TEST_RESUME;
231 		case 5:
232 			report("preemption timer with 0 value (vmcall stage 5)", 0);
233 			break;
234 		default:
235 			// Should not reach here
236 			report("unexpected stage, %d", false,
237 			       vmx_get_test_stage());
238 			print_vmexit_info();
239 			return VMX_TEST_VMEXIT;
240 		}
241 		break;
242 	default:
243 		report("Unknown exit reason, %ld", false, reason);
244 		print_vmexit_info();
245 	}
246 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
247 	return VMX_TEST_VMEXIT;
248 }
249 
250 static void msr_bmp_init(void)
251 {
252 	void *msr_bitmap;
253 	u32 ctrl_cpu0;
254 
255 	msr_bitmap = alloc_page();
256 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
257 	ctrl_cpu0 |= CPU_MSR_BITMAP;
258 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
259 	vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
260 }
261 
262 static void *get_msr_bitmap(void)
263 {
264 	void *msr_bitmap;
265 
266 	if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) {
267 		msr_bitmap = (void *)vmcs_read(MSR_BITMAP);
268 	} else {
269 		msr_bitmap = alloc_page();
270 		memset(msr_bitmap, 0xff, PAGE_SIZE);
271 		vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
272 		vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP);
273 	}
274 
275 	return msr_bitmap;
276 }
277 
278 static void disable_intercept_for_x2apic_msrs(void)
279 {
280 	unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap();
281 	u32 msr;
282 
283 	for (msr = APIC_BASE_MSR;
284 		 msr < (APIC_BASE_MSR+0xff);
285 		 msr += BITS_PER_LONG) {
286 		unsigned int word = msr / BITS_PER_LONG;
287 
288 		msr_bitmap[word] = 0;
289 		msr_bitmap[word + (0x800 / sizeof(long))] = 0;
290 	}
291 }
292 
293 static int test_ctrl_pat_init(struct vmcs *vmcs)
294 {
295 	u64 ctrl_ent;
296 	u64 ctrl_exi;
297 
298 	msr_bmp_init();
299 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) &&
300 	    !(ctrl_exit_rev.clr & EXI_LOAD_PAT) &&
301 	    !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
302 		printf("\tSave/load PAT is not supported\n");
303 		return 1;
304 	}
305 
306 	ctrl_ent = vmcs_read(ENT_CONTROLS);
307 	ctrl_exi = vmcs_read(EXI_CONTROLS);
308 	ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT;
309 	ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT);
310 	vmcs_write(ENT_CONTROLS, ctrl_ent);
311 	vmcs_write(EXI_CONTROLS, ctrl_exi);
312 	ia32_pat = rdmsr(MSR_IA32_CR_PAT);
313 	vmcs_write(GUEST_PAT, 0x0);
314 	vmcs_write(HOST_PAT, ia32_pat);
315 	return VMX_TEST_START;
316 }
317 
318 static void test_ctrl_pat_main(void)
319 {
320 	u64 guest_ia32_pat;
321 
322 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
323 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT))
324 		printf("\tENT_LOAD_PAT is not supported.\n");
325 	else {
326 		if (guest_ia32_pat != 0) {
327 			report("Entry load PAT", 0);
328 			return;
329 		}
330 	}
331 	wrmsr(MSR_IA32_CR_PAT, 0x6);
332 	vmcall();
333 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
334 	if (ctrl_enter_rev.clr & ENT_LOAD_PAT)
335 		report("Entry load PAT", guest_ia32_pat == ia32_pat);
336 }
337 
338 static int test_ctrl_pat_exit_handler(void)
339 {
340 	u64 guest_rip;
341 	ulong reason;
342 	u64 guest_pat;
343 
344 	guest_rip = vmcs_read(GUEST_RIP);
345 	reason = vmcs_read(EXI_REASON) & 0xff;
346 	switch (reason) {
347 	case VMX_VMCALL:
348 		guest_pat = vmcs_read(GUEST_PAT);
349 		if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) {
350 			printf("\tEXI_SAVE_PAT is not supported\n");
351 			vmcs_write(GUEST_PAT, 0x6);
352 		} else {
353 			report("Exit save PAT", guest_pat == 0x6);
354 		}
355 		if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT))
356 			printf("\tEXI_LOAD_PAT is not supported\n");
357 		else
358 			report("Exit load PAT", rdmsr(MSR_IA32_CR_PAT) == ia32_pat);
359 		vmcs_write(GUEST_PAT, ia32_pat);
360 		vmcs_write(GUEST_RIP, guest_rip + 3);
361 		return VMX_TEST_RESUME;
362 	default:
363 		printf("ERROR : Undefined exit reason, reason = %ld.\n", reason);
364 		break;
365 	}
366 	return VMX_TEST_VMEXIT;
367 }
368 
369 static int test_ctrl_efer_init(struct vmcs *vmcs)
370 {
371 	u64 ctrl_ent;
372 	u64 ctrl_exi;
373 
374 	msr_bmp_init();
375 	ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER;
376 	ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER;
377 	vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr);
378 	vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr);
379 	ia32_efer = rdmsr(MSR_EFER);
380 	vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX);
381 	vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX);
382 	return VMX_TEST_START;
383 }
384 
385 static void test_ctrl_efer_main(void)
386 {
387 	u64 guest_ia32_efer;
388 
389 	guest_ia32_efer = rdmsr(MSR_EFER);
390 	if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER))
391 		printf("\tENT_LOAD_EFER is not supported.\n");
392 	else {
393 		if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) {
394 			report("Entry load EFER", 0);
395 			return;
396 		}
397 	}
398 	wrmsr(MSR_EFER, ia32_efer);
399 	vmcall();
400 	guest_ia32_efer = rdmsr(MSR_EFER);
401 	if (ctrl_enter_rev.clr & ENT_LOAD_EFER)
402 		report("Entry load EFER", guest_ia32_efer == ia32_efer);
403 }
404 
405 static int test_ctrl_efer_exit_handler(void)
406 {
407 	u64 guest_rip;
408 	ulong reason;
409 	u64 guest_efer;
410 
411 	guest_rip = vmcs_read(GUEST_RIP);
412 	reason = vmcs_read(EXI_REASON) & 0xff;
413 	switch (reason) {
414 	case VMX_VMCALL:
415 		guest_efer = vmcs_read(GUEST_EFER);
416 		if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) {
417 			printf("\tEXI_SAVE_EFER is not supported\n");
418 			vmcs_write(GUEST_EFER, ia32_efer);
419 		} else {
420 			report("Exit save EFER", guest_efer == ia32_efer);
421 		}
422 		if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) {
423 			printf("\tEXI_LOAD_EFER is not supported\n");
424 			wrmsr(MSR_EFER, ia32_efer ^ EFER_NX);
425 		} else {
426 			report("Exit load EFER", rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX));
427 		}
428 		vmcs_write(GUEST_PAT, ia32_efer);
429 		vmcs_write(GUEST_RIP, guest_rip + 3);
430 		return VMX_TEST_RESUME;
431 	default:
432 		printf("ERROR : Undefined exit reason, reason = %ld.\n", reason);
433 		break;
434 	}
435 	return VMX_TEST_VMEXIT;
436 }
437 
438 u32 guest_cr0, guest_cr4;
439 
440 static void cr_shadowing_main(void)
441 {
442 	u32 cr0, cr4, tmp;
443 
444 	// Test read through
445 	vmx_set_test_stage(0);
446 	guest_cr0 = read_cr0();
447 	if (vmx_get_test_stage() == 1)
448 		report("Read through CR0", 0);
449 	else
450 		vmcall();
451 	vmx_set_test_stage(1);
452 	guest_cr4 = read_cr4();
453 	if (vmx_get_test_stage() == 2)
454 		report("Read through CR4", 0);
455 	else
456 		vmcall();
457 	// Test write through
458 	guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP);
459 	guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE);
460 	vmx_set_test_stage(2);
461 	write_cr0(guest_cr0);
462 	if (vmx_get_test_stage() == 3)
463 		report("Write throuth CR0", 0);
464 	else
465 		vmcall();
466 	vmx_set_test_stage(3);
467 	write_cr4(guest_cr4);
468 	if (vmx_get_test_stage() == 4)
469 		report("Write through CR4", 0);
470 	else
471 		vmcall();
472 	// Test read shadow
473 	vmx_set_test_stage(4);
474 	vmcall();
475 	cr0 = read_cr0();
476 	if (vmx_get_test_stage() != 5)
477 		report("Read shadowing CR0", cr0 == guest_cr0);
478 	vmx_set_test_stage(5);
479 	cr4 = read_cr4();
480 	if (vmx_get_test_stage() != 6)
481 		report("Read shadowing CR4", cr4 == guest_cr4);
482 	// Test write shadow (same value with shadow)
483 	vmx_set_test_stage(6);
484 	write_cr0(guest_cr0);
485 	if (vmx_get_test_stage() == 7)
486 		report("Write shadowing CR0 (same value with shadow)", 0);
487 	else
488 		vmcall();
489 	vmx_set_test_stage(7);
490 	write_cr4(guest_cr4);
491 	if (vmx_get_test_stage() == 8)
492 		report("Write shadowing CR4 (same value with shadow)", 0);
493 	else
494 		vmcall();
495 	// Test write shadow (different value)
496 	vmx_set_test_stage(8);
497 	tmp = guest_cr0 ^ X86_CR0_TS;
498 	asm volatile("mov %0, %%rsi\n\t"
499 		"mov %%rsi, %%cr0\n\t"
500 		::"m"(tmp)
501 		:"rsi", "memory", "cc");
502 	report("Write shadowing different X86_CR0_TS", vmx_get_test_stage() == 9);
503 	vmx_set_test_stage(9);
504 	tmp = guest_cr0 ^ X86_CR0_MP;
505 	asm volatile("mov %0, %%rsi\n\t"
506 		"mov %%rsi, %%cr0\n\t"
507 		::"m"(tmp)
508 		:"rsi", "memory", "cc");
509 	report("Write shadowing different X86_CR0_MP", vmx_get_test_stage() == 10);
510 	vmx_set_test_stage(10);
511 	tmp = guest_cr4 ^ X86_CR4_TSD;
512 	asm volatile("mov %0, %%rsi\n\t"
513 		"mov %%rsi, %%cr4\n\t"
514 		::"m"(tmp)
515 		:"rsi", "memory", "cc");
516 	report("Write shadowing different X86_CR4_TSD", vmx_get_test_stage() == 11);
517 	vmx_set_test_stage(11);
518 	tmp = guest_cr4 ^ X86_CR4_DE;
519 	asm volatile("mov %0, %%rsi\n\t"
520 		"mov %%rsi, %%cr4\n\t"
521 		::"m"(tmp)
522 		:"rsi", "memory", "cc");
523 	report("Write shadowing different X86_CR4_DE", vmx_get_test_stage() == 12);
524 }
525 
526 static int cr_shadowing_exit_handler(void)
527 {
528 	u64 guest_rip;
529 	ulong reason;
530 	u32 insn_len;
531 	u32 exit_qual;
532 
533 	guest_rip = vmcs_read(GUEST_RIP);
534 	reason = vmcs_read(EXI_REASON) & 0xff;
535 	insn_len = vmcs_read(EXI_INST_LEN);
536 	exit_qual = vmcs_read(EXI_QUALIFICATION);
537 	switch (reason) {
538 	case VMX_VMCALL:
539 		switch (vmx_get_test_stage()) {
540 		case 0:
541 			report("Read through CR0", guest_cr0 == vmcs_read(GUEST_CR0));
542 			break;
543 		case 1:
544 			report("Read through CR4", guest_cr4 == vmcs_read(GUEST_CR4));
545 			break;
546 		case 2:
547 			report("Write through CR0", guest_cr0 == vmcs_read(GUEST_CR0));
548 			break;
549 		case 3:
550 			report("Write through CR4", guest_cr4 == vmcs_read(GUEST_CR4));
551 			break;
552 		case 4:
553 			guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP);
554 			guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE);
555 			vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP);
556 			vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP));
557 			vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE);
558 			vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE));
559 			break;
560 		case 6:
561 			report("Write shadowing CR0 (same value)",
562 					guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)));
563 			break;
564 		case 7:
565 			report("Write shadowing CR4 (same value)",
566 					guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)));
567 			break;
568 		default:
569 			// Should not reach here
570 			report("unexpected stage, %d", false,
571 			       vmx_get_test_stage());
572 			print_vmexit_info();
573 			return VMX_TEST_VMEXIT;
574 		}
575 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
576 		return VMX_TEST_RESUME;
577 	case VMX_CR:
578 		switch (vmx_get_test_stage()) {
579 		case 4:
580 			report("Read shadowing CR0", 0);
581 			vmx_inc_test_stage();
582 			break;
583 		case 5:
584 			report("Read shadowing CR4", 0);
585 			vmx_inc_test_stage();
586 			break;
587 		case 6:
588 			report("Write shadowing CR0 (same value)", 0);
589 			vmx_inc_test_stage();
590 			break;
591 		case 7:
592 			report("Write shadowing CR4 (same value)", 0);
593 			vmx_inc_test_stage();
594 			break;
595 		case 8:
596 		case 9:
597 			// 0x600 encodes "mov %esi, %cr0"
598 			if (exit_qual == 0x600)
599 				vmx_inc_test_stage();
600 			break;
601 		case 10:
602 		case 11:
603 			// 0x604 encodes "mov %esi, %cr4"
604 			if (exit_qual == 0x604)
605 				vmx_inc_test_stage();
606 			break;
607 		default:
608 			// Should not reach here
609 			report("unexpected stage, %d", false,
610 			       vmx_get_test_stage());
611 			print_vmexit_info();
612 			return VMX_TEST_VMEXIT;
613 		}
614 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
615 		return VMX_TEST_RESUME;
616 	default:
617 		report("Unknown exit reason, %ld", false, reason);
618 		print_vmexit_info();
619 	}
620 	return VMX_TEST_VMEXIT;
621 }
622 
623 static int iobmp_init(struct vmcs *vmcs)
624 {
625 	u32 ctrl_cpu0;
626 
627 	io_bitmap_a = alloc_page();
628 	io_bitmap_b = alloc_page();
629 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
630 	ctrl_cpu0 |= CPU_IO_BITMAP;
631 	ctrl_cpu0 &= (~CPU_IO);
632 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
633 	vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a);
634 	vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b);
635 	return VMX_TEST_START;
636 }
637 
638 static void iobmp_main(void)
639 {
640 	// stage 0, test IO pass
641 	vmx_set_test_stage(0);
642 	inb(0x5000);
643 	outb(0x0, 0x5000);
644 	report("I/O bitmap - I/O pass", vmx_get_test_stage() == 0);
645 	// test IO width, in/out
646 	((u8 *)io_bitmap_a)[0] = 0xFF;
647 	vmx_set_test_stage(2);
648 	inb(0x0);
649 	report("I/O bitmap - trap in", vmx_get_test_stage() == 3);
650 	vmx_set_test_stage(3);
651 	outw(0x0, 0x0);
652 	report("I/O bitmap - trap out", vmx_get_test_stage() == 4);
653 	vmx_set_test_stage(4);
654 	inl(0x0);
655 	report("I/O bitmap - I/O width, long", vmx_get_test_stage() == 5);
656 	// test low/high IO port
657 	vmx_set_test_stage(5);
658 	((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8));
659 	inb(0x5000);
660 	report("I/O bitmap - I/O port, low part", vmx_get_test_stage() == 6);
661 	vmx_set_test_stage(6);
662 	((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8));
663 	inb(0x9000);
664 	report("I/O bitmap - I/O port, high part", vmx_get_test_stage() == 7);
665 	// test partial pass
666 	vmx_set_test_stage(7);
667 	inl(0x4FFF);
668 	report("I/O bitmap - partial pass", vmx_get_test_stage() == 8);
669 	// test overrun
670 	vmx_set_test_stage(8);
671 	memset(io_bitmap_a, 0x0, PAGE_SIZE);
672 	memset(io_bitmap_b, 0x0, PAGE_SIZE);
673 	inl(0xFFFF);
674 	report("I/O bitmap - overrun", vmx_get_test_stage() == 9);
675 	vmx_set_test_stage(9);
676 	vmcall();
677 	outb(0x0, 0x0);
678 	report("I/O bitmap - ignore unconditional exiting",
679 	       vmx_get_test_stage() == 9);
680 	vmx_set_test_stage(10);
681 	vmcall();
682 	outb(0x0, 0x0);
683 	report("I/O bitmap - unconditional exiting",
684 	       vmx_get_test_stage() == 11);
685 }
686 
687 static int iobmp_exit_handler(void)
688 {
689 	u64 guest_rip;
690 	ulong reason, exit_qual;
691 	u32 insn_len, ctrl_cpu0;
692 
693 	guest_rip = vmcs_read(GUEST_RIP);
694 	reason = vmcs_read(EXI_REASON) & 0xff;
695 	exit_qual = vmcs_read(EXI_QUALIFICATION);
696 	insn_len = vmcs_read(EXI_INST_LEN);
697 	switch (reason) {
698 	case VMX_IO:
699 		switch (vmx_get_test_stage()) {
700 		case 0:
701 		case 1:
702 			vmx_inc_test_stage();
703 			break;
704 		case 2:
705 			report("I/O bitmap - I/O width, byte",
706 					(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE);
707 			report("I/O bitmap - I/O direction, in", exit_qual & VMX_IO_IN);
708 			vmx_inc_test_stage();
709 			break;
710 		case 3:
711 			report("I/O bitmap - I/O width, word",
712 					(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD);
713 			report("I/O bitmap - I/O direction, out",
714 					!(exit_qual & VMX_IO_IN));
715 			vmx_inc_test_stage();
716 			break;
717 		case 4:
718 			report("I/O bitmap - I/O width, long",
719 					(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG);
720 			vmx_inc_test_stage();
721 			break;
722 		case 5:
723 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000)
724 				vmx_inc_test_stage();
725 			break;
726 		case 6:
727 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000)
728 				vmx_inc_test_stage();
729 			break;
730 		case 7:
731 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF)
732 				vmx_inc_test_stage();
733 			break;
734 		case 8:
735 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF)
736 				vmx_inc_test_stage();
737 			break;
738 		case 9:
739 		case 10:
740 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
741 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO);
742 			vmx_inc_test_stage();
743 			break;
744 		default:
745 			// Should not reach here
746 			report("unexpected stage, %d", false,
747 			       vmx_get_test_stage());
748 			print_vmexit_info();
749 			return VMX_TEST_VMEXIT;
750 		}
751 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
752 		return VMX_TEST_RESUME;
753 	case VMX_VMCALL:
754 		switch (vmx_get_test_stage()) {
755 		case 9:
756 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
757 			ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP;
758 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
759 			break;
760 		case 10:
761 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
762 			ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO;
763 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
764 			break;
765 		default:
766 			// Should not reach here
767 			report("unexpected stage, %d", false,
768 			       vmx_get_test_stage());
769 			print_vmexit_info();
770 			return VMX_TEST_VMEXIT;
771 		}
772 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
773 		return VMX_TEST_RESUME;
774 	default:
775 		printf("guest_rip = %#lx\n", guest_rip);
776 		printf("\tERROR : Undefined exit reason, reason = %ld.\n", reason);
777 		break;
778 	}
779 	return VMX_TEST_VMEXIT;
780 }
781 
782 #define INSN_CPU0		0
783 #define INSN_CPU1		1
784 #define INSN_ALWAYS_TRAP	2
785 
786 #define FIELD_EXIT_QUAL		(1 << 0)
787 #define FIELD_INSN_INFO		(1 << 1)
788 
789 asm(
790 	"insn_hlt: hlt;ret\n\t"
791 	"insn_invlpg: invlpg 0x12345678;ret\n\t"
792 	"insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t"
793 	"insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t"
794 	"insn_rdtsc: rdtsc;ret\n\t"
795 	"insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t"
796 	"insn_cr3_store: mov %cr3,%rax;ret\n\t"
797 #ifdef __x86_64__
798 	"insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t"
799 	"insn_cr8_store: mov %cr8,%rax;ret\n\t"
800 #endif
801 	"insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t"
802 	"insn_pause: pause;ret\n\t"
803 	"insn_wbinvd: wbinvd;ret\n\t"
804 	"insn_cpuid: mov $10, %eax; cpuid;ret\n\t"
805 	"insn_invd: invd;ret\n\t"
806 	"insn_sgdt: sgdt gdt64_desc;ret\n\t"
807 	"insn_lgdt: lgdt gdt64_desc;ret\n\t"
808 	"insn_sidt: sidt idt_descr;ret\n\t"
809 	"insn_lidt: lidt idt_descr;ret\n\t"
810 	"insn_sldt: sldt %ax;ret\n\t"
811 	"insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t"
812 	"insn_str: str %ax;ret\n\t"
813 	"insn_rdrand: rdrand %rax;ret\n\t"
814 	"insn_rdseed: rdseed %rax;ret\n\t"
815 );
816 extern void insn_hlt(void);
817 extern void insn_invlpg(void);
818 extern void insn_mwait(void);
819 extern void insn_rdpmc(void);
820 extern void insn_rdtsc(void);
821 extern void insn_cr3_load(void);
822 extern void insn_cr3_store(void);
823 #ifdef __x86_64__
824 extern void insn_cr8_load(void);
825 extern void insn_cr8_store(void);
826 #endif
827 extern void insn_monitor(void);
828 extern void insn_pause(void);
829 extern void insn_wbinvd(void);
830 extern void insn_sgdt(void);
831 extern void insn_lgdt(void);
832 extern void insn_sidt(void);
833 extern void insn_lidt(void);
834 extern void insn_sldt(void);
835 extern void insn_lldt(void);
836 extern void insn_str(void);
837 extern void insn_cpuid(void);
838 extern void insn_invd(void);
839 extern void insn_rdrand(void);
840 extern void insn_rdseed(void);
841 
842 u32 cur_insn;
843 u64 cr3;
844 
845 #define X86_FEATURE_MONITOR	(1 << 3)
846 
847 typedef bool (*supported_fn)(void);
848 
849 static bool monitor_supported(void)
850 {
851 	return this_cpu_has(X86_FEATURE_MWAIT);
852 }
853 
854 struct insn_table {
855 	const char *name;
856 	u32 flag;
857 	void (*insn_func)(void);
858 	u32 type;
859 	u32 reason;
860 	ulong exit_qual;
861 	u32 insn_info;
862 	// Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define
863 	// which field need to be tested, reason is always tested
864 	u32 test_field;
865 	const supported_fn supported_fn;
866 	u8 disabled;
867 };
868 
869 /*
870  * Add more test cases of instruction intercept here. Elements in this
871  * table is:
872  *	name/control flag/insn function/type/exit reason/exit qulification/
873  *	instruction info/field to test
874  * The last field defines which fields (exit_qual and insn_info) need to be
875  * tested in exit handler. If set to 0, only "reason" is checked.
876  */
877 static struct insn_table insn_table[] = {
878 	// Flags for Primary Processor-Based VM-Execution Controls
879 	{"HLT",  CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0},
880 	{"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14,
881 		0x12345678, 0, FIELD_EXIT_QUAL},
882 	{"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0, &monitor_supported},
883 	{"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0},
884 	{"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0},
885 	{"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0,
886 		FIELD_EXIT_QUAL},
887 	{"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0,
888 		FIELD_EXIT_QUAL},
889 #ifdef __x86_64__
890 	{"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0,
891 		FIELD_EXIT_QUAL},
892 	{"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0,
893 		FIELD_EXIT_QUAL},
894 #endif
895 	{"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0, &monitor_supported},
896 	{"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0},
897 	// Flags for Secondary Processor-Based VM-Execution Controls
898 	{"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0},
899 	{"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0},
900 	{"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0},
901 	{"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0},
902 	{"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0},
903 	{"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0},
904 	{"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0},
905 	{"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0},
906 	/* LTR causes a #GP if done with a busy selector, so it is not tested.  */
907 	{"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0},
908 	{"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0},
909 	// Instructions always trap
910 	{"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0},
911 	{"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0},
912 	// Instructions never trap
913 	{NULL},
914 };
915 
916 static int insn_intercept_init(struct vmcs *vmcs)
917 {
918 	u32 ctrl_cpu, cur_insn;
919 
920 	ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY;
921 	ctrl_cpu &= ctrl_cpu_rev[0].clr;
922 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu);
923 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set);
924 	cr3 = read_cr3();
925 
926 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
927 		if (insn_table[cur_insn].supported_fn == NULL)
928 			continue;
929 		insn_table[cur_insn].disabled = !insn_table[cur_insn].supported_fn();
930 	}
931 	return VMX_TEST_START;
932 }
933 
934 static void insn_intercept_main(void)
935 {
936 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
937 		vmx_set_test_stage(cur_insn * 2);
938 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
939 		     !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) ||
940 		    (insn_table[cur_insn].type == INSN_CPU1 &&
941 		     !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) {
942 			printf("\tCPU_CTRL%d.CPU_%s is not supported.\n",
943 			       insn_table[cur_insn].type - INSN_CPU0,
944 			       insn_table[cur_insn].name);
945 			continue;
946 		}
947 
948 		if (insn_table[cur_insn].disabled) {
949 			printf("\tFeature required for %s is not supported.\n",
950 			       insn_table[cur_insn].name);
951 			continue;
952 		}
953 
954 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
955 		     !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) ||
956 		    (insn_table[cur_insn].type == INSN_CPU1 &&
957 		     !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) {
958 			/* skip hlt, it stalls the guest and is tested below */
959 			if (insn_table[cur_insn].insn_func != insn_hlt)
960 				insn_table[cur_insn].insn_func();
961 			report("execute %s", vmx_get_test_stage() == cur_insn * 2,
962 					insn_table[cur_insn].name);
963 		} else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP)
964 			printf("\tCPU_CTRL%d.CPU_%s always traps.\n",
965 			       insn_table[cur_insn].type - INSN_CPU0,
966 			       insn_table[cur_insn].name);
967 
968 		vmcall();
969 
970 		insn_table[cur_insn].insn_func();
971 		report("intercept %s", vmx_get_test_stage() == cur_insn * 2 + 1,
972 				insn_table[cur_insn].name);
973 
974 		vmx_set_test_stage(cur_insn * 2 + 1);
975 		vmcall();
976 	}
977 }
978 
979 static int insn_intercept_exit_handler(void)
980 {
981 	u64 guest_rip;
982 	u32 reason;
983 	ulong exit_qual;
984 	u32 insn_len;
985 	u32 insn_info;
986 	bool pass;
987 
988 	guest_rip = vmcs_read(GUEST_RIP);
989 	reason = vmcs_read(EXI_REASON) & 0xff;
990 	exit_qual = vmcs_read(EXI_QUALIFICATION);
991 	insn_len = vmcs_read(EXI_INST_LEN);
992 	insn_info = vmcs_read(EXI_INST_INFO);
993 
994 	if (reason == VMX_VMCALL) {
995 		u32 val = 0;
996 
997 		if (insn_table[cur_insn].type == INSN_CPU0)
998 			val = vmcs_read(CPU_EXEC_CTRL0);
999 		else if (insn_table[cur_insn].type == INSN_CPU1)
1000 			val = vmcs_read(CPU_EXEC_CTRL1);
1001 
1002 		if (vmx_get_test_stage() & 1)
1003 			val &= ~insn_table[cur_insn].flag;
1004 		else
1005 			val |= insn_table[cur_insn].flag;
1006 
1007 		if (insn_table[cur_insn].type == INSN_CPU0)
1008 			vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set);
1009 		else if (insn_table[cur_insn].type == INSN_CPU1)
1010 			vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set);
1011 	} else {
1012 		pass = (cur_insn * 2 == vmx_get_test_stage()) &&
1013 			insn_table[cur_insn].reason == reason;
1014 		if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL &&
1015 		    insn_table[cur_insn].exit_qual != exit_qual)
1016 			pass = false;
1017 		if (insn_table[cur_insn].test_field & FIELD_INSN_INFO &&
1018 		    insn_table[cur_insn].insn_info != insn_info)
1019 			pass = false;
1020 		if (pass)
1021 			vmx_inc_test_stage();
1022 	}
1023 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
1024 	return VMX_TEST_RESUME;
1025 }
1026 
1027 /**
1028  * __setup_ept - Setup the VMCS fields to enable Extended Page Tables (EPT)
1029  * @hpa:	Host physical address of the top-level, a.k.a. root, EPT table
1030  * @enable_ad:	Whether or not to enable Access/Dirty bits for EPT entries
1031  *
1032  * Returns 0 on success, 1 on failure.
1033  *
1034  * Note that @hpa doesn't need to point at actual memory if VM-Launch is
1035  * expected to fail, e.g. setup_dummy_ept() arbitrarily passes '0' to satisfy
1036  * the various EPTP consistency checks, but doesn't ensure backing for HPA '0'.
1037  */
1038 static int __setup_ept(u64 hpa, bool enable_ad)
1039 {
1040 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1041 	    !(ctrl_cpu_rev[1].clr & CPU_EPT)) {
1042 		printf("\tEPT is not supported");
1043 		return 1;
1044 	}
1045 	if (!(ept_vpid.val & EPT_CAP_WB)) {
1046 		printf("WB memtype for EPT walks not supported\n");
1047 		return 1;
1048 	}
1049 	if (!(ept_vpid.val & EPT_CAP_PWL4)) {
1050 		printf("\tPWL4 is not supported\n");
1051 		return 1;
1052 	}
1053 
1054 	eptp = EPT_MEM_TYPE_WB;
1055 	eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT);
1056 	eptp |= hpa;
1057 	if (enable_ad)
1058 		eptp |= EPTP_AD_FLAG;
1059 
1060 	vmcs_write(EPTP, eptp);
1061 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0)| CPU_SECONDARY);
1062 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1)| CPU_EPT);
1063 
1064 	return 0;
1065 }
1066 
1067 /**
1068  * setup_ept - Enable Extended Page Tables (EPT) and setup an identity map
1069  * @enable_ad:	Whether or not to enable Access/Dirty bits for EPT entries
1070  *
1071  * Returns 0 on success, 1 on failure.
1072  *
1073  * This is the "real" function for setting up EPT tables, i.e. use this for
1074  * tests that need to run code in the guest with EPT enabled.
1075  */
1076 static int setup_ept(bool enable_ad)
1077 {
1078 	unsigned long end_of_memory;
1079 
1080 	pml4 = alloc_page();
1081 
1082 	if (__setup_ept(virt_to_phys(pml4), enable_ad))
1083 		return 1;
1084 
1085 	end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE);
1086 	if (end_of_memory < (1ul << 32))
1087 		end_of_memory = (1ul << 32);
1088 	/* Cannot use large EPT pages if we need to track EPT
1089 	 * accessed/dirty bits at 4K granularity.
1090 	 */
1091 	setup_ept_range(pml4, 0, end_of_memory, 0,
1092 			!enable_ad && ept_2m_supported(),
1093 			EPT_WA | EPT_RA | EPT_EA);
1094 	return 0;
1095 }
1096 
1097 /**
1098  * setup_dummy_ept - Enable Extended Page Tables (EPT) with a dummy root HPA
1099  *
1100  * Setup EPT using a semi-arbitrary dummy root HPA.  This function is intended
1101  * for use by tests that need EPT enabled to verify dependent VMCS controls
1102  * but never expect to fully enter the guest, i.e. don't need setup the actual
1103  * EPT tables.
1104  */
1105 static void setup_dummy_ept(void)
1106 {
1107 	if (__setup_ept(0, false))
1108 		report_abort("EPT setup unexpectedly failed");
1109 }
1110 
1111 static int enable_unrestricted_guest(void)
1112 {
1113 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1114 	    !(ctrl_cpu_rev[1].clr & CPU_URG) ||
1115 	    !(ctrl_cpu_rev[1].clr & CPU_EPT))
1116 		return 1;
1117 
1118 	setup_dummy_ept();
1119 
1120 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
1121 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG);
1122 
1123 	return 0;
1124 }
1125 
1126 static void ept_enable_ad_bits(void)
1127 {
1128 	eptp |= EPTP_AD_FLAG;
1129 	vmcs_write(EPTP, eptp);
1130 }
1131 
1132 static void ept_disable_ad_bits(void)
1133 {
1134 	eptp &= ~EPTP_AD_FLAG;
1135 	vmcs_write(EPTP, eptp);
1136 }
1137 
1138 static void ept_enable_ad_bits_or_skip_test(void)
1139 {
1140 	if (!ept_ad_bits_supported())
1141 		test_skip("EPT AD bits not supported.");
1142 	ept_enable_ad_bits();
1143 }
1144 
1145 static int apic_version;
1146 
1147 static int ept_init_common(bool have_ad)
1148 {
1149 	int ret;
1150 	struct pci_dev pcidev;
1151 
1152 	if (setup_ept(have_ad))
1153 		return VMX_TEST_EXIT;
1154 	data_page1 = alloc_page();
1155 	data_page2 = alloc_page();
1156 	*((u32 *)data_page1) = MAGIC_VAL_1;
1157 	*((u32 *)data_page2) = MAGIC_VAL_2;
1158 	install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2,
1159 			EPT_RA | EPT_WA | EPT_EA);
1160 
1161 	apic_version = apic_read(APIC_LVR);
1162 
1163 	ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST);
1164 	if (ret != PCIDEVADDR_INVALID) {
1165 		pci_dev_init(&pcidev, ret);
1166 		pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM];
1167 	}
1168 
1169 	return VMX_TEST_START;
1170 }
1171 
1172 static int ept_init(struct vmcs *vmcs)
1173 {
1174 	return ept_init_common(false);
1175 }
1176 
1177 static void ept_common(void)
1178 {
1179 	vmx_set_test_stage(0);
1180 	if (*((u32 *)data_page2) != MAGIC_VAL_1 ||
1181 			*((u32 *)data_page1) != MAGIC_VAL_1)
1182 		report("EPT basic framework - read", 0);
1183 	else {
1184 		*((u32 *)data_page2) = MAGIC_VAL_3;
1185 		vmcall();
1186 		if (vmx_get_test_stage() == 1) {
1187 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1188 					*((u32 *)data_page2) == MAGIC_VAL_2)
1189 				report("EPT basic framework", 1);
1190 			else
1191 				report("EPT basic framework - remap", 1);
1192 		}
1193 	}
1194 	// Test EPT Misconfigurations
1195 	vmx_set_test_stage(1);
1196 	vmcall();
1197 	*((u32 *)data_page1) = MAGIC_VAL_1;
1198 	if (vmx_get_test_stage() != 2) {
1199 		report("EPT misconfigurations", 0);
1200 		goto t1;
1201 	}
1202 	vmx_set_test_stage(2);
1203 	vmcall();
1204 	*((u32 *)data_page1) = MAGIC_VAL_1;
1205 	report("EPT misconfigurations", vmx_get_test_stage() == 3);
1206 t1:
1207 	// Test EPT violation
1208 	vmx_set_test_stage(3);
1209 	vmcall();
1210 	*((u32 *)data_page1) = MAGIC_VAL_1;
1211 	report("EPT violation - page permission", vmx_get_test_stage() == 4);
1212 	// Violation caused by EPT paging structure
1213 	vmx_set_test_stage(4);
1214 	vmcall();
1215 	*((u32 *)data_page1) = MAGIC_VAL_2;
1216 	report("EPT violation - paging structure", vmx_get_test_stage() == 5);
1217 
1218 	// MMIO Read/Write
1219 	vmx_set_test_stage(5);
1220 	vmcall();
1221 
1222 	*(u32 volatile *)pci_physaddr;
1223 	report("MMIO EPT violation - read", vmx_get_test_stage() == 6);
1224 
1225 	*(u32 volatile *)pci_physaddr = MAGIC_VAL_1;
1226 	report("MMIO EPT violation - write", vmx_get_test_stage() == 7);
1227 }
1228 
1229 static void ept_main(void)
1230 {
1231 	ept_common();
1232 
1233 	// Test EPT access to L1 MMIO
1234 	vmx_set_test_stage(7);
1235 	report("EPT - MMIO access", *((u32 *)0xfee00030UL) == apic_version);
1236 
1237 	// Test invalid operand for INVEPT
1238 	vmcall();
1239 	report("EPT - unsupported INVEPT", vmx_get_test_stage() == 8);
1240 }
1241 
1242 static bool invept_test(int type, u64 eptp)
1243 {
1244 	bool ret, supported;
1245 
1246 	supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type);
1247 	ret = invept(type, eptp);
1248 
1249 	if (ret == !supported)
1250 		return false;
1251 
1252 	if (!supported)
1253 		printf("WARNING: unsupported invept passed!\n");
1254 	else
1255 		printf("WARNING: invept failed!\n");
1256 
1257 	return true;
1258 }
1259 
1260 static int pml_exit_handler(void)
1261 {
1262 	u16 index, count;
1263 	ulong reason = vmcs_read(EXI_REASON) & 0xff;
1264 	u64 *pmlbuf = pml_log;
1265 	u64 guest_rip = vmcs_read(GUEST_RIP);;
1266 	u64 guest_cr3 = vmcs_read(GUEST_CR3);
1267 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1268 
1269 	switch (reason) {
1270 	case VMX_VMCALL:
1271 		switch (vmx_get_test_stage()) {
1272 		case 0:
1273 			index = vmcs_read(GUEST_PML_INDEX);
1274 			for (count = index + 1; count < PML_INDEX; count++) {
1275 				if (pmlbuf[count] == (u64)data_page2) {
1276 					vmx_inc_test_stage();
1277 					clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1278 					break;
1279 				}
1280 			}
1281 			break;
1282 		case 1:
1283 			index = vmcs_read(GUEST_PML_INDEX);
1284 			/* Keep clearing the dirty bit till a overflow */
1285 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1286 			break;
1287 		default:
1288 			report("unexpected stage, %d.", false,
1289 			       vmx_get_test_stage());
1290 			print_vmexit_info();
1291 			return VMX_TEST_VMEXIT;
1292 		}
1293 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1294 		return VMX_TEST_RESUME;
1295 	case VMX_PML_FULL:
1296 		vmx_inc_test_stage();
1297 		vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1298 		return VMX_TEST_RESUME;
1299 	default:
1300 		report("Unknown exit reason, %ld", false, reason);
1301 		print_vmexit_info();
1302 	}
1303 	return VMX_TEST_VMEXIT;
1304 }
1305 
1306 static int ept_exit_handler_common(bool have_ad)
1307 {
1308 	u64 guest_rip;
1309 	u64 guest_cr3;
1310 	ulong reason;
1311 	u32 insn_len;
1312 	u32 exit_qual;
1313 	static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte;
1314 
1315 	guest_rip = vmcs_read(GUEST_RIP);
1316 	guest_cr3 = vmcs_read(GUEST_CR3);
1317 	reason = vmcs_read(EXI_REASON) & 0xff;
1318 	insn_len = vmcs_read(EXI_INST_LEN);
1319 	exit_qual = vmcs_read(EXI_QUALIFICATION);
1320 	switch (reason) {
1321 	case VMX_VMCALL:
1322 		switch (vmx_get_test_stage()) {
1323 		case 0:
1324 			check_ept_ad(pml4, guest_cr3,
1325 				     (unsigned long)data_page1,
1326 				     have_ad ? EPT_ACCESS_FLAG : 0,
1327 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1328 			check_ept_ad(pml4, guest_cr3,
1329 				     (unsigned long)data_page2,
1330 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0,
1331 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1332 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1333 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1334 			if (have_ad)
1335 				ept_sync(INVEPT_SINGLE, eptp);;
1336 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1337 					*((u32 *)data_page2) == MAGIC_VAL_2) {
1338 				vmx_inc_test_stage();
1339 				install_ept(pml4, (unsigned long)data_page2,
1340 						(unsigned long)data_page2,
1341 						EPT_RA | EPT_WA | EPT_EA);
1342 			} else
1343 				report("EPT basic framework - write", 0);
1344 			break;
1345 		case 1:
1346 			install_ept(pml4, (unsigned long)data_page1,
1347  				(unsigned long)data_page1, EPT_WA);
1348 			ept_sync(INVEPT_SINGLE, eptp);
1349 			break;
1350 		case 2:
1351 			install_ept(pml4, (unsigned long)data_page1,
1352  				(unsigned long)data_page1,
1353  				EPT_RA | EPT_WA | EPT_EA |
1354  				(2 << EPT_MEM_TYPE_SHIFT));
1355 			ept_sync(INVEPT_SINGLE, eptp);
1356 			break;
1357 		case 3:
1358 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1359 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1360 						1, &data_page1_pte));
1361 			set_ept_pte(pml4, (unsigned long)data_page1,
1362 				1, data_page1_pte & ~EPT_PRESENT);
1363 			ept_sync(INVEPT_SINGLE, eptp);
1364 			break;
1365 		case 4:
1366 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1367 						2, &data_page1_pte));
1368 			data_page1_pte &= PAGE_MASK;
1369 			TEST_ASSERT(get_ept_pte(pml4, data_page1_pte,
1370 						2, &data_page1_pte_pte));
1371 			set_ept_pte(pml4, data_page1_pte, 2,
1372 				data_page1_pte_pte & ~EPT_PRESENT);
1373 			ept_sync(INVEPT_SINGLE, eptp);
1374 			break;
1375 		case 5:
1376 			install_ept(pml4, (unsigned long)pci_physaddr,
1377 				(unsigned long)pci_physaddr, 0);
1378 			ept_sync(INVEPT_SINGLE, eptp);
1379 			break;
1380 		case 7:
1381 			if (!invept_test(0, eptp))
1382 				vmx_inc_test_stage();
1383 			break;
1384 		// Should not reach here
1385 		default:
1386 			report("ERROR - unexpected stage, %d.", false,
1387 			       vmx_get_test_stage());
1388 			print_vmexit_info();
1389 			return VMX_TEST_VMEXIT;
1390 		}
1391 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1392 		return VMX_TEST_RESUME;
1393 	case VMX_EPT_MISCONFIG:
1394 		switch (vmx_get_test_stage()) {
1395 		case 1:
1396 		case 2:
1397 			vmx_inc_test_stage();
1398 			install_ept(pml4, (unsigned long)data_page1,
1399  				(unsigned long)data_page1,
1400  				EPT_RA | EPT_WA | EPT_EA);
1401 			ept_sync(INVEPT_SINGLE, eptp);
1402 			break;
1403 		// Should not reach here
1404 		default:
1405 			report("ERROR - unexpected stage, %d.", false,
1406 			       vmx_get_test_stage());
1407 			print_vmexit_info();
1408 			return VMX_TEST_VMEXIT;
1409 		}
1410 		return VMX_TEST_RESUME;
1411 	case VMX_EPT_VIOLATION:
1412 		/*
1413 		 * Exit-qualifications are masked not to account for advanced
1414 		 * VM-exit information. Once KVM supports this feature, this
1415 		 * masking should be removed.
1416 		 */
1417 		exit_qual &= ~EPT_VLT_GUEST_MASK;
1418 
1419 		switch(vmx_get_test_stage()) {
1420 		case 3:
1421 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1422 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1423 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1424 			if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD |
1425 					EPT_VLT_PADDR))
1426 				vmx_inc_test_stage();
1427 			set_ept_pte(pml4, (unsigned long)data_page1,
1428 				1, data_page1_pte | (EPT_PRESENT));
1429 			ept_sync(INVEPT_SINGLE, eptp);
1430 			break;
1431 		case 4:
1432 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1433 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1434 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1435 			if (exit_qual == (EPT_VLT_RD |
1436 					  (have_ad ? EPT_VLT_WR : 0) |
1437 					  EPT_VLT_LADDR_VLD))
1438 				vmx_inc_test_stage();
1439 			set_ept_pte(pml4, data_page1_pte, 2,
1440 				data_page1_pte_pte | (EPT_PRESENT));
1441 			ept_sync(INVEPT_SINGLE, eptp);
1442 			break;
1443 		case 5:
1444 			if (exit_qual & EPT_VLT_RD)
1445 				vmx_inc_test_stage();
1446 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1447 						1, &memaddr_pte));
1448 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA);
1449 			ept_sync(INVEPT_SINGLE, eptp);
1450 			break;
1451 		case 6:
1452 			if (exit_qual & EPT_VLT_WR)
1453 				vmx_inc_test_stage();
1454 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1455 						1, &memaddr_pte));
1456 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA);
1457 			ept_sync(INVEPT_SINGLE, eptp);
1458 			break;
1459 		default:
1460 			// Should not reach here
1461 			report("ERROR : unexpected stage, %d", false,
1462 			       vmx_get_test_stage());
1463 			print_vmexit_info();
1464 			return VMX_TEST_VMEXIT;
1465 		}
1466 		return VMX_TEST_RESUME;
1467 	default:
1468 		report("Unknown exit reason, %ld", false, reason);
1469 		print_vmexit_info();
1470 	}
1471 	return VMX_TEST_VMEXIT;
1472 }
1473 
1474 static int ept_exit_handler(void)
1475 {
1476 	return ept_exit_handler_common(false);
1477 }
1478 
1479 static int eptad_init(struct vmcs *vmcs)
1480 {
1481 	int r = ept_init_common(true);
1482 
1483 	if (r == VMX_TEST_EXIT)
1484 		return r;
1485 
1486 	if ((rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & EPT_CAP_AD_FLAG) == 0) {
1487 		printf("\tEPT A/D bits are not supported");
1488 		return VMX_TEST_EXIT;
1489 	}
1490 
1491 	return r;
1492 }
1493 
1494 static int pml_init(struct vmcs *vmcs)
1495 {
1496 	u32 ctrl_cpu;
1497 	int r = eptad_init(vmcs);
1498 
1499 	if (r == VMX_TEST_EXIT)
1500 		return r;
1501 
1502 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1503 		!(ctrl_cpu_rev[1].clr & CPU_PML)) {
1504 		printf("\tPML is not supported");
1505 		return VMX_TEST_EXIT;
1506 	}
1507 
1508 	pml_log = alloc_page();
1509 	vmcs_write(PMLADDR, (u64)pml_log);
1510 	vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1511 
1512 	ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML;
1513 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu);
1514 
1515 	return VMX_TEST_START;
1516 }
1517 
1518 static void pml_main(void)
1519 {
1520 	int count = 0;
1521 
1522 	vmx_set_test_stage(0);
1523 	*((u32 *)data_page2) = 0x1;
1524 	vmcall();
1525 	report("PML - Dirty GPA Logging", vmx_get_test_stage() == 1);
1526 
1527 	while (vmx_get_test_stage() == 1) {
1528 		vmcall();
1529 		*((u32 *)data_page2) = 0x1;
1530 		if (count++ > PML_INDEX)
1531 			break;
1532 	}
1533 	report("PML Full Event", vmx_get_test_stage() == 2);
1534 }
1535 
1536 static void eptad_main(void)
1537 {
1538 	ept_common();
1539 }
1540 
1541 static int eptad_exit_handler(void)
1542 {
1543 	return ept_exit_handler_common(true);
1544 }
1545 
1546 static bool invvpid_test(int type, u16 vpid)
1547 {
1548 	bool ret, supported;
1549 
1550 	supported = ept_vpid.val &
1551 		(VPID_CAP_INVVPID_ADDR >> INVVPID_ADDR << type);
1552 	ret = invvpid(type, vpid, 0);
1553 
1554 	if (ret == !supported)
1555 		return false;
1556 
1557 	if (!supported)
1558 		printf("WARNING: unsupported invvpid passed!\n");
1559 	else
1560 		printf("WARNING: invvpid failed!\n");
1561 
1562 	return true;
1563 }
1564 
1565 static int vpid_init(struct vmcs *vmcs)
1566 {
1567 	u32 ctrl_cpu1;
1568 
1569 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1570 		!(ctrl_cpu_rev[1].clr & CPU_VPID)) {
1571 		printf("\tVPID is not supported");
1572 		return VMX_TEST_EXIT;
1573 	}
1574 
1575 	ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
1576 	ctrl_cpu1 |= CPU_VPID;
1577 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
1578 	return VMX_TEST_START;
1579 }
1580 
1581 static void vpid_main(void)
1582 {
1583 	vmx_set_test_stage(0);
1584 	vmcall();
1585 	report("INVVPID SINGLE ADDRESS", vmx_get_test_stage() == 1);
1586 	vmx_set_test_stage(2);
1587 	vmcall();
1588 	report("INVVPID SINGLE", vmx_get_test_stage() == 3);
1589 	vmx_set_test_stage(4);
1590 	vmcall();
1591 	report("INVVPID ALL", vmx_get_test_stage() == 5);
1592 }
1593 
1594 static int vpid_exit_handler(void)
1595 {
1596 	u64 guest_rip;
1597 	ulong reason;
1598 	u32 insn_len;
1599 
1600 	guest_rip = vmcs_read(GUEST_RIP);
1601 	reason = vmcs_read(EXI_REASON) & 0xff;
1602 	insn_len = vmcs_read(EXI_INST_LEN);
1603 
1604 	switch (reason) {
1605 	case VMX_VMCALL:
1606 		switch(vmx_get_test_stage()) {
1607 		case 0:
1608 			if (!invvpid_test(INVVPID_ADDR, 1))
1609 				vmx_inc_test_stage();
1610 			break;
1611 		case 2:
1612 			if (!invvpid_test(INVVPID_CONTEXT_GLOBAL, 1))
1613 				vmx_inc_test_stage();
1614 			break;
1615 		case 4:
1616 			if (!invvpid_test(INVVPID_ALL, 1))
1617 				vmx_inc_test_stage();
1618 			break;
1619 		default:
1620 			report("ERROR: unexpected stage, %d", false,
1621 					vmx_get_test_stage());
1622 			print_vmexit_info();
1623 			return VMX_TEST_VMEXIT;
1624 		}
1625 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1626 		return VMX_TEST_RESUME;
1627 	default:
1628 		report("Unknown exit reason, %ld", false, reason);
1629 		print_vmexit_info();
1630 	}
1631 	return VMX_TEST_VMEXIT;
1632 }
1633 
1634 #define TIMER_VECTOR	222
1635 
1636 static volatile bool timer_fired;
1637 
1638 static void timer_isr(isr_regs_t *regs)
1639 {
1640 	timer_fired = true;
1641 	apic_write(APIC_EOI, 0);
1642 }
1643 
1644 static int interrupt_init(struct vmcs *vmcs)
1645 {
1646 	msr_bmp_init();
1647 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1648 	handle_irq(TIMER_VECTOR, timer_isr);
1649 	return VMX_TEST_START;
1650 }
1651 
1652 static void interrupt_main(void)
1653 {
1654 	long long start, loops;
1655 
1656 	vmx_set_test_stage(0);
1657 
1658 	apic_write(APIC_LVTT, TIMER_VECTOR);
1659 	irq_enable();
1660 
1661 	apic_write(APIC_TMICT, 1);
1662 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1663 		asm volatile ("nop");
1664 	report("direct interrupt while running guest", timer_fired);
1665 
1666 	apic_write(APIC_TMICT, 0);
1667 	irq_disable();
1668 	vmcall();
1669 	timer_fired = false;
1670 	apic_write(APIC_TMICT, 1);
1671 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1672 		asm volatile ("nop");
1673 	report("intercepted interrupt while running guest", timer_fired);
1674 
1675 	irq_enable();
1676 	apic_write(APIC_TMICT, 0);
1677 	irq_disable();
1678 	vmcall();
1679 	timer_fired = false;
1680 	start = rdtsc();
1681 	apic_write(APIC_TMICT, 1000000);
1682 
1683 	asm volatile ("sti; hlt");
1684 
1685 	report("direct interrupt + hlt",
1686 	       rdtsc() - start > 1000000 && timer_fired);
1687 
1688 	apic_write(APIC_TMICT, 0);
1689 	irq_disable();
1690 	vmcall();
1691 	timer_fired = false;
1692 	start = rdtsc();
1693 	apic_write(APIC_TMICT, 1000000);
1694 
1695 	asm volatile ("sti; hlt");
1696 
1697 	report("intercepted interrupt + hlt",
1698 	       rdtsc() - start > 10000 && timer_fired);
1699 
1700 	apic_write(APIC_TMICT, 0);
1701 	irq_disable();
1702 	vmcall();
1703 	timer_fired = false;
1704 	start = rdtsc();
1705 	apic_write(APIC_TMICT, 1000000);
1706 
1707 	irq_enable();
1708 	asm volatile ("nop");
1709 	vmcall();
1710 
1711 	report("direct interrupt + activity state hlt",
1712 	       rdtsc() - start > 10000 && timer_fired);
1713 
1714 	apic_write(APIC_TMICT, 0);
1715 	irq_disable();
1716 	vmcall();
1717 	timer_fired = false;
1718 	start = rdtsc();
1719 	apic_write(APIC_TMICT, 1000000);
1720 
1721 	irq_enable();
1722 	asm volatile ("nop");
1723 	vmcall();
1724 
1725 	report("intercepted interrupt + activity state hlt",
1726 	       rdtsc() - start > 10000 && timer_fired);
1727 
1728 	apic_write(APIC_TMICT, 0);
1729 	irq_disable();
1730 	vmx_set_test_stage(7);
1731 	vmcall();
1732 	timer_fired = false;
1733 	apic_write(APIC_TMICT, 1);
1734 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1735 		asm volatile ("nop");
1736 	report("running a guest with interrupt acknowledgement set", timer_fired);
1737 
1738 	apic_write(APIC_TMICT, 0);
1739 	irq_enable();
1740 	timer_fired = false;
1741 	vmcall();
1742 	report("Inject an event to a halted guest", timer_fired);
1743 }
1744 
1745 static int interrupt_exit_handler(void)
1746 {
1747 	u64 guest_rip = vmcs_read(GUEST_RIP);
1748 	ulong reason = vmcs_read(EXI_REASON) & 0xff;
1749 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1750 
1751 	switch (reason) {
1752 	case VMX_VMCALL:
1753 		switch (vmx_get_test_stage()) {
1754 		case 0:
1755 		case 2:
1756 		case 5:
1757 			vmcs_write(PIN_CONTROLS,
1758 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1759 			break;
1760 		case 7:
1761 			vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA);
1762 			vmcs_write(PIN_CONTROLS,
1763 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1764 			break;
1765 		case 1:
1766 		case 3:
1767 			vmcs_write(PIN_CONTROLS,
1768 				   vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1769 			break;
1770 		case 4:
1771 		case 6:
1772 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1773 			break;
1774 
1775 		case 8:
1776 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1777 			vmcs_write(ENT_INTR_INFO,
1778 				   TIMER_VECTOR |
1779 				   (VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) |
1780 				   INTR_INFO_VALID_MASK);
1781 			break;
1782 		}
1783 		vmx_inc_test_stage();
1784 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1785 		return VMX_TEST_RESUME;
1786 	case VMX_EXTINT:
1787 		if (vmcs_read(EXI_CONTROLS) & EXI_INTA) {
1788 			int vector = vmcs_read(EXI_INTR_INFO) & 0xff;
1789 			handle_external_interrupt(vector);
1790 		} else {
1791 			irq_enable();
1792 			asm volatile ("nop");
1793 			irq_disable();
1794 		}
1795 		if (vmx_get_test_stage() >= 2)
1796 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
1797 		return VMX_TEST_RESUME;
1798 	default:
1799 		report("Unknown exit reason, %ld", false, reason);
1800 		print_vmexit_info();
1801 	}
1802 
1803 	return VMX_TEST_VMEXIT;
1804 }
1805 
1806 static int dbgctls_init(struct vmcs *vmcs)
1807 {
1808 	u64 dr7 = 0x402;
1809 	u64 zero = 0;
1810 
1811 	msr_bmp_init();
1812 	asm volatile(
1813 		"mov %0,%%dr0\n\t"
1814 		"mov %0,%%dr1\n\t"
1815 		"mov %0,%%dr2\n\t"
1816 		"mov %1,%%dr7\n\t"
1817 		: : "r" (zero), "r" (dr7));
1818 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1819 	vmcs_write(GUEST_DR7, 0x404);
1820 	vmcs_write(GUEST_DEBUGCTL, 0x2);
1821 
1822 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
1823 	vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS);
1824 
1825 	return VMX_TEST_START;
1826 }
1827 
1828 static void dbgctls_main(void)
1829 {
1830 	u64 dr7, debugctl;
1831 
1832 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1833 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1834 	/* Commented out: KVM does not support DEBUGCTL so far */
1835 	(void)debugctl;
1836 	report("Load debug controls", dr7 == 0x404 /* && debugctl == 0x2 */);
1837 
1838 	dr7 = 0x408;
1839 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1840 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1841 
1842 	vmx_set_test_stage(0);
1843 	vmcall();
1844 	report("Save debug controls", vmx_get_test_stage() == 1);
1845 
1846 	if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS ||
1847 	    ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) {
1848 		printf("\tDebug controls are always loaded/saved\n");
1849 		return;
1850 	}
1851 	vmx_set_test_stage(2);
1852 	vmcall();
1853 
1854 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1855 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1856 	/* Commented out: KVM does not support DEBUGCTL so far */
1857 	(void)debugctl;
1858 	report("Guest=host debug controls", dr7 == 0x402 /* && debugctl == 0x1 */);
1859 
1860 	dr7 = 0x408;
1861 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1862 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1863 
1864 	vmx_set_test_stage(3);
1865 	vmcall();
1866 	report("Don't save debug controls", vmx_get_test_stage() == 4);
1867 }
1868 
1869 static int dbgctls_exit_handler(void)
1870 {
1871 	unsigned int reason = vmcs_read(EXI_REASON) & 0xff;
1872 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1873 	u64 guest_rip = vmcs_read(GUEST_RIP);
1874 	u64 dr7, debugctl;
1875 
1876 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1877 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1878 
1879 	switch (reason) {
1880 	case VMX_VMCALL:
1881 		switch (vmx_get_test_stage()) {
1882 		case 0:
1883 			if (dr7 == 0x400 && debugctl == 0 &&
1884 			    vmcs_read(GUEST_DR7) == 0x408 /* &&
1885 			    Commented out: KVM does not support DEBUGCTL so far
1886 			    vmcs_read(GUEST_DEBUGCTL) == 0x3 */)
1887 				vmx_inc_test_stage();
1888 			break;
1889 		case 2:
1890 			dr7 = 0x402;
1891 			asm volatile("mov %0,%%dr7" : : "r" (dr7));
1892 			wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1893 			vmcs_write(GUEST_DR7, 0x404);
1894 			vmcs_write(GUEST_DEBUGCTL, 0x2);
1895 
1896 			vmcs_write(ENT_CONTROLS,
1897 				vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS);
1898 			vmcs_write(EXI_CONTROLS,
1899 				vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS);
1900 			break;
1901 		case 3:
1902 			if (dr7 == 0x400 && debugctl == 0 &&
1903 			    vmcs_read(GUEST_DR7) == 0x404 /* &&
1904 			    Commented out: KVM does not support DEBUGCTL so far
1905 			    vmcs_read(GUEST_DEBUGCTL) == 0x2 */)
1906 				vmx_inc_test_stage();
1907 			break;
1908 		}
1909 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1910 		return VMX_TEST_RESUME;
1911 	default:
1912 		report("Unknown exit reason, %d", false, reason);
1913 		print_vmexit_info();
1914 	}
1915 	return VMX_TEST_VMEXIT;
1916 }
1917 
1918 struct vmx_msr_entry {
1919 	u32 index;
1920 	u32 reserved;
1921 	u64 value;
1922 } __attribute__((packed));
1923 
1924 #define MSR_MAGIC 0x31415926
1925 struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load;
1926 
1927 static int msr_switch_init(struct vmcs *vmcs)
1928 {
1929 	msr_bmp_init();
1930 	exit_msr_store = alloc_page();
1931 	exit_msr_load = alloc_page();
1932 	entry_msr_load = alloc_page();
1933 	entry_msr_load[0].index = MSR_KERNEL_GS_BASE;
1934 	entry_msr_load[0].value = MSR_MAGIC;
1935 
1936 	vmx_set_test_stage(1);
1937 	vmcs_write(ENT_MSR_LD_CNT, 1);
1938 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load);
1939 	vmcs_write(EXI_MSR_ST_CNT, 1);
1940 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store);
1941 	vmcs_write(EXI_MSR_LD_CNT, 1);
1942 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load);
1943 	return VMX_TEST_START;
1944 }
1945 
1946 static void msr_switch_main(void)
1947 {
1948 	if (vmx_get_test_stage() == 1) {
1949 		report("VM entry MSR load",
1950 			rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC);
1951 		vmx_set_test_stage(2);
1952 		wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1);
1953 		exit_msr_store[0].index = MSR_KERNEL_GS_BASE;
1954 		exit_msr_load[0].index = MSR_KERNEL_GS_BASE;
1955 		exit_msr_load[0].value = MSR_MAGIC + 2;
1956 	}
1957 	vmcall();
1958 }
1959 
1960 static int msr_switch_exit_handler(void)
1961 {
1962 	ulong reason;
1963 
1964 	reason = vmcs_read(EXI_REASON);
1965 	if (reason == VMX_VMCALL && vmx_get_test_stage() == 2) {
1966 		report("VM exit MSR store",
1967 			exit_msr_store[0].value == MSR_MAGIC + 1);
1968 		report("VM exit MSR load",
1969 			rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2);
1970 		vmx_set_test_stage(3);
1971 		entry_msr_load[0].index = MSR_FS_BASE;
1972 		return VMX_TEST_RESUME;
1973 	}
1974 	printf("ERROR %s: unexpected stage=%u or reason=%lu\n",
1975 		__func__, vmx_get_test_stage(), reason);
1976 	return VMX_TEST_EXIT;
1977 }
1978 
1979 static int msr_switch_entry_failure(struct vmentry_failure *failure)
1980 {
1981 	ulong reason;
1982 
1983 	if (failure->early) {
1984 		printf("ERROR %s: early exit\n", __func__);
1985 		return VMX_TEST_EXIT;
1986 	}
1987 
1988 	reason = vmcs_read(EXI_REASON);
1989 	if (reason == (VMX_ENTRY_FAILURE | VMX_FAIL_MSR) &&
1990 	    vmx_get_test_stage() == 3) {
1991 		report("VM entry MSR load: try to load FS_BASE",
1992 			vmcs_read(EXI_QUALIFICATION) == 1);
1993 		return VMX_TEST_VMEXIT;
1994 	}
1995 	printf("ERROR %s: unexpected stage=%u or reason=%lu\n",
1996 		__func__, vmx_get_test_stage(), reason);
1997 	return VMX_TEST_EXIT;
1998 }
1999 
2000 static int vmmcall_init(struct vmcs *vmcs)
2001 {
2002 	vmcs_write(EXC_BITMAP, 1 << UD_VECTOR);
2003 	return VMX_TEST_START;
2004 }
2005 
2006 static void vmmcall_main(void)
2007 {
2008 	asm volatile(
2009 		"mov $0xABCD, %%rax\n\t"
2010 		"vmmcall\n\t"
2011 		::: "rax");
2012 
2013 	report("VMMCALL", 0);
2014 }
2015 
2016 static int vmmcall_exit_handler(void)
2017 {
2018 	ulong reason;
2019 
2020 	reason = vmcs_read(EXI_REASON);
2021 	switch (reason) {
2022 	case VMX_VMCALL:
2023 		printf("here\n");
2024 		report("VMMCALL triggers #UD", 0);
2025 		break;
2026 	case VMX_EXC_NMI:
2027 		report("VMMCALL triggers #UD",
2028 		       (vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR);
2029 		break;
2030 	default:
2031 		report("Unknown exit reason, %ld", false, reason);
2032 		print_vmexit_info();
2033 	}
2034 
2035 	return VMX_TEST_VMEXIT;
2036 }
2037 
2038 static int disable_rdtscp_init(struct vmcs *vmcs)
2039 {
2040 	u32 ctrl_cpu1;
2041 
2042 	if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) {
2043 		ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
2044 		ctrl_cpu1 &= ~CPU_RDTSCP;
2045 		vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
2046 	}
2047 
2048 	return VMX_TEST_START;
2049 }
2050 
2051 static void disable_rdtscp_ud_handler(struct ex_regs *regs)
2052 {
2053 	switch (vmx_get_test_stage()) {
2054 	case 0:
2055 		report("RDTSCP triggers #UD", true);
2056 		vmx_inc_test_stage();
2057 		regs->rip += 3;
2058 		break;
2059 	case 2:
2060 		report("RDPID triggers #UD", true);
2061 		vmx_inc_test_stage();
2062 		regs->rip += 4;
2063 		break;
2064 	}
2065 	return;
2066 
2067 }
2068 
2069 static void disable_rdtscp_main(void)
2070 {
2071 	/* Test that #UD is properly injected in L2.  */
2072 	handle_exception(UD_VECTOR, disable_rdtscp_ud_handler);
2073 
2074 	vmx_set_test_stage(0);
2075 	asm volatile("rdtscp" : : : "eax", "ecx", "edx");
2076 	vmcall();
2077 	asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax");
2078 
2079 	handle_exception(UD_VECTOR, 0);
2080 	vmcall();
2081 }
2082 
2083 static int disable_rdtscp_exit_handler(void)
2084 {
2085 	unsigned int reason = vmcs_read(EXI_REASON) & 0xff;
2086 
2087 	switch (reason) {
2088 	case VMX_VMCALL:
2089 		switch (vmx_get_test_stage()) {
2090 		case 0:
2091 			report("RDTSCP triggers #UD", false);
2092 			vmx_inc_test_stage();
2093 			/* fallthrough */
2094 		case 1:
2095 			vmx_inc_test_stage();
2096 			vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3);
2097 			return VMX_TEST_RESUME;
2098 		case 2:
2099 			report("RDPID triggers #UD", false);
2100 			break;
2101 		}
2102 		break;
2103 
2104 	default:
2105 		report("Unknown exit reason, %d", false, reason);
2106 		print_vmexit_info();
2107 	}
2108 	return VMX_TEST_VMEXIT;
2109 }
2110 
2111 static int int3_init(struct vmcs *vmcs)
2112 {
2113 	vmcs_write(EXC_BITMAP, ~0u);
2114 	return VMX_TEST_START;
2115 }
2116 
2117 static void int3_guest_main(void)
2118 {
2119 	asm volatile ("int3");
2120 }
2121 
2122 static int int3_exit_handler(void)
2123 {
2124 	u32 reason = vmcs_read(EXI_REASON);
2125 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
2126 
2127 	report("L1 intercepts #BP", reason == VMX_EXC_NMI &&
2128 	       (intr_info & INTR_INFO_VALID_MASK) &&
2129 	       (intr_info & INTR_INFO_VECTOR_MASK) == BP_VECTOR &&
2130 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
2131 		INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION);
2132 
2133 	return VMX_TEST_VMEXIT;
2134 }
2135 
2136 static int into_init(struct vmcs *vmcs)
2137 {
2138 	vmcs_write(EXC_BITMAP, ~0u);
2139 	return VMX_TEST_START;
2140 }
2141 
2142 static void into_guest_main(void)
2143 {
2144 	struct far_pointer32 fp = {
2145 		.offset = (uintptr_t)&&into,
2146 		.selector = KERNEL_CS32,
2147 	};
2148 	register uintptr_t rsp asm("rsp");
2149 
2150 	if (fp.offset != (uintptr_t)&&into) {
2151 		printf("Code address too high.\n");
2152 		return;
2153 	}
2154 	if ((u32)rsp != rsp) {
2155 		printf("Stack address too high.\n");
2156 		return;
2157 	}
2158 
2159 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : into);
2160 	return;
2161 into:
2162 	asm volatile (".code32;"
2163 		      "movl $0x7fffffff, %eax;"
2164 		      "addl %eax, %eax;"
2165 		      "into;"
2166 		      "lret;"
2167 		      ".code64");
2168 	__builtin_unreachable();
2169 }
2170 
2171 static int into_exit_handler(void)
2172 {
2173 	u32 reason = vmcs_read(EXI_REASON);
2174 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
2175 
2176 	report("L1 intercepts #OF", reason == VMX_EXC_NMI &&
2177 	       (intr_info & INTR_INFO_VALID_MASK) &&
2178 	       (intr_info & INTR_INFO_VECTOR_MASK) == OF_VECTOR &&
2179 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
2180 		INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION);
2181 
2182 	return VMX_TEST_VMEXIT;
2183 }
2184 
2185 static void exit_monitor_from_l2_main(void)
2186 {
2187 	printf("Calling exit(0) from l2...\n");
2188 	exit(0);
2189 }
2190 
2191 static int exit_monitor_from_l2_handler(void)
2192 {
2193 	report("The guest should have killed the VMM", false);
2194 	return VMX_TEST_EXIT;
2195 }
2196 
2197 static void assert_exit_reason(u64 expected)
2198 {
2199 	u64 actual = vmcs_read(EXI_REASON);
2200 
2201 	TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.",
2202 			   exit_reason_description(expected),
2203 			   exit_reason_description(actual));
2204 }
2205 
2206 static void skip_exit_insn(void)
2207 {
2208 	u64 guest_rip = vmcs_read(GUEST_RIP);
2209 	u32 insn_len = vmcs_read(EXI_INST_LEN);
2210 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
2211 }
2212 
2213 static void skip_exit_vmcall(void)
2214 {
2215 	assert_exit_reason(VMX_VMCALL);
2216 	skip_exit_insn();
2217 }
2218 
2219 static void v2_null_test_guest(void)
2220 {
2221 }
2222 
2223 static void v2_null_test(void)
2224 {
2225 	test_set_guest(v2_null_test_guest);
2226 	enter_guest();
2227 	report(__func__, 1);
2228 }
2229 
2230 static void v2_multiple_entries_test_guest(void)
2231 {
2232 	vmx_set_test_stage(1);
2233 	vmcall();
2234 	vmx_set_test_stage(2);
2235 }
2236 
2237 static void v2_multiple_entries_test(void)
2238 {
2239 	test_set_guest(v2_multiple_entries_test_guest);
2240 	enter_guest();
2241 	TEST_ASSERT_EQ(vmx_get_test_stage(), 1);
2242 	skip_exit_vmcall();
2243 	enter_guest();
2244 	TEST_ASSERT_EQ(vmx_get_test_stage(), 2);
2245 	report(__func__, 1);
2246 }
2247 
2248 static int fixture_test_data = 1;
2249 
2250 static void fixture_test_teardown(void *data)
2251 {
2252 	*((int *) data) = 1;
2253 }
2254 
2255 static void fixture_test_guest(void)
2256 {
2257 	fixture_test_data++;
2258 }
2259 
2260 
2261 static void fixture_test_setup(void)
2262 {
2263 	TEST_ASSERT_EQ_MSG(1, fixture_test_data,
2264 			   "fixture_test_teardown didn't run?!");
2265 	fixture_test_data = 2;
2266 	test_add_teardown(fixture_test_teardown, &fixture_test_data);
2267 	test_set_guest(fixture_test_guest);
2268 }
2269 
2270 static void fixture_test_case1(void)
2271 {
2272 	fixture_test_setup();
2273 	TEST_ASSERT_EQ(2, fixture_test_data);
2274 	enter_guest();
2275 	TEST_ASSERT_EQ(3, fixture_test_data);
2276 	report(__func__, 1);
2277 }
2278 
2279 static void fixture_test_case2(void)
2280 {
2281 	fixture_test_setup();
2282 	TEST_ASSERT_EQ(2, fixture_test_data);
2283 	enter_guest();
2284 	TEST_ASSERT_EQ(3, fixture_test_data);
2285 	report(__func__, 1);
2286 }
2287 
2288 enum ept_access_op {
2289 	OP_READ,
2290 	OP_WRITE,
2291 	OP_EXEC,
2292 	OP_FLUSH_TLB,
2293 	OP_EXIT,
2294 };
2295 
2296 static struct ept_access_test_data {
2297 	unsigned long gpa;
2298 	unsigned long *gva;
2299 	unsigned long hpa;
2300 	unsigned long *hva;
2301 	enum ept_access_op op;
2302 } ept_access_test_data;
2303 
2304 extern unsigned char ret42_start;
2305 extern unsigned char ret42_end;
2306 
2307 /* Returns 42. */
2308 asm(
2309 	".align 64\n"
2310 	"ret42_start:\n"
2311 	"mov $42, %eax\n"
2312 	"ret\n"
2313 	"ret42_end:\n"
2314 );
2315 
2316 static void
2317 diagnose_ept_violation_qual(u64 expected, u64 actual)
2318 {
2319 
2320 #define DIAGNOSE(flag)							\
2321 do {									\
2322 	if ((expected & flag) != (actual & flag))			\
2323 		printf(#flag " %sexpected\n",				\
2324 		       (expected & flag) ? "" : "un");			\
2325 } while (0)
2326 
2327 	DIAGNOSE(EPT_VLT_RD);
2328 	DIAGNOSE(EPT_VLT_WR);
2329 	DIAGNOSE(EPT_VLT_FETCH);
2330 	DIAGNOSE(EPT_VLT_PERM_RD);
2331 	DIAGNOSE(EPT_VLT_PERM_WR);
2332 	DIAGNOSE(EPT_VLT_PERM_EX);
2333 	DIAGNOSE(EPT_VLT_LADDR_VLD);
2334 	DIAGNOSE(EPT_VLT_PADDR);
2335 
2336 #undef DIAGNOSE
2337 }
2338 
2339 static void do_ept_access_op(enum ept_access_op op)
2340 {
2341 	ept_access_test_data.op = op;
2342 	enter_guest();
2343 }
2344 
2345 /*
2346  * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only
2347  * needed by tests that modify guest PTEs.
2348  */
2349 static void ept_access_test_guest_flush_tlb(void)
2350 {
2351 	do_ept_access_op(OP_FLUSH_TLB);
2352 	skip_exit_vmcall();
2353 }
2354 
2355 /*
2356  * Modifies the EPT entry at @level in the mapping of @gpa. First clears the
2357  * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into
2358  * a huge page.
2359  */
2360 static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level,
2361 				 unsigned long clear, unsigned long set)
2362 {
2363 	struct ept_access_test_data *data = &ept_access_test_data;
2364 	unsigned long orig_pte;
2365 	unsigned long pte;
2366 
2367 	/* Screw with the mapping at the requested level. */
2368 	TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte));
2369 	pte = orig_pte;
2370 	if (mkhuge)
2371 		pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE;
2372 	else
2373 		pte = orig_pte;
2374 	pte = (pte & ~clear) | set;
2375 	set_ept_pte(pml4, gpa, level, pte);
2376 	ept_sync(INVEPT_SINGLE, eptp);
2377 
2378 	return orig_pte;
2379 }
2380 
2381 static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte)
2382 {
2383 	set_ept_pte(pml4, gpa, level, orig_pte);
2384 	ept_sync(INVEPT_SINGLE, eptp);
2385 }
2386 
2387 static void do_ept_violation(bool leaf, enum ept_access_op op,
2388 			     u64 expected_qual, u64 expected_paddr)
2389 {
2390 	u64 qual;
2391 
2392 	/* Try the access and observe the violation. */
2393 	do_ept_access_op(op);
2394 
2395 	assert_exit_reason(VMX_EPT_VIOLATION);
2396 
2397 	qual = vmcs_read(EXI_QUALIFICATION);
2398 
2399 	/* Mask undefined bits (which may later be defined in certain cases). */
2400 	qual &= ~(EPT_VLT_GUEST_USER | EPT_VLT_GUEST_RW | EPT_VLT_GUEST_EX |
2401 		 EPT_VLT_PERM_USER_EX);
2402 
2403 	diagnose_ept_violation_qual(expected_qual, qual);
2404 	TEST_EXPECT_EQ(expected_qual, qual);
2405 
2406 	#if 0
2407 	/* Disable for now otherwise every test will fail */
2408 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2409 		       (unsigned long) (
2410 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2411 	#endif
2412 	/*
2413 	 * TODO: tests that probe expected_paddr in pages other than the one at
2414 	 * the beginning of the 1g region.
2415 	 */
2416 	TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr);
2417 }
2418 
2419 static void
2420 ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear,
2421 			      unsigned long set, enum ept_access_op op,
2422 			      u64 expected_qual)
2423 {
2424 	struct ept_access_test_data *data = &ept_access_test_data;
2425 	unsigned long orig_pte;
2426 
2427 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2428 
2429 	do_ept_violation(level == 1 || mkhuge, op, expected_qual,
2430 			 op == OP_EXEC ? data->gpa + sizeof(unsigned long) :
2431 					 data->gpa);
2432 
2433 	/* Fix the violation and resume the op loop. */
2434 	ept_untwiddle(data->gpa, level, orig_pte);
2435 	enter_guest();
2436 	skip_exit_vmcall();
2437 }
2438 
2439 static void
2440 ept_violation_at_level(int level, unsigned long clear, unsigned long set,
2441 		       enum ept_access_op op, u64 expected_qual)
2442 {
2443 	ept_violation_at_level_mkhuge(false, level, clear, set, op,
2444 				      expected_qual);
2445 	if (ept_huge_pages_supported(level))
2446 		ept_violation_at_level_mkhuge(true, level, clear, set, op,
2447 					      expected_qual);
2448 }
2449 
2450 static void ept_violation(unsigned long clear, unsigned long set,
2451 			  enum ept_access_op op, u64 expected_qual)
2452 {
2453 	ept_violation_at_level(1, clear, set, op, expected_qual);
2454 	ept_violation_at_level(2, clear, set, op, expected_qual);
2455 	ept_violation_at_level(3, clear, set, op, expected_qual);
2456 	ept_violation_at_level(4, clear, set, op, expected_qual);
2457 }
2458 
2459 static void ept_access_violation(unsigned long access, enum ept_access_op op,
2460 				       u64 expected_qual)
2461 {
2462 	ept_violation(EPT_PRESENT, access, op,
2463 		      expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2464 }
2465 
2466 /*
2467  * For translations that don't involve a GVA, that is physical address (paddr)
2468  * accesses, EPT violations don't set the flag EPT_VLT_PADDR.  For a typical
2469  * guest memory access, the hardware does GVA -> GPA -> HPA.  However, certain
2470  * translations don't involve GVAs, such as when the hardware does the guest
2471  * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU
2472  * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides
2473  * on isn't present in the EPT, then the EPT violation will be for GPA_2 and
2474  * the EPT_VLT_PADDR bit will be clear in the exit qualification.
2475  *
2476  * Note that paddr violations can also be triggered by loading PAE page tables
2477  * with wonky addresses. We don't test that yet.
2478  *
2479  * This function modifies the EPT entry that maps the GPA that the guest page
2480  * table entry mapping ept_access_test_data.gva resides on.
2481  *
2482  *	@ept_access	EPT permissions to set. Other permissions are cleared.
2483  *
2484  *	@pte_ad		Set the A/D bits on the guest PTE accordingly.
2485  *
2486  *	@op		Guest operation to perform with
2487  *			ept_access_test_data.gva.
2488  *
2489  *	@expect_violation
2490  *			Is a violation expected during the paddr access?
2491  *
2492  *	@expected_qual	Expected qualification for the EPT violation.
2493  *			EPT_VLT_PADDR should be clear.
2494  */
2495 static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad,
2496 			     enum ept_access_op op, bool expect_violation,
2497 			     u64 expected_qual)
2498 {
2499 	struct ept_access_test_data *data = &ept_access_test_data;
2500 	unsigned long *ptep;
2501 	unsigned long gpa;
2502 	unsigned long orig_epte;
2503 
2504 	/* Modify the guest PTE mapping data->gva according to @pte_ad.  */
2505 	ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1);
2506 	TEST_ASSERT(ptep);
2507 	TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa);
2508 	*ptep = (*ptep & ~PT_AD_MASK) | pte_ad;
2509 	ept_access_test_guest_flush_tlb();
2510 
2511 	/*
2512 	 * Now modify the access bits on the EPT entry for the GPA that the
2513 	 * guest PTE resides on. Note that by modifying a single EPT entry,
2514 	 * we're potentially affecting 512 guest PTEs. However, we've carefully
2515 	 * constructed our test such that those other 511 PTEs aren't used by
2516 	 * the guest: data->gva is at the beginning of a 1G huge page, thus the
2517 	 * PTE we're modifying is at the beginning of a 4K page and the
2518 	 * following 511 entires are also under our control (and not touched by
2519 	 * the guest).
2520 	 */
2521 	gpa = virt_to_phys(ptep);
2522 	TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0);
2523 	/*
2524 	 * Make sure the guest page table page is mapped with a 4K EPT entry,
2525 	 * otherwise our level=1 twiddling below will fail. We use the
2526 	 * identity map (gpa = gpa) since page tables are shared with the host.
2527 	 */
2528 	install_ept(pml4, gpa, gpa, EPT_PRESENT);
2529 	orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1,
2530 				/*clear=*/EPT_PRESENT, /*set=*/ept_access);
2531 
2532 	if (expect_violation) {
2533 		do_ept_violation(/*leaf=*/true, op,
2534 				 expected_qual | EPT_VLT_LADDR_VLD, gpa);
2535 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2536 		do_ept_access_op(op);
2537 	} else {
2538 		do_ept_access_op(op);
2539 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2540 	}
2541 
2542 	TEST_ASSERT(*ptep & PT_ACCESSED_MASK);
2543 	if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE)
2544 		TEST_ASSERT(*ptep & PT_DIRTY_MASK);
2545 
2546 	skip_exit_vmcall();
2547 }
2548 
2549 static void ept_access_allowed_paddr(unsigned long ept_access,
2550 				     unsigned long pte_ad,
2551 				     enum ept_access_op op)
2552 {
2553 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false,
2554 			 /*expected_qual=*/-1);
2555 }
2556 
2557 static void ept_access_violation_paddr(unsigned long ept_access,
2558 				       unsigned long pte_ad,
2559 				       enum ept_access_op op,
2560 				       u64 expected_qual)
2561 {
2562 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true,
2563 			 expected_qual);
2564 }
2565 
2566 
2567 static void ept_allowed_at_level_mkhuge(bool mkhuge, int level,
2568 					unsigned long clear,
2569 					unsigned long set,
2570 					enum ept_access_op op)
2571 {
2572 	struct ept_access_test_data *data = &ept_access_test_data;
2573 	unsigned long orig_pte;
2574 
2575 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2576 
2577 	/* No violation. Should proceed to vmcall. */
2578 	do_ept_access_op(op);
2579 	skip_exit_vmcall();
2580 
2581 	ept_untwiddle(data->gpa, level, orig_pte);
2582 }
2583 
2584 static void ept_allowed_at_level(int level, unsigned long clear,
2585 				 unsigned long set, enum ept_access_op op)
2586 {
2587 	ept_allowed_at_level_mkhuge(false, level, clear, set, op);
2588 	if (ept_huge_pages_supported(level))
2589 		ept_allowed_at_level_mkhuge(true, level, clear, set, op);
2590 }
2591 
2592 static void ept_allowed(unsigned long clear, unsigned long set,
2593 			enum ept_access_op op)
2594 {
2595 	ept_allowed_at_level(1, clear, set, op);
2596 	ept_allowed_at_level(2, clear, set, op);
2597 	ept_allowed_at_level(3, clear, set, op);
2598 	ept_allowed_at_level(4, clear, set, op);
2599 }
2600 
2601 static void ept_ignored_bit(int bit)
2602 {
2603 	/* Set the bit. */
2604 	ept_allowed(0, 1ul << bit, OP_READ);
2605 	ept_allowed(0, 1ul << bit, OP_WRITE);
2606 	ept_allowed(0, 1ul << bit, OP_EXEC);
2607 
2608 	/* Clear the bit. */
2609 	ept_allowed(1ul << bit, 0, OP_READ);
2610 	ept_allowed(1ul << bit, 0, OP_WRITE);
2611 	ept_allowed(1ul << bit, 0, OP_EXEC);
2612 }
2613 
2614 static void ept_access_allowed(unsigned long access, enum ept_access_op op)
2615 {
2616 	ept_allowed(EPT_PRESENT, access, op);
2617 }
2618 
2619 
2620 static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level,
2621 					     unsigned long clear,
2622 					     unsigned long set,
2623 					     enum ept_access_op op)
2624 {
2625 	struct ept_access_test_data *data = &ept_access_test_data;
2626 	unsigned long orig_pte;
2627 
2628 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2629 
2630 	do_ept_access_op(op);
2631 	assert_exit_reason(VMX_EPT_MISCONFIG);
2632 
2633 	/* Intel 27.2.1, "For all other VM exits, this field is cleared." */
2634 	#if 0
2635 	/* broken: */
2636 	TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0);
2637 	#endif
2638 	#if 0
2639 	/*
2640 	 * broken:
2641 	 * According to description of exit qual for EPT violation,
2642 	 * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid.
2643 	 * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought
2644 	 * to be set for msiconfig.
2645 	 */
2646 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2647 		       (unsigned long) (
2648 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2649 	#endif
2650 
2651 	/* Fix the violation and resume the op loop. */
2652 	ept_untwiddle(data->gpa, level, orig_pte);
2653 	enter_guest();
2654 	skip_exit_vmcall();
2655 }
2656 
2657 static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level,
2658 					  unsigned long clear,
2659 					  unsigned long set)
2660 {
2661 	/* The op shouldn't matter (read, write, exec), so try them all! */
2662 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ);
2663 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE);
2664 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC);
2665 }
2666 
2667 static void ept_misconfig_at_level(int level, unsigned long clear,
2668 				   unsigned long set)
2669 {
2670 	ept_misconfig_at_level_mkhuge(false, level, clear, set);
2671 	if (ept_huge_pages_supported(level))
2672 		ept_misconfig_at_level_mkhuge(true, level, clear, set);
2673 }
2674 
2675 static void ept_misconfig(unsigned long clear, unsigned long set)
2676 {
2677 	ept_misconfig_at_level(1, clear, set);
2678 	ept_misconfig_at_level(2, clear, set);
2679 	ept_misconfig_at_level(3, clear, set);
2680 	ept_misconfig_at_level(4, clear, set);
2681 }
2682 
2683 static void ept_access_misconfig(unsigned long access)
2684 {
2685 	ept_misconfig(EPT_PRESENT, access);
2686 }
2687 
2688 static void ept_reserved_bit_at_level_nohuge(int level, int bit)
2689 {
2690 	/* Setting the bit causes a misconfig. */
2691 	ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit);
2692 
2693 	/* Making the entry non-present turns reserved bits into ignored. */
2694 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2695 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2696 }
2697 
2698 static void ept_reserved_bit_at_level_huge(int level, int bit)
2699 {
2700 	/* Setting the bit causes a misconfig. */
2701 	ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit);
2702 
2703 	/* Making the entry non-present turns reserved bits into ignored. */
2704 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2705 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2706 }
2707 
2708 static void ept_reserved_bit_at_level(int level, int bit)
2709 {
2710 	/* Setting the bit causes a misconfig. */
2711 	ept_misconfig_at_level(level, 0, 1ul << bit);
2712 
2713 	/* Making the entry non-present turns reserved bits into ignored. */
2714 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2715 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2716 }
2717 
2718 static void ept_reserved_bit(int bit)
2719 {
2720 	ept_reserved_bit_at_level(1, bit);
2721 	ept_reserved_bit_at_level(2, bit);
2722 	ept_reserved_bit_at_level(3, bit);
2723 	ept_reserved_bit_at_level(4, bit);
2724 }
2725 
2726 #define PAGE_2M_ORDER 9
2727 #define PAGE_1G_ORDER 18
2728 
2729 static void *get_1g_page(void)
2730 {
2731 	static void *alloc;
2732 
2733 	if (!alloc)
2734 		alloc = alloc_pages(PAGE_1G_ORDER);
2735 	return alloc;
2736 }
2737 
2738 static void ept_access_test_teardown(void *unused)
2739 {
2740 	/* Exit the guest cleanly. */
2741 	do_ept_access_op(OP_EXIT);
2742 }
2743 
2744 static void ept_access_test_guest(void)
2745 {
2746 	struct ept_access_test_data *data = &ept_access_test_data;
2747 	int (*code)(void) = (int (*)(void)) &data->gva[1];
2748 
2749 	while (true) {
2750 		switch (data->op) {
2751 		case OP_READ:
2752 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1);
2753 			break;
2754 		case OP_WRITE:
2755 			*data->gva = MAGIC_VAL_2;
2756 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2);
2757 			*data->gva = MAGIC_VAL_1;
2758 			break;
2759 		case OP_EXEC:
2760 			TEST_ASSERT_EQ(42, code());
2761 			break;
2762 		case OP_FLUSH_TLB:
2763 			write_cr3(read_cr3());
2764 			break;
2765 		case OP_EXIT:
2766 			return;
2767 		default:
2768 			TEST_ASSERT_MSG(false, "Unknown op %d", data->op);
2769 		}
2770 		vmcall();
2771 	}
2772 }
2773 
2774 static void ept_access_test_setup(void)
2775 {
2776 	struct ept_access_test_data *data = &ept_access_test_data;
2777 	unsigned long npages = 1ul << PAGE_1G_ORDER;
2778 	unsigned long size = npages * PAGE_SIZE;
2779 	unsigned long *page_table = current_page_table();
2780 	unsigned long pte;
2781 
2782 	if (setup_ept(false))
2783 		test_skip("EPT not supported");
2784 
2785 	/* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */
2786 	if (cpuid_maxphyaddr() < 40)
2787 		test_skip("Test needs MAXPHYADDR >= 40");
2788 
2789 	test_set_guest(ept_access_test_guest);
2790 	test_add_teardown(ept_access_test_teardown, NULL);
2791 
2792 	data->hva = get_1g_page();
2793 	TEST_ASSERT(data->hva);
2794 	data->hpa = virt_to_phys(data->hva);
2795 
2796 	data->gpa = 1ul << 39;
2797 	data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2),
2798 				   size);
2799 	TEST_ASSERT(!any_present_pages(page_table, data->gva, size));
2800 	install_pages(page_table, data->gpa, size, data->gva);
2801 
2802 	/*
2803 	 * Make sure nothing's mapped here so the tests that screw with the
2804 	 * pml4 entry don't inadvertently break something.
2805 	 */
2806 	TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0);
2807 	TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0);
2808 	install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT);
2809 
2810 	data->hva[0] = MAGIC_VAL_1;
2811 	memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start);
2812 }
2813 
2814 static void ept_access_test_not_present(void)
2815 {
2816 	ept_access_test_setup();
2817 	/* --- */
2818 	ept_access_violation(0, OP_READ, EPT_VLT_RD);
2819 	ept_access_violation(0, OP_WRITE, EPT_VLT_WR);
2820 	ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH);
2821 }
2822 
2823 static void ept_access_test_read_only(void)
2824 {
2825 	ept_access_test_setup();
2826 
2827 	/* r-- */
2828 	ept_access_allowed(EPT_RA, OP_READ);
2829 	ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD);
2830 	ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD);
2831 }
2832 
2833 static void ept_access_test_write_only(void)
2834 {
2835 	ept_access_test_setup();
2836 	/* -w- */
2837 	ept_access_misconfig(EPT_WA);
2838 }
2839 
2840 static void ept_access_test_read_write(void)
2841 {
2842 	ept_access_test_setup();
2843 	/* rw- */
2844 	ept_access_allowed(EPT_RA | EPT_WA, OP_READ);
2845 	ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE);
2846 	ept_access_violation(EPT_RA | EPT_WA, OP_EXEC,
2847 			   EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR);
2848 }
2849 
2850 
2851 static void ept_access_test_execute_only(void)
2852 {
2853 	ept_access_test_setup();
2854 	/* --x */
2855 	if (ept_execute_only_supported()) {
2856 		ept_access_violation(EPT_EA, OP_READ,
2857 				     EPT_VLT_RD | EPT_VLT_PERM_EX);
2858 		ept_access_violation(EPT_EA, OP_WRITE,
2859 				     EPT_VLT_WR | EPT_VLT_PERM_EX);
2860 		ept_access_allowed(EPT_EA, OP_EXEC);
2861 	} else {
2862 		ept_access_misconfig(EPT_EA);
2863 	}
2864 }
2865 
2866 static void ept_access_test_read_execute(void)
2867 {
2868 	ept_access_test_setup();
2869 	/* r-x */
2870 	ept_access_allowed(EPT_RA | EPT_EA, OP_READ);
2871 	ept_access_violation(EPT_RA | EPT_EA, OP_WRITE,
2872 			   EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX);
2873 	ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC);
2874 }
2875 
2876 static void ept_access_test_write_execute(void)
2877 {
2878 	ept_access_test_setup();
2879 	/* -wx */
2880 	ept_access_misconfig(EPT_WA | EPT_EA);
2881 }
2882 
2883 static void ept_access_test_read_write_execute(void)
2884 {
2885 	ept_access_test_setup();
2886 	/* rwx */
2887 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ);
2888 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE);
2889 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC);
2890 }
2891 
2892 static void ept_access_test_reserved_bits(void)
2893 {
2894 	int i;
2895 	int maxphyaddr;
2896 
2897 	ept_access_test_setup();
2898 
2899 	/* Reserved bits above maxphyaddr. */
2900 	maxphyaddr = cpuid_maxphyaddr();
2901 	for (i = maxphyaddr; i <= 51; i++) {
2902 		report_prefix_pushf("reserved_bit=%d", i);
2903 		ept_reserved_bit(i);
2904 		report_prefix_pop();
2905 	}
2906 
2907 	/* Level-specific reserved bits. */
2908 	ept_reserved_bit_at_level_nohuge(2, 3);
2909 	ept_reserved_bit_at_level_nohuge(2, 4);
2910 	ept_reserved_bit_at_level_nohuge(2, 5);
2911 	ept_reserved_bit_at_level_nohuge(2, 6);
2912 	/* 2M alignment. */
2913 	for (i = 12; i < 20; i++) {
2914 		report_prefix_pushf("reserved_bit=%d", i);
2915 		ept_reserved_bit_at_level_huge(2, i);
2916 		report_prefix_pop();
2917 	}
2918 	ept_reserved_bit_at_level_nohuge(3, 3);
2919 	ept_reserved_bit_at_level_nohuge(3, 4);
2920 	ept_reserved_bit_at_level_nohuge(3, 5);
2921 	ept_reserved_bit_at_level_nohuge(3, 6);
2922 	/* 1G alignment. */
2923 	for (i = 12; i < 29; i++) {
2924 		report_prefix_pushf("reserved_bit=%d", i);
2925 		ept_reserved_bit_at_level_huge(3, i);
2926 		report_prefix_pop();
2927 	}
2928 	ept_reserved_bit_at_level(4, 3);
2929 	ept_reserved_bit_at_level(4, 4);
2930 	ept_reserved_bit_at_level(4, 5);
2931 	ept_reserved_bit_at_level(4, 6);
2932 	ept_reserved_bit_at_level(4, 7);
2933 }
2934 
2935 static void ept_access_test_ignored_bits(void)
2936 {
2937 	ept_access_test_setup();
2938 	/*
2939 	 * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as
2940 	 * far as translation is concerned even if AD bits are enabled in the
2941 	 * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution
2942 	 * control is 0.
2943 	 */
2944 	ept_ignored_bit(8);
2945 	ept_ignored_bit(9);
2946 	ept_ignored_bit(10);
2947 	ept_ignored_bit(11);
2948 	ept_ignored_bit(52);
2949 	ept_ignored_bit(53);
2950 	ept_ignored_bit(54);
2951 	ept_ignored_bit(55);
2952 	ept_ignored_bit(56);
2953 	ept_ignored_bit(57);
2954 	ept_ignored_bit(58);
2955 	ept_ignored_bit(59);
2956 	ept_ignored_bit(60);
2957 	ept_ignored_bit(61);
2958 	ept_ignored_bit(62);
2959 	ept_ignored_bit(63);
2960 }
2961 
2962 static void ept_access_test_paddr_not_present_ad_disabled(void)
2963 {
2964 	ept_access_test_setup();
2965 	ept_disable_ad_bits();
2966 
2967 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD);
2968 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD);
2969 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD);
2970 }
2971 
2972 static void ept_access_test_paddr_not_present_ad_enabled(void)
2973 {
2974 	u64 qual = EPT_VLT_RD | EPT_VLT_WR;
2975 
2976 	ept_access_test_setup();
2977 	ept_enable_ad_bits_or_skip_test();
2978 
2979 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual);
2980 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual);
2981 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual);
2982 }
2983 
2984 static void ept_access_test_paddr_read_only_ad_disabled(void)
2985 {
2986 	/*
2987 	 * When EPT AD bits are disabled, all accesses to guest paging
2988 	 * structures are reported separately as a read and (after
2989 	 * translation of the GPA to host physical address) a read+write
2990 	 * if the A/D bits have to be set.
2991 	 */
2992 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
2993 
2994 	ept_access_test_setup();
2995 	ept_disable_ad_bits();
2996 
2997 	/* Can't update A bit, so all accesses fail. */
2998 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
2999 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
3000 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
3001 	/* AD bits disabled, so only writes try to update the D bit. */
3002 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ);
3003 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
3004 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC);
3005 	/* Both A and D already set, so read-only is OK. */
3006 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ);
3007 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE);
3008 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC);
3009 }
3010 
3011 static void ept_access_test_paddr_read_only_ad_enabled(void)
3012 {
3013 	/*
3014 	 * When EPT AD bits are enabled, all accesses to guest paging
3015 	 * structures are considered writes as far as EPT translation
3016 	 * is concerned.
3017 	 */
3018 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
3019 
3020 	ept_access_test_setup();
3021 	ept_enable_ad_bits_or_skip_test();
3022 
3023 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
3024 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
3025 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
3026 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual);
3027 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
3028 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual);
3029 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual);
3030 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual);
3031 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual);
3032 }
3033 
3034 static void ept_access_test_paddr_read_write(void)
3035 {
3036 	ept_access_test_setup();
3037 	/* Read-write access to paging structure. */
3038 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ);
3039 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE);
3040 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC);
3041 }
3042 
3043 static void ept_access_test_paddr_read_write_execute(void)
3044 {
3045 	ept_access_test_setup();
3046 	/* RWX access to paging structure. */
3047 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ);
3048 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE);
3049 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC);
3050 }
3051 
3052 static void ept_access_test_paddr_read_execute_ad_disabled(void)
3053 {
3054   	/*
3055 	 * When EPT AD bits are disabled, all accesses to guest paging
3056 	 * structures are reported separately as a read and (after
3057 	 * translation of the GPA to host physical address) a read+write
3058 	 * if the A/D bits have to be set.
3059 	 */
3060 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
3061 
3062 	ept_access_test_setup();
3063 	ept_disable_ad_bits();
3064 
3065 	/* Can't update A bit, so all accesses fail. */
3066 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
3067 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
3068 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
3069 	/* AD bits disabled, so only writes try to update the D bit. */
3070 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ);
3071 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
3072 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC);
3073 	/* Both A and D already set, so read-only is OK. */
3074 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ);
3075 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE);
3076 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC);
3077 }
3078 
3079 static void ept_access_test_paddr_read_execute_ad_enabled(void)
3080 {
3081 	/*
3082 	 * When EPT AD bits are enabled, all accesses to guest paging
3083 	 * structures are considered writes as far as EPT translation
3084 	 * is concerned.
3085 	 */
3086 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
3087 
3088 	ept_access_test_setup();
3089 	ept_enable_ad_bits_or_skip_test();
3090 
3091 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
3092 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
3093 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
3094 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual);
3095 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
3096 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual);
3097 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual);
3098 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual);
3099 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual);
3100 }
3101 
3102 static void ept_access_test_paddr_not_present_page_fault(void)
3103 {
3104 	ept_access_test_setup();
3105 	/*
3106 	 * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is
3107 	 * page is read-only in EPT but GVA is also mapped read only in PT.
3108 	 * Thus guest page fault before host takes EPT violation for trying to
3109 	 * update A bit.
3110 	 */
3111 }
3112 
3113 static void ept_access_test_force_2m_page(void)
3114 {
3115 	ept_access_test_setup();
3116 
3117 	TEST_ASSERT_EQ(ept_2m_supported(), true);
3118 	ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ);
3119 	ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE,
3120 				      EPT_VLT_WR | EPT_VLT_PERM_RD |
3121 				      EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
3122 	ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA);
3123 }
3124 
3125 static bool invvpid_valid(u64 type, u64 vpid, u64 gla)
3126 {
3127 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3128 
3129 	TEST_ASSERT(msr & VPID_CAP_INVVPID);
3130 
3131 	if (type < INVVPID_ADDR || type > INVVPID_CONTEXT_LOCAL)
3132 		return false;
3133 
3134 	if (!(msr & (1ull << (type + VPID_CAP_INVVPID_TYPES_SHIFT))))
3135 		return false;
3136 
3137 	if (vpid >> 16)
3138 		return false;
3139 
3140 	if (type != INVVPID_ALL && !vpid)
3141 		return false;
3142 
3143 	if (type == INVVPID_ADDR && !is_canonical(gla))
3144 		return false;
3145 
3146 	return true;
3147 }
3148 
3149 static void try_invvpid(u64 type, u64 vpid, u64 gla)
3150 {
3151 	int rc;
3152 	bool valid = invvpid_valid(type, vpid, gla);
3153 	u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT
3154 		: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID;
3155 	/*
3156 	 * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so
3157 	 * that we can tell if it is updated by INVVPID.
3158 	 */
3159 	vmcs_read(~0);
3160 	rc = invvpid(type, vpid, gla);
3161 	report("INVVPID type %ld VPID %lx GLA %lx %s",
3162 	       !rc == valid, type, vpid, gla,
3163 	       valid ? "passes" : "fails");
3164 	report("After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)",
3165 	       vmcs_read(VMX_INST_ERROR) == expected,
3166 	       rc ? "failed" : "successful",
3167 	       expected, vmcs_read(VMX_INST_ERROR));
3168 }
3169 
3170 static void ds_invvpid(void *data)
3171 {
3172 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3173 	u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
3174 
3175 	TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
3176 	asm volatile("invvpid %0, %1"
3177 		     :
3178 		     : "m"(*(struct invvpid_operand *)data),
3179 		       "r"(type));
3180 }
3181 
3182 /*
3183  * The SS override is ignored in 64-bit mode, so we use an addressing
3184  * mode with %rsp as the base register to generate an implicit SS
3185  * reference.
3186  */
3187 static void ss_invvpid(void *data)
3188 {
3189 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3190 	u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
3191 
3192 	TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
3193 	asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1"
3194 		     : "+r"(data)
3195 		     : "r"(type));
3196 }
3197 
3198 static void invvpid_test_gp(void)
3199 {
3200 	bool fault;
3201 
3202 	fault = test_for_exception(GP_VECTOR, &ds_invvpid,
3203 				   (void *)NONCANONICAL);
3204 	report("INVVPID with non-canonical DS operand raises #GP", fault);
3205 }
3206 
3207 static void invvpid_test_ss(void)
3208 {
3209 	bool fault;
3210 
3211 	fault = test_for_exception(SS_VECTOR, &ss_invvpid,
3212 				   (void *)NONCANONICAL);
3213 	report("INVVPID with non-canonical SS operand raises #SS", fault);
3214 }
3215 
3216 static void invvpid_test_pf(void)
3217 {
3218 	void *vpage = alloc_vpage();
3219 	bool fault;
3220 
3221 	fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage);
3222 	report("INVVPID with unmapped operand raises #PF", fault);
3223 }
3224 
3225 static void try_compat_invvpid(void *unused)
3226 {
3227 	struct far_pointer32 fp = {
3228 		.offset = (uintptr_t)&&invvpid,
3229 		.selector = KERNEL_CS32,
3230 	};
3231 	register uintptr_t rsp asm("rsp");
3232 
3233 	TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid,
3234 			"Code address too high.");
3235 	TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high.");
3236 
3237 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid);
3238 	return;
3239 invvpid:
3240 	asm volatile (".code32;"
3241 		      "invvpid (%eax), %eax;"
3242 		      "lret;"
3243 		      ".code64");
3244 	__builtin_unreachable();
3245 }
3246 
3247 static void invvpid_test_compatibility_mode(void)
3248 {
3249 	bool fault;
3250 
3251 	fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL);
3252 	report("Compatibility mode INVVPID raises #UD", fault);
3253 }
3254 
3255 static void invvpid_test_not_in_vmx_operation(void)
3256 {
3257 	bool fault;
3258 
3259 	TEST_ASSERT(!vmx_off());
3260 	fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL);
3261 	report("INVVPID outside of VMX operation raises #UD", fault);
3262 	TEST_ASSERT(!vmx_on());
3263 }
3264 
3265 /*
3266  * This does not test real-address mode, virtual-8086 mode, protected mode,
3267  * or CPL > 0.
3268  */
3269 static void invvpid_test_v2(void)
3270 {
3271 	u64 msr;
3272 	int i;
3273 	unsigned types = 0;
3274 	unsigned type;
3275 
3276 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
3277 	    !(ctrl_cpu_rev[1].clr & CPU_VPID))
3278 		test_skip("VPID not supported");
3279 
3280 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3281 
3282 	if (!(msr & VPID_CAP_INVVPID))
3283 		test_skip("INVVPID not supported.\n");
3284 
3285 	if (msr & VPID_CAP_INVVPID_ADDR)
3286 		types |= 1u << INVVPID_ADDR;
3287 	if (msr & VPID_CAP_INVVPID_CXTGLB)
3288 		types |= 1u << INVVPID_CONTEXT_GLOBAL;
3289 	if (msr & VPID_CAP_INVVPID_ALL)
3290 		types |= 1u << INVVPID_ALL;
3291 	if (msr & VPID_CAP_INVVPID_CXTLOC)
3292 		types |= 1u << INVVPID_CONTEXT_LOCAL;
3293 
3294 	if (!types)
3295 		test_skip("No INVVPID types supported.\n");
3296 
3297 	for (i = -127; i < 128; i++)
3298 		try_invvpid(i, 0xffff, 0);
3299 
3300 	/*
3301 	 * VPID must not be more than 16 bits.
3302 	 */
3303 	for (i = 0; i < 64; i++)
3304 		for (type = 0; type < 4; type++)
3305 			if (types & (1u << type))
3306 				try_invvpid(type, 1ul << i, 0);
3307 
3308 	/*
3309 	 * VPID must not be zero, except for "all contexts."
3310 	 */
3311 	for (type = 0; type < 4; type++)
3312 		if (types & (1u << type))
3313 			try_invvpid(type, 0, 0);
3314 
3315 	/*
3316 	 * The gla operand is only validated for single-address INVVPID.
3317 	 */
3318 	if (types & (1u << INVVPID_ADDR))
3319 		try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL);
3320 
3321 	invvpid_test_gp();
3322 	invvpid_test_ss();
3323 	invvpid_test_pf();
3324 	invvpid_test_compatibility_mode();
3325 	invvpid_test_not_in_vmx_operation();
3326 }
3327 
3328 /*
3329  * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it
3330  * at least as far as the guest-state checks. Returns false if the
3331  * VMLAUNCH fails early and execution falls through to the next
3332  * instruction.
3333  */
3334 static bool vmlaunch_succeeds(void)
3335 {
3336 	u32 exit_reason;
3337 
3338 	/*
3339 	 * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to
3340 	 * unsupported VMCS component"). The caller can then check
3341 	 * to see if a failed VM-entry sets VMX_INST_ERR as expected.
3342 	 */
3343 	vmcs_write(~0u, 0);
3344 
3345 	vmcs_write(HOST_RIP, (uintptr_t)&&success);
3346 	__asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch"
3347 				   :
3348 				   : "r" ((u64)HOST_RSP)
3349 				   : "cc", "memory"
3350 				   : success);
3351 	return false;
3352 success:
3353 	exit_reason = vmcs_read(EXI_REASON);
3354 	TEST_ASSERT(exit_reason == (VMX_FAIL_STATE | VMX_ENTRY_FAILURE) ||
3355 		    exit_reason == (VMX_FAIL_MSR | VMX_ENTRY_FAILURE));
3356 	return true;
3357 }
3358 
3359 /*
3360  * Try to launch the current VMCS.
3361  */
3362 static void test_vmx_vmlaunch(u32 xerror)
3363 {
3364 	bool success = vmlaunch_succeeds();
3365 	u32 vmx_inst_err;
3366 
3367 	report("vmlaunch %s", success == !xerror,
3368 	       !xerror ? "succeeds" : "fails");
3369 	if (!success && xerror) {
3370 		vmx_inst_err = vmcs_read(VMX_INST_ERROR);
3371 		report("VMX inst error is %d (actual %d)",
3372 		       vmx_inst_err == xerror, xerror, vmx_inst_err);
3373 	}
3374 }
3375 
3376 static void test_vmx_invalid_controls(void)
3377 {
3378 	test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3379 }
3380 
3381 static void test_vmx_valid_controls(void)
3382 {
3383 	test_vmx_vmlaunch(0);
3384 }
3385 
3386 /*
3387  * Test a particular value of a VM-execution control bit, if the value
3388  * is required or if the value is zero.
3389  */
3390 static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr,
3391 				    enum Encoding encoding, unsigned bit,
3392 				    unsigned val)
3393 {
3394 	u32 mask = 1u << bit;
3395 	bool expected;
3396 	u32 controls;
3397 
3398 	if (msr.set & mask)
3399 		TEST_ASSERT(msr.clr & mask);
3400 
3401 	/*
3402 	 * We can't arbitrarily turn on a control bit, because it may
3403 	 * introduce dependencies on other VMCS fields. So, we only
3404 	 * test turning on bits that have a required setting.
3405 	 */
3406 	if (val && (msr.clr & mask) && !(msr.set & mask))
3407 		return;
3408 
3409 	report_prefix_pushf("%s %s bit %d",
3410 			    val ? "Set" : "Clear", name, bit);
3411 
3412 	controls = vmcs_read(encoding);
3413 	if (val) {
3414 		vmcs_write(encoding, msr.set | mask);
3415 		expected = (msr.clr & mask);
3416 	} else {
3417 		vmcs_write(encoding, msr.set & ~mask);
3418 		expected = !(msr.set & mask);
3419 	}
3420 	if (expected)
3421 		test_vmx_valid_controls();
3422 	else
3423 		test_vmx_invalid_controls();
3424 	vmcs_write(encoding, controls);
3425 	report_prefix_pop();
3426 }
3427 
3428 /*
3429  * Test reserved values of a VM-execution control bit, based on the
3430  * allowed bit settings from the corresponding VMX capability MSR.
3431  */
3432 static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr,
3433 			      enum Encoding encoding, unsigned bit)
3434 {
3435 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0);
3436 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1);
3437 }
3438 
3439 /*
3440  * Reserved bits in the pin-based VM-execution controls must be set
3441  * properly. Software may consult the VMX capability MSRs to determine
3442  * the proper settings.
3443  * [Intel SDM]
3444  */
3445 static void test_pin_based_ctls(void)
3446 {
3447 	unsigned bit;
3448 
3449 	printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" :
3450 	       "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val);
3451 	for (bit = 0; bit < 32; bit++)
3452 		test_rsvd_ctl_bit("pin-based controls",
3453 				  ctrl_pin_rev, PIN_CONTROLS, bit);
3454 }
3455 
3456 /*
3457  * Reserved bits in the primary processor-based VM-execution controls
3458  * must be set properly. Software may consult the VMX capability MSRs
3459  * to determine the proper settings.
3460  * [Intel SDM]
3461  */
3462 static void test_primary_processor_based_ctls(void)
3463 {
3464 	unsigned bit;
3465 
3466 	printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" :
3467 	       "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val);
3468 	for (bit = 0; bit < 32; bit++)
3469 		test_rsvd_ctl_bit("primary processor-based controls",
3470 				  ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit);
3471 }
3472 
3473 /*
3474  * If the "activate secondary controls" primary processor-based
3475  * VM-execution control is 1, reserved bits in the secondary
3476  * processor-based VM-execution controls must be cleared. Software may
3477  * consult the VMX capability MSRs to determine which bits are
3478  * reserved.
3479  * If the "activate secondary controls" primary processor-based
3480  * VM-execution control is 0 (or if the processor does not support the
3481  * 1-setting of that control), no checks are performed on the
3482  * secondary processor-based VM-execution controls.
3483  * [Intel SDM]
3484  */
3485 static void test_secondary_processor_based_ctls(void)
3486 {
3487 	u32 primary;
3488 	u32 secondary;
3489 	unsigned bit;
3490 
3491 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY))
3492 		return;
3493 
3494 	primary = vmcs_read(CPU_EXEC_CTRL0);
3495 	secondary = vmcs_read(CPU_EXEC_CTRL1);
3496 
3497 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3498 	printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val);
3499 	for (bit = 0; bit < 32; bit++)
3500 		test_rsvd_ctl_bit("secondary processor-based controls",
3501 				  ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit);
3502 
3503 	/*
3504 	 * When the "activate secondary controls" VM-execution control
3505 	 * is clear, there are no checks on the secondary controls.
3506 	 */
3507 	vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3508 	vmcs_write(CPU_EXEC_CTRL1, ~0);
3509 	report("Secondary processor-based controls ignored",
3510 	       vmlaunch_succeeds());
3511 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3512 	vmcs_write(CPU_EXEC_CTRL0, primary);
3513 }
3514 
3515 static void try_cr3_target_count(unsigned i, unsigned max)
3516 {
3517 	report_prefix_pushf("CR3 target count 0x%x", i);
3518 	vmcs_write(CR3_TARGET_COUNT, i);
3519 	if (i <= max)
3520 		test_vmx_valid_controls();
3521 	else
3522 		test_vmx_invalid_controls();
3523 	report_prefix_pop();
3524 }
3525 
3526 /*
3527  * The CR3-target count must not be greater than 4. Future processors
3528  * may support a different number of CR3-target values. Software
3529  * should read the VMX capability MSR IA32_VMX_MISC to determine the
3530  * number of values supported.
3531  * [Intel SDM]
3532  */
3533 static void test_cr3_targets(void)
3534 {
3535 	unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff;
3536 	u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT);
3537 	unsigned i;
3538 
3539 	printf("\nSupported CR3 targets: %d\n", supported_targets);
3540 	TEST_ASSERT(supported_targets <= 256);
3541 
3542 	try_cr3_target_count(-1u, supported_targets);
3543 	try_cr3_target_count(0x80000000, supported_targets);
3544 	try_cr3_target_count(0x7fffffff, supported_targets);
3545 	for (i = 0; i <= supported_targets + 1; i++)
3546 		try_cr3_target_count(i, supported_targets);
3547 	vmcs_write(CR3_TARGET_COUNT, cr3_targets);
3548 }
3549 
3550 /*
3551  * Test a particular address setting in the VMCS
3552  */
3553 static void test_vmcs_addr(const char *name,
3554 			   enum Encoding encoding,
3555 			   u64 align,
3556 			   bool ignored,
3557 			   bool skip_beyond_mapped_ram,
3558 			   u64 addr)
3559 {
3560 	report_prefix_pushf("%s = %lx", name, addr);
3561 	vmcs_write(encoding, addr);
3562 	if (skip_beyond_mapped_ram &&
3563 	    addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - align &&
3564 	    addr < (1ul << cpuid_maxphyaddr()))
3565 		printf("Skipping physical address beyond mapped RAM\n");
3566 	else if (ignored || (IS_ALIGNED(addr, align) &&
3567 	    addr < (1ul << cpuid_maxphyaddr())))
3568 		test_vmx_valid_controls();
3569 	else
3570 		test_vmx_invalid_controls();
3571 	report_prefix_pop();
3572 }
3573 
3574 /*
3575  * Test interesting values for a VMCS address
3576  */
3577 static void test_vmcs_addr_values(const char *name,
3578 				  enum Encoding encoding,
3579 				  u64 align,
3580 				  bool ignored,
3581 				  bool skip_beyond_mapped_ram,
3582 				  u32 bit_start, u32 bit_end)
3583 {
3584 	unsigned i;
3585 	u64 orig_val = vmcs_read(encoding);
3586 
3587 	for (i = bit_start; i <= bit_end; i++)
3588 		test_vmcs_addr(name, encoding, align, ignored,
3589 			       skip_beyond_mapped_ram, 1ul << i);
3590 
3591 	test_vmcs_addr(name, encoding, align, ignored,
3592 		       skip_beyond_mapped_ram, PAGE_SIZE - 1);
3593 	test_vmcs_addr(name, encoding, align, ignored,
3594 		       skip_beyond_mapped_ram, PAGE_SIZE);
3595 	test_vmcs_addr(name, encoding, align, ignored,
3596 		       skip_beyond_mapped_ram,
3597 		      (1ul << cpuid_maxphyaddr()) - PAGE_SIZE);
3598 	test_vmcs_addr(name, encoding, align, ignored,
3599 		       skip_beyond_mapped_ram, -1ul);
3600 
3601 	vmcs_write(encoding, orig_val);
3602 }
3603 
3604 /*
3605  * Test a physical address reference in the VMCS, when the corresponding
3606  * feature is enabled and when the corresponding feature is disabled.
3607  */
3608 static void test_vmcs_addr_reference(u32 control_bit, enum Encoding field,
3609 				     const char *field_name,
3610 				     const char *control_name, u64 align,
3611 				     bool skip_beyond_mapped_ram,
3612 				     bool control_primary)
3613 {
3614 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
3615 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
3616 	u64 page_addr;
3617 
3618 	if (control_primary) {
3619 		if (!(ctrl_cpu_rev[0].clr & control_bit))
3620 			return;
3621 	} else {
3622 		if (!(ctrl_cpu_rev[1].clr & control_bit))
3623 			return;
3624 	}
3625 
3626 	page_addr = vmcs_read(field);
3627 
3628 	report_prefix_pushf("%s enabled", control_name);
3629 	if (control_primary) {
3630 		vmcs_write(CPU_EXEC_CTRL0, primary | control_bit);
3631 	} else {
3632 		vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3633 		vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit);
3634 	}
3635 
3636 	test_vmcs_addr_values(field_name, field, align, false,
3637 			      skip_beyond_mapped_ram, 0, 63);
3638 	report_prefix_pop();
3639 
3640 	report_prefix_pushf("%s disabled", control_name);
3641 	if (control_primary) {
3642 		vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit);
3643 	} else {
3644 		vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3645 		vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit);
3646 	}
3647 
3648 	test_vmcs_addr_values(field_name, field, align, true, false, 0, 63);
3649 	report_prefix_pop();
3650 
3651 	vmcs_write(field, page_addr);
3652 	vmcs_write(CPU_EXEC_CTRL0, primary);
3653 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3654 }
3655 
3656 /*
3657  * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of
3658  * each I/O-bitmap address must be 0. Neither address should set any
3659  * bits beyond the processor's physical-address width.
3660  * [Intel SDM]
3661  */
3662 static void test_io_bitmaps(void)
3663 {
3664 	test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_A,
3665 				 "I/O bitmap A", "Use I/O bitmaps",
3666 				 PAGE_SIZE, false, true);
3667 	test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_B,
3668 				 "I/O bitmap B", "Use I/O bitmaps",
3669 				 PAGE_SIZE, false, true);
3670 }
3671 
3672 /*
3673  * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of
3674  * the MSR-bitmap address must be 0. The address should not set any
3675  * bits beyond the processor's physical-address width.
3676  * [Intel SDM]
3677  */
3678 static void test_msr_bitmap(void)
3679 {
3680 	test_vmcs_addr_reference(CPU_MSR_BITMAP, MSR_BITMAP,
3681 				 "MSR bitmap", "Use MSR bitmaps",
3682 				 PAGE_SIZE, false, true);
3683 }
3684 
3685 /*
3686  * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC
3687  * address must satisfy the following checks:
3688  * - Bits 11:0 of the address must be 0.
3689  * - The address should not set any bits beyond the processor's
3690  *   physical-address width.
3691  * [Intel SDM]
3692  */
3693 static void test_apic_virt_addr(void)
3694 {
3695 	/*
3696 	 * Ensure the processor will never use the virtual-APIC page, since
3697 	 * we will point it to invalid RAM.  Otherwise KVM is puzzled about
3698 	 * what we're trying to achieve and fails vmentry.
3699 	 */
3700 	u32 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
3701 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0 | CPU_CR8_LOAD | CPU_CR8_STORE);
3702 	test_vmcs_addr_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR,
3703 				 "virtual-APIC address", "Use TPR shadow",
3704 				 PAGE_SIZE, false, true);
3705 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
3706 }
3707 
3708 /*
3709  * If the "virtualize APIC-accesses" VM-execution control is 1, the
3710  * APIC-access address must satisfy the following checks:
3711  *  - Bits 11:0 of the address must be 0.
3712  *  - The address should not set any bits beyond the processor's
3713  *    physical-address width.
3714  * [Intel SDM]
3715  */
3716 static void test_apic_access_addr(void)
3717 {
3718 	void *apic_access_page = alloc_page();
3719 
3720 	vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page));
3721 
3722 	test_vmcs_addr_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR,
3723 				 "APIC-access address",
3724 				 "virtualize APIC-accesses", PAGE_SIZE,
3725 				 true, false);
3726 }
3727 
3728 static bool set_bit_pattern(u8 mask, u32 *secondary)
3729 {
3730 	u8 i;
3731 	bool flag = false;
3732 	u32 test_bits[3] = {
3733 		CPU_VIRT_X2APIC,
3734 		CPU_APIC_REG_VIRT,
3735 		CPU_VINTD
3736 	};
3737 
3738         for (i = 0; i < ARRAY_SIZE(test_bits); i++) {
3739 		if ((mask & (1u << i)) &&
3740 		    (ctrl_cpu_rev[1].clr & test_bits[i])) {
3741 			*secondary |= test_bits[i];
3742 			flag = true;
3743 		}
3744 	}
3745 
3746 	return (flag);
3747 }
3748 
3749 /*
3750  * If the "use TPR shadow" VM-execution control is 0, the following
3751  * VM-execution controls must also be 0:
3752  * 	- virtualize x2APIC mode
3753  *	- APIC-register virtualization
3754  *	- virtual-interrupt delivery
3755  *    [Intel SDM]
3756  *
3757  * 2. If the "virtualize x2APIC mode" VM-execution control is 1, the
3758  *    "virtualize APIC accesses" VM-execution control must be 0.
3759  *    [Intel SDM]
3760  */
3761 static void test_apic_virtual_ctls(void)
3762 {
3763 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3764 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3765 	u32 primary = saved_primary;
3766 	u32 secondary = saved_secondary;
3767 	bool ctrl = false;
3768 	char str[10] = "disabled";
3769 	u8 i = 0, j;
3770 
3771 	/*
3772 	 * First test
3773 	 */
3774 	if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) ==
3775 	    (CPU_SECONDARY | CPU_TPR_SHADOW)))
3776 		return;
3777 
3778 	primary |= CPU_SECONDARY;
3779 	primary &= ~CPU_TPR_SHADOW;
3780 	vmcs_write(CPU_EXEC_CTRL0, primary);
3781 
3782 	while (1) {
3783 		for (j = 1; j < 8; j++) {
3784 			secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD);
3785 			if (primary & CPU_TPR_SHADOW) {
3786 				ctrl = true;
3787 			} else {
3788 				if (! set_bit_pattern(j, &secondary))
3789 					ctrl = true;
3790 				else
3791 					ctrl = false;
3792 			}
3793 
3794 			vmcs_write(CPU_EXEC_CTRL1, secondary);
3795 			report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s",
3796 				str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled");
3797 			if (ctrl)
3798 				test_vmx_valid_controls();
3799 			else
3800 				test_vmx_invalid_controls();
3801 			report_prefix_pop();
3802 		}
3803 
3804 		if (i == 1)
3805 			break;
3806 		i++;
3807 
3808 		primary |= CPU_TPR_SHADOW;
3809 		vmcs_write(CPU_EXEC_CTRL0, primary);
3810 		strcpy(str, "enabled");
3811 	}
3812 
3813 	/*
3814 	 * Second test
3815 	 */
3816 	u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES);
3817 
3818 	primary = saved_primary;
3819 	secondary = saved_secondary;
3820 	if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls))
3821 		return;
3822 
3823 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3824 	secondary &= ~CPU_VIRT_APIC_ACCESSES;
3825 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC);
3826 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled");
3827 	test_vmx_valid_controls();
3828 	report_prefix_pop();
3829 
3830 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES);
3831 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled");
3832 	test_vmx_valid_controls();
3833 	report_prefix_pop();
3834 
3835 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC);
3836 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled");
3837 	test_vmx_invalid_controls();
3838 	report_prefix_pop();
3839 
3840 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES);
3841 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled");
3842 	test_vmx_valid_controls();
3843 	report_prefix_pop();
3844 
3845 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3846 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3847 }
3848 
3849 /*
3850  * If the "virtual-interrupt delivery" VM-execution control is 1, the
3851  * "external-interrupt exiting" VM-execution control must be 1.
3852  * [Intel SDM]
3853  */
3854 static void test_virtual_intr_ctls(void)
3855 {
3856 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3857 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3858 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
3859 	u32 primary = saved_primary;
3860 	u32 secondary = saved_secondary;
3861 	u32 pin = saved_pin;
3862 
3863 	if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) &&
3864 	    (ctrl_pin_rev.clr & PIN_EXTINT)))
3865 		return;
3866 
3867 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
3868 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD);
3869 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
3870 	report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled");
3871 	test_vmx_valid_controls();
3872 	report_prefix_pop();
3873 
3874 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD);
3875 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
3876 	test_vmx_invalid_controls();
3877 	report_prefix_pop();
3878 
3879 	vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT);
3880 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled");
3881 	test_vmx_valid_controls();
3882 	report_prefix_pop();
3883 
3884 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
3885 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
3886 	test_vmx_invalid_controls();
3887 	report_prefix_pop();
3888 
3889 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3890 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3891 	vmcs_write(PIN_CONTROLS, saved_pin);
3892 }
3893 
3894 static void test_pi_desc_addr(u64 addr, bool ctrl)
3895 {
3896 	vmcs_write(POSTED_INTR_DESC_ADDR, addr);
3897 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr);
3898 	if (ctrl)
3899 		test_vmx_valid_controls();
3900 	else
3901 		test_vmx_invalid_controls();
3902 	report_prefix_pop();
3903 }
3904 
3905 /*
3906  * If the “process posted interrupts†VM-execution control is 1, the
3907  * following must be true:
3908  *
3909  *	- The “virtual-interrupt delivery†VM-execution control is 1.
3910  *	- The “acknowledge interrupt on exit†VM-exit control is 1.
3911  *	- The posted-interrupt notification vector has a value in the
3912  *	- range 0–255 (bits 15:8 are all 0).
3913  *	- Bits 5:0 of the posted-interrupt descriptor address are all 0.
3914  *	- The posted-interrupt descriptor address does not set any bits
3915  *	  beyond the processor's physical-address width.
3916  * [Intel SDM]
3917  */
3918 static void test_posted_intr(void)
3919 {
3920 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3921 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3922 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
3923 	u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS);
3924 	u32 primary = saved_primary;
3925 	u32 secondary = saved_secondary;
3926 	u32 pin = saved_pin;
3927 	u32 exit_ctl = exit_ctl_saved;
3928 	u16 vec;
3929 	int i;
3930 
3931 	if (!((ctrl_pin_rev.clr & PIN_POST_INTR) &&
3932 	    (ctrl_cpu_rev[1].clr & CPU_VINTD) &&
3933 	    (ctrl_exit_rev.clr & EXI_INTA)))
3934 		return;
3935 
3936 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
3937 
3938 	/*
3939 	 * Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit
3940 	 */
3941 	pin |= PIN_POST_INTR;
3942 	vmcs_write(PIN_CONTROLS, pin);
3943 	secondary &= ~CPU_VINTD;
3944 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3945 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled");
3946 	test_vmx_invalid_controls();
3947 	report_prefix_pop();
3948 
3949 	secondary |= CPU_VINTD;
3950 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3951 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled");
3952 	test_vmx_invalid_controls();
3953 	report_prefix_pop();
3954 
3955 	exit_ctl &= ~EXI_INTA;
3956 	vmcs_write(EXI_CONTROLS, exit_ctl);
3957 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled");
3958 	test_vmx_invalid_controls();
3959 	report_prefix_pop();
3960 
3961 	exit_ctl |= EXI_INTA;
3962 	vmcs_write(EXI_CONTROLS, exit_ctl);
3963 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
3964 	test_vmx_valid_controls();
3965 	report_prefix_pop();
3966 
3967 	secondary &= ~CPU_VINTD;
3968 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3969 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled");
3970 	test_vmx_invalid_controls();
3971 	report_prefix_pop();
3972 
3973 	secondary |= CPU_VINTD;
3974 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3975 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
3976 	test_vmx_valid_controls();
3977 	report_prefix_pop();
3978 
3979 	/*
3980 	 * Test posted-interrupt notification vector
3981 	 */
3982 	for (i = 0; i < 8; i++) {
3983 		vec = (1ul << i);
3984 		vmcs_write(PINV, vec);
3985 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
3986 		test_vmx_valid_controls();
3987 		report_prefix_pop();
3988 	}
3989 	for (i = 8; i < 16; i++) {
3990 		vec = (1ul << i);
3991 		vmcs_write(PINV, vec);
3992 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
3993 		test_vmx_invalid_controls();
3994 		report_prefix_pop();
3995 	}
3996 
3997 	vec &= ~(0xff << 8);
3998 	vmcs_write(PINV, vec);
3999 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
4000 	test_vmx_valid_controls();
4001 	report_prefix_pop();
4002 
4003 	/*
4004 	 * Test posted-interrupt descriptor addresss
4005 	 */
4006 	for (i = 0; i < 6; i++) {
4007 		test_pi_desc_addr(1ul << i, false);
4008 	}
4009 
4010 	test_pi_desc_addr(0xf0, false);
4011 	test_pi_desc_addr(0xff, false);
4012 	test_pi_desc_addr(0x0f, false);
4013 	test_pi_desc_addr(0x8000, true);
4014 	test_pi_desc_addr(0x00, true);
4015 	test_pi_desc_addr(0xc000, true);
4016 
4017 	test_vmcs_addr_values("process-posted interrupts",
4018 			       POSTED_INTR_DESC_ADDR, 64,
4019 			       false, false, 0, 63);
4020 
4021 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4022 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4023 	vmcs_write(PIN_CONTROLS, saved_pin);
4024 }
4025 
4026 static void test_apic_ctls(void)
4027 {
4028 	test_apic_virt_addr();
4029 	test_apic_access_addr();
4030 	test_apic_virtual_ctls();
4031 	test_virtual_intr_ctls();
4032 	test_posted_intr();
4033 }
4034 
4035 /*
4036  * If the “enable VPID†VM-execution control is 1, the value of the
4037  * of the VPID VM-execution control field must not be 0000H.
4038  * [Intel SDM]
4039  */
4040 static void test_vpid(void)
4041 {
4042 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
4043 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
4044 	u16 vpid = 0x0000;
4045 	int i;
4046 
4047 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4048 	    (ctrl_cpu_rev[1].clr & CPU_VPID))) {
4049 		printf("Secondary controls and/or VPID not supported\n");
4050 		return;
4051 	}
4052 
4053 	vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY);
4054 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID);
4055 	vmcs_write(VPID, vpid);
4056 	report_prefix_pushf("VPID disabled; VPID value %x", vpid);
4057 	test_vmx_valid_controls();
4058 	report_prefix_pop();
4059 
4060 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID);
4061 	report_prefix_pushf("VPID enabled; VPID value %x", vpid);
4062 	test_vmx_invalid_controls();
4063 	report_prefix_pop();
4064 
4065 	for (i = 0; i < 16; i++) {
4066 		vpid = (short)1 << i;;
4067 		vmcs_write(VPID, vpid);
4068 		report_prefix_pushf("VPID enabled; VPID value %x", vpid);
4069 		test_vmx_valid_controls();
4070 		report_prefix_pop();
4071 	}
4072 
4073 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4074 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4075 }
4076 
4077 static void set_vtpr(unsigned vtpr)
4078 {
4079 	*(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr;
4080 }
4081 
4082 static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr)
4083 {
4084 	bool valid = true;
4085 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4086 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4087 
4088 	if ((primary & CPU_TPR_SHADOW) &&
4089 	    (!(primary & CPU_SECONDARY) ||
4090 	     !(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES))))
4091 		valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf);
4092 
4093 	set_vtpr(vtpr);
4094 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x",
4095 	    threshold, (vtpr >> 4) & 0xf);
4096 	if (valid)
4097 		test_vmx_valid_controls();
4098 	else
4099 		test_vmx_invalid_controls();
4100 	report_prefix_pop();
4101 }
4102 
4103 static void test_invalid_event_injection(void)
4104 {
4105 	u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO);
4106 	u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR);
4107 	u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN);
4108 	u32 primary_save = vmcs_read(CPU_EXEC_CTRL0);
4109 	u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1);
4110 	u64 guest_cr0_save = vmcs_read(GUEST_CR0);
4111 	u32 ent_intr_info_base = INTR_INFO_VALID_MASK;
4112 	u32 ent_intr_info, ent_intr_err, ent_intr_len;
4113 	u32 cnt;
4114 
4115 	/* Setup */
4116 	report_prefix_push("invalid event injection");
4117 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
4118 	vmcs_write(ENT_INST_LEN, 0x00000001);
4119 
4120 	/* The field’s interruption type is not set to a reserved value. */
4121 	ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR;
4122 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4123 			    "RESERVED interruption type invalid [-]",
4124 			    ent_intr_info);
4125 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4126 	test_vmx_invalid_controls();
4127 	report_prefix_pop();
4128 
4129 	ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR |
4130 			DE_VECTOR;
4131 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4132 			    "RESERVED interruption type invalid [+]",
4133 			    ent_intr_info);
4134 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4135 	test_vmx_valid_controls();
4136 	report_prefix_pop();
4137 
4138 	/* If the interruption type is other event, the vector is 0. */
4139 	ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR;
4140 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4141 			    "(OTHER EVENT && vector != 0) invalid [-]",
4142 			    ent_intr_info);
4143 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4144 	test_vmx_invalid_controls();
4145 	report_prefix_pop();
4146 
4147 	/* If the interruption type is NMI, the vector is 2 (negative case). */
4148 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR;
4149 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4150 			    "(NMI && vector != 2) invalid [-]", ent_intr_info);
4151 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4152 	test_vmx_invalid_controls();
4153 	report_prefix_pop();
4154 
4155 	/* If the interruption type is NMI, the vector is 2 (positive case). */
4156 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR;
4157 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4158 			    "(NMI && vector == 2) valid [+]", ent_intr_info);
4159 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4160 	test_vmx_valid_controls();
4161 	report_prefix_pop();
4162 
4163 	/*
4164 	 * If the interruption type
4165 	 * is HW exception, the vector is at most 31.
4166 	 */
4167 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20;
4168 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4169 			    "(HW exception && vector > 31) invalid [-]",
4170 			    ent_intr_info);
4171 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4172 	test_vmx_invalid_controls();
4173 	report_prefix_pop();
4174 
4175 	/*
4176 	 * deliver-error-code is 1 iff either
4177 	 * (a) the "unrestricted guest" VM-execution control is 0
4178 	 * (b) CR0.PE is set.
4179 	 */
4180 
4181 	/* Assert that unrestricted guest is disabled or unsupported */
4182 	assert(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
4183 	       !(secondary_save & CPU_URG));
4184 
4185 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4186 			GP_VECTOR;
4187 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4188 			    "error code <-> (!URG || prot_mode) [-]",
4189 			    ent_intr_info);
4190 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4191 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4192 	test_vmx_invalid_controls();
4193 	report_prefix_pop();
4194 
4195 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4196 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4197 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4198 			    "error code <-> (!URG || prot_mode) [+]",
4199 			    ent_intr_info);
4200 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4201 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4202 	test_vmx_valid_controls();
4203 	report_prefix_pop();
4204 
4205 	if (enable_unrestricted_guest())
4206 		goto skip_unrestricted_guest;
4207 
4208 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4209 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4210 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4211 			    "error code <-> (!URG || prot_mode) [-]",
4212 			    ent_intr_info);
4213 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4214 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4215 	test_vmx_invalid_controls();
4216 	report_prefix_pop();
4217 
4218 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4219 			GP_VECTOR;
4220 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4221 			    "error code <-> (!URG || prot_mode) [-]",
4222 			    ent_intr_info);
4223 	vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE);
4224 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4225 	test_vmx_invalid_controls();
4226 	report_prefix_pop();
4227 
4228 	vmcs_write(CPU_EXEC_CTRL1, secondary_save);
4229 	vmcs_write(CPU_EXEC_CTRL0, primary_save);
4230 
4231 skip_unrestricted_guest:
4232 	vmcs_write(GUEST_CR0, guest_cr0_save);
4233 
4234 	/* deliver-error-code is 1 iff the interruption type is HW exception */
4235 	report_prefix_push("error code <-> HW exception");
4236 	for (cnt = 0; cnt < 8; cnt++) {
4237 		u32 exception_type_mask = cnt << 8;
4238 		u32 deliver_error_code_mask =
4239 			exception_type_mask != INTR_TYPE_HARD_EXCEPTION ?
4240 			INTR_INFO_DELIVER_CODE_MASK : 0;
4241 
4242 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4243 				exception_type_mask | GP_VECTOR;
4244 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4245 				    ent_intr_info);
4246 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4247 		test_vmx_invalid_controls();
4248 		report_prefix_pop();
4249 	}
4250 	report_prefix_pop();
4251 
4252 	/*
4253 	 * deliver-error-code is 1 iff the the vector
4254 	 * indicates an exception that would normally deliver an error code
4255 	 */
4256 	report_prefix_push("error code <-> vector delivers error code");
4257 	for (cnt = 0; cnt < 32; cnt++) {
4258 		bool has_error_code = false;
4259 		u32 deliver_error_code_mask;
4260 
4261 		switch (cnt) {
4262 		case DF_VECTOR:
4263 		case TS_VECTOR:
4264 		case NP_VECTOR:
4265 		case SS_VECTOR:
4266 		case GP_VECTOR:
4267 		case PF_VECTOR:
4268 		case AC_VECTOR:
4269 			has_error_code = true;
4270 		}
4271 
4272 		/* Negative case */
4273 		deliver_error_code_mask = has_error_code ?
4274 						0 :
4275 						INTR_INFO_DELIVER_CODE_MASK;
4276 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4277 				INTR_TYPE_HARD_EXCEPTION | cnt;
4278 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4279 				    ent_intr_info);
4280 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4281 		test_vmx_invalid_controls();
4282 		report_prefix_pop();
4283 
4284 		/* Positive case */
4285 		deliver_error_code_mask = has_error_code ?
4286 						INTR_INFO_DELIVER_CODE_MASK :
4287 						0;
4288 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4289 				INTR_TYPE_HARD_EXCEPTION | cnt;
4290 		report_prefix_pushf("VM-entry intr info=0x%x [+]",
4291 				    ent_intr_info);
4292 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4293 		test_vmx_valid_controls();
4294 		report_prefix_pop();
4295 	}
4296 	report_prefix_pop();
4297 
4298 	/* Reserved bits in the field (30:12) are 0. */
4299 	report_prefix_push("reserved bits clear");
4300 	for (cnt = 12; cnt <= 30; cnt++) {
4301 		ent_intr_info = ent_intr_info_base |
4302 				INTR_INFO_DELIVER_CODE_MASK |
4303 				INTR_TYPE_HARD_EXCEPTION | GP_VECTOR |
4304 				(1U << cnt);
4305 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4306 				    ent_intr_info);
4307 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4308 		test_vmx_invalid_controls();
4309 		report_prefix_pop();
4310 	}
4311 	report_prefix_pop();
4312 
4313 	/*
4314 	 * If deliver-error-code is 1
4315 	 * bits 31:16 of the VM-entry exception error-code field are 0.
4316 	 */
4317 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4318 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4319 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4320 			    "VM-entry exception error code[31:16] clear",
4321 			    ent_intr_info);
4322 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4323 	for (cnt = 16; cnt <= 31; cnt++) {
4324 		ent_intr_err = 1U << cnt;
4325 		report_prefix_pushf("VM-entry intr error=0x%x [-]",
4326 				    ent_intr_err);
4327 		vmcs_write(ENT_INTR_ERROR, ent_intr_err);
4328 		test_vmx_invalid_controls();
4329 		report_prefix_pop();
4330 	}
4331 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
4332 	report_prefix_pop();
4333 
4334 	/*
4335 	 * If the interruption type is software interrupt, software exception,
4336 	 * or privileged software exception, the VM-entry instruction-length
4337 	 * field is in the range 0–15.
4338 	 */
4339 
4340 	for (cnt = 0; cnt < 3; cnt++) {
4341 		switch (cnt) {
4342 		case 0:
4343 			ent_intr_info = ent_intr_info_base |
4344 					INTR_TYPE_SOFT_INTR;
4345 			break;
4346 		case 1:
4347 			ent_intr_info = ent_intr_info_base |
4348 					INTR_TYPE_SOFT_EXCEPTION;
4349 			break;
4350 		case 2:
4351 			ent_intr_info = ent_intr_info_base |
4352 					INTR_TYPE_PRIV_SW_EXCEPTION;
4353 			break;
4354 		}
4355 		report_prefix_pushf("%s, VM-entry intr info=0x%x",
4356 				    "VM-entry instruction-length check",
4357 				    ent_intr_info);
4358 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4359 
4360 		/* Instruction length set to -1 (0xFFFFFFFF) should fail */
4361 		ent_intr_len = -1;
4362 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4363 				    ent_intr_len);
4364 		vmcs_write(ENT_INST_LEN, ent_intr_len);
4365 		test_vmx_invalid_controls();
4366 		report_prefix_pop();
4367 
4368 		/* Instruction length set to 16 should fail */
4369 		ent_intr_len = 0x00000010;
4370 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4371 				    ent_intr_len);
4372 		vmcs_write(ENT_INST_LEN, 0x00000010);
4373 		test_vmx_invalid_controls();
4374 		report_prefix_pop();
4375 
4376 		report_prefix_pop();
4377 	}
4378 
4379 	/* Cleanup */
4380 	vmcs_write(ENT_INTR_INFO, ent_intr_info_save);
4381 	vmcs_write(ENT_INTR_ERROR, ent_intr_error_save);
4382 	vmcs_write(ENT_INST_LEN, ent_inst_len_save);
4383 	vmcs_write(CPU_EXEC_CTRL0, primary_save);
4384 	vmcs_write(CPU_EXEC_CTRL1, secondary_save);
4385 	vmcs_write(GUEST_CR0, guest_cr0_save);
4386 	report_prefix_pop();
4387 }
4388 
4389 /*
4390  * Test interesting vTPR values for a given TPR threshold.
4391  */
4392 static void test_vtpr_values(unsigned threshold)
4393 {
4394 	try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4);
4395 	try_tpr_threshold_and_vtpr(threshold, threshold << 4);
4396 	try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4);
4397 }
4398 
4399 static void try_tpr_threshold(unsigned threshold)
4400 {
4401 	bool valid = true;
4402 
4403 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4404 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4405 
4406 	if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) &&
4407 	    (secondary & CPU_VINTD)))
4408 		valid = !(threshold >> 4);
4409 
4410 	set_vtpr(-1);
4411 	vmcs_write(TPR_THRESHOLD, threshold);
4412 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold);
4413 	if (valid)
4414 		test_vmx_valid_controls();
4415 	else
4416 		test_vmx_invalid_controls();
4417 	report_prefix_pop();
4418 
4419 	if (valid)
4420 		test_vtpr_values(threshold);
4421 }
4422 
4423 /*
4424  * Test interesting TPR threshold values.
4425  */
4426 static void test_tpr_threshold_values(void)
4427 {
4428 	unsigned i;
4429 
4430 	for (i = 0; i < 0x10; i++)
4431 		try_tpr_threshold(i);
4432 	for (i = 4; i < 32; i++)
4433 		try_tpr_threshold(1u << i);
4434 	try_tpr_threshold(-1u);
4435 	try_tpr_threshold(0x7fffffff);
4436 }
4437 
4438 /*
4439  * This test covers the following two VM entry checks:
4440  *
4441  *      i) If the "use TPR shadow" VM-execution control is 1 and the
4442  *         "virtual-interrupt delivery" VM-execution control is 0, bits
4443  *         31:4 of the TPR threshold VM-execution control field must
4444 	   be 0.
4445  *         [Intel SDM]
4446  *
4447  *      ii) If the "use TPR shadow" VM-execution control is 1, the
4448  *          "virtual-interrupt delivery" VM-execution control is 0
4449  *          and the "virtualize APIC accesses" VM-execution control
4450  *          is 0, the value of bits 3:0 of the TPR threshold VM-execution
4451  *          control field must not be greater than the value of bits
4452  *          7:4 of VTPR.
4453  *          [Intel SDM]
4454  */
4455 static void test_tpr_threshold(void)
4456 {
4457 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4458 	u64 apic_virt_addr = vmcs_read(APIC_VIRT_ADDR);
4459 	u64 threshold = vmcs_read(TPR_THRESHOLD);
4460 	void *virtual_apic_page;
4461 
4462 	if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW))
4463 		return;
4464 
4465 	virtual_apic_page = alloc_page();
4466 	memset(virtual_apic_page, 0xff, PAGE_SIZE);
4467 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
4468 
4469 	vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY));
4470 	report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled");
4471 	test_tpr_threshold_values();
4472 	report_prefix_pop();
4473 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW);
4474 	report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled");
4475 	test_tpr_threshold_values();
4476 	report_prefix_pop();
4477 
4478 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4479 	    (ctrl_cpu_rev[1].clr & (CPU_VINTD  | CPU_VIRT_APIC_ACCESSES))))
4480 		goto out;
4481 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4482 
4483 	if (ctrl_cpu_rev[1].clr & CPU_VINTD) {
4484 		vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD);
4485 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4486 		test_tpr_threshold_values();
4487 		report_prefix_pop();
4488 
4489 		vmcs_write(CPU_EXEC_CTRL0,
4490 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4491 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4492 		test_tpr_threshold_values();
4493 		report_prefix_pop();
4494 	}
4495 
4496 	if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) {
4497 		vmcs_write(CPU_EXEC_CTRL0,
4498 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4499 		vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES);
4500 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4501 		test_tpr_threshold_values();
4502 		report_prefix_pop();
4503 
4504 		vmcs_write(CPU_EXEC_CTRL0,
4505 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4506 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4507 		test_tpr_threshold_values();
4508 		report_prefix_pop();
4509 	}
4510 
4511 	if ((ctrl_cpu_rev[1].clr &
4512 	     (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) ==
4513 	    (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) {
4514 		vmcs_write(CPU_EXEC_CTRL0,
4515 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4516 		vmcs_write(CPU_EXEC_CTRL1,
4517 			   CPU_VINTD | CPU_VIRT_APIC_ACCESSES);
4518 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4519 		test_tpr_threshold_values();
4520 		report_prefix_pop();
4521 
4522 		vmcs_write(CPU_EXEC_CTRL0,
4523 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4524 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4525 		test_tpr_threshold_values();
4526 		report_prefix_pop();
4527 	}
4528 
4529 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4530 out:
4531 	vmcs_write(TPR_THRESHOLD, threshold);
4532 	vmcs_write(APIC_VIRT_ADDR, apic_virt_addr);
4533 	vmcs_write(CPU_EXEC_CTRL0, primary);
4534 }
4535 
4536 /*
4537  * This test verifies the following two vmentry checks:
4538  *
4539  *  If the "NMI exiting" VM-execution control is 0, "Virtual NMIs"
4540  *  VM-execution control must be 0.
4541  *  [Intel SDM]
4542  *
4543  *  If the “virtual NMIs” VM-execution control is 0, the “NMI-window
4544  *  exiting” VM-execution control must be 0.
4545  *  [Intel SDM]
4546  */
4547 static void test_nmi_ctrls(void)
4548 {
4549 	u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0;
4550 
4551 	if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) !=
4552 	    (PIN_NMI | PIN_VIRT_NMI)) {
4553 		printf("NMI exiting and Virtual NMIs are not supported !\n");
4554 		return;
4555 	}
4556 
4557 	/* Save the controls so that we can restore them after our tests */
4558 	pin_ctrls = vmcs_read(PIN_CONTROLS);
4559 	cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
4560 
4561 	test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI);
4562 	test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW;
4563 
4564 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4565 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled");
4566 	test_vmx_valid_controls();
4567 	report_prefix_pop();
4568 
4569 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI);
4570 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled");
4571 	test_vmx_invalid_controls();
4572 	report_prefix_pop();
4573 
4574 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4575 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled");
4576 	test_vmx_valid_controls();
4577 	report_prefix_pop();
4578 
4579 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI);
4580 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled");
4581 	test_vmx_valid_controls();
4582 	report_prefix_pop();
4583 
4584 	if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
4585 		report_info("NMI-window exiting is not supported, skipping...");
4586 		goto done;
4587 	}
4588 
4589 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4590 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4591 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled");
4592 	test_vmx_invalid_controls();
4593 	report_prefix_pop();
4594 
4595 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4596 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4597 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled");
4598 	test_vmx_valid_controls();
4599 	report_prefix_pop();
4600 
4601 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4602 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4603 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled");
4604 	test_vmx_valid_controls();
4605 	report_prefix_pop();
4606 
4607 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4608 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4609 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled");
4610 	test_vmx_valid_controls();
4611 	report_prefix_pop();
4612 
4613 	/* Restore the controls to their original values */
4614 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
4615 done:
4616 	vmcs_write(PIN_CONTROLS, pin_ctrls);
4617 }
4618 
4619 static void test_eptp_ad_bit(u64 eptp, bool ctrl)
4620 {
4621 	vmcs_write(EPTP, eptp);
4622 	report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s",
4623 	    (eptp & EPTP_AD_FLAG) ? "1": "0");
4624 	if (ctrl)
4625 		test_vmx_valid_controls();
4626 	else
4627 		test_vmx_invalid_controls();
4628 	report_prefix_pop();
4629 
4630 }
4631 
4632 /*
4633  * 1. If the "enable EPT" VM-execution control is 1, the "EPTP VM-execution"
4634  *    control field must satisfy the following checks:
4635  *
4636  *     - The EPT memory type (bits 2:0) must be a value supported by the
4637  *	 processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR.
4638  *     - Bits 5:3 (1 less than the EPT page-walk length) must be 3,
4639  *	 indicating an EPT page-walk length of 4.
4640  *     - Bit 6 (enable bit for accessed and dirty flags for EPT) must be
4641  *	 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0,
4642  *	 indicating that the processor does not support accessed and dirty
4643  *	 dirty flags for EPT.
4644  *     - Reserved bits 11:7 and 63:N (where N is the processor's
4645  *	 physical-address width) must all be 0.
4646  *
4647  * 2. If the "unrestricted guest" VM-execution control is 1, the
4648  *    "enable EPT" VM-execution control must also be 1.
4649  */
4650 static void test_ept_eptp(void)
4651 {
4652 	u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
4653 	u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
4654 	u64 eptp_saved = vmcs_read(EPTP);
4655 	u32 primary = primary_saved;
4656 	u32 secondary = secondary_saved;
4657 	u64 msr, eptp = eptp_saved;
4658 	bool un_cache = false;
4659 	bool wr_bk = false;
4660 	bool ctrl;
4661 	u32 i, maxphysaddr;
4662 	u64 j, resv_bits_mask = 0;
4663 
4664 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4665 	    (ctrl_cpu_rev[1].clr & CPU_EPT))) {
4666 		printf("\"CPU secondary\" and/or \"enable EPT\" execution controls are not supported !\n");
4667 		return;
4668 	}
4669 
4670 	/*
4671 	 * Memory type (bits 2:0)
4672 	 */
4673 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
4674 	if (msr & EPT_CAP_UC)
4675 		un_cache = true;
4676 	if (msr & EPT_CAP_WB)
4677 		wr_bk = true;
4678 
4679 	primary |= CPU_SECONDARY;
4680 	vmcs_write(CPU_EXEC_CTRL0, primary);
4681 	secondary |= CPU_EPT;
4682 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4683 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4684 	    (3ul << EPTP_PG_WALK_LEN_SHIFT);
4685 	vmcs_write(EPTP, eptp);
4686 
4687 	for (i = 0; i < 8; i++) {
4688 		if (i == 0) {
4689 			if (un_cache) {
4690 				report_info("EPT paging structure memory-type is Un-cacheable\n");
4691 				ctrl = true;
4692 			} else {
4693 				ctrl = false;
4694 			}
4695 		} else if (i == 6) {
4696 			if (wr_bk) {
4697 				report_info("EPT paging structure memory-type is Write-back\n");
4698 				ctrl = true;
4699 			} else {
4700 				ctrl = false;
4701 			}
4702 		} else {
4703 			ctrl = false;
4704 		}
4705 
4706 		eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i;
4707 		vmcs_write(EPTP, eptp);
4708 		report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu",
4709 		    eptp & EPT_MEM_TYPE_MASK);
4710 		if (ctrl)
4711 			test_vmx_valid_controls();
4712 		else
4713 			test_vmx_invalid_controls();
4714 		report_prefix_pop();
4715 	}
4716 
4717 	eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul;
4718 
4719 	/*
4720 	 * Page walk length (bits 5:3)
4721 	 */
4722 	for (i = 0; i < 8; i++) {
4723 		eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4724 		    (i << EPTP_PG_WALK_LEN_SHIFT);
4725 		if (i == 3)
4726 			ctrl = true;
4727 		else
4728 			ctrl = false;
4729 
4730 		vmcs_write(EPTP, eptp);
4731 		report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu",
4732 		    eptp & EPTP_PG_WALK_LEN_MASK);
4733 		if (ctrl)
4734 			test_vmx_valid_controls();
4735 		else
4736 			test_vmx_invalid_controls();
4737 		report_prefix_pop();
4738 	}
4739 
4740 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4741 	    3ul << EPTP_PG_WALK_LEN_SHIFT;
4742 
4743 	/*
4744 	 * Accessed and dirty flag (bit 6)
4745 	 */
4746 	if (msr & EPT_CAP_AD_FLAG) {
4747 		report_info("Processor supports accessed and dirty flag");
4748 		eptp &= ~EPTP_AD_FLAG;
4749 		test_eptp_ad_bit(eptp, true);
4750 
4751 		eptp |= EPTP_AD_FLAG;
4752 		test_eptp_ad_bit(eptp, true);
4753 	} else {
4754 		report_info("Processor does not supports accessed and dirty flag");
4755 		eptp &= ~EPTP_AD_FLAG;
4756 		test_eptp_ad_bit(eptp, true);
4757 
4758 		eptp |= EPTP_AD_FLAG;
4759 		test_eptp_ad_bit(eptp, false);
4760 	}
4761 
4762 	/*
4763 	 * Reserved bits [11:7] and [63:N]
4764 	 */
4765 	for (i = 0; i < 32; i++) {
4766 		eptp = (eptp &
4767 		    ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) |
4768 		    (i << EPTP_RESERV_BITS_SHIFT);
4769 		vmcs_write(EPTP, eptp);
4770 		report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu",
4771 		    (eptp >> EPTP_RESERV_BITS_SHIFT) &
4772 		    EPTP_RESERV_BITS_MASK);
4773 		if (i == 0)
4774 			test_vmx_valid_controls();
4775 		else
4776 			test_vmx_invalid_controls();
4777 		report_prefix_pop();
4778 	}
4779 
4780 	eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT));
4781 
4782 	maxphysaddr = cpuid_maxphyaddr();
4783 	for (i = 0; i < (63 - maxphysaddr + 1); i++) {
4784 		resv_bits_mask |= 1ul << i;
4785 	}
4786 
4787 	for (j = maxphysaddr - 1; j <= 63; j++) {
4788 		eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) |
4789 		    (j < maxphysaddr ? 0 : 1ul << j);
4790 		vmcs_write(EPTP, eptp);
4791 		report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu",
4792 		    (eptp >> maxphysaddr) & resv_bits_mask);
4793 		if (j < maxphysaddr)
4794 			test_vmx_valid_controls();
4795 		else
4796 			test_vmx_invalid_controls();
4797 		report_prefix_pop();
4798 	}
4799 
4800 	secondary &= ~(CPU_EPT | CPU_URG);
4801 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4802 	report_prefix_pushf("Enable-EPT disabled, unrestricted-guest disabled");
4803 	test_vmx_valid_controls();
4804 	report_prefix_pop();
4805 
4806 	if (!(ctrl_cpu_rev[1].clr & CPU_URG))
4807 		goto skip_unrestricted_guest;
4808 
4809 	secondary |= CPU_URG;
4810 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4811 	report_prefix_pushf("Enable-EPT disabled, unrestricted-guest enabled");
4812 	test_vmx_invalid_controls();
4813 	report_prefix_pop();
4814 
4815 	secondary |= CPU_EPT;
4816 	setup_dummy_ept();
4817 	report_prefix_pushf("Enable-EPT enabled, unrestricted-guest enabled");
4818 	test_vmx_valid_controls();
4819 	report_prefix_pop();
4820 
4821 skip_unrestricted_guest:
4822 	secondary &= ~CPU_URG;
4823 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4824 	report_prefix_pushf("Enable-EPT enabled, unrestricted-guest disabled");
4825 	test_vmx_valid_controls();
4826 	report_prefix_pop();
4827 
4828 	vmcs_write(CPU_EXEC_CTRL0, primary_saved);
4829 	vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
4830 	vmcs_write(EPTP, eptp_saved);
4831 }
4832 
4833 /*
4834  * If the 'enable PML' VM-execution control is 1, the 'enable EPT'
4835  * VM-execution control must also be 1. In addition, the PML address
4836  * must satisfy the following checks:
4837  *
4838  *    * Bits 11:0 of the address must be 0.
4839  *    * The address should not set any bits beyond the processor's
4840  *	physical-address width.
4841  *
4842  *  [Intel SDM]
4843  */
4844 static void test_pml(void)
4845 {
4846 	u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
4847 	u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
4848 	u32 primary = primary_saved;
4849 	u32 secondary = secondary_saved;
4850 
4851 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4852 	    (ctrl_cpu_rev[1].clr & CPU_EPT) && (ctrl_cpu_rev[1].clr & CPU_PML))) {
4853 		printf("\"Secondary execution\" control or \"enable EPT\" control or \"enable PML\" control is not supported !\n");
4854 		return;
4855 	}
4856 
4857 	primary |= CPU_SECONDARY;
4858 	vmcs_write(CPU_EXEC_CTRL0, primary);
4859 	secondary &= ~(CPU_PML | CPU_EPT);
4860 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4861 	report_prefix_pushf("enable-PML disabled, enable-EPT disabled");
4862 	test_vmx_valid_controls();
4863 	report_prefix_pop();
4864 
4865 	secondary |= CPU_PML;
4866 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4867 	report_prefix_pushf("enable-PML enabled, enable-EPT disabled");
4868 	test_vmx_invalid_controls();
4869 	report_prefix_pop();
4870 
4871 	secondary |= CPU_EPT;
4872 	setup_dummy_ept();
4873 	report_prefix_pushf("enable-PML enabled, enable-EPT enabled");
4874 	test_vmx_valid_controls();
4875 	report_prefix_pop();
4876 
4877 	secondary &= ~CPU_PML;
4878 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4879 	report_prefix_pushf("enable-PML disabled, enable EPT enabled");
4880 	test_vmx_valid_controls();
4881 	report_prefix_pop();
4882 
4883 	test_vmcs_addr_reference(CPU_PML, PMLADDR, "PML address", "PML",
4884 				 PAGE_SIZE, false, false);
4885 
4886 	vmcs_write(CPU_EXEC_CTRL0, primary_saved);
4887 	vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
4888 }
4889 
4890  /*
4891  * If the "activate VMX-preemption timer" VM-execution control is 0, the
4892  * the "save VMX-preemption timer value" VM-exit control must also be 0.
4893  *
4894  *  [Intel SDM]
4895  */
4896 static void test_vmx_preemption_timer(void)
4897 {
4898 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
4899 	u32 saved_exit = vmcs_read(EXI_CONTROLS);
4900 	u32 pin = saved_pin;
4901 	u32 exit = saved_exit;
4902 
4903 	if (!((ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) ||
4904 	    (ctrl_pin_rev.clr & PIN_PREEMPT))) {
4905 		printf("\"Save-VMX-preemption-timer\" control and/or \"Enable-VMX-preemption-timer\" control is not supported\n");
4906 		return;
4907 	}
4908 
4909 	pin |= PIN_PREEMPT;
4910 	vmcs_write(PIN_CONTROLS, pin);
4911 	exit &= ~EXI_SAVE_PREEMPT;
4912 	vmcs_write(EXI_CONTROLS, exit);
4913 	report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer disabled");
4914 	test_vmx_valid_controls();
4915 	report_prefix_pop();
4916 
4917 	exit |= EXI_SAVE_PREEMPT;
4918 	vmcs_write(EXI_CONTROLS, exit);
4919 	report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer enabled");
4920 	test_vmx_valid_controls();
4921 	report_prefix_pop();
4922 
4923 	pin &= ~PIN_PREEMPT;
4924 	vmcs_write(PIN_CONTROLS, pin);
4925 	report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer enabled");
4926 	test_vmx_invalid_controls();
4927 	report_prefix_pop();
4928 
4929 	exit &= ~EXI_SAVE_PREEMPT;
4930 	vmcs_write(EXI_CONTROLS, exit);
4931 	report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer disabled");
4932 	test_vmx_valid_controls();
4933 	report_prefix_pop();
4934 
4935 	vmcs_write(PIN_CONTROLS, saved_pin);
4936 	vmcs_write(EXI_CONTROLS, saved_exit);
4937 }
4938 
4939 /*
4940  * Tests for VM-execution control fields
4941  */
4942 static void test_vm_execution_ctls(void)
4943 {
4944 	test_pin_based_ctls();
4945 	test_primary_processor_based_ctls();
4946 	test_secondary_processor_based_ctls();
4947 	test_cr3_targets();
4948 	test_io_bitmaps();
4949 	test_msr_bitmap();
4950 	test_apic_ctls();
4951 	test_tpr_threshold();
4952 	test_nmi_ctrls();
4953 	test_pml();
4954 	test_vpid();
4955 	test_ept_eptp();
4956 	test_vmx_preemption_timer();
4957 }
4958 
4959  /*
4960   * The following checks are performed for the VM-entry MSR-load address if
4961   * the VM-entry MSR-load count field is non-zero:
4962   *
4963   *    - The lower 4 bits of the VM-entry MSR-load address must be 0.
4964   *      The address should not set any bits beyond the processor’s
4965   *      physical-address width.
4966   *
4967   *    - The address of the last byte in the VM-entry MSR-load area
4968   *      should not set any bits beyond the processor’s physical-address
4969   *      width. The address of this last byte is VM-entry MSR-load address
4970   *      + (MSR count * 16) - 1. (The arithmetic used for the computation
4971   *      uses more bits than the processor’s physical-address width.)
4972   *
4973   *
4974   *  [Intel SDM]
4975   */
4976 static void test_entry_msr_load(void)
4977 {
4978 	entry_msr_load = alloc_page();
4979 	u64 tmp;
4980 	u32 entry_msr_ld_cnt = 1;
4981 	int i;
4982 	u32 addr_len = 64;
4983 
4984 	vmcs_write(ENT_MSR_LD_CNT, entry_msr_ld_cnt);
4985 
4986 	/* Check first 4 bits of VM-entry MSR-load address */
4987 	for (i = 0; i < 4; i++) {
4988 		tmp = (u64)entry_msr_load | 1ull << i;
4989 		vmcs_write(ENTER_MSR_LD_ADDR, tmp);
4990 		report_prefix_pushf("VM-entry MSR-load addr [4:0] %lx",
4991 				    tmp & 0xf);
4992 		test_vmx_invalid_controls();
4993 		report_prefix_pop();
4994 	}
4995 
4996 	if (basic.val & (1ul << 48))
4997 		addr_len = 32;
4998 
4999 	test_vmcs_addr_values("VM-entry-MSR-load address",
5000 				ENTER_MSR_LD_ADDR, 16, false, false,
5001 				4, addr_len - 1);
5002 
5003 	/*
5004 	 * Check last byte of VM-entry MSR-load address
5005 	 */
5006 	entry_msr_load = (struct vmx_msr_entry *)((u64)entry_msr_load & ~0xf);
5007 
5008 	for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
5009 							i < 64; i++) {
5010 		tmp = ((u64)entry_msr_load + entry_msr_ld_cnt * 16 - 1) |
5011 			1ul << i;
5012 		vmcs_write(ENTER_MSR_LD_ADDR,
5013 			   tmp - (entry_msr_ld_cnt * 16 - 1));
5014 		test_vmx_invalid_controls();
5015 	}
5016 
5017 	vmcs_write(ENT_MSR_LD_CNT, 2);
5018 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
5019 	test_vmx_invalid_controls();
5020 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
5021 	test_vmx_valid_controls();
5022 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
5023 	test_vmx_valid_controls();
5024 }
5025 
5026 static void guest_state_test_main(void)
5027 {
5028 	while (1) {
5029 		if (vmx_get_test_stage() != 2)
5030 			vmcall();
5031 		else
5032 			break;
5033 	}
5034 
5035 	asm volatile("fnop");
5036 }
5037 
5038 static void advance_guest_state_test(void)
5039 {
5040 	u32 reason = vmcs_read(EXI_REASON);
5041 	if (! (reason & 0x80000000)) {
5042 		u64 guest_rip = vmcs_read(GUEST_RIP);
5043 		u32 insn_len = vmcs_read(EXI_INST_LEN);
5044 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
5045 	}
5046 }
5047 
5048 static void report_guest_state_test(const char *test, u32 xreason,
5049 				    u64 field, const char * field_name)
5050 {
5051 	u32 reason = vmcs_read(EXI_REASON);
5052 
5053 	report("%s, %s %lx", reason == xreason, test, field_name, field);
5054 	advance_guest_state_test();
5055 }
5056 
5057 /*
5058  * Tests for VM-entry control fields
5059  */
5060 static void test_vm_entry_ctls(void)
5061 {
5062 	test_invalid_event_injection();
5063 	test_entry_msr_load();
5064 }
5065 
5066 /*
5067  * The following checks are performed for the VM-exit MSR-store address if
5068  * the VM-exit MSR-store count field is non-zero:
5069  *
5070  *    - The lower 4 bits of the VM-exit MSR-store address must be 0.
5071  *      The address should not set any bits beyond the processor’s
5072  *      physical-address width.
5073  *
5074  *    - The address of the last byte in the VM-exit MSR-store area
5075  *      should not set any bits beyond the processor’s physical-address
5076  *      width. The address of this last byte is VM-exit MSR-store address
5077  *      + (MSR count * 16) - 1. (The arithmetic used for the computation
5078  *      uses more bits than the processor’s physical-address width.)
5079  *
5080  * If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits
5081  * in the range 63:32.
5082  *
5083  *  [Intel SDM]
5084  */
5085 static void test_exit_msr_store(void)
5086 {
5087 	exit_msr_store = alloc_page();
5088 	u64 tmp;
5089 	u32 exit_msr_st_cnt = 1;
5090 	int i;
5091 	u32 addr_len = 64;
5092 
5093 	vmcs_write(EXI_MSR_ST_CNT, exit_msr_st_cnt);
5094 
5095 	/* Check first 4 bits of VM-exit MSR-store address */
5096 	for (i = 0; i < 4; i++) {
5097 		tmp = (u64)exit_msr_store | 1ull << i;
5098 		vmcs_write(EXIT_MSR_ST_ADDR, tmp);
5099 		report_prefix_pushf("VM-exit MSR-store addr [4:0] %lx",
5100 				    tmp & 0xf);
5101 		test_vmx_invalid_controls();
5102 		report_prefix_pop();
5103 	}
5104 
5105 	if (basic.val & (1ul << 48))
5106 		addr_len = 32;
5107 
5108 	test_vmcs_addr_values("VM-exit-MSR-store address",
5109 				EXIT_MSR_ST_ADDR, 16, false, false,
5110 				4, addr_len - 1);
5111 
5112 	/*
5113 	 * Check last byte of VM-exit MSR-store address
5114 	 */
5115 	exit_msr_store = (struct vmx_msr_entry *)((u64)exit_msr_store & ~0xf);
5116 
5117 	for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
5118 							i < 64; i++) {
5119 		tmp = ((u64)exit_msr_store + exit_msr_st_cnt * 16 - 1) |
5120 			1ul << i;
5121 		vmcs_write(EXIT_MSR_ST_ADDR,
5122 			   tmp - (exit_msr_st_cnt * 16 - 1));
5123 		test_vmx_invalid_controls();
5124 	}
5125 
5126 	vmcs_write(EXI_MSR_ST_CNT, 2);
5127 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
5128 	test_vmx_invalid_controls();
5129 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
5130 	test_vmx_valid_controls();
5131 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
5132 	test_vmx_valid_controls();
5133 }
5134 
5135 /*
5136  * Tests for VM-exit controls
5137  */
5138 static void test_vm_exit_ctls(void)
5139 {
5140 	test_exit_msr_store();
5141 }
5142 
5143 /*
5144  * Check that the virtual CPU checks all of the VMX controls as
5145  * documented in the Intel SDM.
5146  */
5147 static void vmx_controls_test(void)
5148 {
5149 	/*
5150 	 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
5151 	 * fail due to invalid guest state, should we make it that
5152 	 * far.
5153 	 */
5154 	vmcs_write(GUEST_RFLAGS, 0);
5155 
5156 	test_vm_execution_ctls();
5157 	test_vm_exit_ctls();
5158 	test_vm_entry_ctls();
5159 }
5160 
5161 struct apic_reg_virt_config {
5162 	bool apic_register_virtualization;
5163 	bool use_tpr_shadow;
5164 	bool virtualize_apic_accesses;
5165 	bool virtualize_x2apic_mode;
5166 	bool activate_secondary_controls;
5167 };
5168 
5169 struct apic_reg_test {
5170 	const char *name;
5171 	struct apic_reg_virt_config apic_reg_virt_config;
5172 };
5173 
5174 struct apic_reg_virt_expectation {
5175 	enum Reason rd_exit_reason;
5176 	enum Reason wr_exit_reason;
5177 	u32 val;
5178 	u32 (*virt_fn)(u32);
5179 
5180 	/*
5181 	 * If false, accessing the APIC access address from L2 is treated as a
5182 	 * normal memory operation, rather than triggering virtualization.
5183 	 */
5184 	bool virtualize_apic_accesses;
5185 };
5186 
5187 static u32 apic_virt_identity(u32 val)
5188 {
5189 	return val;
5190 }
5191 
5192 static u32 apic_virt_nibble1(u32 val)
5193 {
5194 	return val & 0xf0;
5195 }
5196 
5197 static u32 apic_virt_byte3(u32 val)
5198 {
5199 	return val & (0xff << 24);
5200 }
5201 
5202 static bool apic_reg_virt_exit_expectation(
5203 	u32 reg, struct apic_reg_virt_config *config,
5204 	struct apic_reg_virt_expectation *expectation)
5205 {
5206 	/* Good configs, where some L2 APIC accesses are virtualized. */
5207 	bool virtualize_apic_accesses_only =
5208 		config->virtualize_apic_accesses &&
5209 		!config->use_tpr_shadow &&
5210 		!config->apic_register_virtualization &&
5211 		!config->virtualize_x2apic_mode &&
5212 		config->activate_secondary_controls;
5213 	bool virtualize_apic_accesses_and_use_tpr_shadow =
5214 		config->virtualize_apic_accesses &&
5215 		config->use_tpr_shadow &&
5216 		!config->apic_register_virtualization &&
5217 		!config->virtualize_x2apic_mode &&
5218 		config->activate_secondary_controls;
5219 	bool apic_register_virtualization =
5220 		config->virtualize_apic_accesses &&
5221 		config->use_tpr_shadow &&
5222 		config->apic_register_virtualization &&
5223 		!config->virtualize_x2apic_mode &&
5224 		config->activate_secondary_controls;
5225 
5226 	expectation->val = MAGIC_VAL_1;
5227 	expectation->virt_fn = apic_virt_identity;
5228 	expectation->virtualize_apic_accesses =
5229 		config->virtualize_apic_accesses &&
5230 		config->activate_secondary_controls;
5231 	if (virtualize_apic_accesses_only) {
5232 		expectation->rd_exit_reason = VMX_APIC_ACCESS;
5233 		expectation->wr_exit_reason = VMX_APIC_ACCESS;
5234 	} else if (virtualize_apic_accesses_and_use_tpr_shadow) {
5235 		switch (reg) {
5236 		case APIC_TASKPRI:
5237 			expectation->rd_exit_reason = VMX_VMCALL;
5238 			expectation->wr_exit_reason = VMX_VMCALL;
5239 			expectation->virt_fn = apic_virt_nibble1;
5240 			break;
5241 		default:
5242 			expectation->rd_exit_reason = VMX_APIC_ACCESS;
5243 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5244 		}
5245 	} else if (apic_register_virtualization) {
5246 		expectation->rd_exit_reason = VMX_VMCALL;
5247 
5248 		switch (reg) {
5249 		case APIC_ID:
5250 		case APIC_EOI:
5251 		case APIC_LDR:
5252 		case APIC_DFR:
5253 		case APIC_SPIV:
5254 		case APIC_ESR:
5255 		case APIC_ICR:
5256 		case APIC_LVTT:
5257 		case APIC_LVTTHMR:
5258 		case APIC_LVTPC:
5259 		case APIC_LVT0:
5260 		case APIC_LVT1:
5261 		case APIC_LVTERR:
5262 		case APIC_TMICT:
5263 		case APIC_TDCR:
5264 			expectation->wr_exit_reason = VMX_APIC_WRITE;
5265 			break;
5266 		case APIC_LVR:
5267 		case APIC_ISR ... APIC_ISR + 0x70:
5268 		case APIC_TMR ... APIC_TMR + 0x70:
5269 		case APIC_IRR ... APIC_IRR + 0x70:
5270 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5271 			break;
5272 		case APIC_TASKPRI:
5273 			expectation->wr_exit_reason = VMX_VMCALL;
5274 			expectation->virt_fn = apic_virt_nibble1;
5275 			break;
5276 		case APIC_ICR2:
5277 			expectation->wr_exit_reason = VMX_VMCALL;
5278 			expectation->virt_fn = apic_virt_byte3;
5279 			break;
5280 		default:
5281 			expectation->rd_exit_reason = VMX_APIC_ACCESS;
5282 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5283 		}
5284 	} else if (!expectation->virtualize_apic_accesses) {
5285 		/*
5286 		 * No APIC registers are directly virtualized. This includes
5287 		 * VTPR, which can be virtualized through MOV to/from CR8 via
5288 		 * the use TPR shadow control, but not through directly
5289 		 * accessing VTPR.
5290 		 */
5291 		expectation->rd_exit_reason = VMX_VMCALL;
5292 		expectation->wr_exit_reason = VMX_VMCALL;
5293 	} else {
5294 		printf("Cannot parse APIC register virtualization config:\n"
5295 		       "\tvirtualize_apic_accesses: %d\n"
5296 		       "\tuse_tpr_shadow: %d\n"
5297 		       "\tapic_register_virtualization: %d\n"
5298 		       "\tvirtualize_x2apic_mode: %d\n"
5299 		       "\tactivate_secondary_controls: %d\n",
5300 		       config->virtualize_apic_accesses,
5301 		       config->use_tpr_shadow,
5302 		       config->apic_register_virtualization,
5303 		       config->virtualize_x2apic_mode,
5304 		       config->activate_secondary_controls);
5305 
5306 		return false;
5307 	}
5308 
5309 	return true;
5310 }
5311 
5312 struct apic_reg_test apic_reg_tests[] = {
5313 	/* Good configs, where some L2 APIC accesses are virtualized. */
5314 	{
5315 		.name = "Virtualize APIC accesses",
5316 		.apic_reg_virt_config = {
5317 			.virtualize_apic_accesses = true,
5318 			.use_tpr_shadow = false,
5319 			.apic_register_virtualization = false,
5320 			.virtualize_x2apic_mode = false,
5321 			.activate_secondary_controls = true,
5322 		},
5323 	},
5324 	{
5325 		.name = "Virtualize APIC accesses + Use TPR shadow",
5326 		.apic_reg_virt_config = {
5327 			.virtualize_apic_accesses = true,
5328 			.use_tpr_shadow = true,
5329 			.apic_register_virtualization = false,
5330 			.virtualize_x2apic_mode = false,
5331 			.activate_secondary_controls = true,
5332 		},
5333 	},
5334 	{
5335 		.name = "APIC-register virtualization",
5336 		.apic_reg_virt_config = {
5337 			.virtualize_apic_accesses = true,
5338 			.use_tpr_shadow = true,
5339 			.apic_register_virtualization = true,
5340 			.virtualize_x2apic_mode = false,
5341 			.activate_secondary_controls = true,
5342 		},
5343 	},
5344 
5345 	/*
5346 	 * Test that the secondary processor-based VM-execution controls are
5347 	 * correctly ignored when "activate secondary controls" is disabled.
5348 	 */
5349 	{
5350 		.name = "Activate secondary controls off",
5351 		.apic_reg_virt_config = {
5352 			.virtualize_apic_accesses = true,
5353 			.use_tpr_shadow = false,
5354 			.apic_register_virtualization = true,
5355 			.virtualize_x2apic_mode = true,
5356 			.activate_secondary_controls = false,
5357 		},
5358 	},
5359 	{
5360 		.name = "Activate secondary controls off + Use TPR shadow",
5361 		.apic_reg_virt_config = {
5362 			.virtualize_apic_accesses = true,
5363 			.use_tpr_shadow = true,
5364 			.apic_register_virtualization = true,
5365 			.virtualize_x2apic_mode = true,
5366 			.activate_secondary_controls = false,
5367 		},
5368 	},
5369 
5370 	/*
5371 	 * Test that the APIC access address is treated like an arbitrary memory
5372 	 * address when "virtualize APIC accesses" is disabled.
5373 	 */
5374 	{
5375 		.name = "Virtualize APIC accesses off + Use TPR shadow",
5376 		.apic_reg_virt_config = {
5377 			.virtualize_apic_accesses = false,
5378 			.use_tpr_shadow = true,
5379 			.apic_register_virtualization = true,
5380 			.virtualize_x2apic_mode = true,
5381 			.activate_secondary_controls = true,
5382 		},
5383 	},
5384 
5385 	/*
5386 	 * Test that VM entry fails due to invalid controls when
5387 	 * "APIC-register virtualization" is enabled while "use TPR shadow" is
5388 	 * disabled.
5389 	 */
5390 	{
5391 		.name = "APIC-register virtualization + Use TPR shadow off",
5392 		.apic_reg_virt_config = {
5393 			.virtualize_apic_accesses = true,
5394 			.use_tpr_shadow = false,
5395 			.apic_register_virtualization = true,
5396 			.virtualize_x2apic_mode = false,
5397 			.activate_secondary_controls = true,
5398 		},
5399 	},
5400 
5401 	/*
5402 	 * Test that VM entry fails due to invalid controls when
5403 	 * "Virtualize x2APIC mode" is enabled while "use TPR shadow" is
5404 	 * disabled.
5405 	 */
5406 	{
5407 		.name = "Virtualize x2APIC mode + Use TPR shadow off",
5408 		.apic_reg_virt_config = {
5409 			.virtualize_apic_accesses = false,
5410 			.use_tpr_shadow = false,
5411 			.apic_register_virtualization = false,
5412 			.virtualize_x2apic_mode = true,
5413 			.activate_secondary_controls = true,
5414 		},
5415 	},
5416 	{
5417 		.name = "Virtualize x2APIC mode + Use TPR shadow off v2",
5418 		.apic_reg_virt_config = {
5419 			.virtualize_apic_accesses = false,
5420 			.use_tpr_shadow = false,
5421 			.apic_register_virtualization = true,
5422 			.virtualize_x2apic_mode = true,
5423 			.activate_secondary_controls = true,
5424 		},
5425 	},
5426 
5427 	/*
5428 	 * Test that VM entry fails due to invalid controls when
5429 	 * "virtualize x2APIC mode" is enabled while "virtualize APIC accesses"
5430 	 * is enabled.
5431 	 */
5432 	{
5433 		.name = "Virtualize x2APIC mode + Virtualize APIC accesses",
5434 		.apic_reg_virt_config = {
5435 			.virtualize_apic_accesses = true,
5436 			.use_tpr_shadow = true,
5437 			.apic_register_virtualization = false,
5438 			.virtualize_x2apic_mode = true,
5439 			.activate_secondary_controls = true,
5440 		},
5441 	},
5442 	{
5443 		.name = "Virtualize x2APIC mode + Virtualize APIC accesses v2",
5444 		.apic_reg_virt_config = {
5445 			.virtualize_apic_accesses = true,
5446 			.use_tpr_shadow = true,
5447 			.apic_register_virtualization = true,
5448 			.virtualize_x2apic_mode = true,
5449 			.activate_secondary_controls = true,
5450 		},
5451 	},
5452 };
5453 
5454 enum Apic_op {
5455 	APIC_OP_XAPIC_RD,
5456 	APIC_OP_XAPIC_WR,
5457 	TERMINATE,
5458 };
5459 
5460 static u32 vmx_xapic_read(u32 *apic_access_address, u32 reg)
5461 {
5462 	return *(volatile u32 *)((uintptr_t)apic_access_address + reg);
5463 }
5464 
5465 static void vmx_xapic_write(u32 *apic_access_address, u32 reg, u32 val)
5466 {
5467 	*(volatile u32 *)((uintptr_t)apic_access_address + reg) = val;
5468 }
5469 
5470 struct apic_reg_virt_guest_args {
5471 	enum Apic_op op;
5472 	u32 *apic_access_address;
5473 	u32 reg;
5474 	u32 val;
5475 	bool check_rd;
5476 	u32 (*virt_fn)(u32);
5477 } apic_reg_virt_guest_args;
5478 
5479 static void apic_reg_virt_guest(void)
5480 {
5481 	volatile struct apic_reg_virt_guest_args *args =
5482 		&apic_reg_virt_guest_args;
5483 
5484 	for (;;) {
5485 		enum Apic_op op = args->op;
5486 		u32 *apic_access_address = args->apic_access_address;
5487 		u32 reg = args->reg;
5488 		u32 val = args->val;
5489 		bool check_rd = args->check_rd;
5490 		u32 (*virt_fn)(u32) = args->virt_fn;
5491 
5492 		if (op == TERMINATE)
5493 			break;
5494 
5495 		if (op == APIC_OP_XAPIC_RD) {
5496 			u32 ret = vmx_xapic_read(apic_access_address, reg);
5497 
5498 			if (check_rd) {
5499 				u32 want = virt_fn(val);
5500 				u32 got = virt_fn(ret);
5501 
5502 				report("read 0x%x, expected 0x%x.",
5503 				       got == want, got, want);
5504 			}
5505 		} else if (op == APIC_OP_XAPIC_WR) {
5506 			vmx_xapic_write(apic_access_address, reg, val);
5507 		}
5508 
5509 		/*
5510 		 * The L1 should always execute a vmcall after it's done testing
5511 		 * an individual APIC operation. This helps to validate that the
5512 		 * L1 and L2 are in sync with each other, as expected.
5513 		 */
5514 		vmcall();
5515 	}
5516 }
5517 
5518 static void test_xapic_rd(
5519 	u32 reg, struct apic_reg_virt_expectation *expectation,
5520 	u32 *apic_access_address, u32 *virtual_apic_page)
5521 {
5522 	u32 val = expectation->val;
5523 	u32 exit_reason_want = expectation->rd_exit_reason;
5524 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
5525 
5526 	report_prefix_pushf("xapic - reading 0x%03x", reg);
5527 
5528 	/* Configure guest to do an xapic read */
5529 	args->op = APIC_OP_XAPIC_RD;
5530 	args->apic_access_address = apic_access_address;
5531 	args->reg = reg;
5532 	args->val = val;
5533 	args->check_rd = exit_reason_want == VMX_VMCALL;
5534 	args->virt_fn = expectation->virt_fn;
5535 
5536 	/* Setup virtual APIC page */
5537 	if (!expectation->virtualize_apic_accesses) {
5538 		apic_access_address[apic_reg_index(reg)] = val;
5539 		virtual_apic_page[apic_reg_index(reg)] = 0;
5540 	} else if (exit_reason_want == VMX_VMCALL) {
5541 		apic_access_address[apic_reg_index(reg)] = 0;
5542 		virtual_apic_page[apic_reg_index(reg)] = val;
5543 	}
5544 
5545 	/* Enter guest */
5546 	enter_guest();
5547 
5548 	/*
5549 	 * Validate the behavior and
5550 	 * pass a magic value back to the guest.
5551 	 */
5552 	if (exit_reason_want == VMX_APIC_ACCESS) {
5553 		u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
5554 
5555 		assert_exit_reason(exit_reason_want);
5556 		report("got APIC access exit @ page offset 0x%03x, want 0x%03x",
5557 		       apic_page_offset == reg, apic_page_offset, reg);
5558 		skip_exit_insn();
5559 
5560 		/* Reenter guest so it can consume/check rcx and exit again. */
5561 		enter_guest();
5562 	} else if (exit_reason_want != VMX_VMCALL) {
5563 		report("Oops, bad exit expectation: %u.", false,
5564 		       exit_reason_want);
5565 	}
5566 
5567 	skip_exit_vmcall();
5568 	report_prefix_pop();
5569 }
5570 
5571 static void test_xapic_wr(
5572 	u32 reg, struct apic_reg_virt_expectation *expectation,
5573 	u32 *apic_access_address, u32 *virtual_apic_page)
5574 {
5575 	u32 val = expectation->val;
5576 	u32 exit_reason_want = expectation->wr_exit_reason;
5577 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
5578 	bool virtualized =
5579 		expectation->virtualize_apic_accesses &&
5580 		(exit_reason_want == VMX_APIC_WRITE ||
5581 		 exit_reason_want == VMX_VMCALL);
5582 	bool checked = false;
5583 
5584 	report_prefix_pushf("xapic - writing 0x%x to 0x%03x", val, reg);
5585 
5586 	/* Configure guest to do an xapic read */
5587 	args->op = APIC_OP_XAPIC_WR;
5588 	args->apic_access_address = apic_access_address;
5589 	args->reg = reg;
5590 	args->val = val;
5591 
5592 	/* Setup virtual APIC page */
5593 	if (virtualized || !expectation->virtualize_apic_accesses) {
5594 		apic_access_address[apic_reg_index(reg)] = 0;
5595 		virtual_apic_page[apic_reg_index(reg)] = 0;
5596 	}
5597 
5598 	/* Enter guest */
5599 	enter_guest();
5600 
5601 	/*
5602 	 * Validate the behavior and
5603 	 * pass a magic value back to the guest.
5604 	 */
5605 	if (exit_reason_want == VMX_APIC_ACCESS) {
5606 		u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
5607 
5608 		assert_exit_reason(exit_reason_want);
5609 		report("got APIC access exit @ page offset 0x%03x, want 0x%03x",
5610 		       apic_page_offset == reg, apic_page_offset, reg);
5611 		skip_exit_insn();
5612 
5613 		/* Reenter guest so it can consume/check rcx and exit again. */
5614 		enter_guest();
5615 	} else if (exit_reason_want == VMX_APIC_WRITE) {
5616 		assert_exit_reason(exit_reason_want);
5617 		report("got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%x",
5618 		       virtual_apic_page[apic_reg_index(reg)] == val,
5619 		       apic_reg_index(reg),
5620 		       virtual_apic_page[apic_reg_index(reg)], val);
5621 		checked = true;
5622 
5623 		/* Reenter guest so it can consume/check rcx and exit again. */
5624 		enter_guest();
5625 	} else if (exit_reason_want != VMX_VMCALL) {
5626 		report("Oops, bad exit expectation: %u.", false,
5627 		       exit_reason_want);
5628 	}
5629 
5630 	assert_exit_reason(VMX_VMCALL);
5631 	if (virtualized && !checked) {
5632 		u32 want = expectation->virt_fn(val);
5633 		u32 got = virtual_apic_page[apic_reg_index(reg)];
5634 		got = expectation->virt_fn(got);
5635 
5636 		report("exitless write; val is 0x%x, want 0x%x",
5637 		       got == want, got, want);
5638 	} else if (!expectation->virtualize_apic_accesses && !checked) {
5639 		u32 got = apic_access_address[apic_reg_index(reg)];
5640 
5641 		report("non-virtualized write; val is 0x%x, want 0x%x",
5642 		       got == val, got, val);
5643 	} else if (!expectation->virtualize_apic_accesses && checked) {
5644 		report("Non-virtualized write was prematurely checked!", false);
5645 	}
5646 
5647 	skip_exit_vmcall();
5648 	report_prefix_pop();
5649 }
5650 
5651 enum Config_type {
5652 	CONFIG_TYPE_GOOD,
5653 	CONFIG_TYPE_UNSUPPORTED,
5654 	CONFIG_TYPE_VMENTRY_FAILS_EARLY,
5655 };
5656 
5657 static enum Config_type configure_apic_reg_virt_test(
5658 	struct apic_reg_virt_config *apic_reg_virt_config)
5659 {
5660 	u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
5661 	u32 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
5662 	/* Configs where L2 entry fails early, due to invalid controls. */
5663 	bool use_tpr_shadow_incorrectly_off =
5664 		!apic_reg_virt_config->use_tpr_shadow &&
5665 		(apic_reg_virt_config->apic_register_virtualization ||
5666 		 apic_reg_virt_config->virtualize_x2apic_mode) &&
5667 		apic_reg_virt_config->activate_secondary_controls;
5668 	bool virtualize_apic_accesses_incorrectly_on =
5669 		apic_reg_virt_config->virtualize_apic_accesses &&
5670 		apic_reg_virt_config->virtualize_x2apic_mode &&
5671 		apic_reg_virt_config->activate_secondary_controls;
5672 	bool vmentry_fails_early =
5673 		use_tpr_shadow_incorrectly_off ||
5674 		virtualize_apic_accesses_incorrectly_on;
5675 
5676 	if (apic_reg_virt_config->activate_secondary_controls) {
5677 		if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
5678 			printf("VM-execution control \"activate secondary controls\" NOT supported.\n");
5679 			return CONFIG_TYPE_UNSUPPORTED;
5680 		}
5681 		cpu_exec_ctrl0 |= CPU_SECONDARY;
5682 	} else {
5683 		cpu_exec_ctrl0 &= ~CPU_SECONDARY;
5684 	}
5685 
5686 	if (apic_reg_virt_config->virtualize_apic_accesses) {
5687 		if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES)) {
5688 			printf("VM-execution control \"virtualize APIC accesses\" NOT supported.\n");
5689 			return CONFIG_TYPE_UNSUPPORTED;
5690 		}
5691 		cpu_exec_ctrl1 |= CPU_VIRT_APIC_ACCESSES;
5692 	} else {
5693 		cpu_exec_ctrl1 &= ~CPU_VIRT_APIC_ACCESSES;
5694 	}
5695 
5696 	if (apic_reg_virt_config->use_tpr_shadow) {
5697 		if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
5698 			printf("VM-execution control \"use TPR shadow\" NOT supported.\n");
5699 			return CONFIG_TYPE_UNSUPPORTED;
5700 		}
5701 		cpu_exec_ctrl0 |= CPU_TPR_SHADOW;
5702 	} else {
5703 		cpu_exec_ctrl0 &= ~CPU_TPR_SHADOW;
5704 	}
5705 
5706 	if (apic_reg_virt_config->apic_register_virtualization) {
5707 		if (!(ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT)) {
5708 			printf("VM-execution control \"APIC-register virtualization\" NOT supported.\n");
5709 			return CONFIG_TYPE_UNSUPPORTED;
5710 		}
5711 		cpu_exec_ctrl1 |= CPU_APIC_REG_VIRT;
5712 	} else {
5713 		cpu_exec_ctrl1 &= ~CPU_APIC_REG_VIRT;
5714 	}
5715 
5716 	if (apic_reg_virt_config->virtualize_x2apic_mode) {
5717 		if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_X2APIC)) {
5718 			printf("VM-execution control \"virtualize x2APIC mode\" NOT supported.\n");
5719 			return CONFIG_TYPE_UNSUPPORTED;
5720 		}
5721 		cpu_exec_ctrl1 |= CPU_VIRT_X2APIC;
5722 	} else {
5723 		cpu_exec_ctrl1 &= ~CPU_VIRT_X2APIC;
5724 	}
5725 
5726 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
5727 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
5728 
5729 	if (vmentry_fails_early)
5730 		return CONFIG_TYPE_VMENTRY_FAILS_EARLY;
5731 
5732 	return CONFIG_TYPE_GOOD;
5733 }
5734 
5735 static bool cpu_has_apicv(void)
5736 {
5737 	return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) &&
5738 		(ctrl_cpu_rev[1].clr & CPU_VINTD) &&
5739 		(ctrl_pin_rev.clr & PIN_POST_INTR));
5740 }
5741 
5742 /* Validates APIC register access across valid virtualization configurations. */
5743 static void apic_reg_virt_test(void)
5744 {
5745 	u32 *apic_access_address;
5746 	u32 *virtual_apic_page;
5747 	u64 control;
5748 	u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
5749 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
5750 	int i;
5751 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
5752 
5753 	if (!cpu_has_apicv()) {
5754 		report_skip(__func__);
5755 		return;
5756 	}
5757 
5758 	control = cpu_exec_ctrl1;
5759 	control &= ~CPU_VINTD;
5760 	vmcs_write(CPU_EXEC_CTRL1, control);
5761 
5762 	test_set_guest(apic_reg_virt_guest);
5763 
5764 	/*
5765 	 * From the SDM: The 1-setting of the "virtualize APIC accesses"
5766 	 * VM-execution is guaranteed to apply only if translations to the
5767 	 * APIC-access address use a 4-KByte page.
5768 	 */
5769 	apic_access_address = alloc_page();
5770 	force_4k_page(apic_access_address);
5771 	vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_address));
5772 
5773 	virtual_apic_page = alloc_page();
5774 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
5775 
5776 	for (i = 0; i < ARRAY_SIZE(apic_reg_tests); i++) {
5777 		struct apic_reg_test *apic_reg_test = &apic_reg_tests[i];
5778 		struct apic_reg_virt_config *apic_reg_virt_config =
5779 				&apic_reg_test->apic_reg_virt_config;
5780 		enum Config_type config_type;
5781 		u32 reg;
5782 
5783 		printf("--- %s test ---\n", apic_reg_test->name);
5784 		config_type =
5785 			configure_apic_reg_virt_test(apic_reg_virt_config);
5786 		if (config_type == CONFIG_TYPE_UNSUPPORTED) {
5787 			printf("Skip because of missing features.\n");
5788 			continue;
5789 		}
5790 
5791 		if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
5792 			enter_guest_with_bad_controls();
5793 			continue;
5794 		}
5795 
5796 		for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
5797 			struct apic_reg_virt_expectation expectation = {};
5798 			bool ok;
5799 
5800 			ok = apic_reg_virt_exit_expectation(
5801 				reg, apic_reg_virt_config, &expectation);
5802 			if (!ok) {
5803 				report("Malformed test.", false);
5804 				break;
5805 			}
5806 
5807 			test_xapic_rd(reg, &expectation, apic_access_address,
5808 				      virtual_apic_page);
5809 			test_xapic_wr(reg, &expectation, apic_access_address,
5810 				      virtual_apic_page);
5811 		}
5812 	}
5813 
5814 	/* Terminate the guest */
5815 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
5816 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
5817 	args->op = TERMINATE;
5818 	enter_guest();
5819 	assert_exit_reason(VMX_VMCALL);
5820 }
5821 
5822 struct virt_x2apic_mode_config {
5823 	struct apic_reg_virt_config apic_reg_virt_config;
5824 	bool virtual_interrupt_delivery;
5825 	bool use_msr_bitmaps;
5826 	bool disable_x2apic_msr_intercepts;
5827 	bool disable_x2apic;
5828 };
5829 
5830 struct virt_x2apic_mode_test_case {
5831 	const char *name;
5832 	struct virt_x2apic_mode_config virt_x2apic_mode_config;
5833 };
5834 
5835 enum Virt_x2apic_mode_behavior_type {
5836 	X2APIC_ACCESS_VIRTUALIZED,
5837 	X2APIC_ACCESS_PASSED_THROUGH,
5838 	X2APIC_ACCESS_TRIGGERS_GP,
5839 };
5840 
5841 struct virt_x2apic_mode_expectation {
5842 	enum Reason rd_exit_reason;
5843 	enum Reason wr_exit_reason;
5844 
5845 	/*
5846 	 * RDMSR and WRMSR handle 64-bit values. However, except for ICR, all of
5847 	 * the x2APIC registers are 32 bits. Notice:
5848 	 *   1. vmx_x2apic_read() clears the upper 32 bits for 32-bit registers.
5849 	 *   2. vmx_x2apic_write() expects the val arg to be well-formed.
5850 	 */
5851 	u64 rd_val;
5852 	u64 wr_val;
5853 
5854 	/*
5855 	 * Compares input to virtualized output;
5856 	 * 1st arg is pointer to return expected virtualization output.
5857 	 */
5858 	u64 (*virt_fn)(u64);
5859 
5860 	enum Virt_x2apic_mode_behavior_type rd_behavior;
5861 	enum Virt_x2apic_mode_behavior_type wr_behavior;
5862 	bool wr_only;
5863 };
5864 
5865 static u64 virt_x2apic_mode_identity(u64 val)
5866 {
5867 	return val;
5868 }
5869 
5870 static u64 virt_x2apic_mode_nibble1(u64 val)
5871 {
5872 	return val & 0xf0;
5873 }
5874 
5875 static bool is_cmci_enabled(void)
5876 {
5877 	return rdmsr(MSR_IA32_MCG_CAP) & BIT_ULL(10);
5878 }
5879 
5880 static void virt_x2apic_mode_rd_expectation(
5881 	u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
5882 	bool apic_register_virtualization, bool virtual_interrupt_delivery,
5883 	struct virt_x2apic_mode_expectation *expectation)
5884 {
5885 	bool readable =
5886 		!x2apic_reg_reserved(reg) &&
5887 		reg != APIC_EOI;
5888 
5889 	if (reg == APIC_CMCI && !is_cmci_enabled())
5890 		readable = false;
5891 
5892 	expectation->rd_exit_reason = VMX_VMCALL;
5893 	expectation->virt_fn = virt_x2apic_mode_identity;
5894 	if (virt_x2apic_mode_on && apic_register_virtualization) {
5895 		expectation->rd_val = MAGIC_VAL_1;
5896 		if (reg == APIC_PROCPRI && virtual_interrupt_delivery)
5897 			expectation->virt_fn = virt_x2apic_mode_nibble1;
5898 		else if (reg == APIC_TASKPRI)
5899 			expectation->virt_fn = virt_x2apic_mode_nibble1;
5900 		expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
5901 	} else if (virt_x2apic_mode_on && !apic_register_virtualization &&
5902 		   reg == APIC_TASKPRI) {
5903 		expectation->rd_val = MAGIC_VAL_1;
5904 		expectation->virt_fn = virt_x2apic_mode_nibble1;
5905 		expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
5906 	} else if (!disable_x2apic && readable) {
5907 		expectation->rd_val = apic_read(reg);
5908 		expectation->rd_behavior = X2APIC_ACCESS_PASSED_THROUGH;
5909 	} else {
5910 		expectation->rd_behavior = X2APIC_ACCESS_TRIGGERS_GP;
5911 	}
5912 }
5913 
5914 /*
5915  * get_x2apic_wr_val() creates an innocuous write value for an x2APIC register.
5916  *
5917  * For writable registers, get_x2apic_wr_val() deposits the write value into the
5918  * val pointer arg and returns true. For non-writable registers, val is not
5919  * modified and get_x2apic_wr_val() returns false.
5920  */
5921 static bool get_x2apic_wr_val(u32 reg, u64 *val)
5922 {
5923 	switch (reg) {
5924 	case APIC_TASKPRI:
5925 		/* Bits 31:8 are reserved. */
5926 		*val &= 0xff;
5927 		break;
5928 	case APIC_EOI:
5929 	case APIC_ESR:
5930 	case APIC_TMICT:
5931 		/*
5932 		 * EOI, ESR: WRMSR of a non-zero value causes #GP(0).
5933 		 * TMICT: A write of 0 to the initial-count register effectively
5934 		 *        stops the local APIC timer, in both one-shot and
5935 		 *        periodic mode.
5936 		 */
5937 		*val = 0;
5938 		break;
5939 	case APIC_SPIV:
5940 	case APIC_LVTT:
5941 	case APIC_LVTTHMR:
5942 	case APIC_LVTPC:
5943 	case APIC_LVT0:
5944 	case APIC_LVT1:
5945 	case APIC_LVTERR:
5946 	case APIC_TDCR:
5947 		/*
5948 		 * To avoid writing a 1 to a reserved bit or causing some other
5949 		 * unintended side effect, read the current value and use it as
5950 		 * the write value.
5951 		 */
5952 		*val = apic_read(reg);
5953 		break;
5954 	case APIC_CMCI:
5955 		if (!is_cmci_enabled())
5956 			return false;
5957 		*val = apic_read(reg);
5958 		break;
5959 	case APIC_ICR:
5960 		*val = 0x40000 | 0xf1;
5961 		break;
5962 	case APIC_SELF_IPI:
5963 		/*
5964 		 * With special processing (i.e., virtualize x2APIC mode +
5965 		 * virtual interrupt delivery), writing zero causes an
5966 		 * APIC-write VM exit. We plan to add a test for enabling
5967 		 * "virtual-interrupt delivery" in VMCS12, and that's where we
5968 		 * will test a self IPI with special processing.
5969 		 */
5970 		*val = 0x0;
5971 		break;
5972 	default:
5973 		return false;
5974 	}
5975 
5976 	return true;
5977 }
5978 
5979 static bool special_processing_applies(u32 reg, u64 *val,
5980 				       bool virt_int_delivery)
5981 {
5982 	bool special_processing =
5983 		(reg == APIC_TASKPRI) ||
5984 		(virt_int_delivery &&
5985 		 (reg == APIC_EOI || reg == APIC_SELF_IPI));
5986 
5987 	if (special_processing) {
5988 		TEST_ASSERT(get_x2apic_wr_val(reg, val));
5989 		return true;
5990 	}
5991 
5992 	return false;
5993 }
5994 
5995 static void virt_x2apic_mode_wr_expectation(
5996 	u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
5997 	bool virt_int_delivery,
5998 	struct virt_x2apic_mode_expectation *expectation)
5999 {
6000 	expectation->wr_exit_reason = VMX_VMCALL;
6001 	expectation->wr_val = MAGIC_VAL_1;
6002 	expectation->wr_only = false;
6003 
6004 	if (virt_x2apic_mode_on &&
6005 	    special_processing_applies(reg, &expectation->wr_val,
6006 				       virt_int_delivery)) {
6007 		expectation->wr_behavior = X2APIC_ACCESS_VIRTUALIZED;
6008 		if (reg == APIC_SELF_IPI)
6009 			expectation->wr_exit_reason = VMX_APIC_WRITE;
6010 	} else if (!disable_x2apic &&
6011 		   get_x2apic_wr_val(reg, &expectation->wr_val)) {
6012 		expectation->wr_behavior = X2APIC_ACCESS_PASSED_THROUGH;
6013 		if (reg == APIC_EOI || reg == APIC_SELF_IPI)
6014 			expectation->wr_only = true;
6015 		if (reg == APIC_ICR)
6016 			expectation->wr_exit_reason = VMX_EXTINT;
6017 	} else {
6018 		expectation->wr_behavior = X2APIC_ACCESS_TRIGGERS_GP;
6019 		/*
6020 		 * Writing 1 to a reserved bit triggers a #GP.
6021 		 * Thus, set the write value to 0, which seems
6022 		 * the most likely to detect a missed #GP.
6023 		 */
6024 		expectation->wr_val = 0;
6025 	}
6026 }
6027 
6028 static void virt_x2apic_mode_exit_expectation(
6029 	u32 reg, struct virt_x2apic_mode_config *config,
6030 	struct virt_x2apic_mode_expectation *expectation)
6031 {
6032 	struct apic_reg_virt_config *base_config =
6033 		&config->apic_reg_virt_config;
6034 	bool virt_x2apic_mode_on =
6035 		base_config->virtualize_x2apic_mode &&
6036 		config->use_msr_bitmaps &&
6037 		config->disable_x2apic_msr_intercepts &&
6038 		base_config->activate_secondary_controls;
6039 
6040 	virt_x2apic_mode_wr_expectation(
6041 		reg, virt_x2apic_mode_on, config->disable_x2apic,
6042 		config->virtual_interrupt_delivery, expectation);
6043 	virt_x2apic_mode_rd_expectation(
6044 		reg, virt_x2apic_mode_on, config->disable_x2apic,
6045 		base_config->apic_register_virtualization,
6046 		config->virtual_interrupt_delivery, expectation);
6047 }
6048 
6049 struct virt_x2apic_mode_test_case virt_x2apic_mode_tests[] = {
6050 	/*
6051 	 * Baseline "virtualize x2APIC mode" configuration:
6052 	 *   - virtualize x2APIC mode
6053 	 *   - virtual-interrupt delivery
6054 	 *   - APIC-register virtualization
6055 	 *   - x2APIC MSR intercepts disabled
6056 	 *
6057 	 * Reads come from virtual APIC page, special processing applies to
6058 	 * VTPR, EOI, and SELF IPI, and all other writes pass through to L1
6059 	 * APIC.
6060 	 */
6061 	{
6062 		.name = "Baseline",
6063 		.virt_x2apic_mode_config = {
6064 			.virtual_interrupt_delivery = true,
6065 			.use_msr_bitmaps = true,
6066 			.disable_x2apic_msr_intercepts = true,
6067 			.disable_x2apic = false,
6068 			.apic_reg_virt_config = {
6069 				.apic_register_virtualization = true,
6070 				.use_tpr_shadow = true,
6071 				.virtualize_apic_accesses = false,
6072 				.virtualize_x2apic_mode = true,
6073 				.activate_secondary_controls = true,
6074 			},
6075 		},
6076 	},
6077 	{
6078 		.name = "Baseline w/ x2apic disabled",
6079 		.virt_x2apic_mode_config = {
6080 			.virtual_interrupt_delivery = true,
6081 			.use_msr_bitmaps = true,
6082 			.disable_x2apic_msr_intercepts = true,
6083 			.disable_x2apic = true,
6084 			.apic_reg_virt_config = {
6085 				.apic_register_virtualization = true,
6086 				.use_tpr_shadow = true,
6087 				.virtualize_apic_accesses = false,
6088 				.virtualize_x2apic_mode = true,
6089 				.activate_secondary_controls = true,
6090 			},
6091 		},
6092 	},
6093 
6094 	/*
6095 	 * Baseline, minus virtual-interrupt delivery. Reads come from virtual
6096 	 * APIC page, special processing applies to VTPR, and all other writes
6097 	 * pass through to L1 APIC.
6098 	 */
6099 	{
6100 		.name = "Baseline - virtual interrupt delivery",
6101 		.virt_x2apic_mode_config = {
6102 			.virtual_interrupt_delivery = false,
6103 			.use_msr_bitmaps = true,
6104 			.disable_x2apic_msr_intercepts = true,
6105 			.disable_x2apic = false,
6106 			.apic_reg_virt_config = {
6107 				.apic_register_virtualization = true,
6108 				.use_tpr_shadow = true,
6109 				.virtualize_apic_accesses = false,
6110 				.virtualize_x2apic_mode = true,
6111 				.activate_secondary_controls = true,
6112 			},
6113 		},
6114 	},
6115 
6116 	/*
6117 	 * Baseline, minus APIC-register virtualization. x2APIC reads pass
6118 	 * through to L1's APIC, unless reading VTPR
6119 	 */
6120 	{
6121 		.name = "Virtualize x2APIC mode, no APIC reg virt",
6122 		.virt_x2apic_mode_config = {
6123 			.virtual_interrupt_delivery = true,
6124 			.use_msr_bitmaps = true,
6125 			.disable_x2apic_msr_intercepts = true,
6126 			.disable_x2apic = false,
6127 			.apic_reg_virt_config = {
6128 				.apic_register_virtualization = false,
6129 				.use_tpr_shadow = true,
6130 				.virtualize_apic_accesses = false,
6131 				.virtualize_x2apic_mode = true,
6132 				.activate_secondary_controls = true,
6133 			},
6134 		},
6135 	},
6136 	{
6137 		.name = "Virtualize x2APIC mode, no APIC reg virt, x2APIC off",
6138 		.virt_x2apic_mode_config = {
6139 			.virtual_interrupt_delivery = true,
6140 			.use_msr_bitmaps = true,
6141 			.disable_x2apic_msr_intercepts = true,
6142 			.disable_x2apic = true,
6143 			.apic_reg_virt_config = {
6144 				.apic_register_virtualization = false,
6145 				.use_tpr_shadow = true,
6146 				.virtualize_apic_accesses = false,
6147 				.virtualize_x2apic_mode = true,
6148 				.activate_secondary_controls = true,
6149 			},
6150 		},
6151 	},
6152 
6153 	/*
6154 	 * Enable "virtualize x2APIC mode" and "APIC-register virtualization",
6155 	 * and disable intercepts for the x2APIC MSRs, but fail to enable
6156 	 * "activate secondary controls" (i.e. L2 gets access to L1's x2APIC
6157 	 * MSRs).
6158 	 */
6159 	{
6160 		.name = "Fail to enable activate secondary controls",
6161 		.virt_x2apic_mode_config = {
6162 			.virtual_interrupt_delivery = true,
6163 			.use_msr_bitmaps = true,
6164 			.disable_x2apic_msr_intercepts = true,
6165 			.disable_x2apic = false,
6166 			.apic_reg_virt_config = {
6167 				.apic_register_virtualization = true,
6168 				.use_tpr_shadow = true,
6169 				.virtualize_apic_accesses = false,
6170 				.virtualize_x2apic_mode = true,
6171 				.activate_secondary_controls = false,
6172 			},
6173 		},
6174 	},
6175 
6176 	/*
6177 	 * Enable "APIC-register virtualization" and enable "activate secondary
6178 	 * controls" and disable intercepts for the x2APIC MSRs, but do not
6179 	 * enable the "virtualize x2APIC mode" VM-execution control (i.e. L2
6180 	 * gets access to L1's x2APIC MSRs).
6181 	 */
6182 	{
6183 		.name = "Fail to enable virtualize x2APIC mode",
6184 		.virt_x2apic_mode_config = {
6185 			.virtual_interrupt_delivery = true,
6186 			.use_msr_bitmaps = true,
6187 			.disable_x2apic_msr_intercepts = true,
6188 			.disable_x2apic = false,
6189 			.apic_reg_virt_config = {
6190 				.apic_register_virtualization = true,
6191 				.use_tpr_shadow = true,
6192 				.virtualize_apic_accesses = false,
6193 				.virtualize_x2apic_mode = false,
6194 				.activate_secondary_controls = true,
6195 			},
6196 		},
6197 	},
6198 
6199 	/*
6200 	 * Disable "Virtualize x2APIC mode", disable x2APIC MSR intercepts, and
6201 	 * enable "APIC-register virtualization" --> L2 gets L1's x2APIC MSRs.
6202 	 */
6203 	{
6204 		.name = "Baseline",
6205 		.virt_x2apic_mode_config = {
6206 			.virtual_interrupt_delivery = true,
6207 			.use_msr_bitmaps = true,
6208 			.disable_x2apic_msr_intercepts = true,
6209 			.disable_x2apic = false,
6210 			.apic_reg_virt_config = {
6211 				.apic_register_virtualization = true,
6212 				.use_tpr_shadow = true,
6213 				.virtualize_apic_accesses = false,
6214 				.virtualize_x2apic_mode = false,
6215 				.activate_secondary_controls = true,
6216 			},
6217 		},
6218 	},
6219 };
6220 
6221 enum X2apic_op {
6222 	X2APIC_OP_RD,
6223 	X2APIC_OP_WR,
6224 	X2APIC_TERMINATE,
6225 };
6226 
6227 static u64 vmx_x2apic_read(u32 reg)
6228 {
6229 	u32 msr_addr = x2apic_msr(reg);
6230 	u64 val;
6231 
6232 	val = rdmsr(msr_addr);
6233 
6234 	return val;
6235 }
6236 
6237 static void vmx_x2apic_write(u32 reg, u64 val)
6238 {
6239 	u32 msr_addr = x2apic_msr(reg);
6240 
6241 	wrmsr(msr_addr, val);
6242 }
6243 
6244 struct virt_x2apic_mode_guest_args {
6245 	enum X2apic_op op;
6246 	u32 reg;
6247 	u64 val;
6248 	bool should_gp;
6249 	u64 (*virt_fn)(u64);
6250 } virt_x2apic_mode_guest_args;
6251 
6252 static volatile bool handle_x2apic_gp_ran;
6253 static volatile u32 handle_x2apic_gp_insn_len;
6254 static void handle_x2apic_gp(struct ex_regs *regs)
6255 {
6256 	handle_x2apic_gp_ran = true;
6257 	regs->rip += handle_x2apic_gp_insn_len;
6258 }
6259 
6260 static handler setup_x2apic_gp_handler(void)
6261 {
6262 	handler old_handler;
6263 
6264 	old_handler = handle_exception(GP_VECTOR, handle_x2apic_gp);
6265 	/* RDMSR and WRMSR are both 2 bytes, assuming no prefixes. */
6266 	handle_x2apic_gp_insn_len = 2;
6267 
6268 	return old_handler;
6269 }
6270 
6271 static void teardown_x2apic_gp_handler(handler old_handler)
6272 {
6273 	handle_exception(GP_VECTOR, old_handler);
6274 
6275 	/*
6276 	 * Defensively reset instruction length, so that if the handler is
6277 	 * incorrectly used, it will loop infinitely, rather than run off into
6278 	 * la la land.
6279 	 */
6280 	handle_x2apic_gp_insn_len = 0;
6281 	handle_x2apic_gp_ran = false;
6282 }
6283 
6284 static void virt_x2apic_mode_guest(void)
6285 {
6286 	volatile struct virt_x2apic_mode_guest_args *args =
6287 		&virt_x2apic_mode_guest_args;
6288 
6289 	for (;;) {
6290 		enum X2apic_op op = args->op;
6291 		u32 reg = args->reg;
6292 		u64 val = args->val;
6293 		bool should_gp = args->should_gp;
6294 		u64 (*virt_fn)(u64) = args->virt_fn;
6295 		handler old_handler;
6296 
6297 		if (op == X2APIC_TERMINATE)
6298 			break;
6299 
6300 		if (should_gp) {
6301 			TEST_ASSERT(!handle_x2apic_gp_ran);
6302 			old_handler = setup_x2apic_gp_handler();
6303 		}
6304 
6305 		if (op == X2APIC_OP_RD) {
6306 			u64 ret = vmx_x2apic_read(reg);
6307 
6308 			if (!should_gp) {
6309 				u64 want = virt_fn(val);
6310 				u64 got = virt_fn(ret);
6311 
6312 				report("APIC read; got 0x%lx, want 0x%lx.",
6313 				       got == want, got, want);
6314 			}
6315 		} else if (op == X2APIC_OP_WR) {
6316 			vmx_x2apic_write(reg, val);
6317 		}
6318 
6319 		if (should_gp) {
6320 			report("x2APIC op triggered GP.",
6321 			       handle_x2apic_gp_ran);
6322 			teardown_x2apic_gp_handler(old_handler);
6323 		}
6324 
6325 		/*
6326 		 * The L1 should always execute a vmcall after it's done testing
6327 		 * an individual APIC operation. This helps to validate that the
6328 		 * L1 and L2 are in sync with each other, as expected.
6329 		 */
6330 		vmcall();
6331 	}
6332 }
6333 
6334 static void test_x2apic_rd(
6335 	u32 reg, struct virt_x2apic_mode_expectation *expectation,
6336 	u32 *virtual_apic_page)
6337 {
6338 	u64 val = expectation->rd_val;
6339 	u32 exit_reason_want = expectation->rd_exit_reason;
6340 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6341 
6342 	report_prefix_pushf("x2apic - reading 0x%03x", reg);
6343 
6344 	/* Configure guest to do an x2apic read */
6345 	args->op = X2APIC_OP_RD;
6346 	args->reg = reg;
6347 	args->val = val;
6348 	args->should_gp = expectation->rd_behavior == X2APIC_ACCESS_TRIGGERS_GP;
6349 	args->virt_fn = expectation->virt_fn;
6350 
6351 	/* Setup virtual APIC page */
6352 	if (expectation->rd_behavior == X2APIC_ACCESS_VIRTUALIZED)
6353 		virtual_apic_page[apic_reg_index(reg)] = (u32)val;
6354 
6355 	/* Enter guest */
6356 	enter_guest();
6357 
6358 	if (exit_reason_want != VMX_VMCALL) {
6359 		report("Oops, bad exit expectation: %u.", false,
6360 		       exit_reason_want);
6361 	}
6362 
6363 	skip_exit_vmcall();
6364 	report_prefix_pop();
6365 }
6366 
6367 static volatile bool handle_x2apic_ipi_ran;
6368 static void handle_x2apic_ipi(isr_regs_t *regs)
6369 {
6370 	handle_x2apic_ipi_ran = true;
6371 	eoi();
6372 }
6373 
6374 static void test_x2apic_wr(
6375 	u32 reg, struct virt_x2apic_mode_expectation *expectation,
6376 	u32 *virtual_apic_page)
6377 {
6378 	u64 val = expectation->wr_val;
6379 	u32 exit_reason_want = expectation->wr_exit_reason;
6380 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6381 	int ipi_vector = 0xf1;
6382 	u32 restore_val = 0;
6383 
6384 	report_prefix_pushf("x2apic - writing 0x%lx to 0x%03x", val, reg);
6385 
6386 	/* Configure guest to do an x2apic read */
6387 	args->op = X2APIC_OP_WR;
6388 	args->reg = reg;
6389 	args->val = val;
6390 	args->should_gp = expectation->wr_behavior == X2APIC_ACCESS_TRIGGERS_GP;
6391 
6392 	/* Setup virtual APIC page */
6393 	if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED)
6394 		virtual_apic_page[apic_reg_index(reg)] = 0;
6395 	if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH && !expectation->wr_only)
6396 		restore_val = apic_read(reg);
6397 
6398 	/* Setup IPI handler */
6399 	handle_x2apic_ipi_ran = false;
6400 	handle_irq(ipi_vector, handle_x2apic_ipi);
6401 
6402 	/* Enter guest */
6403 	enter_guest();
6404 
6405 	/*
6406 	 * Validate the behavior and
6407 	 * pass a magic value back to the guest.
6408 	 */
6409 	if (exit_reason_want == VMX_EXTINT) {
6410 		assert_exit_reason(exit_reason_want);
6411 
6412 		/* Clear the external interrupt. */
6413 		irq_enable();
6414 		asm volatile ("nop");
6415 		irq_disable();
6416 		report("Got pending interrupt after IRQ enabled.",
6417 		       handle_x2apic_ipi_ran);
6418 
6419 		enter_guest();
6420 	} else if (exit_reason_want == VMX_APIC_WRITE) {
6421 		assert_exit_reason(exit_reason_want);
6422 		report("got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%lx",
6423 		       virtual_apic_page[apic_reg_index(reg)] == val,
6424 		       apic_reg_index(reg),
6425 		       virtual_apic_page[apic_reg_index(reg)], val);
6426 
6427 		/* Reenter guest so it can consume/check rcx and exit again. */
6428 		enter_guest();
6429 	} else if (exit_reason_want != VMX_VMCALL) {
6430 		report("Oops, bad exit expectation: %u.", false,
6431 		       exit_reason_want);
6432 	}
6433 
6434 	assert_exit_reason(VMX_VMCALL);
6435 	if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) {
6436 		u64 want = val;
6437 		u32 got = virtual_apic_page[apic_reg_index(reg)];
6438 
6439 		report("x2APIC write; got 0x%x, want 0x%lx",
6440 		       got == want, got, want);
6441 	} else if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH) {
6442 		if (!expectation->wr_only) {
6443 			u32 got = apic_read(reg);
6444 			bool ok;
6445 
6446 			/*
6447 			 * When L1's TPR is passed through to L2, the lower
6448 			 * nibble can be lost. For example, if L2 executes
6449 			 * WRMSR(0x808, 0x78), then, L1 might read 0x70.
6450 			 *
6451 			 * Here's how the lower nibble can get lost:
6452 			 *   1. L2 executes WRMSR(0x808, 0x78).
6453 			 *   2. L2 exits to L0 with a WRMSR exit.
6454 			 *   3. L0 emulates WRMSR, by writing L1's TPR.
6455 			 *   4. L0 re-enters L2.
6456 			 *   5. L2 exits to L0 (reason doesn't matter).
6457 			 *   6. L0 reflects L2's exit to L1.
6458 			 *   7. Before entering L1, L0 exits to user-space
6459 			 *      (e.g., to satisfy TPR access reporting).
6460 			 *   8. User-space executes KVM_SET_REGS ioctl, which
6461 			 *      clears the lower nibble of L1's TPR.
6462 			 */
6463 			if (reg == APIC_TASKPRI) {
6464 				got = apic_virt_nibble1(got);
6465 				val = apic_virt_nibble1(val);
6466 			}
6467 
6468 			ok = got == val;
6469 			report("non-virtualized write; val is 0x%x, want 0x%lx",
6470 			       ok, got, val);
6471 			apic_write(reg, restore_val);
6472 		} else {
6473 			report("non-virtualized and write-only OK", true);
6474 		}
6475 	}
6476 	skip_exit_insn();
6477 
6478 	report_prefix_pop();
6479 }
6480 
6481 static enum Config_type configure_virt_x2apic_mode_test(
6482 	struct virt_x2apic_mode_config *virt_x2apic_mode_config,
6483 	u8 *msr_bitmap_page)
6484 {
6485 	int msr;
6486 	u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6487 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6488 
6489 	/* x2apic-specific VMCS config */
6490 	if (virt_x2apic_mode_config->use_msr_bitmaps) {
6491 		/* virt_x2apic_mode_test() checks for MSR bitmaps support */
6492 		cpu_exec_ctrl0 |= CPU_MSR_BITMAP;
6493 	} else {
6494 		cpu_exec_ctrl0 &= ~CPU_MSR_BITMAP;
6495 	}
6496 
6497 	if (virt_x2apic_mode_config->virtual_interrupt_delivery) {
6498 		if (!(ctrl_cpu_rev[1].clr & CPU_VINTD)) {
6499 			report_skip("VM-execution control \"virtual-interrupt delivery\" NOT supported.\n");
6500 			return CONFIG_TYPE_UNSUPPORTED;
6501 		}
6502 		cpu_exec_ctrl1 |= CPU_VINTD;
6503 	} else {
6504 		cpu_exec_ctrl1 &= ~CPU_VINTD;
6505 	}
6506 
6507 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6508 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6509 
6510 	/* x2APIC MSR intercepts are usually off for "Virtualize x2APIC mode" */
6511 	for (msr = 0x800; msr <= 0x8ff; msr++) {
6512 		if (virt_x2apic_mode_config->disable_x2apic_msr_intercepts) {
6513 			clear_bit(msr, msr_bitmap_page + 0x000);
6514 			clear_bit(msr, msr_bitmap_page + 0x800);
6515 		} else {
6516 			set_bit(msr, msr_bitmap_page + 0x000);
6517 			set_bit(msr, msr_bitmap_page + 0x800);
6518 		}
6519 	}
6520 
6521 	/* x2APIC mode can impact virtualization */
6522 	reset_apic();
6523 	if (!virt_x2apic_mode_config->disable_x2apic)
6524 		enable_x2apic();
6525 
6526 	return configure_apic_reg_virt_test(
6527 		&virt_x2apic_mode_config->apic_reg_virt_config);
6528 }
6529 
6530 static void virt_x2apic_mode_test(void)
6531 {
6532 	u32 *virtual_apic_page;
6533 	u8 *msr_bitmap_page;
6534 	u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6535 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6536 	int i;
6537 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6538 
6539 	if (!cpu_has_apicv()) {
6540 		report_skip(__func__);
6541 		return;
6542 	}
6543 
6544 	/*
6545 	 * This is to exercise an issue in KVM's logic to merge L0's and L1's
6546 	 * MSR bitmaps. Previously, an L1 could get at L0's x2APIC MSRs by
6547 	 * writing the IA32_SPEC_CTRL MSR or the IA32_PRED_CMD MSRs. KVM would
6548 	 * then proceed to manipulate the MSR bitmaps, as if VMCS12 had the
6549 	 * "Virtualize x2APIC mod" control set, even when it didn't.
6550 	 */
6551 	if (has_spec_ctrl())
6552 		wrmsr(MSR_IA32_SPEC_CTRL, 1);
6553 
6554 	/*
6555 	 * Check that VMCS12 supports:
6556 	 *   - "Virtual-APIC address", indicated by "use TPR shadow"
6557 	 *   - "MSR-bitmap address", indicated by "use MSR bitmaps"
6558 	 */
6559 	if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
6560 		report_skip("VM-execution control \"use TPR shadow\" NOT supported.\n");
6561 		return;
6562 	} else if (!(ctrl_cpu_rev[0].clr & CPU_MSR_BITMAP)) {
6563 		report_skip("VM-execution control \"use MSR bitmaps\" NOT supported.\n");
6564 		return;
6565 	}
6566 
6567 	test_set_guest(virt_x2apic_mode_guest);
6568 
6569 	virtual_apic_page = alloc_page();
6570 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
6571 
6572 	msr_bitmap_page = alloc_page();
6573 	memset(msr_bitmap_page, 0xff, PAGE_SIZE);
6574 	vmcs_write(MSR_BITMAP, virt_to_phys(msr_bitmap_page));
6575 
6576 	for (i = 0; i < ARRAY_SIZE(virt_x2apic_mode_tests); i++) {
6577 		struct virt_x2apic_mode_test_case *virt_x2apic_mode_test_case =
6578 			&virt_x2apic_mode_tests[i];
6579 		struct virt_x2apic_mode_config *virt_x2apic_mode_config =
6580 			&virt_x2apic_mode_test_case->virt_x2apic_mode_config;
6581 		enum Config_type config_type;
6582 		u32 reg;
6583 
6584 		printf("--- %s test ---\n", virt_x2apic_mode_test_case->name);
6585 		config_type =
6586 			configure_virt_x2apic_mode_test(virt_x2apic_mode_config,
6587 							msr_bitmap_page);
6588 		if (config_type == CONFIG_TYPE_UNSUPPORTED) {
6589 			report_skip("Skip because of missing features.\n");
6590 			continue;
6591 		} else if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
6592 			enter_guest_with_bad_controls();
6593 			continue;
6594 		}
6595 
6596 		for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
6597 			struct virt_x2apic_mode_expectation expectation;
6598 
6599 			virt_x2apic_mode_exit_expectation(
6600 				reg, virt_x2apic_mode_config, &expectation);
6601 
6602 			test_x2apic_rd(reg, &expectation, virtual_apic_page);
6603 			test_x2apic_wr(reg, &expectation, virtual_apic_page);
6604 		}
6605 	}
6606 
6607 
6608 	/* Terminate the guest */
6609 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6610 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6611 	args->op = X2APIC_TERMINATE;
6612 	enter_guest();
6613 	assert_exit_reason(VMX_VMCALL);
6614 }
6615 
6616 /*
6617  * On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP
6618  * field and the IA32_SYSENTER_EIP field must each contain a canonical
6619  * address.
6620  *
6621  *  [Intel SDM]
6622  */
6623 static void test_sysenter_field(u32 field, const char *name)
6624 {
6625 	u64 addr_saved = vmcs_read(field);
6626 
6627 	vmcs_write(field, NONCANONICAL);
6628 	report_prefix_pushf("%s non-canonical", name);
6629 	test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6630 	report_prefix_pop();
6631 
6632 	vmcs_write(field, 0xffffffff);
6633 	report_prefix_pushf("%s canonical", name);
6634 	test_vmx_vmlaunch(0);
6635 	report_prefix_pop();
6636 
6637 	vmcs_write(field, addr_saved);
6638 }
6639 
6640 static void test_ctl_reg(const char *cr_name, u64 cr, u64 fixed0, u64 fixed1)
6641 {
6642 	u64 val;
6643 	u64 cr_saved = vmcs_read(cr);
6644 	int i;
6645 
6646 	val = fixed0 & fixed1;
6647 	if (cr == HOST_CR4)
6648 		vmcs_write(cr, val | X86_CR4_PAE);
6649 	else
6650 		vmcs_write(cr, val);
6651 	report_prefix_pushf("%s %lx", cr_name, val);
6652 	if (val == fixed0)
6653 		test_vmx_vmlaunch(0);
6654 	else
6655 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6656 	report_prefix_pop();
6657 
6658 	for (i = 0; i < 64; i++) {
6659 
6660 		/* Set a bit when the corresponding bit in fixed1 is 0 */
6661 		if ((fixed1 & (1ull << i)) == 0) {
6662 			if (cr == HOST_CR4 && ((1ull << i) & X86_CR4_SMEP ||
6663 					       (1ull << i) & X86_CR4_SMAP))
6664 				continue;
6665 
6666 			vmcs_write(cr, cr_saved | (1ull << i));
6667 			report_prefix_pushf("%s %llx", cr_name,
6668 						cr_saved | (1ull << i));
6669 			test_vmx_vmlaunch(
6670 				VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6671 			report_prefix_pop();
6672 		}
6673 
6674 		/* Unset a bit when the corresponding bit in fixed0 is 1 */
6675 		if (fixed0 & (1ull << i)) {
6676 			vmcs_write(cr, cr_saved & ~(1ull << i));
6677 			report_prefix_pushf("%s %llx", cr_name,
6678 						cr_saved & ~(1ull << i));
6679 			test_vmx_vmlaunch(
6680 				VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6681 			report_prefix_pop();
6682 		}
6683 	}
6684 
6685 	vmcs_write(cr, cr_saved);
6686 }
6687 
6688 /*
6689  * 1. The CR0 field must not set any bit to a value not supported in VMX
6690  *    operation.
6691  * 2. The CR4 field must not set any bit to a value not supported in VMX
6692  *    operation.
6693  * 3. On processors that support Intel 64 architecture, the CR3 field must
6694  *    be such that bits 63:52 and bits in the range 51:32 beyond the
6695  *    processor’s physical-address width must be 0.
6696  *
6697  *  [Intel SDM]
6698  */
6699 static void test_host_ctl_regs(void)
6700 {
6701 	u64 fixed0, fixed1, cr3, cr3_saved;
6702 	int i;
6703 
6704 	/* Test CR0 */
6705 	fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0);
6706 	fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1);
6707 	test_ctl_reg("HOST_CR0", HOST_CR0, fixed0, fixed1);
6708 
6709 	/* Test CR4 */
6710 	fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
6711 	fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1) &
6712 		 ~(X86_CR4_SMEP | X86_CR4_SMAP);
6713 	test_ctl_reg("HOST_CR4", HOST_CR4, fixed0, fixed1);
6714 
6715 	/* Test CR3 */
6716 	cr3_saved = vmcs_read(HOST_CR3);
6717 	for (i = cpuid_maxphyaddr(); i < 64; i++) {
6718 		cr3 = cr3_saved | (1ul << i);
6719 		vmcs_write(HOST_CR3, cr3);
6720 		report_prefix_pushf("HOST_CR3 %lx", cr3);
6721 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6722 		report_prefix_pop();
6723 	}
6724 
6725 	vmcs_write(HOST_CR3, cr3_saved);
6726 }
6727 
6728 static void test_efer_vmlaunch(u32 fld, bool ok)
6729 {
6730 	if (fld == HOST_EFER) {
6731 		if (ok)
6732 			test_vmx_vmlaunch(0);
6733 		else
6734 			test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6735 	} else {
6736 		if (ok) {
6737 			enter_guest();
6738 			report("vmlaunch succeeds", vmcs_read(EXI_REASON) == VMX_VMCALL);
6739 		} else {
6740 			enter_guest_with_invalid_guest_state();
6741 			report("vmlaunch fails", vmcs_read(EXI_REASON) == (VMX_ENTRY_FAILURE | VMX_FAIL_STATE));
6742 		}
6743 		advance_guest_state_test();
6744 	}
6745 }
6746 
6747 static void test_efer_one(u32 fld, const char * fld_name, u64 efer,
6748 			  u32 ctrl_fld, u64 ctrl,
6749 			  int i, const char *efer_bit_name)
6750 {
6751 	bool ok;
6752 
6753 	ok = true;
6754 	if (ctrl_fld == EXI_CONTROLS && (ctrl & EXI_LOAD_EFER)) {
6755 		if (!!(efer & EFER_LMA) != !!(ctrl & EXI_HOST_64))
6756 			ok = false;
6757 		if (!!(efer & EFER_LME) != !!(ctrl & EXI_HOST_64))
6758 			ok = false;
6759 	}
6760 	if (ctrl_fld == ENT_CONTROLS && (ctrl & ENT_LOAD_EFER)) {
6761 		/* Check LMA too since CR0.PG is set.  */
6762 		if (!!(efer & EFER_LMA) != !!(ctrl & ENT_GUEST_64))
6763 			ok = false;
6764 		if (!!(efer & EFER_LME) != !!(ctrl & ENT_GUEST_64))
6765 			ok = false;
6766 	}
6767 
6768 	/*
6769 	 * Skip the test if it would enter the guest in 32-bit mode.
6770 	 * Perhaps write the test in assembly and make sure it
6771 	 * can be run in either mode?
6772 	 */
6773 	if (fld == GUEST_EFER && ok && !(ctrl & ENT_GUEST_64))
6774 		return;
6775 
6776 	vmcs_write(ctrl_fld, ctrl);
6777 	vmcs_write(fld, efer);
6778 	report_prefix_pushf("%s %s bit turned %s, controls %s",
6779 			    fld_name, efer_bit_name,
6780 			    (i & 1) ? "on" : "off",
6781 			    (i & 2) ? "on" : "off");
6782 
6783 	test_efer_vmlaunch(fld, ok);
6784 	report_prefix_pop();
6785 }
6786 
6787 static void test_efer_bit(u32 fld, const char * fld_name,
6788 			  u32 ctrl_fld, u64 ctrl_bit, u64 efer_bit,
6789 			  const char *efer_bit_name)
6790 {
6791 	u64 efer_saved = vmcs_read(fld);
6792 	u32 ctrl_saved = vmcs_read(ctrl_fld);
6793 	int i;
6794 
6795 	for (i = 0; i < 4; i++) {
6796 		u64 efer = efer_saved & ~efer_bit;
6797 		u64 ctrl = ctrl_saved & ~ctrl_bit;
6798 
6799 		if (i & 1)
6800 			efer |= efer_bit;
6801 		if (i & 2)
6802 			ctrl |= ctrl_bit;
6803 
6804 		test_efer_one(fld, fld_name, efer, ctrl_fld, ctrl,
6805 			      i, efer_bit_name);
6806 	}
6807 
6808 	vmcs_write(ctrl_fld, ctrl_saved);
6809 	vmcs_write(fld, efer_saved);
6810 }
6811 
6812 static void test_efer(u32 fld, const char * fld_name, u32 ctrl_fld,
6813 		      u64 ctrl_bit1, u64 ctrl_bit2)
6814 {
6815 	u64 efer_saved = vmcs_read(fld);
6816 	u32 ctrl_saved = vmcs_read(ctrl_fld);
6817 	u64 efer_reserved_bits =  ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
6818 	u64 i;
6819 	u64 efer;
6820 
6821 	if (cpu_has_efer_nx())
6822 		efer_reserved_bits &= ~EFER_NX;
6823 
6824 	if (!ctrl_bit1) {
6825 		printf("\"Load-IA32-EFER\" exit control not supported\n");
6826 		goto test_entry_exit_mode;
6827 	}
6828 
6829 	report_prefix_pushf("%s %lx", fld_name, efer_saved);
6830 	test_efer_vmlaunch(fld, true);
6831 	report_prefix_pop();
6832 
6833 	/*
6834 	 * Check reserved bits
6835 	 */
6836 	vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit1);
6837 	for (i = 0; i < 64; i++) {
6838 		if ((1ull << i) & efer_reserved_bits) {
6839 			efer = efer_saved | (1ull << i);
6840 			vmcs_write(fld, efer);
6841 			report_prefix_pushf("%s %lx", fld_name, efer);
6842 			test_efer_vmlaunch(fld, true);
6843 			report_prefix_pop();
6844 		}
6845 	}
6846 
6847 	vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit1);
6848 	for (i = 0; i < 64; i++) {
6849 		if ((1ull << i) & efer_reserved_bits) {
6850 			efer = efer_saved | (1ull << i);
6851 			vmcs_write(fld, efer);
6852 			report_prefix_pushf("%s %lx", fld_name, efer);
6853 			test_efer_vmlaunch(fld, false);
6854 			report_prefix_pop();
6855 		}
6856 	}
6857 
6858 	vmcs_write(ctrl_fld, ctrl_saved);
6859 	vmcs_write(fld, efer_saved);
6860 
6861 	/*
6862 	 * Check LMA and LME bits
6863 	 */
6864 	test_efer_bit(fld, fld_name,
6865 		      ctrl_fld, ctrl_bit1,
6866 		      EFER_LMA,
6867 		      "EFER_LMA");
6868 	test_efer_bit(fld, fld_name,
6869 		      ctrl_fld, ctrl_bit1,
6870 		      EFER_LME,
6871 		      "EFER_LME");
6872 
6873 test_entry_exit_mode:
6874 	test_efer_bit(fld, fld_name,
6875 		      ctrl_fld, ctrl_bit2,
6876 		      EFER_LMA,
6877 		      "EFER_LMA");
6878 	test_efer_bit(fld, fld_name,
6879 		      ctrl_fld, ctrl_bit2,
6880 		      EFER_LME,
6881 		      "EFER_LME");
6882 }
6883 
6884 /*
6885  * If the 'load IA32_EFER' VM-exit control is 1, bits reserved in the
6886  * IA32_EFER MSR must be 0 in the field for that register. In addition,
6887  * the values of the LMA and LME bits in the field must each be that of
6888  * the 'host address-space size' VM-exit control.
6889  *
6890  *  [Intel SDM]
6891  */
6892 static void test_host_efer(void)
6893 {
6894 	test_efer(HOST_EFER, "HOST_EFER", EXI_CONTROLS,
6895 		  ctrl_exit_rev.clr & EXI_LOAD_EFER,
6896 		  EXI_HOST_64);
6897 }
6898 
6899 /*
6900  * If the 'load IA32_EFER' VM-enter control is 1, bits reserved in the
6901  * IA32_EFER MSR must be 0 in the field for that register. In addition,
6902  * the values of the LMA and LME bits in the field must each be that of
6903  * the 'IA32e-mode guest' VM-exit control.
6904  */
6905 static void test_guest_efer(void)
6906 {
6907 	if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) {
6908 		printf("\"Load-IA32-EFER\" entry control not supported\n");
6909 		return;
6910 	}
6911 
6912 	vmcs_write(GUEST_EFER, rdmsr(MSR_EFER));
6913 	test_efer(GUEST_EFER, "GUEST_EFER", ENT_CONTROLS,
6914 		  ctrl_enter_rev.clr & ENT_LOAD_EFER,
6915 		  ENT_GUEST_64);
6916 }
6917 
6918 /*
6919  * PAT values higher than 8 are uninteresting since they're likely lumped
6920  * in with "8". We only test values above 8 one bit at a time,
6921  * in order to reduce the number of VM-Entries and keep the runtime reasonable.
6922  */
6923 #define	PAT_VAL_LIMIT	8
6924 
6925 static void test_pat(u32 field, const char * field_name, u32 ctrl_field,
6926 		     u64 ctrl_bit)
6927 {
6928 	u32 ctrl_saved = vmcs_read(ctrl_field);
6929 	u64 pat_saved = vmcs_read(field);
6930 	u64 i, val;
6931 	u32 j;
6932 	int error;
6933 
6934 	vmcs_clear_bits(ctrl_field, ctrl_bit);
6935 
6936 	for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
6937 		/* Test PAT0..PAT7 fields */
6938 		for (j = 0; j < (i ? 8 : 1); j++) {
6939 			val = i << j * 8;
6940 			vmcs_write(field, val);
6941 			if (field == HOST_PAT) {
6942 				report_prefix_pushf("%s %lx", field_name, val);
6943 				test_vmx_vmlaunch(0);
6944 				report_prefix_pop();
6945 
6946 			} else {	// GUEST_PAT
6947 				enter_guest();
6948 				report_guest_state_test("ENT_LOAD_PAT enabled",
6949 							VMX_VMCALL, val,
6950 							"GUEST_PAT");
6951 			}
6952 		}
6953 	}
6954 
6955 	vmcs_set_bits(ctrl_field, ctrl_bit);
6956 	for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
6957 		/* Test PAT0..PAT7 fields */
6958 		for (j = 0; j < (i ? 8 : 1); j++) {
6959 			val = i << j * 8;
6960 			vmcs_write(field, val);
6961 
6962 			if (field == HOST_PAT) {
6963 				report_prefix_pushf("%s %lx", field_name, val);
6964 				if (i == 0x2 || i == 0x3 || i >= 0x8)
6965 					error =
6966 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
6967 				else
6968 					error = 0;
6969 
6970 				test_vmx_vmlaunch(error);
6971 				report_prefix_pop();
6972 
6973 			} else {	// GUEST_PAT
6974 				if (i == 0x2 || i == 0x3 || i >= 0x8) {
6975 					enter_guest_with_invalid_guest_state();
6976 					report_guest_state_test("ENT_LOAD_PAT "
6977 							        "enabled",
6978 							        VMX_FAIL_STATE | VMX_ENTRY_FAILURE,
6979 							        val,
6980 							        "GUEST_PAT");
6981 				} else {
6982 					enter_guest();
6983 					report_guest_state_test("ENT_LOAD_PAT "
6984 							        "enabled",
6985 							        VMX_VMCALL,
6986 							        val,
6987 							        "GUEST_PAT");
6988 				}
6989 			}
6990 
6991 		}
6992 	}
6993 
6994 	vmcs_write(ctrl_field, ctrl_saved);
6995 	vmcs_write(field, pat_saved);
6996 }
6997 
6998 /*
6999  *  If the "load IA32_PAT" VM-exit control is 1, the value of the field
7000  *  for the IA32_PAT MSR must be one that could be written by WRMSR
7001  *  without fault at CPL 0. Specifically, each of the 8 bytes in the
7002  *  field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
7003  *  6 (WB), or 7 (UC-).
7004  *
7005  *  [Intel SDM]
7006  */
7007 static void test_load_host_pat(void)
7008 {
7009 	/*
7010 	 * "load IA32_PAT" VM-exit control
7011 	 */
7012 	if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) {
7013 		printf("\"Load-IA32-PAT\" exit control not supported\n");
7014 		return;
7015 	}
7016 
7017 	test_pat(HOST_PAT, "HOST_PAT", EXI_CONTROLS, EXI_LOAD_PAT);
7018 }
7019 
7020 /*
7021  * test_vmcs_field - test a value for the given VMCS field
7022  * @field: VMCS field
7023  * @field_name: string name of VMCS field
7024  * @bit_start: starting bit
7025  * @bit_end: ending bit
7026  * @val: value that the bit range must or must not contain
7027  * @valid_val: whether value given in 'val' must be valid or not
7028  * @error: expected VMCS error when vmentry fails for an invalid value
7029  */
7030 static void test_vmcs_field(u64 field, const char *field_name, u32 bit_start,
7031 			    u32 bit_end, u64 val, bool valid_val, u32 error)
7032 {
7033 	u64 field_saved = vmcs_read(field);
7034 	u32 i;
7035 	u64 tmp;
7036 	u32 bit_on;
7037 	u64 mask = ~0ull;
7038 
7039 	mask = (mask >> bit_end) << bit_end;
7040 	mask = mask | ((1 << bit_start) - 1);
7041 	tmp = (field_saved & mask) | (val << bit_start);
7042 
7043 	vmcs_write(field, tmp);
7044 	report_prefix_pushf("%s %lx", field_name, tmp);
7045 	if (valid_val)
7046 		test_vmx_vmlaunch(0);
7047 	else
7048 		test_vmx_vmlaunch(error);
7049 	report_prefix_pop();
7050 
7051 	for (i = bit_start; i <= bit_end; i = i + 2) {
7052 		bit_on = ((1ull < i) & (val << bit_start)) ? 0 : 1;
7053 		if (bit_on)
7054 			tmp = field_saved | (1ull << i);
7055 		else
7056 			tmp = field_saved & ~(1ull << i);
7057 		vmcs_write(field, tmp);
7058 		report_prefix_pushf("%s %lx", field_name, tmp);
7059 		if (valid_val)
7060 			test_vmx_vmlaunch(error);
7061 		else
7062 			test_vmx_vmlaunch(0);
7063 		report_prefix_pop();
7064 	}
7065 
7066 	vmcs_write(field, field_saved);
7067 }
7068 
7069 static void test_canonical(u64 field, const char * field_name)
7070 {
7071 	u64 addr_saved = vmcs_read(field);
7072 
7073 	report_prefix_pushf("%s %lx", field_name, addr_saved);
7074 	if (is_canonical(addr_saved)) {
7075 		test_vmx_vmlaunch(0);
7076 		report_prefix_pop();
7077 
7078 		vmcs_write(field, NONCANONICAL);
7079 		report_prefix_pushf("%s %llx", field_name, NONCANONICAL);
7080 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7081 
7082 		vmcs_write(field, addr_saved);
7083 	} else {
7084 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7085 	}
7086 	report_prefix_pop();
7087 }
7088 
7089 #define TEST_RPL_TI_FLAGS(reg, name)				\
7090 	test_vmcs_field(reg, name, 0, 2, 0x0, true,		\
7091 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7092 
7093 #define TEST_CS_TR_FLAGS(reg, name)				\
7094 	test_vmcs_field(reg, name, 3, 15, 0x0000, false,	\
7095 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7096 
7097 /*
7098  * 1. In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the
7099  *    RPL (bits 1:0) and the TI flag (bit 2) must be 0.
7100  * 2. The selector fields for CS and TR cannot be 0000H.
7101  * 3. The selector field for SS cannot be 0000H if the "host address-space
7102  *    size" VM-exit control is 0.
7103  * 4. On processors that support Intel 64 architecture, the base-address
7104  *    fields for FS, GS and TR must contain canonical addresses.
7105  */
7106 static void test_host_segment_regs(void)
7107 {
7108 	u16 selector_saved;
7109 
7110 	/*
7111 	 * Test RPL and TI flags
7112 	 */
7113 	TEST_RPL_TI_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
7114 	TEST_RPL_TI_FLAGS(HOST_SEL_SS, "HOST_SEL_SS");
7115 	TEST_RPL_TI_FLAGS(HOST_SEL_DS, "HOST_SEL_DS");
7116 	TEST_RPL_TI_FLAGS(HOST_SEL_ES, "HOST_SEL_ES");
7117 	TEST_RPL_TI_FLAGS(HOST_SEL_FS, "HOST_SEL_FS");
7118 	TEST_RPL_TI_FLAGS(HOST_SEL_GS, "HOST_SEL_GS");
7119 	TEST_RPL_TI_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
7120 
7121 	/*
7122 	 * Test that CS and TR fields can not be 0x0000
7123 	 */
7124 	TEST_CS_TR_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
7125 	TEST_CS_TR_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
7126 
7127 	/*
7128 	 * SS field can not be 0x0000 if "host address-space size" VM-exit
7129 	 * control is 0
7130 	 */
7131 	selector_saved = vmcs_read(HOST_SEL_SS);
7132 	vmcs_write(HOST_SEL_SS, 0);
7133 	report_prefix_pushf("HOST_SEL_SS 0");
7134 	if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) {
7135 		test_vmx_vmlaunch(0);
7136 	} else {
7137 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7138 	}
7139 	report_prefix_pop();
7140 
7141 	vmcs_write(HOST_SEL_SS, selector_saved);
7142 
7143 #ifdef __x86_64__
7144 	/*
7145 	 * Base address for FS, GS and TR must be canonical
7146 	 */
7147 	test_canonical(HOST_BASE_FS, "HOST_BASE_FS");
7148 	test_canonical(HOST_BASE_GS, "HOST_BASE_GS");
7149 	test_canonical(HOST_BASE_TR, "HOST_BASE_TR");
7150 #endif
7151 }
7152 
7153 /*
7154  *  On processors that support Intel 64 architecture, the base-address
7155  *  fields for GDTR and IDTR must contain canonical addresses.
7156  */
7157 static void test_host_desc_tables(void)
7158 {
7159 #ifdef __x86_64__
7160 	test_canonical(HOST_BASE_GDTR, "HOST_BASE_GDTR");
7161 	test_canonical(HOST_BASE_IDTR, "HOST_BASE_IDTR");
7162 #endif
7163 }
7164 
7165 /*
7166  * If the "host address-space size" VM-exit control is 0, the following must
7167  * hold:
7168  *    - The "IA-32e mode guest" VM-entry control is 0.
7169  *    - Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.
7170  *    - Bits 63:32 in the RIP field are 0.
7171  *
7172  * If the "host address-space size" VM-exit control is 1, the following must
7173  * hold:
7174  *    - Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.
7175  *    - The RIP field contains a canonical address.
7176  *
7177  */
7178 static void test_host_addr_size(void)
7179 {
7180 	u64 cr4_saved = vmcs_read(HOST_CR4);
7181 	u64 rip_saved = vmcs_read(HOST_RIP);
7182 	u64 entry_ctrl_saved = vmcs_read(ENT_CONTROLS);
7183 	int i;
7184 	u64 tmp;
7185 
7186 	if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) {
7187 		vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
7188 		report_prefix_pushf("\"IA-32e mode guest\" enabled");
7189 		test_vmx_vmlaunch(0);
7190 		report_prefix_pop();
7191 
7192 		vmcs_write(HOST_CR4, cr4_saved | X86_CR4_PCIDE);
7193 		report_prefix_pushf("\"CR4.PCIDE\" set");
7194 		test_vmx_vmlaunch(0);
7195 		report_prefix_pop();
7196 
7197 		for (i = 32; i <= 63; i = i + 4) {
7198 			tmp = rip_saved | 1ull << i;
7199 			vmcs_write(HOST_RIP, tmp);
7200 			report_prefix_pushf("HOST_RIP %lx", tmp);
7201 			test_vmx_vmlaunch(0);
7202 			report_prefix_pop();
7203 		}
7204 
7205 		if (cr4_saved & X86_CR4_PAE) {
7206 			vmcs_write(HOST_CR4, cr4_saved  & ~X86_CR4_PAE);
7207 			report_prefix_pushf("\"CR4.PAE\" unset");
7208 			test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7209 		} else {
7210 			report_prefix_pushf("\"CR4.PAE\" set");
7211 			test_vmx_vmlaunch(0);
7212 		}
7213 		report_prefix_pop();
7214 
7215 		vmcs_write(HOST_RIP, NONCANONICAL);
7216 		report_prefix_pushf("HOST_RIP %llx", NONCANONICAL);
7217 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7218 		report_prefix_pop();
7219 
7220 		vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
7221 		vmcs_write(HOST_RIP, rip_saved);
7222 		vmcs_write(HOST_CR4, cr4_saved);
7223 	}
7224 }
7225 
7226 /*
7227  * Check that the virtual CPU checks the VMX Host State Area as
7228  * documented in the Intel SDM.
7229  */
7230 static void vmx_host_state_area_test(void)
7231 {
7232 	/*
7233 	 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
7234 	 * fail due to invalid guest state, should we make it that
7235 	 * far.
7236 	 */
7237 	vmcs_write(GUEST_RFLAGS, 0);
7238 
7239 	test_host_ctl_regs();
7240 
7241 	test_sysenter_field(HOST_SYSENTER_ESP, "HOST_SYSENTER_ESP");
7242 	test_sysenter_field(HOST_SYSENTER_EIP, "HOST_SYSENTER_EIP");
7243 
7244 	test_host_efer();
7245 	test_load_host_pat();
7246 	test_host_segment_regs();
7247 	test_host_desc_tables();
7248 	test_host_addr_size();
7249 }
7250 
7251 /*
7252  *  If the "load IA32_PAT" VM-entry control is 1, the value of the field
7253  *  for the IA32_PAT MSR must be one that could be written by WRMSR
7254  *  without fault at CPL 0. Specifically, each of the 8 bytes in the
7255  *  field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
7256  *  6 (WB), or 7 (UC-).
7257  *
7258  *  [Intel SDM]
7259  */
7260 static void test_load_guest_pat(void)
7261 {
7262 	/*
7263 	 * "load IA32_PAT" VM-entry control
7264 	 */
7265 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
7266 		printf("\"Load-IA32-PAT\" entry control not supported\n");
7267 		return;
7268 	}
7269 
7270 	test_pat(GUEST_PAT, "GUEST_PAT", ENT_CONTROLS, ENT_LOAD_PAT);
7271 }
7272 
7273 /*
7274  * Check that the virtual CPU checks the VMX Guest State Area as
7275  * documented in the Intel SDM.
7276  */
7277 static void vmx_guest_state_area_test(void)
7278 {
7279 	vmx_set_test_stage(1);
7280 	test_set_guest(guest_state_test_main);
7281 
7282 	test_load_guest_pat();
7283 	test_guest_efer();
7284 
7285 	/*
7286 	 * Let the guest finish execution
7287 	 */
7288 	vmx_set_test_stage(2);
7289 	enter_guest();
7290 }
7291 
7292 static bool valid_vmcs_for_vmentry(void)
7293 {
7294 	struct vmcs *current_vmcs = NULL;
7295 
7296 	if (vmcs_save(&current_vmcs))
7297 		return false;
7298 
7299 	return current_vmcs && !current_vmcs->hdr.shadow_vmcs;
7300 }
7301 
7302 static void try_vmentry_in_movss_shadow(void)
7303 {
7304 	u32 vm_inst_err;
7305 	u32 flags;
7306 	bool early_failure = false;
7307 	u32 expected_flags = X86_EFLAGS_FIXED;
7308 	bool valid_vmcs = valid_vmcs_for_vmentry();
7309 
7310 	expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF;
7311 
7312 	/*
7313 	 * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to
7314 	 * unsupported VMCS component").
7315 	 */
7316 	vmcs_write(~0u, 0);
7317 
7318 	__asm__ __volatile__ ("mov %[host_rsp], %%edx;"
7319 			      "vmwrite %%rsp, %%rdx;"
7320 			      "mov 0f, %%rax;"
7321 			      "mov %[host_rip], %%edx;"
7322 			      "vmwrite %%rax, %%rdx;"
7323 			      "mov $-1, %%ah;"
7324 			      "sahf;"
7325 			      "mov %%ss, %%ax;"
7326 			      "mov %%ax, %%ss;"
7327 			      "vmlaunch;"
7328 			      "mov $1, %[early_failure];"
7329 			      "0: lahf;"
7330 			      "movzbl %%ah, %[flags]"
7331 			      : [early_failure] "+r" (early_failure),
7332 				[flags] "=&a" (flags)
7333 			      : [host_rsp] "i" (HOST_RSP),
7334 				[host_rip] "i" (HOST_RIP)
7335 			      : "rdx", "cc", "memory");
7336 	vm_inst_err = vmcs_read(VMX_INST_ERROR);
7337 
7338 	report("Early VM-entry failure", early_failure);
7339 	report("RFLAGS[8:0] is %x (actual %x)", flags == expected_flags,
7340 	       expected_flags, flags);
7341 	if (valid_vmcs)
7342 		report("VM-instruction error is %d (actual %d)",
7343 		       vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS,
7344 		       VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err);
7345 }
7346 
7347 static void vmentry_movss_shadow_test(void)
7348 {
7349 	struct vmcs *orig_vmcs;
7350 
7351 	TEST_ASSERT(!vmcs_save(&orig_vmcs));
7352 
7353 	/*
7354 	 * Set the launched flag on the current VMCS to verify the correct
7355 	 * error priority, below.
7356 	 */
7357 	test_set_guest(v2_null_test_guest);
7358 	enter_guest();
7359 
7360 	/*
7361 	 * With bit 1 of the guest's RFLAGS clear, VM-entry should
7362 	 * fail due to invalid guest state (if we make it that far).
7363 	 */
7364 	vmcs_write(GUEST_RFLAGS, 0);
7365 
7366 	/*
7367 	 * "VM entry with events blocked by MOV SS" takes precedence over
7368 	 * "VMLAUNCH with non-clear VMCS."
7369 	 */
7370 	report_prefix_push("valid current-VMCS");
7371 	try_vmentry_in_movss_shadow();
7372 	report_prefix_pop();
7373 
7374 	/*
7375 	 * VMfailInvalid takes precedence over "VM entry with events
7376 	 * blocked by MOV SS."
7377 	 */
7378 	TEST_ASSERT(!vmcs_clear(orig_vmcs));
7379 	report_prefix_push("no current-VMCS");
7380 	try_vmentry_in_movss_shadow();
7381 	report_prefix_pop();
7382 
7383 	TEST_ASSERT(!make_vmcs_current(orig_vmcs));
7384 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
7385 }
7386 
7387 static void vmx_cr_load_test(void)
7388 {
7389 	unsigned long cr3, cr4, orig_cr3, orig_cr4;
7390 
7391 	orig_cr4 = read_cr4();
7392 	orig_cr3 = read_cr3();
7393 
7394 	if (!this_cpu_has(X86_FEATURE_PCID)) {
7395 		report_skip("PCID not detected");
7396 		return;
7397 	}
7398 	if (!this_cpu_has(X86_FEATURE_MCE)) {
7399 		report_skip("MCE not detected");
7400 		return;
7401 	}
7402 
7403 	TEST_ASSERT(!(orig_cr3 & X86_CR3_PCID_MASK));
7404 
7405 	/* Enable PCID for L1. */
7406 	cr4 = orig_cr4 | X86_CR4_PCIDE;
7407 	cr3 = orig_cr3 | 0x1;
7408 	TEST_ASSERT(!write_cr4_checking(cr4));
7409 	write_cr3(cr3);
7410 
7411 	test_set_guest(v2_null_test_guest);
7412 	vmcs_write(HOST_CR4, cr4);
7413 	vmcs_write(HOST_CR3, cr3);
7414 	enter_guest();
7415 
7416 	/*
7417 	 * No exception is expected.
7418 	 *
7419 	 * NB. KVM loads the last guest write to CR4 into CR4 read
7420 	 *     shadow. In order to trigger an exit to KVM, we can toggle a
7421 	 *     bit that is owned by KVM. We use CR4.MCE, which shall
7422 	 *     have no side effect because normally no guest MCE (e.g., as the
7423 	 *     result of bad memory) would happen during this test.
7424 	 */
7425 	TEST_ASSERT(!write_cr4_checking(cr4 ^ X86_CR4_MCE));
7426 
7427 	/* Cleanup L1 state. */
7428 	write_cr3(orig_cr3);
7429 	TEST_ASSERT(!write_cr4_checking(orig_cr4));
7430 }
7431 
7432 static void vmx_nm_test_guest(void)
7433 {
7434 	write_cr0(read_cr0() | X86_CR0_TS);
7435 	asm volatile("fnop");
7436 }
7437 
7438 static void check_nm_exit(const char *test)
7439 {
7440 	u32 reason = vmcs_read(EXI_REASON);
7441 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
7442 	const u32 expected = INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
7443 		NM_VECTOR;
7444 
7445 	report("%s", reason == VMX_EXC_NMI && intr_info == expected, test);
7446 }
7447 
7448 /*
7449  * This test checks that:
7450  *
7451  * (a) If L2 launches with CR0.TS clear, but later sets CR0.TS, then
7452  *     a subsequent #NM VM-exit is reflected to L1.
7453  *
7454  * (b) If L2 launches with CR0.TS clear and CR0.EM set, then a
7455  *     subsequent #NM VM-exit is reflected to L1.
7456  */
7457 static void vmx_nm_test(void)
7458 {
7459 	unsigned long cr0 = read_cr0();
7460 
7461 	test_set_guest(vmx_nm_test_guest);
7462 
7463 	/*
7464 	 * L1 wants to intercept #NM exceptions encountered in L2.
7465 	 */
7466 	vmcs_write(EXC_BITMAP, 1 << NM_VECTOR);
7467 
7468 	/*
7469 	 * Launch L2 with CR0.TS clear, but don't claim host ownership of
7470 	 * any CR0 bits. L2 will set CR0.TS and then try to execute fnop,
7471 	 * which will raise #NM. L0 should reflect the #NM VM-exit to L1.
7472 	 */
7473 	vmcs_write(CR0_MASK, 0);
7474 	vmcs_write(GUEST_CR0, cr0 & ~X86_CR0_TS);
7475 	enter_guest();
7476 	check_nm_exit("fnop with CR0.TS set in L2 triggers #NM VM-exit to L1");
7477 
7478 	/*
7479 	 * Re-enter L2 at the fnop instruction, with CR0.TS clear but
7480 	 * CR0.EM set. The fnop will still raise #NM, and L0 should
7481 	 * reflect the #NM VM-exit to L1.
7482 	 */
7483 	vmcs_write(GUEST_CR0, (cr0 & ~X86_CR0_TS) | X86_CR0_EM);
7484 	enter_guest();
7485 	check_nm_exit("fnop with CR0.EM set in L2 triggers #NM VM-exit to L1");
7486 
7487 	/*
7488 	 * Re-enter L2 at the fnop instruction, with both CR0.TS and
7489 	 * CR0.EM clear. There will be no #NM, and the L2 guest should
7490 	 * exit normally.
7491 	 */
7492 	vmcs_write(GUEST_CR0, cr0 & ~(X86_CR0_TS | X86_CR0_EM));
7493 	enter_guest();
7494 }
7495 
7496 bool vmx_pending_event_ipi_fired;
7497 static void vmx_pending_event_ipi_isr(isr_regs_t *regs)
7498 {
7499 	vmx_pending_event_ipi_fired = true;
7500 	eoi();
7501 }
7502 
7503 bool vmx_pending_event_guest_run;
7504 static void vmx_pending_event_guest(void)
7505 {
7506 	vmcall();
7507 	vmx_pending_event_guest_run = true;
7508 }
7509 
7510 static void vmx_pending_event_test_core(bool guest_hlt)
7511 {
7512 	int ipi_vector = 0xf1;
7513 
7514 	vmx_pending_event_ipi_fired = false;
7515 	handle_irq(ipi_vector, vmx_pending_event_ipi_isr);
7516 
7517 	vmx_pending_event_guest_run = false;
7518 	test_set_guest(vmx_pending_event_guest);
7519 
7520 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
7521 
7522 	enter_guest();
7523 	skip_exit_vmcall();
7524 
7525 	if (guest_hlt)
7526 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
7527 
7528 	irq_disable();
7529 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
7530 				   APIC_DM_FIXED | ipi_vector,
7531 				   0);
7532 
7533 	enter_guest();
7534 
7535 	assert_exit_reason(VMX_EXTINT);
7536 	report("Guest did not run before host received IPI",
7537 		   !vmx_pending_event_guest_run);
7538 
7539 	irq_enable();
7540 	asm volatile ("nop");
7541 	irq_disable();
7542 	report("Got pending interrupt after IRQ enabled",
7543 		   vmx_pending_event_ipi_fired);
7544 
7545 	if (guest_hlt)
7546 		vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
7547 
7548 	enter_guest();
7549 	report("Guest finished running when no interrupt",
7550 		   vmx_pending_event_guest_run);
7551 }
7552 
7553 static void vmx_pending_event_test(void)
7554 {
7555 	vmx_pending_event_test_core(false);
7556 }
7557 
7558 static void vmx_pending_event_hlt_test(void)
7559 {
7560 	vmx_pending_event_test_core(true);
7561 }
7562 
7563 static int vmx_window_test_db_count;
7564 
7565 static void vmx_window_test_db_handler(struct ex_regs *regs)
7566 {
7567 	vmx_window_test_db_count++;
7568 }
7569 
7570 static void vmx_nmi_window_test_guest(void)
7571 {
7572 	handle_exception(DB_VECTOR, vmx_window_test_db_handler);
7573 
7574 	asm volatile("vmcall\n\t"
7575 		     "nop\n\t");
7576 
7577 	handle_exception(DB_VECTOR, NULL);
7578 }
7579 
7580 static void verify_nmi_window_exit(u64 rip)
7581 {
7582 	u32 exit_reason = vmcs_read(EXI_REASON);
7583 
7584 	report("Exit reason (%d) is 'NMI window'",
7585 	       exit_reason == VMX_NMI_WINDOW, exit_reason);
7586 	report("RIP (%#lx) is %#lx", vmcs_read(GUEST_RIP) == rip,
7587 	       vmcs_read(GUEST_RIP), rip);
7588 	vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
7589 }
7590 
7591 static void vmx_nmi_window_test(void)
7592 {
7593 	u64 nop_addr;
7594 	void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
7595 
7596 	if (!(ctrl_pin_rev.clr & PIN_VIRT_NMI)) {
7597 		report_skip("CPU does not support the \"Virtual NMIs\" VM-execution control.");
7598 		return;
7599 	}
7600 
7601 	if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
7602 		report_skip("CPU does not support the \"NMI-window exiting\" VM-execution control.");
7603 		return;
7604 	}
7605 
7606 	vmx_window_test_db_count = 0;
7607 
7608 	report_prefix_push("NMI-window");
7609 	test_set_guest(vmx_nmi_window_test_guest);
7610 	vmcs_set_bits(PIN_CONTROLS, PIN_VIRT_NMI);
7611 	enter_guest();
7612 	skip_exit_vmcall();
7613 	nop_addr = vmcs_read(GUEST_RIP);
7614 
7615 	/*
7616 	 * Ask for "NMI-window exiting," and expect an immediate VM-exit.
7617 	 * RIP will not advance.
7618 	 */
7619 	report_prefix_push("active, no blocking");
7620 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
7621 	enter_guest();
7622 	verify_nmi_window_exit(nop_addr);
7623 	report_prefix_pop();
7624 
7625 	/*
7626 	 * Ask for "NMI-window exiting" in a MOV-SS shadow, and expect
7627 	 * a VM-exit on the next instruction after the nop. (The nop
7628 	 * is one byte.)
7629 	 */
7630 	report_prefix_push("active, blocking by MOV-SS");
7631 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
7632 	enter_guest();
7633 	verify_nmi_window_exit(nop_addr + 1);
7634 	report_prefix_pop();
7635 
7636 	/*
7637 	 * Ask for "NMI-window exiting" (with event injection), and
7638 	 * expect a VM-exit after the event is injected. (RIP should
7639 	 * be at the address specified in the IDT entry for #DB.)
7640 	 */
7641 	report_prefix_push("active, no blocking, injecting #DB");
7642 	vmcs_write(ENT_INTR_INFO,
7643 		   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
7644 	enter_guest();
7645 	verify_nmi_window_exit((u64)db_fault_addr);
7646 	report_prefix_pop();
7647 
7648 	/*
7649 	 * Ask for "NMI-window exiting" with NMI blocking, and expect
7650 	 * a VM-exit after the next IRET (i.e. after the #DB handler
7651 	 * returns). So, RIP should be back at one byte past the nop.
7652 	 */
7653 	report_prefix_push("active, blocking by NMI");
7654 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_NMI);
7655 	enter_guest();
7656 	verify_nmi_window_exit(nop_addr + 1);
7657 	report("#DB handler executed once (actual %d times)",
7658 	       vmx_window_test_db_count == 1,
7659 	       vmx_window_test_db_count);
7660 	report_prefix_pop();
7661 
7662 	if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
7663 		report_skip("CPU does not support activity state HLT.");
7664 	} else {
7665 		/*
7666 		 * Ask for "NMI-window exiting" when entering activity
7667 		 * state HLT, and expect an immediate VM-exit. RIP is
7668 		 * still one byte past the nop.
7669 		 */
7670 		report_prefix_push("halted, no blocking");
7671 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
7672 		enter_guest();
7673 		verify_nmi_window_exit(nop_addr + 1);
7674 		report_prefix_pop();
7675 
7676 		/*
7677 		 * Ask for "NMI-window exiting" when entering activity
7678 		 * state HLT (with event injection), and expect a
7679 		 * VM-exit after the event is injected. (RIP should be
7680 		 * at the address specified in the IDT entry for #DB.)
7681 		 */
7682 		report_prefix_push("halted, no blocking, injecting #DB");
7683 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
7684 		vmcs_write(ENT_INTR_INFO,
7685 			   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
7686 			   DB_VECTOR);
7687 		enter_guest();
7688 		verify_nmi_window_exit((u64)db_fault_addr);
7689 		report_prefix_pop();
7690 	}
7691 
7692 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
7693 	enter_guest();
7694 	report_prefix_pop();
7695 }
7696 
7697 static void vmx_intr_window_test_guest(void)
7698 {
7699 	handle_exception(DB_VECTOR, vmx_window_test_db_handler);
7700 
7701 	/*
7702 	 * The two consecutive STIs are to ensure that only the first
7703 	 * one has a shadow. Note that NOP and STI are one byte
7704 	 * instructions.
7705 	 */
7706 	asm volatile("vmcall\n\t"
7707 		     "nop\n\t"
7708 		     "sti\n\t"
7709 		     "sti\n\t");
7710 
7711 	handle_exception(DB_VECTOR, NULL);
7712 }
7713 
7714 static void verify_intr_window_exit(u64 rip)
7715 {
7716 	u32 exit_reason = vmcs_read(EXI_REASON);
7717 
7718 	report("Exit reason (%d) is 'interrupt window'",
7719 	       exit_reason == VMX_INTR_WINDOW, exit_reason);
7720 	report("RIP (%#lx) is %#lx", vmcs_read(GUEST_RIP) == rip,
7721 	       vmcs_read(GUEST_RIP), rip);
7722 	vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
7723 }
7724 
7725 static void vmx_intr_window_test(void)
7726 {
7727 	u64 vmcall_addr;
7728 	u64 nop_addr;
7729 	unsigned int orig_db_gate_type;
7730 	void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
7731 
7732 	if (!(ctrl_cpu_rev[0].clr & CPU_INTR_WINDOW)) {
7733 		report_skip("CPU does not support the \"interrupt-window exiting\" VM-execution control.");
7734 		return;
7735 	}
7736 
7737 	/*
7738 	 * Change the IDT entry for #DB from interrupt gate to trap gate,
7739 	 * so that it won't clear RFLAGS.IF. We don't want interrupts to
7740 	 * be disabled after vectoring a #DB.
7741 	 */
7742 	orig_db_gate_type = boot_idt[DB_VECTOR].type;
7743 	boot_idt[DB_VECTOR].type = 15;
7744 
7745 	report_prefix_push("interrupt-window");
7746 	test_set_guest(vmx_intr_window_test_guest);
7747 	enter_guest();
7748 	assert_exit_reason(VMX_VMCALL);
7749 	vmcall_addr = vmcs_read(GUEST_RIP);
7750 
7751 	/*
7752 	 * Ask for "interrupt-window exiting" with RFLAGS.IF set and
7753 	 * no blocking; expect an immediate VM-exit. Note that we have
7754 	 * not advanced past the vmcall instruction yet, so RIP should
7755 	 * point to the vmcall instruction.
7756 	 */
7757 	report_prefix_push("active, no blocking, RFLAGS.IF=1");
7758 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
7759 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_IF);
7760 	enter_guest();
7761 	verify_intr_window_exit(vmcall_addr);
7762 	report_prefix_pop();
7763 
7764 	/*
7765 	 * Ask for "interrupt-window exiting" (with event injection)
7766 	 * with RFLAGS.IF set and no blocking; expect a VM-exit after
7767 	 * the event is injected. That is, RIP should should be at the
7768 	 * address specified in the IDT entry for #DB.
7769 	 */
7770 	report_prefix_push("active, no blocking, RFLAGS.IF=1, injecting #DB");
7771 	vmcs_write(ENT_INTR_INFO,
7772 		   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
7773 	vmcall_addr = vmcs_read(GUEST_RIP);
7774 	enter_guest();
7775 	verify_intr_window_exit((u64)db_fault_addr);
7776 	report_prefix_pop();
7777 
7778 	/*
7779 	 * Let the L2 guest run through the IRET, back to the VMCALL.
7780 	 * We have to clear the "interrupt-window exiting"
7781 	 * VM-execution control, or it would just keep causing
7782 	 * VM-exits. Then, advance past the VMCALL and set the
7783 	 * "interrupt-window exiting" VM-execution control again.
7784 	 */
7785 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
7786 	enter_guest();
7787 	skip_exit_vmcall();
7788 	nop_addr = vmcs_read(GUEST_RIP);
7789 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
7790 
7791 	/*
7792 	 * Ask for "interrupt-window exiting" in a MOV-SS shadow with
7793 	 * RFLAGS.IF set, and expect a VM-exit on the next
7794 	 * instruction. (NOP is one byte.)
7795 	 */
7796 	report_prefix_push("active, blocking by MOV-SS, RFLAGS.IF=1");
7797 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
7798 	enter_guest();
7799 	verify_intr_window_exit(nop_addr + 1);
7800 	report_prefix_pop();
7801 
7802 	/*
7803 	 * Back up to the NOP and ask for "interrupt-window exiting"
7804 	 * in an STI shadow with RFLAGS.IF set, and expect a VM-exit
7805 	 * on the next instruction. (NOP is one byte.)
7806 	 */
7807 	report_prefix_push("active, blocking by STI, RFLAGS.IF=1");
7808 	vmcs_write(GUEST_RIP, nop_addr);
7809 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_STI);
7810 	enter_guest();
7811 	verify_intr_window_exit(nop_addr + 1);
7812 	report_prefix_pop();
7813 
7814 	/*
7815 	 * Ask for "interrupt-window exiting" with RFLAGS.IF clear,
7816 	 * and expect a VM-exit on the instruction following the STI
7817 	 * shadow. Only the first STI (which is one byte past the NOP)
7818 	 * should have a shadow. The second STI (which is two bytes
7819 	 * past the NOP) has no shadow. Therefore, the interrupt
7820 	 * window opens at three bytes past the NOP.
7821 	 */
7822 	report_prefix_push("active, RFLAGS.IF = 0");
7823 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
7824 	enter_guest();
7825 	verify_intr_window_exit(nop_addr + 3);
7826 	report_prefix_pop();
7827 
7828 	if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
7829 		report_skip("CPU does not support activity state HLT.");
7830 	} else {
7831 		/*
7832 		 * Ask for "interrupt-window exiting" when entering
7833 		 * activity state HLT, and expect an immediate
7834 		 * VM-exit. RIP is still three bytes past the nop.
7835 		 */
7836 		report_prefix_push("halted, no blocking");
7837 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
7838 		enter_guest();
7839 		verify_intr_window_exit(nop_addr + 3);
7840 		report_prefix_pop();
7841 
7842 		/*
7843 		 * Ask for "interrupt-window exiting" when entering
7844 		 * activity state HLT (with event injection), and
7845 		 * expect a VM-exit after the event is injected. That
7846 		 * is, RIP should should be at the address specified
7847 		 * in the IDT entry for #DB.
7848 		 */
7849 		report_prefix_push("halted, no blocking, injecting #DB");
7850 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
7851 		vmcs_write(ENT_INTR_INFO,
7852 			   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
7853 			   DB_VECTOR);
7854 		enter_guest();
7855 		verify_intr_window_exit((u64)db_fault_addr);
7856 		report_prefix_pop();
7857 	}
7858 
7859 	boot_idt[DB_VECTOR].type = orig_db_gate_type;
7860 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
7861 	enter_guest();
7862 	report_prefix_pop();
7863 }
7864 
7865 #define GUEST_TSC_OFFSET (1u << 30)
7866 
7867 static u64 guest_tsc;
7868 
7869 static void vmx_store_tsc_test_guest(void)
7870 {
7871 	guest_tsc = rdtsc();
7872 }
7873 
7874 /*
7875  * This test ensures that when IA32_TSC is in the VM-exit MSR-store
7876  * list, the value saved is not subject to the TSC offset that is
7877  * applied to RDTSC/RDTSCP/RDMSR(IA32_TSC) in guest execution.
7878  */
7879 static void vmx_store_tsc_test(void)
7880 {
7881 	struct vmx_msr_entry msr_entry = { .index = MSR_IA32_TSC };
7882 	u64 low, high;
7883 
7884 	if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) {
7885 		report_skip("'Use TSC offsetting' not supported");
7886 		return;
7887 	}
7888 
7889 	test_set_guest(vmx_store_tsc_test_guest);
7890 
7891 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET);
7892 	vmcs_write(EXI_MSR_ST_CNT, 1);
7893 	vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(&msr_entry));
7894 	vmcs_write(TSC_OFFSET, GUEST_TSC_OFFSET);
7895 
7896 	low = rdtsc();
7897 	enter_guest();
7898 	high = rdtsc();
7899 
7900 	report("RDTSC value in the guest (%lu) is in range [%lu, %lu]",
7901 	       low + GUEST_TSC_OFFSET <= guest_tsc &&
7902 	       guest_tsc <= high + GUEST_TSC_OFFSET,
7903 	       guest_tsc, low + GUEST_TSC_OFFSET, high + GUEST_TSC_OFFSET);
7904 	report("IA32_TSC value saved in the VM-exit MSR-store list (%lu) is in range [%lu, %lu]",
7905 	       low <= msr_entry.value && msr_entry.value <= high,
7906 	       msr_entry.value, low, high);
7907 }
7908 
7909 static void vmx_db_test_guest(void)
7910 {
7911 	/*
7912 	 * For a hardware generated single-step #DB.
7913 	 */
7914 	asm volatile("vmcall;"
7915 		     "nop;"
7916 		     ".Lpost_nop:");
7917 	/*
7918 	 * ...in a MOVSS shadow, with pending debug exceptions.
7919 	 */
7920 	asm volatile("vmcall;"
7921 		     "nop;"
7922 		     ".Lpost_movss_nop:");
7923 	/*
7924 	 * For an L0 synthesized single-step #DB. (L0 intercepts WBINVD and
7925 	 * emulates it in software.)
7926 	 */
7927 	asm volatile("vmcall;"
7928 		     "wbinvd;"
7929 		     ".Lpost_wbinvd:");
7930 	/*
7931 	 * ...in a MOVSS shadow, with pending debug exceptions.
7932 	 */
7933 	asm volatile("vmcall;"
7934 		     "wbinvd;"
7935 		     ".Lpost_movss_wbinvd:");
7936 	/*
7937 	 * For a hardware generated single-step #DB in a transactional region.
7938 	 */
7939 	asm volatile("vmcall;"
7940 		     ".Lxbegin: xbegin .Lskip_rtm;"
7941 		     "xend;"
7942 		     ".Lskip_rtm:");
7943 }
7944 
7945 /*
7946  * Clear the pending debug exceptions and RFLAGS.TF and re-enter
7947  * L2. No #DB is delivered and L2 continues to the next point of
7948  * interest.
7949  */
7950 static void dismiss_db(void)
7951 {
7952 	vmcs_write(GUEST_PENDING_DEBUG, 0);
7953 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
7954 	enter_guest();
7955 }
7956 
7957 /*
7958  * Check a variety of VMCS fields relevant to an intercepted #DB exception.
7959  * Then throw away the #DB exception and resume L2.
7960  */
7961 static void check_db_exit(bool xfail_qual, bool xfail_dr6, bool xfail_pdbg,
7962 			  void *expected_rip, u64 expected_exit_qual,
7963 			  u64 expected_dr6)
7964 {
7965 	u32 reason = vmcs_read(EXI_REASON);
7966 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
7967 	u64 exit_qual = vmcs_read(EXI_QUALIFICATION);
7968 	u64 guest_rip = vmcs_read(GUEST_RIP);
7969 	u64 guest_pending_dbg = vmcs_read(GUEST_PENDING_DEBUG);
7970 	u64 dr6 = read_dr6();
7971 	const u32 expected_intr_info = INTR_INFO_VALID_MASK |
7972 		INTR_TYPE_HARD_EXCEPTION | DB_VECTOR;
7973 
7974 	report("Expected #DB VM-exit",
7975 	       reason == VMX_EXC_NMI && intr_info == expected_intr_info);
7976 	report("Expected RIP %p (actual %lx)", (u64)expected_rip == guest_rip,
7977 	       expected_rip, guest_rip);
7978 	report_xfail("Expected pending debug exceptions 0 (actual %lx)",
7979 		     xfail_pdbg, 0 == guest_pending_dbg, guest_pending_dbg);
7980 	report_xfail("Expected exit qualification %lx (actual %lx)", xfail_qual,
7981 		     expected_exit_qual == exit_qual,
7982 		     expected_exit_qual, exit_qual);
7983 	report_xfail("Expected DR6 %lx (actual %lx)", xfail_dr6,
7984 		     expected_dr6 == dr6, expected_dr6, dr6);
7985 	dismiss_db();
7986 }
7987 
7988 /*
7989  * Assuming the guest has just exited on a VMCALL instruction, skip
7990  * over the vmcall, and set the guest's RFLAGS.TF in the VMCS. If
7991  * pending debug exceptions are non-zero, set the VMCS up as if the
7992  * previous instruction was a MOVSS that generated the indicated
7993  * pending debug exceptions. Then enter L2.
7994  */
7995 static void single_step_guest(const char *test_name, u64 starting_dr6,
7996 			      u64 pending_debug_exceptions)
7997 {
7998 	printf("\n%s\n", test_name);
7999 	skip_exit_vmcall();
8000 	write_dr6(starting_dr6);
8001 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF);
8002 	if (pending_debug_exceptions) {
8003 		vmcs_write(GUEST_PENDING_DEBUG, pending_debug_exceptions);
8004 		vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
8005 	}
8006 	enter_guest();
8007 }
8008 
8009 /*
8010  * When L1 intercepts #DB, verify that a single-step trap clears
8011  * pending debug exceptions, populates the exit qualification field
8012  * properly, and that DR6 is not prematurely clobbered. In a
8013  * (simulated) MOVSS shadow, make sure that the pending debug
8014  * exception bits are properly accumulated into the exit qualification
8015  * field.
8016  */
8017 static void vmx_db_test(void)
8018 {
8019 	/*
8020 	 * We are going to set a few arbitrary bits in DR6 to verify that
8021 	 * (a) DR6 is not modified by an intercepted #DB, and
8022 	 * (b) stale bits in DR6 (DR6.BD, in particular) don't leak into
8023          *     the exit qualification field for a subsequent #DB exception.
8024 	 */
8025 	const u64 starting_dr6 = DR6_RESERVED | BIT(13) | DR_TRAP3 | DR_TRAP1;
8026 	extern char post_nop asm(".Lpost_nop");
8027 	extern char post_movss_nop asm(".Lpost_movss_nop");
8028 	extern char post_wbinvd asm(".Lpost_wbinvd");
8029 	extern char post_movss_wbinvd asm(".Lpost_movss_wbinvd");
8030 	extern char xbegin asm(".Lxbegin");
8031 	extern char skip_rtm asm(".Lskip_rtm");
8032 
8033 	/*
8034 	 * L1 wants to intercept #DB exceptions encountered in L2.
8035 	 */
8036 	vmcs_write(EXC_BITMAP, BIT(DB_VECTOR));
8037 
8038 	/*
8039 	 * Start L2 and run it up to the first point of interest.
8040 	 */
8041 	test_set_guest(vmx_db_test_guest);
8042 	enter_guest();
8043 
8044 	/*
8045 	 * Hardware-delivered #DB trap for single-step sets the
8046 	 * standard that L0 has to follow for emulated instructions.
8047 	 */
8048 	single_step_guest("Hardware delivered single-step", starting_dr6, 0);
8049 	check_db_exit(false, false, false, &post_nop, DR_STEP, starting_dr6);
8050 
8051 	/*
8052 	 * Hardware-delivered #DB trap for single-step in MOVSS shadow
8053 	 * also sets the standard that L0 has to follow for emulated
8054 	 * instructions. Here, we establish the VMCS pending debug
8055 	 * exceptions to indicate that the simulated MOVSS triggered a
8056 	 * data breakpoint as well as the single-step trap.
8057 	 */
8058 	single_step_guest("Hardware delivered single-step in MOVSS shadow",
8059 			  starting_dr6, BIT(12) | DR_STEP | DR_TRAP0 );
8060 	check_db_exit(false, false, false, &post_movss_nop, DR_STEP | DR_TRAP0,
8061 		      starting_dr6);
8062 
8063 	/*
8064 	 * L0 synthesized #DB trap for single-step is buggy, because
8065 	 * kvm (a) clobbers DR6 too early, and (b) tries its best to
8066 	 * reconstitute the exit qualification from the prematurely
8067 	 * modified DR6, but fails miserably.
8068 	 */
8069 	single_step_guest("Software synthesized single-step", starting_dr6, 0);
8070 	check_db_exit(true, true, false, &post_wbinvd, DR_STEP, starting_dr6);
8071 
8072 	/*
8073 	 * L0 synthesized #DB trap for single-step in MOVSS shadow is
8074 	 * even worse, because L0 also leaves the pending debug
8075 	 * exceptions in the VMCS instead of accumulating them into
8076 	 * the exit qualification field for the #DB exception.
8077 	 */
8078 	single_step_guest("Software synthesized single-step in MOVSS shadow",
8079 			  starting_dr6, BIT(12) | DR_STEP | DR_TRAP0);
8080 	check_db_exit(true, true, true, &post_movss_wbinvd, DR_STEP | DR_TRAP0,
8081 		      starting_dr6);
8082 
8083 	/*
8084 	 * Optional RTM test for hardware that supports RTM, to
8085 	 * demonstrate that the current volume 3 of the SDM
8086 	 * (325384-067US), table 27-1 is incorrect. Bit 16 of the exit
8087 	 * qualification for debug exceptions is not reserved. It is
8088 	 * set to 1 if a debug exception (#DB) or a breakpoint
8089 	 * exception (#BP) occurs inside an RTM region while advanced
8090 	 * debugging of RTM transactional regions is enabled.
8091 	 */
8092 	if (this_cpu_has(X86_FEATURE_RTM)) {
8093 		vmcs_write(ENT_CONTROLS,
8094 			   vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
8095 		/*
8096 		 * Set DR7.RTM[bit 11] and IA32_DEBUGCTL.RTM[bit 15]
8097 		 * in the guest to enable advanced debugging of RTM
8098 		 * transactional regions.
8099 		 */
8100 		vmcs_write(GUEST_DR7, BIT(11));
8101 		vmcs_write(GUEST_DEBUGCTL, BIT(15));
8102 		single_step_guest("Hardware delivered single-step in "
8103 				  "transactional region", starting_dr6, 0);
8104 		check_db_exit(false, false, false, &xbegin, BIT(16),
8105 			      starting_dr6);
8106 	} else {
8107 		vmcs_write(GUEST_RIP, (u64)&skip_rtm);
8108 		enter_guest();
8109 	}
8110 }
8111 
8112 static void enable_vid(void)
8113 {
8114 	void *virtual_apic_page;
8115 
8116 	assert(cpu_has_apicv());
8117 
8118 	disable_intercept_for_x2apic_msrs();
8119 
8120 	virtual_apic_page = alloc_page();
8121 	vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page);
8122 
8123 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
8124 
8125 	vmcs_write(EOI_EXIT_BITMAP0, 0x0);
8126 	vmcs_write(EOI_EXIT_BITMAP1, 0x0);
8127 	vmcs_write(EOI_EXIT_BITMAP2, 0x0);
8128 	vmcs_write(EOI_EXIT_BITMAP3, 0x0);
8129 
8130 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW);
8131 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC);
8132 }
8133 
8134 static void trigger_ioapic_scan_thread(void *data)
8135 {
8136 	/* Wait until other CPU entered L2 */
8137 	while (vmx_get_test_stage() != 1)
8138 		;
8139 
8140 	/* Trigger ioapic scan */
8141 	ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL);
8142 	vmx_set_test_stage(2);
8143 }
8144 
8145 static void irq_79_handler_guest(isr_regs_t *regs)
8146 {
8147 	eoi();
8148 
8149 	/* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */
8150 	vmcall();
8151 }
8152 
8153 /*
8154  * Constant for num of busy-loop iterations after which
8155  * a timer interrupt should have happened in host
8156  */
8157 #define TIMER_INTERRUPT_DELAY 100000000
8158 
8159 static void vmx_eoi_bitmap_ioapic_scan_test_guest(void)
8160 {
8161 	handle_irq(0x79, irq_79_handler_guest);
8162 	irq_enable();
8163 
8164 	/* Signal to L1 CPU to trigger ioapic scan */
8165 	vmx_set_test_stage(1);
8166 	/* Wait until L1 CPU to trigger ioapic scan */
8167 	while (vmx_get_test_stage() != 2)
8168 		;
8169 
8170 	/*
8171 	 * Wait for L0 timer interrupt to be raised while we run in L2
8172 	 * such that L0 will process the IOAPIC scan request before
8173 	 * resuming L2
8174 	 */
8175 	delay(TIMER_INTERRUPT_DELAY);
8176 
8177 	asm volatile ("int $0x79");
8178 }
8179 
8180 static void vmx_eoi_bitmap_ioapic_scan_test(void)
8181 {
8182 	if (!cpu_has_apicv() || (cpu_count() < 2)) {
8183 		report_skip(__func__);
8184 		return;
8185 	}
8186 
8187 	enable_vid();
8188 
8189 	on_cpu_async(1, trigger_ioapic_scan_thread, NULL);
8190 	test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest);
8191 
8192 	/*
8193 	 * Launch L2.
8194 	 * We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED).
8195 	 * In case the reason isn't VMX_VMCALL, the asserion inside
8196 	 * skip_exit_vmcall() will fail.
8197 	 */
8198 	enter_guest();
8199 	skip_exit_vmcall();
8200 
8201 	/* Let L2 finish */
8202 	enter_guest();
8203 	report(__func__, 1);
8204 }
8205 
8206 #define HLT_WITH_RVI_VECTOR		(0xf1)
8207 
8208 bool vmx_hlt_with_rvi_guest_isr_fired;
8209 static void vmx_hlt_with_rvi_guest_isr(isr_regs_t *regs)
8210 {
8211 	vmx_hlt_with_rvi_guest_isr_fired = true;
8212 	eoi();
8213 }
8214 
8215 static void vmx_hlt_with_rvi_guest(void)
8216 {
8217 	handle_irq(HLT_WITH_RVI_VECTOR, vmx_hlt_with_rvi_guest_isr);
8218 
8219 	irq_enable();
8220 	asm volatile ("nop");
8221 
8222 	vmcall();
8223 }
8224 
8225 static void vmx_hlt_with_rvi_test(void)
8226 {
8227 	if (!cpu_has_apicv()) {
8228 		report_skip(__func__);
8229 		return;
8230 	}
8231 
8232 	enable_vid();
8233 
8234 	vmx_hlt_with_rvi_guest_isr_fired = false;
8235 	test_set_guest(vmx_hlt_with_rvi_guest);
8236 
8237 	enter_guest();
8238 	skip_exit_vmcall();
8239 
8240 	vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8241 	vmcs_write(GUEST_INT_STATUS, HLT_WITH_RVI_VECTOR);
8242 	enter_guest();
8243 
8244 	report("Interrupt raised in guest", vmx_hlt_with_rvi_guest_isr_fired);
8245 }
8246 
8247 static void set_irq_line_thread(void *data)
8248 {
8249 	/* Wait until other CPU entered L2 */
8250 	while (vmx_get_test_stage() != 1)
8251 		;
8252 
8253 	/* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */
8254 	ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
8255 	vmx_set_test_stage(2);
8256 }
8257 
8258 static bool irq_78_handler_vmcall_before_eoi;
8259 static void irq_78_handler_guest(isr_regs_t *regs)
8260 {
8261 	set_irq_line(0xf, 0);
8262 	if (irq_78_handler_vmcall_before_eoi)
8263 		vmcall();
8264 	eoi();
8265 	vmcall();
8266 }
8267 
8268 static void vmx_apic_passthrough_guest(void)
8269 {
8270 	handle_irq(0x78, irq_78_handler_guest);
8271 	irq_enable();
8272 
8273 	/* If requested, wait for other CPU to trigger ioapic scan */
8274 	if (vmx_get_test_stage() < 1) {
8275 		vmx_set_test_stage(1);
8276 		while (vmx_get_test_stage() != 2)
8277 			;
8278 	}
8279 
8280 	set_irq_line(0xf, 1);
8281 }
8282 
8283 static void vmx_apic_passthrough(bool set_irq_line_from_thread)
8284 {
8285 	if (set_irq_line_from_thread && (cpu_count() < 2)) {
8286 		report_skip(__func__);
8287 		return;
8288 	}
8289 
8290 	/* Test device is required for generating IRQs */
8291 	if (!test_device_enabled()) {
8292 		report_skip(__func__);
8293 		return;
8294 	}
8295 	u64 cpu_ctrl_0 = CPU_SECONDARY;
8296 	u64 cpu_ctrl_1 = 0;
8297 
8298 	disable_intercept_for_x2apic_msrs();
8299 
8300 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
8301 
8302 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
8303 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
8304 
8305 	if (set_irq_line_from_thread) {
8306 		irq_78_handler_vmcall_before_eoi = false;
8307 		on_cpu_async(1, set_irq_line_thread, NULL);
8308 	} else {
8309 		irq_78_handler_vmcall_before_eoi = true;
8310 		ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
8311 		vmx_set_test_stage(2);
8312 	}
8313 	test_set_guest(vmx_apic_passthrough_guest);
8314 
8315 	if (irq_78_handler_vmcall_before_eoi) {
8316 		/* Before EOI remote_irr should still be set */
8317 		enter_guest();
8318 		skip_exit_vmcall();
8319 		TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr,
8320 			"IOAPIC pass-through: remote_irr=1 before EOI");
8321 	}
8322 
8323 	/* After EOI remote_irr should be cleared */
8324 	enter_guest();
8325 	skip_exit_vmcall();
8326 	TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr,
8327 		"IOAPIC pass-through: remote_irr=0 after EOI");
8328 
8329 	/* Let L2 finish */
8330 	enter_guest();
8331 	report(__func__, 1);
8332 }
8333 
8334 static void vmx_apic_passthrough_test(void)
8335 {
8336 	vmx_apic_passthrough(false);
8337 }
8338 
8339 static void vmx_apic_passthrough_thread_test(void)
8340 {
8341 	vmx_apic_passthrough(true);
8342 }
8343 
8344 static void vmx_apic_passthrough_tpr_threshold_guest(void)
8345 {
8346 	cli();
8347 	apic_set_tpr(0);
8348 }
8349 
8350 static bool vmx_apic_passthrough_tpr_threshold_ipi_isr_fired;
8351 static void vmx_apic_passthrough_tpr_threshold_ipi_isr(isr_regs_t *regs)
8352 {
8353 	vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = true;
8354 	eoi();
8355 }
8356 
8357 static void vmx_apic_passthrough_tpr_threshold_test(void)
8358 {
8359 	int ipi_vector = 0xe1;
8360 
8361 	disable_intercept_for_x2apic_msrs();
8362 	vmcs_clear_bits(PIN_CONTROLS, PIN_EXTINT);
8363 
8364 	/* Raise L0 TPR-threshold by queueing vector in LAPIC IRR */
8365 	cli();
8366 	apic_set_tpr((ipi_vector >> 4) + 1);
8367 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
8368 			APIC_DM_FIXED | ipi_vector,
8369 			0);
8370 
8371 	test_set_guest(vmx_apic_passthrough_tpr_threshold_guest);
8372 	enter_guest();
8373 
8374 	report("TPR was zero by guest", apic_get_tpr() == 0);
8375 
8376 	/* Clean pending self-IPI */
8377 	vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = false;
8378 	handle_irq(ipi_vector, vmx_apic_passthrough_tpr_threshold_ipi_isr);
8379 	sti();
8380 	asm volatile ("nop");
8381 	report("self-IPI fired", vmx_apic_passthrough_tpr_threshold_ipi_isr_fired);
8382 
8383 	report(__func__, 1);
8384 }
8385 
8386 static u64 init_signal_test_exit_reason;
8387 static bool init_signal_test_thread_continued;
8388 
8389 static void init_signal_test_thread(void *data)
8390 {
8391 	struct vmcs *test_vmcs = data;
8392 
8393 	/* Enter VMX operation (i.e. exec VMXON) */
8394 	u64 *ap_vmxon_region = alloc_page();
8395 	enable_vmx();
8396 	init_vmx(ap_vmxon_region);
8397 	_vmx_on(ap_vmxon_region);
8398 
8399 	/* Signal CPU have entered VMX operation */
8400 	vmx_set_test_stage(1);
8401 
8402 	/* Wait for BSP CPU to send INIT signal */
8403 	while (vmx_get_test_stage() != 2)
8404 		;
8405 
8406 	/*
8407 	 * Signal that we continue as usual as INIT signal
8408 	 * should be blocked while CPU is in VMX operation
8409 	 */
8410 	vmx_set_test_stage(3);
8411 
8412 	/* Wait for signal to enter VMX non-root mode */
8413 	while (vmx_get_test_stage() != 4)
8414 		;
8415 
8416 	/* Enter VMX non-root mode */
8417 	test_set_guest(v2_null_test_guest);
8418 	make_vmcs_current(test_vmcs);
8419 	enter_guest();
8420 	/* Save exit reason for BSP CPU to compare to expected result */
8421 	init_signal_test_exit_reason = vmcs_read(EXI_REASON);
8422 	/* VMCLEAR test-vmcs so it could be loaded by BSP CPU */
8423 	vmcs_clear(test_vmcs);
8424 	launched = false;
8425 	/* Signal that CPU exited to VMX root mode */
8426 	vmx_set_test_stage(5);
8427 
8428 	/* Wait for signal to exit VMX operation */
8429 	while (vmx_get_test_stage() != 6)
8430 		;
8431 
8432 	/* Exit VMX operation (i.e. exec VMXOFF) */
8433 	vmx_off();
8434 
8435 	/*
8436 	 * Exiting VMX operation should result in latched
8437 	 * INIT signal being processed. Therefore, we should
8438 	 * never reach the below code. Thus, signal to BSP
8439 	 * CPU if we have reached here so it is able to
8440 	 * report an issue if it happens.
8441 	 */
8442 	init_signal_test_thread_continued = true;
8443 }
8444 
8445 #define INIT_SIGNAL_TEST_DELAY	100000000ULL
8446 
8447 static void vmx_init_signal_test(void)
8448 {
8449 	struct vmcs *test_vmcs;
8450 
8451 	if (cpu_count() < 2) {
8452 		report_skip(__func__);
8453 		return;
8454 	}
8455 
8456 	/* VMCLEAR test-vmcs so it could be loaded by other CPU */
8457 	vmcs_save(&test_vmcs);
8458 	vmcs_clear(test_vmcs);
8459 
8460 	vmx_set_test_stage(0);
8461 	on_cpu_async(1, init_signal_test_thread, test_vmcs);
8462 
8463 	/* Wait for other CPU to enter VMX operation */
8464 	while (vmx_get_test_stage() != 1)
8465 		;
8466 
8467 	/* Send INIT signal to other CPU */
8468 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
8469 				   id_map[1]);
8470 	/* Signal other CPU we have sent INIT signal */
8471 	vmx_set_test_stage(2);
8472 
8473 	/*
8474 	 * Wait reasonable amount of time for INIT signal to
8475 	 * be received on other CPU and verify that other CPU
8476 	 * have proceed as usual to next test stage as INIT
8477 	 * signal should be blocked while other CPU in
8478 	 * VMX operation
8479 	 */
8480 	delay(INIT_SIGNAL_TEST_DELAY);
8481 	report("INIT signal blocked when CPU in VMX operation",
8482 		   vmx_get_test_stage() == 3);
8483 	/* No point to continue if we failed at this point */
8484 	if (vmx_get_test_stage() != 3)
8485 		return;
8486 
8487 	/* Signal other CPU to enter VMX non-root mode */
8488 	init_signal_test_exit_reason = -1ull;
8489 	vmx_set_test_stage(4);
8490 	/*
8491 	 * Wait reasonable amont of time for other CPU
8492 	 * to exit to VMX root mode
8493 	 */
8494 	delay(INIT_SIGNAL_TEST_DELAY);
8495 	if (vmx_get_test_stage() != 5) {
8496 		report("Pending INIT signal didn't result in VMX exit", false);
8497 		return;
8498 	}
8499 	report("INIT signal during VMX non-root mode result in exit-reason %s (%lu)",
8500 			init_signal_test_exit_reason == VMX_INIT,
8501 			exit_reason_description(init_signal_test_exit_reason),
8502 			init_signal_test_exit_reason);
8503 
8504 	/* Run guest to completion */
8505 	make_vmcs_current(test_vmcs);
8506 	enter_guest();
8507 
8508 	/* Signal other CPU to exit VMX operation */
8509 	init_signal_test_thread_continued = false;
8510 	vmx_set_test_stage(6);
8511 
8512 	/*
8513 	 * Wait reasonable amount of time for other CPU
8514 	 * to run after INIT signal was processed
8515 	 */
8516 	delay(INIT_SIGNAL_TEST_DELAY);
8517 	report("INIT signal processed after exit VMX operation",
8518 		   !init_signal_test_thread_continued);
8519 
8520 	/*
8521 	 * TODO: Send SIPI to other CPU to sipi_entry (See x86/cstart64.S)
8522 	 * to re-init it to kvm-unit-tests standard environment.
8523 	 * Somehow (?) verify that SIPI was indeed received.
8524 	 */
8525 }
8526 
8527 enum vmcs_access {
8528 	ACCESS_VMREAD,
8529 	ACCESS_VMWRITE,
8530 	ACCESS_NONE,
8531 };
8532 
8533 struct vmcs_shadow_test_common {
8534 	enum vmcs_access op;
8535 	enum Reason reason;
8536 	u64 field;
8537 	u64 value;
8538 	u64 flags;
8539 	u64 time;
8540 } l1_l2_common;
8541 
8542 static inline u64 vmread_flags(u64 field, u64 *val)
8543 {
8544 	u64 flags;
8545 
8546 	asm volatile ("vmread %2, %1; pushf; pop %0"
8547 		      : "=r" (flags), "=rm" (*val) : "r" (field) : "cc");
8548 	return flags & X86_EFLAGS_ALU;
8549 }
8550 
8551 static inline u64 vmwrite_flags(u64 field, u64 val)
8552 {
8553 	u64 flags;
8554 
8555 	asm volatile ("vmwrite %1, %2; pushf; pop %0"
8556 		      : "=r"(flags) : "rm" (val), "r" (field) : "cc");
8557 	return flags & X86_EFLAGS_ALU;
8558 }
8559 
8560 static void vmx_vmcs_shadow_test_guest(void)
8561 {
8562 	struct vmcs_shadow_test_common *c = &l1_l2_common;
8563 	u64 start;
8564 
8565 	while (c->op != ACCESS_NONE) {
8566 		start = rdtsc();
8567 		switch (c->op) {
8568 		default:
8569 			c->flags = -1ull;
8570 			break;
8571 		case ACCESS_VMREAD:
8572 			c->flags = vmread_flags(c->field, &c->value);
8573 			break;
8574 		case ACCESS_VMWRITE:
8575 			c->flags = vmwrite_flags(c->field, 0);
8576 			break;
8577 		}
8578 		c->time = rdtsc() - start;
8579 		vmcall();
8580 	}
8581 }
8582 
8583 static u64 vmread_from_shadow(u64 field)
8584 {
8585 	struct vmcs *primary;
8586 	struct vmcs *shadow;
8587 	u64 value;
8588 
8589 	TEST_ASSERT(!vmcs_save(&primary));
8590 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
8591 	TEST_ASSERT(!make_vmcs_current(shadow));
8592 	value = vmcs_read(field);
8593 	TEST_ASSERT(!make_vmcs_current(primary));
8594 	return value;
8595 }
8596 
8597 static u64 vmwrite_to_shadow(u64 field, u64 value)
8598 {
8599 	struct vmcs *primary;
8600 	struct vmcs *shadow;
8601 
8602 	TEST_ASSERT(!vmcs_save(&primary));
8603 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
8604 	TEST_ASSERT(!make_vmcs_current(shadow));
8605 	vmcs_write(field, value);
8606 	value = vmcs_read(field);
8607 	TEST_ASSERT(!make_vmcs_current(primary));
8608 	return value;
8609 }
8610 
8611 static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access)
8612 {
8613 	struct vmcs_shadow_test_common *c = &l1_l2_common;
8614 
8615 	c->op = access;
8616 	vmcs_write(VMX_INST_ERROR, 0);
8617 	enter_guest();
8618 	c->reason = vmcs_read(EXI_REASON) & 0xffff;
8619 	if (c->reason != VMX_VMCALL) {
8620 		skip_exit_insn();
8621 		enter_guest();
8622 	}
8623 	skip_exit_vmcall();
8624 }
8625 
8626 static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field)
8627 {
8628 	struct vmcs_shadow_test_common *c = &l1_l2_common;
8629 	struct vmcs *shadow;
8630 	u64 value;
8631 	uintptr_t flags[2];
8632 	bool good_shadow;
8633 	u32 vmx_inst_error;
8634 
8635 	report_prefix_pushf("field %lx", field);
8636 	c->field = field;
8637 
8638 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
8639 	if (shadow != (struct vmcs *)-1ull) {
8640 		flags[ACCESS_VMREAD] = vmread_flags(field, &value);
8641 		flags[ACCESS_VMWRITE] = vmwrite_flags(field, value);
8642 		good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE];
8643 	} else {
8644 		/*
8645 		 * When VMCS link pointer is -1ull, VMWRITE/VMREAD on
8646 		 * shadowed-fields should fail with setting RFLAGS.CF.
8647 		 */
8648 		flags[ACCESS_VMREAD] = X86_EFLAGS_CF;
8649 		flags[ACCESS_VMWRITE] = X86_EFLAGS_CF;
8650 		good_shadow = false;
8651 	}
8652 
8653 	/* Intercept both VMREAD and VMWRITE. */
8654 	report_prefix_push("no VMREAD/VMWRITE permission");
8655 	/* VMWRITE/VMREAD done on reserved-bit should always intercept */
8656 	if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) {
8657 		set_bit(field, bitmap[ACCESS_VMREAD]);
8658 		set_bit(field, bitmap[ACCESS_VMWRITE]);
8659 	}
8660 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
8661 	report("not shadowed for VMWRITE", c->reason == VMX_VMWRITE);
8662 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
8663 	report("not shadowed for VMREAD", c->reason == VMX_VMREAD);
8664 	report_prefix_pop();
8665 
8666 	if (field >> VMCS_FIELD_RESERVED_SHIFT)
8667 		goto out;
8668 
8669 	/* Permit shadowed VMREAD. */
8670 	report_prefix_push("VMREAD permission only");
8671 	clear_bit(field, bitmap[ACCESS_VMREAD]);
8672 	set_bit(field, bitmap[ACCESS_VMWRITE]);
8673 	if (good_shadow)
8674 		value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
8675 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
8676 	report("not shadowed for VMWRITE", c->reason == VMX_VMWRITE);
8677 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
8678 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
8679 	report("shadowed for VMREAD (in %ld cycles)", c->reason == VMX_VMCALL,
8680 	       c->time);
8681 	report("ALU flags after VMREAD (%lx) are as expected (%lx)",
8682 	       c->flags == flags[ACCESS_VMREAD],
8683 	       c->flags, flags[ACCESS_VMREAD]);
8684 	if (good_shadow)
8685 		report("value read from shadow (%lx) is as expected (%lx)",
8686 		       c->value == value, c->value, value);
8687 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
8688 		report("VMX_INST_ERROR (%d) is as expected (%d)",
8689 		       vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
8690 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8691 	report_prefix_pop();
8692 
8693 	/* Permit shadowed VMWRITE. */
8694 	report_prefix_push("VMWRITE permission only");
8695 	set_bit(field, bitmap[ACCESS_VMREAD]);
8696 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
8697 	if (good_shadow)
8698 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
8699 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
8700 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
8701 	report("shadowed for VMWRITE (in %ld cycles)", c->reason == VMX_VMCALL,
8702 		c->time);
8703 	report("ALU flags after VMWRITE (%lx) are as expected (%lx)",
8704 	       c->flags == flags[ACCESS_VMREAD],
8705 	       c->flags, flags[ACCESS_VMREAD]);
8706 	if (good_shadow) {
8707 		value = vmread_from_shadow(field);
8708 		report("shadow VMCS value (%lx) is as expected (%lx)",
8709 		       value == 0, value, 0ul);
8710 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
8711 		report("VMX_INST_ERROR (%d) is as expected (%d)",
8712 		       vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
8713 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8714 	}
8715 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
8716 	report("not shadowed for VMREAD", c->reason == VMX_VMREAD);
8717 	report_prefix_pop();
8718 
8719 	/* Permit shadowed VMREAD and VMWRITE. */
8720 	report_prefix_push("VMREAD and VMWRITE permission");
8721 	clear_bit(field, bitmap[ACCESS_VMREAD]);
8722 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
8723 	if (good_shadow)
8724 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
8725 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
8726 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
8727 	report("shadowed for VMWRITE (in %ld cycles)", c->reason == VMX_VMCALL,
8728 		c->time);
8729 	report("ALU flags after VMWRITE (%lx) are as expected (%lx)",
8730 	       c->flags == flags[ACCESS_VMREAD],
8731 	       c->flags, flags[ACCESS_VMREAD]);
8732 	if (good_shadow) {
8733 		value = vmread_from_shadow(field);
8734 		report("shadow VMCS value (%lx) is as expected (%lx)",
8735 		       value == 0, value, 0ul);
8736 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
8737 		report("VMX_INST_ERROR (%d) is as expected (%d)",
8738 		       vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
8739 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8740 	}
8741 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
8742 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
8743 	report("shadowed for VMREAD (in %ld cycles)", c->reason == VMX_VMCALL,
8744 	       c->time);
8745 	report("ALU flags after VMREAD (%lx) are as expected (%lx)",
8746 	       c->flags == flags[ACCESS_VMREAD],
8747 	       c->flags, flags[ACCESS_VMREAD]);
8748 	if (good_shadow)
8749 		report("value read from shadow (%lx) is as expected (%lx)",
8750 		       c->value == 0, c->value, 0ul);
8751 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
8752 		report("VMX_INST_ERROR (%d) is as expected (%d)",
8753 		       vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
8754 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8755 	report_prefix_pop();
8756 
8757 out:
8758 	report_prefix_pop();
8759 }
8760 
8761 static void vmx_vmcs_shadow_test_body(u8 *bitmap[2])
8762 {
8763 	unsigned base;
8764 	unsigned index;
8765 	unsigned bit;
8766 	unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM);
8767 
8768 	/* Run test on all possible valid VMCS fields */
8769 	for (base = 0;
8770 	     base < (1 << VMCS_FIELD_RESERVED_SHIFT);
8771 	     base += (1 << VMCS_FIELD_TYPE_SHIFT))
8772 		for (index = 0; index <= highest_index; index++)
8773 			vmcs_shadow_test_field(bitmap, base + index);
8774 
8775 	/*
8776 	 * Run tests on some invalid VMCS fields
8777 	 * (Have reserved bit set).
8778 	 */
8779 	for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++)
8780 		vmcs_shadow_test_field(bitmap, (1ull << bit));
8781 }
8782 
8783 static void vmx_vmcs_shadow_test(void)
8784 {
8785 	u8 *bitmap[2];
8786 	struct vmcs *shadow;
8787 
8788 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
8789 		printf("\t'Activate secondary controls' not supported.\n");
8790 		return;
8791 	}
8792 
8793 	if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) {
8794 		printf("\t'VMCS shadowing' not supported.\n");
8795 		return;
8796 	}
8797 
8798 	if (!(rdmsr(MSR_IA32_VMX_MISC) &
8799 	      MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) {
8800 		printf("\tVMWRITE can't modify VM-exit information fields.\n");
8801 		return;
8802 	}
8803 
8804 	test_set_guest(vmx_vmcs_shadow_test_guest);
8805 
8806 	bitmap[ACCESS_VMREAD] = alloc_page();
8807 	bitmap[ACCESS_VMWRITE] = alloc_page();
8808 
8809 	vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD]));
8810 	vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE]));
8811 
8812 	shadow = alloc_page();
8813 	shadow->hdr.revision_id = basic.revision;
8814 	shadow->hdr.shadow_vmcs = 1;
8815 	TEST_ASSERT(!vmcs_clear(shadow));
8816 
8817 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC);
8818 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY);
8819 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS);
8820 
8821 	vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow));
8822 	report_prefix_push("valid link pointer");
8823 	vmx_vmcs_shadow_test_body(bitmap);
8824 	report_prefix_pop();
8825 
8826 	vmcs_write(VMCS_LINK_PTR, -1ull);
8827 	report_prefix_push("invalid link pointer");
8828 	vmx_vmcs_shadow_test_body(bitmap);
8829 	report_prefix_pop();
8830 
8831 	l1_l2_common.op = ACCESS_NONE;
8832 	enter_guest();
8833 }
8834 
8835 
8836 
8837 static int invalid_msr_init(struct vmcs *vmcs)
8838 {
8839 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
8840 		printf("\tPreemption timer is not supported\n");
8841 		return VMX_TEST_EXIT;
8842 	}
8843 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
8844 	preempt_val = 10000000;
8845 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
8846 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
8847 
8848 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
8849 		printf("\tSave preemption value is not supported\n");
8850 
8851 	vmcs_write(ENT_MSR_LD_CNT, 1);
8852 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)0x13370000);
8853 
8854 	return VMX_TEST_START;
8855 }
8856 
8857 
8858 static void invalid_msr_main(void)
8859 {
8860 	report("Invalid MSR load", 0);
8861 }
8862 
8863 static int invalid_msr_exit_handler(void)
8864 {
8865 	report("Invalid MSR load", 0);
8866 	print_vmexit_info();
8867 	return VMX_TEST_EXIT;
8868 }
8869 
8870 static int invalid_msr_entry_failure(struct vmentry_failure *failure)
8871 {
8872 	ulong reason;
8873 
8874 	reason = vmcs_read(EXI_REASON);
8875 	report("Invalid MSR load", reason == (0x80000000u | VMX_FAIL_MSR));
8876 	return VMX_TEST_VMEXIT;
8877 }
8878 
8879 /*
8880  * The max number of MSRs in an atomic switch MSR list is:
8881  * (111B + 1) * 512 = 4096
8882  *
8883  * Each list entry consumes:
8884  * 4-byte MSR index + 4 bytes reserved + 8-byte data = 16 bytes
8885  *
8886  * Allocate 128 kB to cover max_msr_list_size (i.e., 64 kB) and then some.
8887  */
8888 static const u32 msr_list_page_order = 5;
8889 
8890 static void atomic_switch_msr_limit_test_guest(void)
8891 {
8892 	vmcall();
8893 }
8894 
8895 static void populate_msr_list(struct vmx_msr_entry *msr_list,
8896 			      size_t byte_capacity, int count)
8897 {
8898 	int i;
8899 
8900 	for (i = 0; i < count; i++) {
8901 		msr_list[i].index = MSR_IA32_TSC;
8902 		msr_list[i].reserved = 0;
8903 		msr_list[i].value = 0x1234567890abcdef;
8904 	}
8905 
8906 	memset(msr_list + count, 0xff,
8907 	       byte_capacity - count * sizeof(*msr_list));
8908 }
8909 
8910 static int max_msr_list_size(void)
8911 {
8912 	u32 vmx_misc = rdmsr(MSR_IA32_VMX_MISC);
8913 	u32 factor = ((vmx_misc & GENMASK(27, 25)) >> 25) + 1;
8914 
8915 	return factor * 512;
8916 }
8917 
8918 static void atomic_switch_msrs_test(int count)
8919 {
8920 	struct vmx_msr_entry *vm_enter_load;
8921         struct vmx_msr_entry *vm_exit_load;
8922         struct vmx_msr_entry *vm_exit_store;
8923 	int max_allowed = max_msr_list_size();
8924 	int byte_capacity = 1ul << (msr_list_page_order + PAGE_SHIFT);
8925 	/* Exceeding the max MSR list size at exit trigers KVM to abort. */
8926 	int exit_count = count > max_allowed ? max_allowed : count;
8927 	int cleanup_count = count > max_allowed ? 2 : 1;
8928 	int i;
8929 
8930 	/*
8931 	 * Check for the IA32_TSC MSR,
8932 	 * available with the "TSC flag" and used to populate the MSR lists.
8933 	 */
8934 	if (!(cpuid(1).d & (1 << 4))) {
8935 		report_skip(__func__);
8936 		return;
8937 	}
8938 
8939 	/* Set L2 guest. */
8940 	test_set_guest(atomic_switch_msr_limit_test_guest);
8941 
8942 	/* Setup atomic MSR switch lists. */
8943 	vm_enter_load = alloc_pages(msr_list_page_order);
8944 	vm_exit_load = alloc_pages(msr_list_page_order);
8945 	vm_exit_store = alloc_pages(msr_list_page_order);
8946 
8947 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)vm_enter_load);
8948 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)vm_exit_load);
8949 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)vm_exit_store);
8950 
8951 	/*
8952 	 * VM-Enter should succeed up to the max number of MSRs per list, and
8953 	 * should not consume junk beyond the last entry.
8954 	 */
8955 	populate_msr_list(vm_enter_load, byte_capacity, count);
8956 	populate_msr_list(vm_exit_load, byte_capacity, exit_count);
8957 	populate_msr_list(vm_exit_store, byte_capacity, exit_count);
8958 
8959 	vmcs_write(ENT_MSR_LD_CNT, count);
8960 	vmcs_write(EXI_MSR_LD_CNT, exit_count);
8961 	vmcs_write(EXI_MSR_ST_CNT, exit_count);
8962 
8963 	if (count <= max_allowed) {
8964 		enter_guest();
8965 		assert_exit_reason(VMX_VMCALL);
8966 		skip_exit_vmcall();
8967 	} else {
8968 		u32 exit_reason;
8969 		u32 exit_reason_want;
8970 		u32 exit_qual;
8971 
8972 		enter_guest_with_invalid_guest_state();
8973 
8974 		exit_reason = vmcs_read(EXI_REASON);
8975 		exit_reason_want = VMX_FAIL_MSR | VMX_ENTRY_FAILURE;
8976 		report("exit_reason, %u, is %u.",
8977 		       exit_reason == exit_reason_want, exit_reason,
8978 		       exit_reason_want);
8979 
8980 		exit_qual = vmcs_read(EXI_QUALIFICATION);
8981 		report("exit_qual, %u, is %u.", exit_qual == max_allowed + 1,
8982 		       exit_qual, max_allowed + 1);
8983 	}
8984 
8985 	/* Cleanup. */
8986 	vmcs_write(ENT_MSR_LD_CNT, 0);
8987 	vmcs_write(EXI_MSR_LD_CNT, 0);
8988 	vmcs_write(EXI_MSR_ST_CNT, 0);
8989 	for (i = 0; i < cleanup_count; i++) {
8990 		enter_guest();
8991 		skip_exit_vmcall();
8992 	}
8993 	free_pages_by_order(vm_enter_load, msr_list_page_order);
8994 	free_pages_by_order(vm_exit_load, msr_list_page_order);
8995 	free_pages_by_order(vm_exit_store, msr_list_page_order);
8996 }
8997 
8998 static void atomic_switch_max_msrs_test(void)
8999 {
9000 	atomic_switch_msrs_test(max_msr_list_size());
9001 }
9002 
9003 static void atomic_switch_overflow_msrs_test(void)
9004 {
9005 	atomic_switch_msrs_test(max_msr_list_size() + 1);
9006 }
9007 
9008 #define TEST(name) { #name, .v2 = name }
9009 
9010 /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */
9011 struct vmx_test vmx_tests[] = {
9012 	{ "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} },
9013 	{ "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} },
9014 	{ "preemption timer", preemption_timer_init, preemption_timer_main,
9015 		preemption_timer_exit_handler, NULL, {0} },
9016 	{ "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main,
9017 		test_ctrl_pat_exit_handler, NULL, {0} },
9018 	{ "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main,
9019 		test_ctrl_efer_exit_handler, NULL, {0} },
9020 	{ "CR shadowing", NULL, cr_shadowing_main,
9021 		cr_shadowing_exit_handler, NULL, {0} },
9022 	{ "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler,
9023 		NULL, {0} },
9024 	{ "instruction intercept", insn_intercept_init, insn_intercept_main,
9025 		insn_intercept_exit_handler, NULL, {0} },
9026 	{ "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} },
9027 	{ "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} },
9028 	{ "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} },
9029 	{ "VPID", vpid_init, vpid_main, vpid_exit_handler, NULL, {0} },
9030 	{ "interrupt", interrupt_init, interrupt_main,
9031 		interrupt_exit_handler, NULL, {0} },
9032 	{ "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler,
9033 		NULL, {0} },
9034 	{ "MSR switch", msr_switch_init, msr_switch_main,
9035 		msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure },
9036 	{ "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} },
9037 	{ "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main,
9038 		disable_rdtscp_exit_handler, NULL, {0} },
9039 	{ "int3", int3_init, int3_guest_main, int3_exit_handler, NULL, {0} },
9040 	{ "into", into_init, into_guest_main, into_exit_handler, NULL, {0} },
9041 	{ "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main,
9042 		exit_monitor_from_l2_handler, NULL, {0} },
9043 	{ "invalid_msr", invalid_msr_init, invalid_msr_main,
9044 		invalid_msr_exit_handler, NULL, {0}, invalid_msr_entry_failure},
9045 	/* Basic V2 tests. */
9046 	TEST(v2_null_test),
9047 	TEST(v2_multiple_entries_test),
9048 	TEST(fixture_test_case1),
9049 	TEST(fixture_test_case2),
9050 	/* Opcode tests. */
9051 	TEST(invvpid_test_v2),
9052 	/* VM-entry tests */
9053 	TEST(vmx_controls_test),
9054 	TEST(vmx_host_state_area_test),
9055 	TEST(vmx_guest_state_area_test),
9056 	TEST(vmentry_movss_shadow_test),
9057 	/* APICv tests */
9058 	TEST(vmx_eoi_bitmap_ioapic_scan_test),
9059 	TEST(vmx_hlt_with_rvi_test),
9060 	TEST(apic_reg_virt_test),
9061 	TEST(virt_x2apic_mode_test),
9062 	/* APIC pass-through tests */
9063 	TEST(vmx_apic_passthrough_test),
9064 	TEST(vmx_apic_passthrough_thread_test),
9065 	TEST(vmx_apic_passthrough_tpr_threshold_test),
9066 	TEST(vmx_init_signal_test),
9067 	/* VMCS Shadowing tests */
9068 	TEST(vmx_vmcs_shadow_test),
9069 	/* Regression tests */
9070 	TEST(vmx_cr_load_test),
9071 	TEST(vmx_nm_test),
9072 	TEST(vmx_db_test),
9073 	TEST(vmx_nmi_window_test),
9074 	TEST(vmx_intr_window_test),
9075 	TEST(vmx_pending_event_test),
9076 	TEST(vmx_pending_event_hlt_test),
9077 	TEST(vmx_store_tsc_test),
9078 	/* EPT access tests. */
9079 	TEST(ept_access_test_not_present),
9080 	TEST(ept_access_test_read_only),
9081 	TEST(ept_access_test_write_only),
9082 	TEST(ept_access_test_read_write),
9083 	TEST(ept_access_test_execute_only),
9084 	TEST(ept_access_test_read_execute),
9085 	TEST(ept_access_test_write_execute),
9086 	TEST(ept_access_test_read_write_execute),
9087 	TEST(ept_access_test_reserved_bits),
9088 	TEST(ept_access_test_ignored_bits),
9089 	TEST(ept_access_test_paddr_not_present_ad_disabled),
9090 	TEST(ept_access_test_paddr_not_present_ad_enabled),
9091 	TEST(ept_access_test_paddr_read_only_ad_disabled),
9092 	TEST(ept_access_test_paddr_read_only_ad_enabled),
9093 	TEST(ept_access_test_paddr_read_write),
9094 	TEST(ept_access_test_paddr_read_write_execute),
9095 	TEST(ept_access_test_paddr_read_execute_ad_disabled),
9096 	TEST(ept_access_test_paddr_read_execute_ad_enabled),
9097 	TEST(ept_access_test_paddr_not_present_page_fault),
9098 	TEST(ept_access_test_force_2m_page),
9099 	/* Atomic MSR switch tests. */
9100 	TEST(atomic_switch_max_msrs_test),
9101 	TEST(atomic_switch_overflow_msrs_test),
9102 	{ NULL, NULL, NULL, NULL, NULL, {0} },
9103 };
9104