/* * All test cases of nested virtualization should be in this file * * Author : Arthur Chunqi Li */ #include #include "vmx.h" #include "msr.h" #include "processor.h" #include "vm.h" #include "pci.h" #include "fwcfg.h" #include "isr.h" #include "desc.h" #include "apic.h" #include "types.h" #include "vmalloc.h" #include "alloc_page.h" #include "smp.h" #include "delay.h" #define NONCANONICAL 0xaaaaaaaaaaaaaaaaull #define VPID_CAP_INVVPID_TYPES_SHIFT 40 u64 ia32_pat; u64 ia32_efer; void *io_bitmap_a, *io_bitmap_b; u16 ioport; unsigned long *pml4; u64 eptp; void *data_page1, *data_page2; phys_addr_t pci_physaddr; void *pml_log; #define PML_INDEX 512 static inline unsigned ffs(unsigned x) { int pos = -1; __asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0" : "+r"(pos) : "rm"(x) : "eax"); return pos + 1; } static inline void vmcall(void) { asm volatile("vmcall"); } static void basic_guest_main(void) { report("Basic VMX test", 1); } static int basic_exit_handler(void) { report("Basic VMX test", 0); print_vmexit_info(); return VMX_TEST_EXIT; } static void vmenter_main(void) { u64 rax; u64 rsp, resume_rsp; report("test vmlaunch", 1); asm volatile( "mov %%rsp, %0\n\t" "mov %3, %%rax\n\t" "vmcall\n\t" "mov %%rax, %1\n\t" "mov %%rsp, %2\n\t" : "=r"(rsp), "=r"(rax), "=r"(resume_rsp) : "g"(0xABCD)); report("test vmresume", (rax == 0xFFFF) && (rsp == resume_rsp)); } static int vmenter_exit_handler(void) { u64 guest_rip; ulong reason; guest_rip = vmcs_read(GUEST_RIP); reason = vmcs_read(EXI_REASON) & 0xff; switch (reason) { case VMX_VMCALL: if (regs.rax != 0xABCD) { report("test vmresume", 0); return VMX_TEST_VMEXIT; } regs.rax = 0xFFFF; vmcs_write(GUEST_RIP, guest_rip + 3); return VMX_TEST_RESUME; default: report("test vmresume", 0); print_vmexit_info(); } return VMX_TEST_VMEXIT; } u32 preempt_scale; volatile unsigned long long tsc_val; volatile u32 preempt_val; u64 saved_rip; static int preemption_timer_init(struct vmcs *vmcs) { if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { printf("\tPreemption timer is not supported\n"); return VMX_TEST_EXIT; } vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); preempt_val = 10000000; vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F; if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT)) printf("\tSave preemption value is not supported\n"); return VMX_TEST_START; } static void preemption_timer_main(void) { tsc_val = rdtsc(); if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) { vmx_set_test_stage(0); vmcall(); if (vmx_get_test_stage() == 1) vmcall(); } vmx_set_test_stage(1); while (vmx_get_test_stage() == 1) { if (((rdtsc() - tsc_val) >> preempt_scale) > 10 * preempt_val) { vmx_set_test_stage(2); vmcall(); } } tsc_val = rdtsc(); asm volatile ("hlt"); vmcall(); vmx_set_test_stage(5); vmcall(); } static int preemption_timer_exit_handler(void) { bool guest_halted; u64 guest_rip; ulong reason; u32 insn_len; u32 ctrl_exit; guest_rip = vmcs_read(GUEST_RIP); reason = vmcs_read(EXI_REASON) & 0xff; insn_len = vmcs_read(EXI_INST_LEN); switch (reason) { case VMX_PREEMPT: switch (vmx_get_test_stage()) { case 1: case 2: report("busy-wait for preemption timer", ((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val); vmx_set_test_stage(3); vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); return VMX_TEST_RESUME; case 3: guest_halted = (vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT); report("preemption timer during hlt", ((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val && guest_halted); vmx_set_test_stage(4); vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_PREEMPT); vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); return VMX_TEST_RESUME; case 4: report("preemption timer with 0 value", saved_rip == guest_rip); break; default: report("Invalid stage.", false); print_vmexit_info(); break; } break; case VMX_VMCALL: vmcs_write(GUEST_RIP, guest_rip + insn_len); switch (vmx_get_test_stage()) { case 0: report("Keep preemption value", vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val); vmx_set_test_stage(1); vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); ctrl_exit = (vmcs_read(EXI_CONTROLS) | EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr; vmcs_write(EXI_CONTROLS, ctrl_exit); return VMX_TEST_RESUME; case 1: report("Save preemption value", vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val); return VMX_TEST_RESUME; case 2: report("busy-wait for preemption timer", 0); vmx_set_test_stage(3); vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); return VMX_TEST_RESUME; case 3: report("preemption timer during hlt", 0); vmx_set_test_stage(4); /* fall through */ case 4: vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); vmcs_write(PREEMPT_TIMER_VALUE, 0); saved_rip = guest_rip + insn_len; return VMX_TEST_RESUME; case 5: report("preemption timer with 0 value (vmcall stage 5)", 0); break; default: // Should not reach here report("unexpected stage, %d", false, vmx_get_test_stage()); print_vmexit_info(); return VMX_TEST_VMEXIT; } break; default: report("Unknown exit reason, %ld", false, reason); print_vmexit_info(); } vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); return VMX_TEST_VMEXIT; } static void msr_bmp_init(void) { void *msr_bitmap; u32 ctrl_cpu0; msr_bitmap = alloc_page(); ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); ctrl_cpu0 |= CPU_MSR_BITMAP; vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); vmcs_write(MSR_BITMAP, (u64)msr_bitmap); } static void *get_msr_bitmap(void) { void *msr_bitmap; if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) { msr_bitmap = (void *)vmcs_read(MSR_BITMAP); } else { msr_bitmap = alloc_page(); memset(msr_bitmap, 0xff, PAGE_SIZE); vmcs_write(MSR_BITMAP, (u64)msr_bitmap); vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP); } return msr_bitmap; } static void disable_intercept_for_x2apic_msrs(void) { unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap(); u32 msr; for (msr = APIC_BASE_MSR; msr < (APIC_BASE_MSR+0xff); msr += BITS_PER_LONG) { unsigned int word = msr / BITS_PER_LONG; msr_bitmap[word] = 0; msr_bitmap[word + (0x800 / sizeof(long))] = 0; } } static int test_ctrl_pat_init(struct vmcs *vmcs) { u64 ctrl_ent; u64 ctrl_exi; msr_bmp_init(); if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) && !(ctrl_exit_rev.clr & EXI_LOAD_PAT) && !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) { printf("\tSave/load PAT is not supported\n"); return 1; } ctrl_ent = vmcs_read(ENT_CONTROLS); ctrl_exi = vmcs_read(EXI_CONTROLS); ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT; ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT); vmcs_write(ENT_CONTROLS, ctrl_ent); vmcs_write(EXI_CONTROLS, ctrl_exi); ia32_pat = rdmsr(MSR_IA32_CR_PAT); vmcs_write(GUEST_PAT, 0x0); vmcs_write(HOST_PAT, ia32_pat); return VMX_TEST_START; } static void test_ctrl_pat_main(void) { u64 guest_ia32_pat; guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) printf("\tENT_LOAD_PAT is not supported.\n"); else { if (guest_ia32_pat != 0) { report("Entry load PAT", 0); return; } } wrmsr(MSR_IA32_CR_PAT, 0x6); vmcall(); guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); if (ctrl_enter_rev.clr & ENT_LOAD_PAT) report("Entry load PAT", guest_ia32_pat == ia32_pat); } static int test_ctrl_pat_exit_handler(void) { u64 guest_rip; ulong reason; u64 guest_pat; guest_rip = vmcs_read(GUEST_RIP); reason = vmcs_read(EXI_REASON) & 0xff; switch (reason) { case VMX_VMCALL: guest_pat = vmcs_read(GUEST_PAT); if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) { printf("\tEXI_SAVE_PAT is not supported\n"); vmcs_write(GUEST_PAT, 0x6); } else { report("Exit save PAT", guest_pat == 0x6); } if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) printf("\tEXI_LOAD_PAT is not supported\n"); else report("Exit load PAT", rdmsr(MSR_IA32_CR_PAT) == ia32_pat); vmcs_write(GUEST_PAT, ia32_pat); vmcs_write(GUEST_RIP, guest_rip + 3); return VMX_TEST_RESUME; default: printf("ERROR : Undefined exit reason, reason = %ld.\n", reason); break; } return VMX_TEST_VMEXIT; } static int test_ctrl_efer_init(struct vmcs *vmcs) { u64 ctrl_ent; u64 ctrl_exi; msr_bmp_init(); ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER; ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER; vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr); vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr); ia32_efer = rdmsr(MSR_EFER); vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX); vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX); return VMX_TEST_START; } static void test_ctrl_efer_main(void) { u64 guest_ia32_efer; guest_ia32_efer = rdmsr(MSR_EFER); if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) printf("\tENT_LOAD_EFER is not supported.\n"); else { if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) { report("Entry load EFER", 0); return; } } wrmsr(MSR_EFER, ia32_efer); vmcall(); guest_ia32_efer = rdmsr(MSR_EFER); if (ctrl_enter_rev.clr & ENT_LOAD_EFER) report("Entry load EFER", guest_ia32_efer == ia32_efer); } static int test_ctrl_efer_exit_handler(void) { u64 guest_rip; ulong reason; u64 guest_efer; guest_rip = vmcs_read(GUEST_RIP); reason = vmcs_read(EXI_REASON) & 0xff; switch (reason) { case VMX_VMCALL: guest_efer = vmcs_read(GUEST_EFER); if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) { printf("\tEXI_SAVE_EFER is not supported\n"); vmcs_write(GUEST_EFER, ia32_efer); } else { report("Exit save EFER", guest_efer == ia32_efer); } if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) { printf("\tEXI_LOAD_EFER is not supported\n"); wrmsr(MSR_EFER, ia32_efer ^ EFER_NX); } else { report("Exit load EFER", rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX)); } vmcs_write(GUEST_PAT, ia32_efer); vmcs_write(GUEST_RIP, guest_rip + 3); return VMX_TEST_RESUME; default: printf("ERROR : Undefined exit reason, reason = %ld.\n", reason); break; } return VMX_TEST_VMEXIT; } u32 guest_cr0, guest_cr4; static void cr_shadowing_main(void) { u32 cr0, cr4, tmp; // Test read through vmx_set_test_stage(0); guest_cr0 = read_cr0(); if (vmx_get_test_stage() == 1) report("Read through CR0", 0); else vmcall(); vmx_set_test_stage(1); guest_cr4 = read_cr4(); if (vmx_get_test_stage() == 2) report("Read through CR4", 0); else vmcall(); // Test write through guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP); guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE); vmx_set_test_stage(2); write_cr0(guest_cr0); if (vmx_get_test_stage() == 3) report("Write throuth CR0", 0); else vmcall(); vmx_set_test_stage(3); write_cr4(guest_cr4); if (vmx_get_test_stage() == 4) report("Write through CR4", 0); else vmcall(); // Test read shadow vmx_set_test_stage(4); vmcall(); cr0 = read_cr0(); if (vmx_get_test_stage() != 5) report("Read shadowing CR0", cr0 == guest_cr0); vmx_set_test_stage(5); cr4 = read_cr4(); if (vmx_get_test_stage() != 6) report("Read shadowing CR4", cr4 == guest_cr4); // Test write shadow (same value with shadow) vmx_set_test_stage(6); write_cr0(guest_cr0); if (vmx_get_test_stage() == 7) report("Write shadowing CR0 (same value with shadow)", 0); else vmcall(); vmx_set_test_stage(7); write_cr4(guest_cr4); if (vmx_get_test_stage() == 8) report("Write shadowing CR4 (same value with shadow)", 0); else vmcall(); // Test write shadow (different value) vmx_set_test_stage(8); tmp = guest_cr0 ^ X86_CR0_TS; asm volatile("mov %0, %%rsi\n\t" "mov %%rsi, %%cr0\n\t" ::"m"(tmp) :"rsi", "memory", "cc"); report("Write shadowing different X86_CR0_TS", vmx_get_test_stage() == 9); vmx_set_test_stage(9); tmp = guest_cr0 ^ X86_CR0_MP; asm volatile("mov %0, %%rsi\n\t" "mov %%rsi, %%cr0\n\t" ::"m"(tmp) :"rsi", "memory", "cc"); report("Write shadowing different X86_CR0_MP", vmx_get_test_stage() == 10); vmx_set_test_stage(10); tmp = guest_cr4 ^ X86_CR4_TSD; asm volatile("mov %0, %%rsi\n\t" "mov %%rsi, %%cr4\n\t" ::"m"(tmp) :"rsi", "memory", "cc"); report("Write shadowing different X86_CR4_TSD", vmx_get_test_stage() == 11); vmx_set_test_stage(11); tmp = guest_cr4 ^ X86_CR4_DE; asm volatile("mov %0, %%rsi\n\t" "mov %%rsi, %%cr4\n\t" ::"m"(tmp) :"rsi", "memory", "cc"); report("Write shadowing different X86_CR4_DE", vmx_get_test_stage() == 12); } static int cr_shadowing_exit_handler(void) { u64 guest_rip; ulong reason; u32 insn_len; u32 exit_qual; guest_rip = vmcs_read(GUEST_RIP); reason = vmcs_read(EXI_REASON) & 0xff; insn_len = vmcs_read(EXI_INST_LEN); exit_qual = vmcs_read(EXI_QUALIFICATION); switch (reason) { case VMX_VMCALL: switch (vmx_get_test_stage()) { case 0: report("Read through CR0", guest_cr0 == vmcs_read(GUEST_CR0)); break; case 1: report("Read through CR4", guest_cr4 == vmcs_read(GUEST_CR4)); break; case 2: report("Write through CR0", guest_cr0 == vmcs_read(GUEST_CR0)); break; case 3: report("Write through CR4", guest_cr4 == vmcs_read(GUEST_CR4)); break; case 4: guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP); guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE); vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP); vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP)); vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE); vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE)); break; case 6: report("Write shadowing CR0 (same value)", guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP))); break; case 7: report("Write shadowing CR4 (same value)", guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE))); break; default: // Should not reach here report("unexpected stage, %d", false, vmx_get_test_stage()); print_vmexit_info(); return VMX_TEST_VMEXIT; } vmcs_write(GUEST_RIP, guest_rip + insn_len); return VMX_TEST_RESUME; case VMX_CR: switch (vmx_get_test_stage()) { case 4: report("Read shadowing CR0", 0); vmx_inc_test_stage(); break; case 5: report("Read shadowing CR4", 0); vmx_inc_test_stage(); break; case 6: report("Write shadowing CR0 (same value)", 0); vmx_inc_test_stage(); break; case 7: report("Write shadowing CR4 (same value)", 0); vmx_inc_test_stage(); break; case 8: case 9: // 0x600 encodes "mov %esi, %cr0" if (exit_qual == 0x600) vmx_inc_test_stage(); break; case 10: case 11: // 0x604 encodes "mov %esi, %cr4" if (exit_qual == 0x604) vmx_inc_test_stage(); break; default: // Should not reach here report("unexpected stage, %d", false, vmx_get_test_stage()); print_vmexit_info(); return VMX_TEST_VMEXIT; } vmcs_write(GUEST_RIP, guest_rip + insn_len); return VMX_TEST_RESUME; default: report("Unknown exit reason, %ld", false, reason); print_vmexit_info(); } return VMX_TEST_VMEXIT; } static int iobmp_init(struct vmcs *vmcs) { u32 ctrl_cpu0; io_bitmap_a = alloc_page(); io_bitmap_b = alloc_page(); ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); ctrl_cpu0 |= CPU_IO_BITMAP; ctrl_cpu0 &= (~CPU_IO); vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a); vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b); return VMX_TEST_START; } static void iobmp_main(void) { // stage 0, test IO pass vmx_set_test_stage(0); inb(0x5000); outb(0x0, 0x5000); report("I/O bitmap - I/O pass", vmx_get_test_stage() == 0); // test IO width, in/out ((u8 *)io_bitmap_a)[0] = 0xFF; vmx_set_test_stage(2); inb(0x0); report("I/O bitmap - trap in", vmx_get_test_stage() == 3); vmx_set_test_stage(3); outw(0x0, 0x0); report("I/O bitmap - trap out", vmx_get_test_stage() == 4); vmx_set_test_stage(4); inl(0x0); report("I/O bitmap - I/O width, long", vmx_get_test_stage() == 5); // test low/high IO port vmx_set_test_stage(5); ((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8)); inb(0x5000); report("I/O bitmap - I/O port, low part", vmx_get_test_stage() == 6); vmx_set_test_stage(6); ((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8)); inb(0x9000); report("I/O bitmap - I/O port, high part", vmx_get_test_stage() == 7); // test partial pass vmx_set_test_stage(7); inl(0x4FFF); report("I/O bitmap - partial pass", vmx_get_test_stage() == 8); // test overrun vmx_set_test_stage(8); memset(io_bitmap_a, 0x0, PAGE_SIZE); memset(io_bitmap_b, 0x0, PAGE_SIZE); inl(0xFFFF); report("I/O bitmap - overrun", vmx_get_test_stage() == 9); vmx_set_test_stage(9); vmcall(); outb(0x0, 0x0); report("I/O bitmap - ignore unconditional exiting", vmx_get_test_stage() == 9); vmx_set_test_stage(10); vmcall(); outb(0x0, 0x0); report("I/O bitmap - unconditional exiting", vmx_get_test_stage() == 11); } static int iobmp_exit_handler(void) { u64 guest_rip; ulong reason, exit_qual; u32 insn_len, ctrl_cpu0; guest_rip = vmcs_read(GUEST_RIP); reason = vmcs_read(EXI_REASON) & 0xff; exit_qual = vmcs_read(EXI_QUALIFICATION); insn_len = vmcs_read(EXI_INST_LEN); switch (reason) { case VMX_IO: switch (vmx_get_test_stage()) { case 0: case 1: vmx_inc_test_stage(); break; case 2: report("I/O bitmap - I/O width, byte", (exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE); report("I/O bitmap - I/O direction, in", exit_qual & VMX_IO_IN); vmx_inc_test_stage(); break; case 3: report("I/O bitmap - I/O width, word", (exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD); report("I/O bitmap - I/O direction, out", !(exit_qual & VMX_IO_IN)); vmx_inc_test_stage(); break; case 4: report("I/O bitmap - I/O width, long", (exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG); vmx_inc_test_stage(); break; case 5: if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000) vmx_inc_test_stage(); break; case 6: if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000) vmx_inc_test_stage(); break; case 7: if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF) vmx_inc_test_stage(); break; case 8: if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF) vmx_inc_test_stage(); break; case 9: case 10: ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO); vmx_inc_test_stage(); break; default: // Should not reach here report("unexpected stage, %d", false, vmx_get_test_stage()); print_vmexit_info(); return VMX_TEST_VMEXIT; } vmcs_write(GUEST_RIP, guest_rip + insn_len); return VMX_TEST_RESUME; case VMX_VMCALL: switch (vmx_get_test_stage()) { case 9: ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP; vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); break; case 10: ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO; vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); break; default: // Should not reach here report("unexpected stage, %d", false, vmx_get_test_stage()); print_vmexit_info(); return VMX_TEST_VMEXIT; } vmcs_write(GUEST_RIP, guest_rip + insn_len); return VMX_TEST_RESUME; default: printf("guest_rip = %#lx\n", guest_rip); printf("\tERROR : Undefined exit reason, reason = %ld.\n", reason); break; } return VMX_TEST_VMEXIT; } #define INSN_CPU0 0 #define INSN_CPU1 1 #define INSN_ALWAYS_TRAP 2 #define FIELD_EXIT_QUAL (1 << 0) #define FIELD_INSN_INFO (1 << 1) asm( "insn_hlt: hlt;ret\n\t" "insn_invlpg: invlpg 0x12345678;ret\n\t" "insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t" "insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t" "insn_rdtsc: rdtsc;ret\n\t" "insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t" "insn_cr3_store: mov %cr3,%rax;ret\n\t" #ifdef __x86_64__ "insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t" "insn_cr8_store: mov %cr8,%rax;ret\n\t" #endif "insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t" "insn_pause: pause;ret\n\t" "insn_wbinvd: wbinvd;ret\n\t" "insn_cpuid: mov $10, %eax; cpuid;ret\n\t" "insn_invd: invd;ret\n\t" "insn_sgdt: sgdt gdt64_desc;ret\n\t" "insn_lgdt: lgdt gdt64_desc;ret\n\t" "insn_sidt: sidt idt_descr;ret\n\t" "insn_lidt: lidt idt_descr;ret\n\t" "insn_sldt: sldt %ax;ret\n\t" "insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t" "insn_str: str %ax;ret\n\t" "insn_rdrand: rdrand %rax;ret\n\t" "insn_rdseed: rdseed %rax;ret\n\t" ); extern void insn_hlt(void); extern void insn_invlpg(void); extern void insn_mwait(void); extern void insn_rdpmc(void); extern void insn_rdtsc(void); extern void insn_cr3_load(void); extern void insn_cr3_store(void); #ifdef __x86_64__ extern void insn_cr8_load(void); extern void insn_cr8_store(void); #endif extern void insn_monitor(void); extern void insn_pause(void); extern void insn_wbinvd(void); extern void insn_sgdt(void); extern void insn_lgdt(void); extern void insn_sidt(void); extern void insn_lidt(void); extern void insn_sldt(void); extern void insn_lldt(void); extern void insn_str(void); extern void insn_cpuid(void); extern void insn_invd(void); extern void insn_rdrand(void); extern void insn_rdseed(void); u32 cur_insn; u64 cr3; #define X86_FEATURE_MONITOR (1 << 3) typedef bool (*supported_fn)(void); static bool monitor_supported(void) { return this_cpu_has(X86_FEATURE_MWAIT); } struct insn_table { const char *name; u32 flag; void (*insn_func)(void); u32 type; u32 reason; ulong exit_qual; u32 insn_info; // Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define // which field need to be tested, reason is always tested u32 test_field; const supported_fn supported_fn; u8 disabled; }; /* * Add more test cases of instruction intercept here. Elements in this * table is: * name/control flag/insn function/type/exit reason/exit qulification/ * instruction info/field to test * The last field defines which fields (exit_qual and insn_info) need to be * tested in exit handler. If set to 0, only "reason" is checked. */ static struct insn_table insn_table[] = { // Flags for Primary Processor-Based VM-Execution Controls {"HLT", CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0}, {"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14, 0x12345678, 0, FIELD_EXIT_QUAL}, {"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0, &monitor_supported}, {"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0}, {"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0}, {"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0, FIELD_EXIT_QUAL}, {"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0, FIELD_EXIT_QUAL}, #ifdef __x86_64__ {"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0, FIELD_EXIT_QUAL}, {"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0, FIELD_EXIT_QUAL}, #endif {"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0, &monitor_supported}, {"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0}, // Flags for Secondary Processor-Based VM-Execution Controls {"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0}, {"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0}, {"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0}, {"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0}, {"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0}, {"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0}, {"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0}, {"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0}, /* LTR causes a #GP if done with a busy selector, so it is not tested. */ {"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0}, {"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0}, // Instructions always trap {"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0}, {"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0}, // Instructions never trap {NULL}, }; static int insn_intercept_init(struct vmcs *vmcs) { u32 ctrl_cpu, cur_insn; ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY; ctrl_cpu &= ctrl_cpu_rev[0].clr; vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu); vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set); cr3 = read_cr3(); for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) { if (insn_table[cur_insn].supported_fn == NULL) continue; insn_table[cur_insn].disabled = !insn_table[cur_insn].supported_fn(); } return VMX_TEST_START; } static void insn_intercept_main(void) { for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) { vmx_set_test_stage(cur_insn * 2); if ((insn_table[cur_insn].type == INSN_CPU0 && !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) || (insn_table[cur_insn].type == INSN_CPU1 && !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) { printf("\tCPU_CTRL%d.CPU_%s is not supported.\n", insn_table[cur_insn].type - INSN_CPU0, insn_table[cur_insn].name); continue; } if (insn_table[cur_insn].disabled) { printf("\tFeature required for %s is not supported.\n", insn_table[cur_insn].name); continue; } if ((insn_table[cur_insn].type == INSN_CPU0 && !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) || (insn_table[cur_insn].type == INSN_CPU1 && !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) { /* skip hlt, it stalls the guest and is tested below */ if (insn_table[cur_insn].insn_func != insn_hlt) insn_table[cur_insn].insn_func(); report("execute %s", vmx_get_test_stage() == cur_insn * 2, insn_table[cur_insn].name); } else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP) printf("\tCPU_CTRL%d.CPU_%s always traps.\n", insn_table[cur_insn].type - INSN_CPU0, insn_table[cur_insn].name); vmcall(); insn_table[cur_insn].insn_func(); report("intercept %s", vmx_get_test_stage() == cur_insn * 2 + 1, insn_table[cur_insn].name); vmx_set_test_stage(cur_insn * 2 + 1); vmcall(); } } static int insn_intercept_exit_handler(void) { u64 guest_rip; u32 reason; ulong exit_qual; u32 insn_len; u32 insn_info; bool pass; guest_rip = vmcs_read(GUEST_RIP); reason = vmcs_read(EXI_REASON) & 0xff; exit_qual = vmcs_read(EXI_QUALIFICATION); insn_len = vmcs_read(EXI_INST_LEN); insn_info = vmcs_read(EXI_INST_INFO); if (reason == VMX_VMCALL) { u32 val = 0; if (insn_table[cur_insn].type == INSN_CPU0) val = vmcs_read(CPU_EXEC_CTRL0); else if (insn_table[cur_insn].type == INSN_CPU1) val = vmcs_read(CPU_EXEC_CTRL1); if (vmx_get_test_stage() & 1) val &= ~insn_table[cur_insn].flag; else val |= insn_table[cur_insn].flag; if (insn_table[cur_insn].type == INSN_CPU0) vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set); else if (insn_table[cur_insn].type == INSN_CPU1) vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set); } else { pass = (cur_insn * 2 == vmx_get_test_stage()) && insn_table[cur_insn].reason == reason; if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL && insn_table[cur_insn].exit_qual != exit_qual) pass = false; if (insn_table[cur_insn].test_field & FIELD_INSN_INFO && insn_table[cur_insn].insn_info != insn_info) pass = false; if (pass) vmx_inc_test_stage(); } vmcs_write(GUEST_RIP, guest_rip + insn_len); return VMX_TEST_RESUME; } /** * __setup_ept - Setup the VMCS fields to enable Extended Page Tables (EPT) * @hpa: Host physical address of the top-level, a.k.a. root, EPT table * @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries * * Returns 0 on success, 1 on failure. * * Note that @hpa doesn't need to point at actual memory if VM-Launch is * expected to fail, e.g. setup_dummy_ept() arbitrarily passes '0' to satisfy * the various EPTP consistency checks, but doesn't ensure backing for HPA '0'. */ static int __setup_ept(u64 hpa, bool enable_ad) { if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || !(ctrl_cpu_rev[1].clr & CPU_EPT)) { printf("\tEPT is not supported"); return 1; } if (!(ept_vpid.val & EPT_CAP_WB)) { printf("WB memtype for EPT walks not supported\n"); return 1; } if (!(ept_vpid.val & EPT_CAP_PWL4)) { printf("\tPWL4 is not supported\n"); return 1; } eptp = EPT_MEM_TYPE_WB; eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT); eptp |= hpa; if (enable_ad) eptp |= EPTP_AD_FLAG; vmcs_write(EPTP, eptp); vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0)| CPU_SECONDARY); vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1)| CPU_EPT); return 0; } /** * setup_ept - Enable Extended Page Tables (EPT) and setup an identity map * @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries * * Returns 0 on success, 1 on failure. * * This is the "real" function for setting up EPT tables, i.e. use this for * tests that need to run code in the guest with EPT enabled. */ static int setup_ept(bool enable_ad) { unsigned long end_of_memory; pml4 = alloc_page(); if (__setup_ept(virt_to_phys(pml4), enable_ad)) return 1; end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE); if (end_of_memory < (1ul << 32)) end_of_memory = (1ul << 32); /* Cannot use large EPT pages if we need to track EPT * accessed/dirty bits at 4K granularity. */ setup_ept_range(pml4, 0, end_of_memory, 0, !enable_ad && ept_2m_supported(), EPT_WA | EPT_RA | EPT_EA); return 0; } /** * setup_dummy_ept - Enable Extended Page Tables (EPT) with a dummy root HPA * * Setup EPT using a semi-arbitrary dummy root HPA. This function is intended * for use by tests that need EPT enabled to verify dependent VMCS controls * but never expect to fully enter the guest, i.e. don't need setup the actual * EPT tables. */ static void setup_dummy_ept(void) { if (__setup_ept(0, false)) report_abort("EPT setup unexpectedly failed"); } static int enable_unrestricted_guest(void) { if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || !(ctrl_cpu_rev[1].clr & CPU_URG) || !(ctrl_cpu_rev[1].clr & CPU_EPT)) return 1; setup_dummy_ept(); vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG); return 0; } static void ept_enable_ad_bits(void) { eptp |= EPTP_AD_FLAG; vmcs_write(EPTP, eptp); } static void ept_disable_ad_bits(void) { eptp &= ~EPTP_AD_FLAG; vmcs_write(EPTP, eptp); } static void ept_enable_ad_bits_or_skip_test(void) { if (!ept_ad_bits_supported()) test_skip("EPT AD bits not supported."); ept_enable_ad_bits(); } static int apic_version; static int ept_init_common(bool have_ad) { int ret; struct pci_dev pcidev; if (setup_ept(have_ad)) return VMX_TEST_EXIT; data_page1 = alloc_page(); data_page2 = alloc_page(); *((u32 *)data_page1) = MAGIC_VAL_1; *((u32 *)data_page2) = MAGIC_VAL_2; install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2, EPT_RA | EPT_WA | EPT_EA); apic_version = apic_read(APIC_LVR); ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST); if (ret != PCIDEVADDR_INVALID) { pci_dev_init(&pcidev, ret); pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM]; } return VMX_TEST_START; } static int ept_init(struct vmcs *vmcs) { return ept_init_common(false); } static void ept_common(void) { vmx_set_test_stage(0); if (*((u32 *)data_page2) != MAGIC_VAL_1 || *((u32 *)data_page1) != MAGIC_VAL_1) report("EPT basic framework - read", 0); else { *((u32 *)data_page2) = MAGIC_VAL_3; vmcall(); if (vmx_get_test_stage() == 1) { if (*((u32 *)data_page1) == MAGIC_VAL_3 && *((u32 *)data_page2) == MAGIC_VAL_2) report("EPT basic framework", 1); else report("EPT basic framework - remap", 1); } } // Test EPT Misconfigurations vmx_set_test_stage(1); vmcall(); *((u32 *)data_page1) = MAGIC_VAL_1; if (vmx_get_test_stage() != 2) { report("EPT misconfigurations", 0); goto t1; } vmx_set_test_stage(2); vmcall(); *((u32 *)data_page1) = MAGIC_VAL_1; report("EPT misconfigurations", vmx_get_test_stage() == 3); t1: // Test EPT violation vmx_set_test_stage(3); vmcall(); *((u32 *)data_page1) = MAGIC_VAL_1; report("EPT violation - page permission", vmx_get_test_stage() == 4); // Violation caused by EPT paging structure vmx_set_test_stage(4); vmcall(); *((u32 *)data_page1) = MAGIC_VAL_2; report("EPT violation - paging structure", vmx_get_test_stage() == 5); // MMIO Read/Write vmx_set_test_stage(5); vmcall(); *(u32 volatile *)pci_physaddr; report("MMIO EPT violation - read", vmx_get_test_stage() == 6); *(u32 volatile *)pci_physaddr = MAGIC_VAL_1; report("MMIO EPT violation - write", vmx_get_test_stage() == 7); } static void ept_main(void) { ept_common(); // Test EPT access to L1 MMIO vmx_set_test_stage(7); report("EPT - MMIO access", *((u32 *)0xfee00030UL) == apic_version); // Test invalid operand for INVEPT vmcall(); report("EPT - unsupported INVEPT", vmx_get_test_stage() == 8); } static bool invept_test(int type, u64 eptp) { bool ret, supported; supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type); ret = invept(type, eptp); if (ret == !supported) return false; if (!supported) printf("WARNING: unsupported invept passed!\n"); else printf("WARNING: invept failed!\n"); return true; } static int pml_exit_handler(void) { u16 index, count; ulong reason = vmcs_read(EXI_REASON) & 0xff; u64 *pmlbuf = pml_log; u64 guest_rip = vmcs_read(GUEST_RIP);; u64 guest_cr3 = vmcs_read(GUEST_CR3); u32 insn_len = vmcs_read(EXI_INST_LEN); switch (reason) { case VMX_VMCALL: switch (vmx_get_test_stage()) { case 0: index = vmcs_read(GUEST_PML_INDEX); for (count = index + 1; count < PML_INDEX; count++) { if (pmlbuf[count] == (u64)data_page2) { vmx_inc_test_stage(); clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); break; } } break; case 1: index = vmcs_read(GUEST_PML_INDEX); /* Keep clearing the dirty bit till a overflow */ clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); break; default: report("unexpected stage, %d.", false, vmx_get_test_stage()); print_vmexit_info(); return VMX_TEST_VMEXIT; } vmcs_write(GUEST_RIP, guest_rip + insn_len); return VMX_TEST_RESUME; case VMX_PML_FULL: vmx_inc_test_stage(); vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); return VMX_TEST_RESUME; default: report("Unknown exit reason, %ld", false, reason); print_vmexit_info(); } return VMX_TEST_VMEXIT; } static int ept_exit_handler_common(bool have_ad) { u64 guest_rip; u64 guest_cr3; ulong reason; u32 insn_len; u32 exit_qual; static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte; guest_rip = vmcs_read(GUEST_RIP); guest_cr3 = vmcs_read(GUEST_CR3); reason = vmcs_read(EXI_REASON) & 0xff; insn_len = vmcs_read(EXI_INST_LEN); exit_qual = vmcs_read(EXI_QUALIFICATION); switch (reason) { case VMX_VMCALL: switch (vmx_get_test_stage()) { case 0: check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, have_ad ? EPT_ACCESS_FLAG : 0, have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); check_ept_ad(pml4, guest_cr3, (unsigned long)data_page2, have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0, have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); if (have_ad) ept_sync(INVEPT_SINGLE, eptp);; if (*((u32 *)data_page1) == MAGIC_VAL_3 && *((u32 *)data_page2) == MAGIC_VAL_2) { vmx_inc_test_stage(); install_ept(pml4, (unsigned long)data_page2, (unsigned long)data_page2, EPT_RA | EPT_WA | EPT_EA); } else report("EPT basic framework - write", 0); break; case 1: install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page1, EPT_WA); ept_sync(INVEPT_SINGLE, eptp); break; case 2: install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page1, EPT_RA | EPT_WA | EPT_EA | (2 << EPT_MEM_TYPE_SHIFT)); ept_sync(INVEPT_SINGLE, eptp); break; case 3: clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1, 1, &data_page1_pte)); set_ept_pte(pml4, (unsigned long)data_page1, 1, data_page1_pte & ~EPT_PRESENT); ept_sync(INVEPT_SINGLE, eptp); break; case 4: TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1, 2, &data_page1_pte)); data_page1_pte &= PAGE_MASK; TEST_ASSERT(get_ept_pte(pml4, data_page1_pte, 2, &data_page1_pte_pte)); set_ept_pte(pml4, data_page1_pte, 2, data_page1_pte_pte & ~EPT_PRESENT); ept_sync(INVEPT_SINGLE, eptp); break; case 5: install_ept(pml4, (unsigned long)pci_physaddr, (unsigned long)pci_physaddr, 0); ept_sync(INVEPT_SINGLE, eptp); break; case 7: if (!invept_test(0, eptp)) vmx_inc_test_stage(); break; // Should not reach here default: report("ERROR - unexpected stage, %d.", false, vmx_get_test_stage()); print_vmexit_info(); return VMX_TEST_VMEXIT; } vmcs_write(GUEST_RIP, guest_rip + insn_len); return VMX_TEST_RESUME; case VMX_EPT_MISCONFIG: switch (vmx_get_test_stage()) { case 1: case 2: vmx_inc_test_stage(); install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page1, EPT_RA | EPT_WA | EPT_EA); ept_sync(INVEPT_SINGLE, eptp); break; // Should not reach here default: report("ERROR - unexpected stage, %d.", false, vmx_get_test_stage()); print_vmexit_info(); return VMX_TEST_VMEXIT; } return VMX_TEST_RESUME; case VMX_EPT_VIOLATION: /* * Exit-qualifications are masked not to account for advanced * VM-exit information. Once KVM supports this feature, this * masking should be removed. */ exit_qual &= ~EPT_VLT_GUEST_MASK; switch(vmx_get_test_stage()) { case 3: check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR)) vmx_inc_test_stage(); set_ept_pte(pml4, (unsigned long)data_page1, 1, data_page1_pte | (EPT_PRESENT)); ept_sync(INVEPT_SINGLE, eptp); break; case 4: check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); if (exit_qual == (EPT_VLT_RD | (have_ad ? EPT_VLT_WR : 0) | EPT_VLT_LADDR_VLD)) vmx_inc_test_stage(); set_ept_pte(pml4, data_page1_pte, 2, data_page1_pte_pte | (EPT_PRESENT)); ept_sync(INVEPT_SINGLE, eptp); break; case 5: if (exit_qual & EPT_VLT_RD) vmx_inc_test_stage(); TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr, 1, &memaddr_pte)); set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA); ept_sync(INVEPT_SINGLE, eptp); break; case 6: if (exit_qual & EPT_VLT_WR) vmx_inc_test_stage(); TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr, 1, &memaddr_pte)); set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA); ept_sync(INVEPT_SINGLE, eptp); break; default: // Should not reach here report("ERROR : unexpected stage, %d", false, vmx_get_test_stage()); print_vmexit_info(); return VMX_TEST_VMEXIT; } return VMX_TEST_RESUME; default: report("Unknown exit reason, %ld", false, reason); print_vmexit_info(); } return VMX_TEST_VMEXIT; } static int ept_exit_handler(void) { return ept_exit_handler_common(false); } static int eptad_init(struct vmcs *vmcs) { int r = ept_init_common(true); if (r == VMX_TEST_EXIT) return r; if ((rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & EPT_CAP_AD_FLAG) == 0) { printf("\tEPT A/D bits are not supported"); return VMX_TEST_EXIT; } return r; } static int pml_init(struct vmcs *vmcs) { u32 ctrl_cpu; int r = eptad_init(vmcs); if (r == VMX_TEST_EXIT) return r; if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || !(ctrl_cpu_rev[1].clr & CPU_PML)) { printf("\tPML is not supported"); return VMX_TEST_EXIT; } pml_log = alloc_page(); vmcs_write(PMLADDR, (u64)pml_log); vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML; vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu); return VMX_TEST_START; } static void pml_main(void) { int count = 0; vmx_set_test_stage(0); *((u32 *)data_page2) = 0x1; vmcall(); report("PML - Dirty GPA Logging", vmx_get_test_stage() == 1); while (vmx_get_test_stage() == 1) { vmcall(); *((u32 *)data_page2) = 0x1; if (count++ > PML_INDEX) break; } report("PML Full Event", vmx_get_test_stage() == 2); } static void eptad_main(void) { ept_common(); } static int eptad_exit_handler(void) { return ept_exit_handler_common(true); } static bool invvpid_test(int type, u16 vpid) { bool ret, supported; supported = ept_vpid.val & (VPID_CAP_INVVPID_ADDR >> INVVPID_ADDR << type); ret = invvpid(type, vpid, 0); if (ret == !supported) return false; if (!supported) printf("WARNING: unsupported invvpid passed!\n"); else printf("WARNING: invvpid failed!\n"); return true; } static int vpid_init(struct vmcs *vmcs) { u32 ctrl_cpu1; if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || !(ctrl_cpu_rev[1].clr & CPU_VPID)) { printf("\tVPID is not supported"); return VMX_TEST_EXIT; } ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1); ctrl_cpu1 |= CPU_VPID; vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1); return VMX_TEST_START; } static void vpid_main(void) { vmx_set_test_stage(0); vmcall(); report("INVVPID SINGLE ADDRESS", vmx_get_test_stage() == 1); vmx_set_test_stage(2); vmcall(); report("INVVPID SINGLE", vmx_get_test_stage() == 3); vmx_set_test_stage(4); vmcall(); report("INVVPID ALL", vmx_get_test_stage() == 5); } static int vpid_exit_handler(void) { u64 guest_rip; ulong reason; u32 insn_len; guest_rip = vmcs_read(GUEST_RIP); reason = vmcs_read(EXI_REASON) & 0xff; insn_len = vmcs_read(EXI_INST_LEN); switch (reason) { case VMX_VMCALL: switch(vmx_get_test_stage()) { case 0: if (!invvpid_test(INVVPID_ADDR, 1)) vmx_inc_test_stage(); break; case 2: if (!invvpid_test(INVVPID_CONTEXT_GLOBAL, 1)) vmx_inc_test_stage(); break; case 4: if (!invvpid_test(INVVPID_ALL, 1)) vmx_inc_test_stage(); break; default: report("ERROR: unexpected stage, %d", false, vmx_get_test_stage()); print_vmexit_info(); return VMX_TEST_VMEXIT; } vmcs_write(GUEST_RIP, guest_rip + insn_len); return VMX_TEST_RESUME; default: report("Unknown exit reason, %ld", false, reason); print_vmexit_info(); } return VMX_TEST_VMEXIT; } #define TIMER_VECTOR 222 static volatile bool timer_fired; static void timer_isr(isr_regs_t *regs) { timer_fired = true; apic_write(APIC_EOI, 0); } static int interrupt_init(struct vmcs *vmcs) { msr_bmp_init(); vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); handle_irq(TIMER_VECTOR, timer_isr); return VMX_TEST_START; } static void interrupt_main(void) { long long start, loops; vmx_set_test_stage(0); apic_write(APIC_LVTT, TIMER_VECTOR); irq_enable(); apic_write(APIC_TMICT, 1); for (loops = 0; loops < 10000000 && !timer_fired; loops++) asm volatile ("nop"); report("direct interrupt while running guest", timer_fired); apic_write(APIC_TMICT, 0); irq_disable(); vmcall(); timer_fired = false; apic_write(APIC_TMICT, 1); for (loops = 0; loops < 10000000 && !timer_fired; loops++) asm volatile ("nop"); report("intercepted interrupt while running guest", timer_fired); irq_enable(); apic_write(APIC_TMICT, 0); irq_disable(); vmcall(); timer_fired = false; start = rdtsc(); apic_write(APIC_TMICT, 1000000); asm volatile ("sti; hlt"); report("direct interrupt + hlt", rdtsc() - start > 1000000 && timer_fired); apic_write(APIC_TMICT, 0); irq_disable(); vmcall(); timer_fired = false; start = rdtsc(); apic_write(APIC_TMICT, 1000000); asm volatile ("sti; hlt"); report("intercepted interrupt + hlt", rdtsc() - start > 10000 && timer_fired); apic_write(APIC_TMICT, 0); irq_disable(); vmcall(); timer_fired = false; start = rdtsc(); apic_write(APIC_TMICT, 1000000); irq_enable(); asm volatile ("nop"); vmcall(); report("direct interrupt + activity state hlt", rdtsc() - start > 10000 && timer_fired); apic_write(APIC_TMICT, 0); irq_disable(); vmcall(); timer_fired = false; start = rdtsc(); apic_write(APIC_TMICT, 1000000); irq_enable(); asm volatile ("nop"); vmcall(); report("intercepted interrupt + activity state hlt", rdtsc() - start > 10000 && timer_fired); apic_write(APIC_TMICT, 0); irq_disable(); vmx_set_test_stage(7); vmcall(); timer_fired = false; apic_write(APIC_TMICT, 1); for (loops = 0; loops < 10000000 && !timer_fired; loops++) asm volatile ("nop"); report("running a guest with interrupt acknowledgement set", timer_fired); apic_write(APIC_TMICT, 0); irq_enable(); timer_fired = false; vmcall(); report("Inject an event to a halted guest", timer_fired); } static int interrupt_exit_handler(void) { u64 guest_rip = vmcs_read(GUEST_RIP); ulong reason = vmcs_read(EXI_REASON) & 0xff; u32 insn_len = vmcs_read(EXI_INST_LEN); switch (reason) { case VMX_VMCALL: switch (vmx_get_test_stage()) { case 0: case 2: case 5: vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_EXTINT); break; case 7: vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA); vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_EXTINT); break; case 1: case 3: vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); break; case 4: case 6: vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); break; case 8: vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); vmcs_write(ENT_INTR_INFO, TIMER_VECTOR | (VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) | INTR_INFO_VALID_MASK); break; } vmx_inc_test_stage(); vmcs_write(GUEST_RIP, guest_rip + insn_len); return VMX_TEST_RESUME; case VMX_EXTINT: if (vmcs_read(EXI_CONTROLS) & EXI_INTA) { int vector = vmcs_read(EXI_INTR_INFO) & 0xff; handle_external_interrupt(vector); } else { irq_enable(); asm volatile ("nop"); irq_disable(); } if (vmx_get_test_stage() >= 2) vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); return VMX_TEST_RESUME; default: report("Unknown exit reason, %ld", false, reason); print_vmexit_info(); } return VMX_TEST_VMEXIT; } static int dbgctls_init(struct vmcs *vmcs) { u64 dr7 = 0x402; u64 zero = 0; msr_bmp_init(); asm volatile( "mov %0,%%dr0\n\t" "mov %0,%%dr1\n\t" "mov %0,%%dr2\n\t" "mov %1,%%dr7\n\t" : : "r" (zero), "r" (dr7)); wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); vmcs_write(GUEST_DR7, 0x404); vmcs_write(GUEST_DEBUGCTL, 0x2); vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS); vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS); return VMX_TEST_START; } static void dbgctls_main(void) { u64 dr7, debugctl; asm volatile("mov %%dr7,%0" : "=r" (dr7)); debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); /* Commented out: KVM does not support DEBUGCTL so far */ (void)debugctl; report("Load debug controls", dr7 == 0x404 /* && debugctl == 0x2 */); dr7 = 0x408; asm volatile("mov %0,%%dr7" : : "r" (dr7)); wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); vmx_set_test_stage(0); vmcall(); report("Save debug controls", vmx_get_test_stage() == 1); if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS || ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) { printf("\tDebug controls are always loaded/saved\n"); return; } vmx_set_test_stage(2); vmcall(); asm volatile("mov %%dr7,%0" : "=r" (dr7)); debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); /* Commented out: KVM does not support DEBUGCTL so far */ (void)debugctl; report("Guest=host debug controls", dr7 == 0x402 /* && debugctl == 0x1 */); dr7 = 0x408; asm volatile("mov %0,%%dr7" : : "r" (dr7)); wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); vmx_set_test_stage(3); vmcall(); report("Don't save debug controls", vmx_get_test_stage() == 4); } static int dbgctls_exit_handler(void) { unsigned int reason = vmcs_read(EXI_REASON) & 0xff; u32 insn_len = vmcs_read(EXI_INST_LEN); u64 guest_rip = vmcs_read(GUEST_RIP); u64 dr7, debugctl; asm volatile("mov %%dr7,%0" : "=r" (dr7)); debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); switch (reason) { case VMX_VMCALL: switch (vmx_get_test_stage()) { case 0: if (dr7 == 0x400 && debugctl == 0 && vmcs_read(GUEST_DR7) == 0x408 /* && Commented out: KVM does not support DEBUGCTL so far vmcs_read(GUEST_DEBUGCTL) == 0x3 */) vmx_inc_test_stage(); break; case 2: dr7 = 0x402; asm volatile("mov %0,%%dr7" : : "r" (dr7)); wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); vmcs_write(GUEST_DR7, 0x404); vmcs_write(GUEST_DEBUGCTL, 0x2); vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS); vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS); break; case 3: if (dr7 == 0x400 && debugctl == 0 && vmcs_read(GUEST_DR7) == 0x404 /* && Commented out: KVM does not support DEBUGCTL so far vmcs_read(GUEST_DEBUGCTL) == 0x2 */) vmx_inc_test_stage(); break; } vmcs_write(GUEST_RIP, guest_rip + insn_len); return VMX_TEST_RESUME; default: report("Unknown exit reason, %d", false, reason); print_vmexit_info(); } return VMX_TEST_VMEXIT; } struct vmx_msr_entry { u32 index; u32 reserved; u64 value; } __attribute__((packed)); #define MSR_MAGIC 0x31415926 struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load; static int msr_switch_init(struct vmcs *vmcs) { msr_bmp_init(); exit_msr_store = alloc_page(); exit_msr_load = alloc_page(); entry_msr_load = alloc_page(); entry_msr_load[0].index = MSR_KERNEL_GS_BASE; entry_msr_load[0].value = MSR_MAGIC; vmx_set_test_stage(1); vmcs_write(ENT_MSR_LD_CNT, 1); vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load); vmcs_write(EXI_MSR_ST_CNT, 1); vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store); vmcs_write(EXI_MSR_LD_CNT, 1); vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load); return VMX_TEST_START; } static void msr_switch_main(void) { if (vmx_get_test_stage() == 1) { report("VM entry MSR load", rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC); vmx_set_test_stage(2); wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1); exit_msr_store[0].index = MSR_KERNEL_GS_BASE; exit_msr_load[0].index = MSR_KERNEL_GS_BASE; exit_msr_load[0].value = MSR_MAGIC + 2; } vmcall(); } static int msr_switch_exit_handler(void) { ulong reason; reason = vmcs_read(EXI_REASON); if (reason == VMX_VMCALL && vmx_get_test_stage() == 2) { report("VM exit MSR store", exit_msr_store[0].value == MSR_MAGIC + 1); report("VM exit MSR load", rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2); vmx_set_test_stage(3); entry_msr_load[0].index = MSR_FS_BASE; return VMX_TEST_RESUME; } printf("ERROR %s: unexpected stage=%u or reason=%lu\n", __func__, vmx_get_test_stage(), reason); return VMX_TEST_EXIT; } static int msr_switch_entry_failure(struct vmentry_failure *failure) { ulong reason; if (failure->early) { printf("ERROR %s: early exit\n", __func__); return VMX_TEST_EXIT; } reason = vmcs_read(EXI_REASON); if (reason == (VMX_ENTRY_FAILURE | VMX_FAIL_MSR) && vmx_get_test_stage() == 3) { report("VM entry MSR load: try to load FS_BASE", vmcs_read(EXI_QUALIFICATION) == 1); return VMX_TEST_VMEXIT; } printf("ERROR %s: unexpected stage=%u or reason=%lu\n", __func__, vmx_get_test_stage(), reason); return VMX_TEST_EXIT; } static int vmmcall_init(struct vmcs *vmcs) { vmcs_write(EXC_BITMAP, 1 << UD_VECTOR); return VMX_TEST_START; } static void vmmcall_main(void) { asm volatile( "mov $0xABCD, %%rax\n\t" "vmmcall\n\t" ::: "rax"); report("VMMCALL", 0); } static int vmmcall_exit_handler(void) { ulong reason; reason = vmcs_read(EXI_REASON); switch (reason) { case VMX_VMCALL: printf("here\n"); report("VMMCALL triggers #UD", 0); break; case VMX_EXC_NMI: report("VMMCALL triggers #UD", (vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR); break; default: report("Unknown exit reason, %ld", false, reason); print_vmexit_info(); } return VMX_TEST_VMEXIT; } static int disable_rdtscp_init(struct vmcs *vmcs) { u32 ctrl_cpu1; if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) { ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1); ctrl_cpu1 &= ~CPU_RDTSCP; vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1); } return VMX_TEST_START; } static void disable_rdtscp_ud_handler(struct ex_regs *regs) { switch (vmx_get_test_stage()) { case 0: report("RDTSCP triggers #UD", true); vmx_inc_test_stage(); regs->rip += 3; break; case 2: report("RDPID triggers #UD", true); vmx_inc_test_stage(); regs->rip += 4; break; } return; } static void disable_rdtscp_main(void) { /* Test that #UD is properly injected in L2. */ handle_exception(UD_VECTOR, disable_rdtscp_ud_handler); vmx_set_test_stage(0); asm volatile("rdtscp" : : : "eax", "ecx", "edx"); vmcall(); asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax"); handle_exception(UD_VECTOR, 0); vmcall(); } static int disable_rdtscp_exit_handler(void) { unsigned int reason = vmcs_read(EXI_REASON) & 0xff; switch (reason) { case VMX_VMCALL: switch (vmx_get_test_stage()) { case 0: report("RDTSCP triggers #UD", false); vmx_inc_test_stage(); /* fallthrough */ case 1: vmx_inc_test_stage(); vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3); return VMX_TEST_RESUME; case 2: report("RDPID triggers #UD", false); break; } break; default: report("Unknown exit reason, %d", false, reason); print_vmexit_info(); } return VMX_TEST_VMEXIT; } static int int3_init(struct vmcs *vmcs) { vmcs_write(EXC_BITMAP, ~0u); return VMX_TEST_START; } static void int3_guest_main(void) { asm volatile ("int3"); } static int int3_exit_handler(void) { u32 reason = vmcs_read(EXI_REASON); u32 intr_info = vmcs_read(EXI_INTR_INFO); report("L1 intercepts #BP", reason == VMX_EXC_NMI && (intr_info & INTR_INFO_VALID_MASK) && (intr_info & INTR_INFO_VECTOR_MASK) == BP_VECTOR && ((intr_info & INTR_INFO_INTR_TYPE_MASK) >> INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION); return VMX_TEST_VMEXIT; } static int into_init(struct vmcs *vmcs) { vmcs_write(EXC_BITMAP, ~0u); return VMX_TEST_START; } static void into_guest_main(void) { struct far_pointer32 fp = { .offset = (uintptr_t)&&into, .selector = KERNEL_CS32, }; register uintptr_t rsp asm("rsp"); if (fp.offset != (uintptr_t)&&into) { printf("Code address too high.\n"); return; } if ((u32)rsp != rsp) { printf("Stack address too high.\n"); return; } asm goto ("lcall *%0" : : "m" (fp) : "rax" : into); return; into: asm volatile (".code32;" "movl $0x7fffffff, %eax;" "addl %eax, %eax;" "into;" "lret;" ".code64"); __builtin_unreachable(); } static int into_exit_handler(void) { u32 reason = vmcs_read(EXI_REASON); u32 intr_info = vmcs_read(EXI_INTR_INFO); report("L1 intercepts #OF", reason == VMX_EXC_NMI && (intr_info & INTR_INFO_VALID_MASK) && (intr_info & INTR_INFO_VECTOR_MASK) == OF_VECTOR && ((intr_info & INTR_INFO_INTR_TYPE_MASK) >> INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION); return VMX_TEST_VMEXIT; } static void exit_monitor_from_l2_main(void) { printf("Calling exit(0) from l2...\n"); exit(0); } static int exit_monitor_from_l2_handler(void) { report("The guest should have killed the VMM", false); return VMX_TEST_EXIT; } static void assert_exit_reason(u64 expected) { u64 actual = vmcs_read(EXI_REASON); TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.", exit_reason_description(expected), exit_reason_description(actual)); } static void skip_exit_insn(void) { u64 guest_rip = vmcs_read(GUEST_RIP); u32 insn_len = vmcs_read(EXI_INST_LEN); vmcs_write(GUEST_RIP, guest_rip + insn_len); } static void skip_exit_vmcall(void) { assert_exit_reason(VMX_VMCALL); skip_exit_insn(); } static void v2_null_test_guest(void) { } static void v2_null_test(void) { test_set_guest(v2_null_test_guest); enter_guest(); report(__func__, 1); } static void v2_multiple_entries_test_guest(void) { vmx_set_test_stage(1); vmcall(); vmx_set_test_stage(2); } static void v2_multiple_entries_test(void) { test_set_guest(v2_multiple_entries_test_guest); enter_guest(); TEST_ASSERT_EQ(vmx_get_test_stage(), 1); skip_exit_vmcall(); enter_guest(); TEST_ASSERT_EQ(vmx_get_test_stage(), 2); report(__func__, 1); } static int fixture_test_data = 1; static void fixture_test_teardown(void *data) { *((int *) data) = 1; } static void fixture_test_guest(void) { fixture_test_data++; } static void fixture_test_setup(void) { TEST_ASSERT_EQ_MSG(1, fixture_test_data, "fixture_test_teardown didn't run?!"); fixture_test_data = 2; test_add_teardown(fixture_test_teardown, &fixture_test_data); test_set_guest(fixture_test_guest); } static void fixture_test_case1(void) { fixture_test_setup(); TEST_ASSERT_EQ(2, fixture_test_data); enter_guest(); TEST_ASSERT_EQ(3, fixture_test_data); report(__func__, 1); } static void fixture_test_case2(void) { fixture_test_setup(); TEST_ASSERT_EQ(2, fixture_test_data); enter_guest(); TEST_ASSERT_EQ(3, fixture_test_data); report(__func__, 1); } enum ept_access_op { OP_READ, OP_WRITE, OP_EXEC, OP_FLUSH_TLB, OP_EXIT, }; static struct ept_access_test_data { unsigned long gpa; unsigned long *gva; unsigned long hpa; unsigned long *hva; enum ept_access_op op; } ept_access_test_data; extern unsigned char ret42_start; extern unsigned char ret42_end; /* Returns 42. */ asm( ".align 64\n" "ret42_start:\n" "mov $42, %eax\n" "ret\n" "ret42_end:\n" ); static void diagnose_ept_violation_qual(u64 expected, u64 actual) { #define DIAGNOSE(flag) \ do { \ if ((expected & flag) != (actual & flag)) \ printf(#flag " %sexpected\n", \ (expected & flag) ? "" : "un"); \ } while (0) DIAGNOSE(EPT_VLT_RD); DIAGNOSE(EPT_VLT_WR); DIAGNOSE(EPT_VLT_FETCH); DIAGNOSE(EPT_VLT_PERM_RD); DIAGNOSE(EPT_VLT_PERM_WR); DIAGNOSE(EPT_VLT_PERM_EX); DIAGNOSE(EPT_VLT_LADDR_VLD); DIAGNOSE(EPT_VLT_PADDR); #undef DIAGNOSE } static void do_ept_access_op(enum ept_access_op op) { ept_access_test_data.op = op; enter_guest(); } /* * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only * needed by tests that modify guest PTEs. */ static void ept_access_test_guest_flush_tlb(void) { do_ept_access_op(OP_FLUSH_TLB); skip_exit_vmcall(); } /* * Modifies the EPT entry at @level in the mapping of @gpa. First clears the * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into * a huge page. */ static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level, unsigned long clear, unsigned long set) { struct ept_access_test_data *data = &ept_access_test_data; unsigned long orig_pte; unsigned long pte; /* Screw with the mapping at the requested level. */ TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte)); pte = orig_pte; if (mkhuge) pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE; else pte = orig_pte; pte = (pte & ~clear) | set; set_ept_pte(pml4, gpa, level, pte); ept_sync(INVEPT_SINGLE, eptp); return orig_pte; } static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte) { set_ept_pte(pml4, gpa, level, orig_pte); ept_sync(INVEPT_SINGLE, eptp); } static void do_ept_violation(bool leaf, enum ept_access_op op, u64 expected_qual, u64 expected_paddr) { u64 qual; /* Try the access and observe the violation. */ do_ept_access_op(op); assert_exit_reason(VMX_EPT_VIOLATION); qual = vmcs_read(EXI_QUALIFICATION); /* Mask undefined bits (which may later be defined in certain cases). */ qual &= ~(EPT_VLT_GUEST_USER | EPT_VLT_GUEST_RW | EPT_VLT_GUEST_EX | EPT_VLT_PERM_USER_EX); diagnose_ept_violation_qual(expected_qual, qual); TEST_EXPECT_EQ(expected_qual, qual); #if 0 /* Disable for now otherwise every test will fail */ TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), (unsigned long) ( op == OP_EXEC ? data->gva + 1 : data->gva)); #endif /* * TODO: tests that probe expected_paddr in pages other than the one at * the beginning of the 1g region. */ TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr); } static void ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear, unsigned long set, enum ept_access_op op, u64 expected_qual) { struct ept_access_test_data *data = &ept_access_test_data; unsigned long orig_pte; orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); do_ept_violation(level == 1 || mkhuge, op, expected_qual, op == OP_EXEC ? data->gpa + sizeof(unsigned long) : data->gpa); /* Fix the violation and resume the op loop. */ ept_untwiddle(data->gpa, level, orig_pte); enter_guest(); skip_exit_vmcall(); } static void ept_violation_at_level(int level, unsigned long clear, unsigned long set, enum ept_access_op op, u64 expected_qual) { ept_violation_at_level_mkhuge(false, level, clear, set, op, expected_qual); if (ept_huge_pages_supported(level)) ept_violation_at_level_mkhuge(true, level, clear, set, op, expected_qual); } static void ept_violation(unsigned long clear, unsigned long set, enum ept_access_op op, u64 expected_qual) { ept_violation_at_level(1, clear, set, op, expected_qual); ept_violation_at_level(2, clear, set, op, expected_qual); ept_violation_at_level(3, clear, set, op, expected_qual); ept_violation_at_level(4, clear, set, op, expected_qual); } static void ept_access_violation(unsigned long access, enum ept_access_op op, u64 expected_qual) { ept_violation(EPT_PRESENT, access, op, expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); } /* * For translations that don't involve a GVA, that is physical address (paddr) * accesses, EPT violations don't set the flag EPT_VLT_PADDR. For a typical * guest memory access, the hardware does GVA -> GPA -> HPA. However, certain * translations don't involve GVAs, such as when the hardware does the guest * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides * on isn't present in the EPT, then the EPT violation will be for GPA_2 and * the EPT_VLT_PADDR bit will be clear in the exit qualification. * * Note that paddr violations can also be triggered by loading PAE page tables * with wonky addresses. We don't test that yet. * * This function modifies the EPT entry that maps the GPA that the guest page * table entry mapping ept_access_test_data.gva resides on. * * @ept_access EPT permissions to set. Other permissions are cleared. * * @pte_ad Set the A/D bits on the guest PTE accordingly. * * @op Guest operation to perform with * ept_access_test_data.gva. * * @expect_violation * Is a violation expected during the paddr access? * * @expected_qual Expected qualification for the EPT violation. * EPT_VLT_PADDR should be clear. */ static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad, enum ept_access_op op, bool expect_violation, u64 expected_qual) { struct ept_access_test_data *data = &ept_access_test_data; unsigned long *ptep; unsigned long gpa; unsigned long orig_epte; /* Modify the guest PTE mapping data->gva according to @pte_ad. */ ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1); TEST_ASSERT(ptep); TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa); *ptep = (*ptep & ~PT_AD_MASK) | pte_ad; ept_access_test_guest_flush_tlb(); /* * Now modify the access bits on the EPT entry for the GPA that the * guest PTE resides on. Note that by modifying a single EPT entry, * we're potentially affecting 512 guest PTEs. However, we've carefully * constructed our test such that those other 511 PTEs aren't used by * the guest: data->gva is at the beginning of a 1G huge page, thus the * PTE we're modifying is at the beginning of a 4K page and the * following 511 entires are also under our control (and not touched by * the guest). */ gpa = virt_to_phys(ptep); TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0); /* * Make sure the guest page table page is mapped with a 4K EPT entry, * otherwise our level=1 twiddling below will fail. We use the * identity map (gpa = gpa) since page tables are shared with the host. */ install_ept(pml4, gpa, gpa, EPT_PRESENT); orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1, /*clear=*/EPT_PRESENT, /*set=*/ept_access); if (expect_violation) { do_ept_violation(/*leaf=*/true, op, expected_qual | EPT_VLT_LADDR_VLD, gpa); ept_untwiddle(gpa, /*level=*/1, orig_epte); do_ept_access_op(op); } else { do_ept_access_op(op); ept_untwiddle(gpa, /*level=*/1, orig_epte); } TEST_ASSERT(*ptep & PT_ACCESSED_MASK); if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE) TEST_ASSERT(*ptep & PT_DIRTY_MASK); skip_exit_vmcall(); } static void ept_access_allowed_paddr(unsigned long ept_access, unsigned long pte_ad, enum ept_access_op op) { ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false, /*expected_qual=*/-1); } static void ept_access_violation_paddr(unsigned long ept_access, unsigned long pte_ad, enum ept_access_op op, u64 expected_qual) { ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true, expected_qual); } static void ept_allowed_at_level_mkhuge(bool mkhuge, int level, unsigned long clear, unsigned long set, enum ept_access_op op) { struct ept_access_test_data *data = &ept_access_test_data; unsigned long orig_pte; orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); /* No violation. Should proceed to vmcall. */ do_ept_access_op(op); skip_exit_vmcall(); ept_untwiddle(data->gpa, level, orig_pte); } static void ept_allowed_at_level(int level, unsigned long clear, unsigned long set, enum ept_access_op op) { ept_allowed_at_level_mkhuge(false, level, clear, set, op); if (ept_huge_pages_supported(level)) ept_allowed_at_level_mkhuge(true, level, clear, set, op); } static void ept_allowed(unsigned long clear, unsigned long set, enum ept_access_op op) { ept_allowed_at_level(1, clear, set, op); ept_allowed_at_level(2, clear, set, op); ept_allowed_at_level(3, clear, set, op); ept_allowed_at_level(4, clear, set, op); } static void ept_ignored_bit(int bit) { /* Set the bit. */ ept_allowed(0, 1ul << bit, OP_READ); ept_allowed(0, 1ul << bit, OP_WRITE); ept_allowed(0, 1ul << bit, OP_EXEC); /* Clear the bit. */ ept_allowed(1ul << bit, 0, OP_READ); ept_allowed(1ul << bit, 0, OP_WRITE); ept_allowed(1ul << bit, 0, OP_EXEC); } static void ept_access_allowed(unsigned long access, enum ept_access_op op) { ept_allowed(EPT_PRESENT, access, op); } static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level, unsigned long clear, unsigned long set, enum ept_access_op op) { struct ept_access_test_data *data = &ept_access_test_data; unsigned long orig_pte; orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); do_ept_access_op(op); assert_exit_reason(VMX_EPT_MISCONFIG); /* Intel 27.2.1, "For all other VM exits, this field is cleared." */ #if 0 /* broken: */ TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0); #endif #if 0 /* * broken: * According to description of exit qual for EPT violation, * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid. * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought * to be set for msiconfig. */ TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), (unsigned long) ( op == OP_EXEC ? data->gva + 1 : data->gva)); #endif /* Fix the violation and resume the op loop. */ ept_untwiddle(data->gpa, level, orig_pte); enter_guest(); skip_exit_vmcall(); } static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level, unsigned long clear, unsigned long set) { /* The op shouldn't matter (read, write, exec), so try them all! */ ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ); ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE); ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC); } static void ept_misconfig_at_level(int level, unsigned long clear, unsigned long set) { ept_misconfig_at_level_mkhuge(false, level, clear, set); if (ept_huge_pages_supported(level)) ept_misconfig_at_level_mkhuge(true, level, clear, set); } static void ept_misconfig(unsigned long clear, unsigned long set) { ept_misconfig_at_level(1, clear, set); ept_misconfig_at_level(2, clear, set); ept_misconfig_at_level(3, clear, set); ept_misconfig_at_level(4, clear, set); } static void ept_access_misconfig(unsigned long access) { ept_misconfig(EPT_PRESENT, access); } static void ept_reserved_bit_at_level_nohuge(int level, int bit) { /* Setting the bit causes a misconfig. */ ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit); /* Making the entry non-present turns reserved bits into ignored. */ ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); } static void ept_reserved_bit_at_level_huge(int level, int bit) { /* Setting the bit causes a misconfig. */ ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit); /* Making the entry non-present turns reserved bits into ignored. */ ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); } static void ept_reserved_bit_at_level(int level, int bit) { /* Setting the bit causes a misconfig. */ ept_misconfig_at_level(level, 0, 1ul << bit); /* Making the entry non-present turns reserved bits into ignored. */ ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); } static void ept_reserved_bit(int bit) { ept_reserved_bit_at_level(1, bit); ept_reserved_bit_at_level(2, bit); ept_reserved_bit_at_level(3, bit); ept_reserved_bit_at_level(4, bit); } #define PAGE_2M_ORDER 9 #define PAGE_1G_ORDER 18 static void *get_1g_page(void) { static void *alloc; if (!alloc) alloc = alloc_pages(PAGE_1G_ORDER); return alloc; } static void ept_access_test_teardown(void *unused) { /* Exit the guest cleanly. */ do_ept_access_op(OP_EXIT); } static void ept_access_test_guest(void) { struct ept_access_test_data *data = &ept_access_test_data; int (*code)(void) = (int (*)(void)) &data->gva[1]; while (true) { switch (data->op) { case OP_READ: TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1); break; case OP_WRITE: *data->gva = MAGIC_VAL_2; TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2); *data->gva = MAGIC_VAL_1; break; case OP_EXEC: TEST_ASSERT_EQ(42, code()); break; case OP_FLUSH_TLB: write_cr3(read_cr3()); break; case OP_EXIT: return; default: TEST_ASSERT_MSG(false, "Unknown op %d", data->op); } vmcall(); } } static void ept_access_test_setup(void) { struct ept_access_test_data *data = &ept_access_test_data; unsigned long npages = 1ul << PAGE_1G_ORDER; unsigned long size = npages * PAGE_SIZE; unsigned long *page_table = current_page_table(); unsigned long pte; if (setup_ept(false)) test_skip("EPT not supported"); /* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */ if (cpuid_maxphyaddr() < 40) test_skip("Test needs MAXPHYADDR >= 40"); test_set_guest(ept_access_test_guest); test_add_teardown(ept_access_test_teardown, NULL); data->hva = get_1g_page(); TEST_ASSERT(data->hva); data->hpa = virt_to_phys(data->hva); data->gpa = 1ul << 39; data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2), size); TEST_ASSERT(!any_present_pages(page_table, data->gva, size)); install_pages(page_table, data->gpa, size, data->gva); /* * Make sure nothing's mapped here so the tests that screw with the * pml4 entry don't inadvertently break something. */ TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0); TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0); install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT); data->hva[0] = MAGIC_VAL_1; memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start); } static void ept_access_test_not_present(void) { ept_access_test_setup(); /* --- */ ept_access_violation(0, OP_READ, EPT_VLT_RD); ept_access_violation(0, OP_WRITE, EPT_VLT_WR); ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH); } static void ept_access_test_read_only(void) { ept_access_test_setup(); /* r-- */ ept_access_allowed(EPT_RA, OP_READ); ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD); ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD); } static void ept_access_test_write_only(void) { ept_access_test_setup(); /* -w- */ ept_access_misconfig(EPT_WA); } static void ept_access_test_read_write(void) { ept_access_test_setup(); /* rw- */ ept_access_allowed(EPT_RA | EPT_WA, OP_READ); ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE); ept_access_violation(EPT_RA | EPT_WA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR); } static void ept_access_test_execute_only(void) { ept_access_test_setup(); /* --x */ if (ept_execute_only_supported()) { ept_access_violation(EPT_EA, OP_READ, EPT_VLT_RD | EPT_VLT_PERM_EX); ept_access_violation(EPT_EA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_EX); ept_access_allowed(EPT_EA, OP_EXEC); } else { ept_access_misconfig(EPT_EA); } } static void ept_access_test_read_execute(void) { ept_access_test_setup(); /* r-x */ ept_access_allowed(EPT_RA | EPT_EA, OP_READ); ept_access_violation(EPT_RA | EPT_EA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX); ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC); } static void ept_access_test_write_execute(void) { ept_access_test_setup(); /* -wx */ ept_access_misconfig(EPT_WA | EPT_EA); } static void ept_access_test_read_write_execute(void) { ept_access_test_setup(); /* rwx */ ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ); ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE); ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC); } static void ept_access_test_reserved_bits(void) { int i; int maxphyaddr; ept_access_test_setup(); /* Reserved bits above maxphyaddr. */ maxphyaddr = cpuid_maxphyaddr(); for (i = maxphyaddr; i <= 51; i++) { report_prefix_pushf("reserved_bit=%d", i); ept_reserved_bit(i); report_prefix_pop(); } /* Level-specific reserved bits. */ ept_reserved_bit_at_level_nohuge(2, 3); ept_reserved_bit_at_level_nohuge(2, 4); ept_reserved_bit_at_level_nohuge(2, 5); ept_reserved_bit_at_level_nohuge(2, 6); /* 2M alignment. */ for (i = 12; i < 20; i++) { report_prefix_pushf("reserved_bit=%d", i); ept_reserved_bit_at_level_huge(2, i); report_prefix_pop(); } ept_reserved_bit_at_level_nohuge(3, 3); ept_reserved_bit_at_level_nohuge(3, 4); ept_reserved_bit_at_level_nohuge(3, 5); ept_reserved_bit_at_level_nohuge(3, 6); /* 1G alignment. */ for (i = 12; i < 29; i++) { report_prefix_pushf("reserved_bit=%d", i); ept_reserved_bit_at_level_huge(3, i); report_prefix_pop(); } ept_reserved_bit_at_level(4, 3); ept_reserved_bit_at_level(4, 4); ept_reserved_bit_at_level(4, 5); ept_reserved_bit_at_level(4, 6); ept_reserved_bit_at_level(4, 7); } static void ept_access_test_ignored_bits(void) { ept_access_test_setup(); /* * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as * far as translation is concerned even if AD bits are enabled in the * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution * control is 0. */ ept_ignored_bit(8); ept_ignored_bit(9); ept_ignored_bit(10); ept_ignored_bit(11); ept_ignored_bit(52); ept_ignored_bit(53); ept_ignored_bit(54); ept_ignored_bit(55); ept_ignored_bit(56); ept_ignored_bit(57); ept_ignored_bit(58); ept_ignored_bit(59); ept_ignored_bit(60); ept_ignored_bit(61); ept_ignored_bit(62); ept_ignored_bit(63); } static void ept_access_test_paddr_not_present_ad_disabled(void) { ept_access_test_setup(); ept_disable_ad_bits(); ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD); ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD); ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD); } static void ept_access_test_paddr_not_present_ad_enabled(void) { u64 qual = EPT_VLT_RD | EPT_VLT_WR; ept_access_test_setup(); ept_enable_ad_bits_or_skip_test(); ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual); ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual); ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual); } static void ept_access_test_paddr_read_only_ad_disabled(void) { /* * When EPT AD bits are disabled, all accesses to guest paging * structures are reported separately as a read and (after * translation of the GPA to host physical address) a read+write * if the A/D bits have to be set. */ u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; ept_access_test_setup(); ept_disable_ad_bits(); /* Can't update A bit, so all accesses fail. */ ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); /* AD bits disabled, so only writes try to update the D bit. */ ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ); ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC); /* Both A and D already set, so read-only is OK. */ ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ); ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE); ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC); } static void ept_access_test_paddr_read_only_ad_enabled(void) { /* * When EPT AD bits are enabled, all accesses to guest paging * structures are considered writes as far as EPT translation * is concerned. */ u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; ept_access_test_setup(); ept_enable_ad_bits_or_skip_test(); ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual); ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual); ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual); ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual); ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual); } static void ept_access_test_paddr_read_write(void) { ept_access_test_setup(); /* Read-write access to paging structure. */ ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ); ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE); ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC); } static void ept_access_test_paddr_read_write_execute(void) { ept_access_test_setup(); /* RWX access to paging structure. */ ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ); ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE); ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC); } static void ept_access_test_paddr_read_execute_ad_disabled(void) { /* * When EPT AD bits are disabled, all accesses to guest paging * structures are reported separately as a read and (after * translation of the GPA to host physical address) a read+write * if the A/D bits have to be set. */ u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; ept_access_test_setup(); ept_disable_ad_bits(); /* Can't update A bit, so all accesses fail. */ ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); /* AD bits disabled, so only writes try to update the D bit. */ ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ); ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC); /* Both A and D already set, so read-only is OK. */ ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ); ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE); ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC); } static void ept_access_test_paddr_read_execute_ad_enabled(void) { /* * When EPT AD bits are enabled, all accesses to guest paging * structures are considered writes as far as EPT translation * is concerned. */ u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; ept_access_test_setup(); ept_enable_ad_bits_or_skip_test(); ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual); ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual); ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual); ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual); ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual); } static void ept_access_test_paddr_not_present_page_fault(void) { ept_access_test_setup(); /* * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is * page is read-only in EPT but GVA is also mapped read only in PT. * Thus guest page fault before host takes EPT violation for trying to * update A bit. */ } static void ept_access_test_force_2m_page(void) { ept_access_test_setup(); TEST_ASSERT_EQ(ept_2m_supported(), true); ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ); ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA); } static bool invvpid_valid(u64 type, u64 vpid, u64 gla) { u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); TEST_ASSERT(msr & VPID_CAP_INVVPID); if (type < INVVPID_ADDR || type > INVVPID_CONTEXT_LOCAL) return false; if (!(msr & (1ull << (type + VPID_CAP_INVVPID_TYPES_SHIFT)))) return false; if (vpid >> 16) return false; if (type != INVVPID_ALL && !vpid) return false; if (type == INVVPID_ADDR && !is_canonical(gla)) return false; return true; } static void try_invvpid(u64 type, u64 vpid, u64 gla) { int rc; bool valid = invvpid_valid(type, vpid, gla); u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT : VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID; /* * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so * that we can tell if it is updated by INVVPID. */ vmcs_read(~0); rc = invvpid(type, vpid, gla); report("INVVPID type %ld VPID %lx GLA %lx %s", !rc == valid, type, vpid, gla, valid ? "passes" : "fails"); report("After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)", vmcs_read(VMX_INST_ERROR) == expected, rc ? "failed" : "successful", expected, vmcs_read(VMX_INST_ERROR)); } static void ds_invvpid(void *data) { u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1; TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL); asm volatile("invvpid %0, %1" : : "m"(*(struct invvpid_operand *)data), "r"(type)); } /* * The SS override is ignored in 64-bit mode, so we use an addressing * mode with %rsp as the base register to generate an implicit SS * reference. */ static void ss_invvpid(void *data) { u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1; TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL); asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1" : "+r"(data) : "r"(type)); } static void invvpid_test_gp(void) { bool fault; fault = test_for_exception(GP_VECTOR, &ds_invvpid, (void *)NONCANONICAL); report("INVVPID with non-canonical DS operand raises #GP", fault); } static void invvpid_test_ss(void) { bool fault; fault = test_for_exception(SS_VECTOR, &ss_invvpid, (void *)NONCANONICAL); report("INVVPID with non-canonical SS operand raises #SS", fault); } static void invvpid_test_pf(void) { void *vpage = alloc_vpage(); bool fault; fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage); report("INVVPID with unmapped operand raises #PF", fault); } static void try_compat_invvpid(void *unused) { struct far_pointer32 fp = { .offset = (uintptr_t)&&invvpid, .selector = KERNEL_CS32, }; register uintptr_t rsp asm("rsp"); TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid, "Code address too high."); TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high."); asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid); return; invvpid: asm volatile (".code32;" "invvpid (%eax), %eax;" "lret;" ".code64"); __builtin_unreachable(); } static void invvpid_test_compatibility_mode(void) { bool fault; fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL); report("Compatibility mode INVVPID raises #UD", fault); } static void invvpid_test_not_in_vmx_operation(void) { bool fault; TEST_ASSERT(!vmx_off()); fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL); report("INVVPID outside of VMX operation raises #UD", fault); TEST_ASSERT(!vmx_on()); } /* * This does not test real-address mode, virtual-8086 mode, protected mode, * or CPL > 0. */ static void invvpid_test_v2(void) { u64 msr; int i; unsigned types = 0; unsigned type; if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || !(ctrl_cpu_rev[1].clr & CPU_VPID)) test_skip("VPID not supported"); msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); if (!(msr & VPID_CAP_INVVPID)) test_skip("INVVPID not supported.\n"); if (msr & VPID_CAP_INVVPID_ADDR) types |= 1u << INVVPID_ADDR; if (msr & VPID_CAP_INVVPID_CXTGLB) types |= 1u << INVVPID_CONTEXT_GLOBAL; if (msr & VPID_CAP_INVVPID_ALL) types |= 1u << INVVPID_ALL; if (msr & VPID_CAP_INVVPID_CXTLOC) types |= 1u << INVVPID_CONTEXT_LOCAL; if (!types) test_skip("No INVVPID types supported.\n"); for (i = -127; i < 128; i++) try_invvpid(i, 0xffff, 0); /* * VPID must not be more than 16 bits. */ for (i = 0; i < 64; i++) for (type = 0; type < 4; type++) if (types & (1u << type)) try_invvpid(type, 1ul << i, 0); /* * VPID must not be zero, except for "all contexts." */ for (type = 0; type < 4; type++) if (types & (1u << type)) try_invvpid(type, 0, 0); /* * The gla operand is only validated for single-address INVVPID. */ if (types & (1u << INVVPID_ADDR)) try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL); invvpid_test_gp(); invvpid_test_ss(); invvpid_test_pf(); invvpid_test_compatibility_mode(); invvpid_test_not_in_vmx_operation(); } /* * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it * at least as far as the guest-state checks. Returns false if the * VMLAUNCH fails early and execution falls through to the next * instruction. */ static bool vmlaunch_succeeds(void) { u32 exit_reason; /* * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to * unsupported VMCS component"). The caller can then check * to see if a failed VM-entry sets VMX_INST_ERR as expected. */ vmcs_write(~0u, 0); vmcs_write(HOST_RIP, (uintptr_t)&&success); __asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch" : : "r" ((u64)HOST_RSP) : "cc", "memory" : success); return false; success: exit_reason = vmcs_read(EXI_REASON); TEST_ASSERT(exit_reason == (VMX_FAIL_STATE | VMX_ENTRY_FAILURE) || exit_reason == (VMX_FAIL_MSR | VMX_ENTRY_FAILURE)); return true; } /* * Try to launch the current VMCS. */ static void test_vmx_vmlaunch(u32 xerror) { bool success = vmlaunch_succeeds(); u32 vmx_inst_err; report("vmlaunch %s", success == !xerror, !xerror ? "succeeds" : "fails"); if (!success && xerror) { vmx_inst_err = vmcs_read(VMX_INST_ERROR); report("VMX inst error is %d (actual %d)", vmx_inst_err == xerror, xerror, vmx_inst_err); } } static void test_vmx_invalid_controls(void) { test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_CONTROL_FIELD); } static void test_vmx_valid_controls(void) { test_vmx_vmlaunch(0); } /* * Test a particular value of a VM-execution control bit, if the value * is required or if the value is zero. */ static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr, enum Encoding encoding, unsigned bit, unsigned val) { u32 mask = 1u << bit; bool expected; u32 controls; if (msr.set & mask) TEST_ASSERT(msr.clr & mask); /* * We can't arbitrarily turn on a control bit, because it may * introduce dependencies on other VMCS fields. So, we only * test turning on bits that have a required setting. */ if (val && (msr.clr & mask) && !(msr.set & mask)) return; report_prefix_pushf("%s %s bit %d", val ? "Set" : "Clear", name, bit); controls = vmcs_read(encoding); if (val) { vmcs_write(encoding, msr.set | mask); expected = (msr.clr & mask); } else { vmcs_write(encoding, msr.set & ~mask); expected = !(msr.set & mask); } if (expected) test_vmx_valid_controls(); else test_vmx_invalid_controls(); vmcs_write(encoding, controls); report_prefix_pop(); } /* * Test reserved values of a VM-execution control bit, based on the * allowed bit settings from the corresponding VMX capability MSR. */ static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr, enum Encoding encoding, unsigned bit) { test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0); test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1); } /* * Reserved bits in the pin-based VM-execution controls must be set * properly. Software may consult the VMX capability MSRs to determine * the proper settings. * [Intel SDM] */ static void test_pin_based_ctls(void) { unsigned bit; printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" : "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val); for (bit = 0; bit < 32; bit++) test_rsvd_ctl_bit("pin-based controls", ctrl_pin_rev, PIN_CONTROLS, bit); } /* * Reserved bits in the primary processor-based VM-execution controls * must be set properly. Software may consult the VMX capability MSRs * to determine the proper settings. * [Intel SDM] */ static void test_primary_processor_based_ctls(void) { unsigned bit; printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" : "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val); for (bit = 0; bit < 32; bit++) test_rsvd_ctl_bit("primary processor-based controls", ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit); } /* * If the "activate secondary controls" primary processor-based * VM-execution control is 1, reserved bits in the secondary * processor-based VM-execution controls must be cleared. Software may * consult the VMX capability MSRs to determine which bits are * reserved. * If the "activate secondary controls" primary processor-based * VM-execution control is 0 (or if the processor does not support the * 1-setting of that control), no checks are performed on the * secondary processor-based VM-execution controls. * [Intel SDM] */ static void test_secondary_processor_based_ctls(void) { u32 primary; u32 secondary; unsigned bit; if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) return; primary = vmcs_read(CPU_EXEC_CTRL0); secondary = vmcs_read(CPU_EXEC_CTRL1); vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val); for (bit = 0; bit < 32; bit++) test_rsvd_ctl_bit("secondary processor-based controls", ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit); /* * When the "activate secondary controls" VM-execution control * is clear, there are no checks on the secondary controls. */ vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY); vmcs_write(CPU_EXEC_CTRL1, ~0); report("Secondary processor-based controls ignored", vmlaunch_succeeds()); vmcs_write(CPU_EXEC_CTRL1, secondary); vmcs_write(CPU_EXEC_CTRL0, primary); } static void try_cr3_target_count(unsigned i, unsigned max) { report_prefix_pushf("CR3 target count 0x%x", i); vmcs_write(CR3_TARGET_COUNT, i); if (i <= max) test_vmx_valid_controls(); else test_vmx_invalid_controls(); report_prefix_pop(); } /* * The CR3-target count must not be greater than 4. Future processors * may support a different number of CR3-target values. Software * should read the VMX capability MSR IA32_VMX_MISC to determine the * number of values supported. * [Intel SDM] */ static void test_cr3_targets(void) { unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff; u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT); unsigned i; printf("\nSupported CR3 targets: %d\n", supported_targets); TEST_ASSERT(supported_targets <= 256); try_cr3_target_count(-1u, supported_targets); try_cr3_target_count(0x80000000, supported_targets); try_cr3_target_count(0x7fffffff, supported_targets); for (i = 0; i <= supported_targets + 1; i++) try_cr3_target_count(i, supported_targets); vmcs_write(CR3_TARGET_COUNT, cr3_targets); } /* * Test a particular address setting in the VMCS */ static void test_vmcs_addr(const char *name, enum Encoding encoding, u64 align, bool ignored, bool skip_beyond_mapped_ram, u64 addr) { report_prefix_pushf("%s = %lx", name, addr); vmcs_write(encoding, addr); if (skip_beyond_mapped_ram && addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - align && addr < (1ul << cpuid_maxphyaddr())) printf("Skipping physical address beyond mapped RAM\n"); else if (ignored || (IS_ALIGNED(addr, align) && addr < (1ul << cpuid_maxphyaddr()))) test_vmx_valid_controls(); else test_vmx_invalid_controls(); report_prefix_pop(); } /* * Test interesting values for a VMCS address */ static void test_vmcs_addr_values(const char *name, enum Encoding encoding, u64 align, bool ignored, bool skip_beyond_mapped_ram, u32 bit_start, u32 bit_end) { unsigned i; u64 orig_val = vmcs_read(encoding); for (i = bit_start; i <= bit_end; i++) test_vmcs_addr(name, encoding, align, ignored, skip_beyond_mapped_ram, 1ul << i); test_vmcs_addr(name, encoding, align, ignored, skip_beyond_mapped_ram, PAGE_SIZE - 1); test_vmcs_addr(name, encoding, align, ignored, skip_beyond_mapped_ram, PAGE_SIZE); test_vmcs_addr(name, encoding, align, ignored, skip_beyond_mapped_ram, (1ul << cpuid_maxphyaddr()) - PAGE_SIZE); test_vmcs_addr(name, encoding, align, ignored, skip_beyond_mapped_ram, -1ul); vmcs_write(encoding, orig_val); } /* * Test a physical address reference in the VMCS, when the corresponding * feature is enabled and when the corresponding feature is disabled. */ static void test_vmcs_addr_reference(u32 control_bit, enum Encoding field, const char *field_name, const char *control_name, u64 align, bool skip_beyond_mapped_ram, bool control_primary) { u32 primary = vmcs_read(CPU_EXEC_CTRL0); u32 secondary = vmcs_read(CPU_EXEC_CTRL1); u64 page_addr; if (control_primary) { if (!(ctrl_cpu_rev[0].clr & control_bit)) return; } else { if (!(ctrl_cpu_rev[1].clr & control_bit)) return; } page_addr = vmcs_read(field); report_prefix_pushf("%s enabled", control_name); if (control_primary) { vmcs_write(CPU_EXEC_CTRL0, primary | control_bit); } else { vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit); } test_vmcs_addr_values(field_name, field, align, false, skip_beyond_mapped_ram, 0, 63); report_prefix_pop(); report_prefix_pushf("%s disabled", control_name); if (control_primary) { vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit); } else { vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY); vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit); } test_vmcs_addr_values(field_name, field, align, true, false, 0, 63); report_prefix_pop(); vmcs_write(field, page_addr); vmcs_write(CPU_EXEC_CTRL0, primary); vmcs_write(CPU_EXEC_CTRL1, secondary); } /* * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of * each I/O-bitmap address must be 0. Neither address should set any * bits beyond the processor's physical-address width. * [Intel SDM] */ static void test_io_bitmaps(void) { test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_A, "I/O bitmap A", "Use I/O bitmaps", PAGE_SIZE, false, true); test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_B, "I/O bitmap B", "Use I/O bitmaps", PAGE_SIZE, false, true); } /* * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of * the MSR-bitmap address must be 0. The address should not set any * bits beyond the processor's physical-address width. * [Intel SDM] */ static void test_msr_bitmap(void) { test_vmcs_addr_reference(CPU_MSR_BITMAP, MSR_BITMAP, "MSR bitmap", "Use MSR bitmaps", PAGE_SIZE, false, true); } /* * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC * address must satisfy the following checks: * - Bits 11:0 of the address must be 0. * - The address should not set any bits beyond the processor's * physical-address width. * [Intel SDM] */ static void test_apic_virt_addr(void) { /* * Ensure the processor will never use the virtual-APIC page, since * we will point it to invalid RAM. Otherwise KVM is puzzled about * what we're trying to achieve and fails vmentry. */ u32 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0); vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0 | CPU_CR8_LOAD | CPU_CR8_STORE); test_vmcs_addr_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR, "virtual-APIC address", "Use TPR shadow", PAGE_SIZE, false, true); vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0); } /* * If the "virtualize APIC-accesses" VM-execution control is 1, the * APIC-access address must satisfy the following checks: * - Bits 11:0 of the address must be 0. * - The address should not set any bits beyond the processor's * physical-address width. * [Intel SDM] */ static void test_apic_access_addr(void) { void *apic_access_page = alloc_page(); vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page)); test_vmcs_addr_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR, "APIC-access address", "virtualize APIC-accesses", PAGE_SIZE, true, false); } static bool set_bit_pattern(u8 mask, u32 *secondary) { u8 i; bool flag = false; u32 test_bits[3] = { CPU_VIRT_X2APIC, CPU_APIC_REG_VIRT, CPU_VINTD }; for (i = 0; i < ARRAY_SIZE(test_bits); i++) { if ((mask & (1u << i)) && (ctrl_cpu_rev[1].clr & test_bits[i])) { *secondary |= test_bits[i]; flag = true; } } return (flag); } /* * If the "use TPR shadow" VM-execution control is 0, the following * VM-execution controls must also be 0: * - virtualize x2APIC mode * - APIC-register virtualization * - virtual-interrupt delivery * [Intel SDM] * * 2. If the "virtualize x2APIC mode" VM-execution control is 1, the * "virtualize APIC accesses" VM-execution control must be 0. * [Intel SDM] */ static void test_apic_virtual_ctls(void) { u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); u32 primary = saved_primary; u32 secondary = saved_secondary; bool ctrl = false; char str[10] = "disabled"; u8 i = 0, j; /* * First test */ if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) == (CPU_SECONDARY | CPU_TPR_SHADOW))) return; primary |= CPU_SECONDARY; primary &= ~CPU_TPR_SHADOW; vmcs_write(CPU_EXEC_CTRL0, primary); while (1) { for (j = 1; j < 8; j++) { secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD); if (primary & CPU_TPR_SHADOW) { ctrl = true; } else { if (! set_bit_pattern(j, &secondary)) ctrl = true; else ctrl = false; } vmcs_write(CPU_EXEC_CTRL1, secondary); report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s", str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled"); if (ctrl) test_vmx_valid_controls(); else test_vmx_invalid_controls(); report_prefix_pop(); } if (i == 1) break; i++; primary |= CPU_TPR_SHADOW; vmcs_write(CPU_EXEC_CTRL0, primary); strcpy(str, "enabled"); } /* * Second test */ u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES); primary = saved_primary; secondary = saved_secondary; if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls)) return; vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); secondary &= ~CPU_VIRT_APIC_ACCESSES; vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC); report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled"); test_vmx_valid_controls(); report_prefix_pop(); vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES); report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled"); test_vmx_valid_controls(); report_prefix_pop(); vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC); report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled"); test_vmx_invalid_controls(); report_prefix_pop(); vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES); report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled"); test_vmx_valid_controls(); report_prefix_pop(); vmcs_write(CPU_EXEC_CTRL0, saved_primary); vmcs_write(CPU_EXEC_CTRL1, saved_secondary); } /* * If the "virtual-interrupt delivery" VM-execution control is 1, the * "external-interrupt exiting" VM-execution control must be 1. * [Intel SDM] */ static void test_virtual_intr_ctls(void) { u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); u32 saved_pin = vmcs_read(PIN_CONTROLS); u32 primary = saved_primary; u32 secondary = saved_secondary; u32 pin = saved_pin; if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) && (ctrl_pin_rev.clr & PIN_EXTINT))) return; vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW); vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD); vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT); report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled"); test_vmx_valid_controls(); report_prefix_pop(); vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD); report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled"); test_vmx_invalid_controls(); report_prefix_pop(); vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT); report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled"); test_vmx_valid_controls(); report_prefix_pop(); vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT); report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled"); test_vmx_invalid_controls(); report_prefix_pop(); vmcs_write(CPU_EXEC_CTRL0, saved_primary); vmcs_write(CPU_EXEC_CTRL1, saved_secondary); vmcs_write(PIN_CONTROLS, saved_pin); } static void test_pi_desc_addr(u64 addr, bool ctrl) { vmcs_write(POSTED_INTR_DESC_ADDR, addr); report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr); if (ctrl) test_vmx_valid_controls(); else test_vmx_invalid_controls(); report_prefix_pop(); } /* * If the “process posted interrupts†VM-execution control is 1, the * following must be true: * * - The “virtual-interrupt delivery†VM-execution control is 1. * - The “acknowledge interrupt on exit†VM-exit control is 1. * - The posted-interrupt notification vector has a value in the * - range 0–255 (bits 15:8 are all 0). * - Bits 5:0 of the posted-interrupt descriptor address are all 0. * - The posted-interrupt descriptor address does not set any bits * beyond the processor's physical-address width. * [Intel SDM] */ static void test_posted_intr(void) { u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); u32 saved_pin = vmcs_read(PIN_CONTROLS); u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS); u32 primary = saved_primary; u32 secondary = saved_secondary; u32 pin = saved_pin; u32 exit_ctl = exit_ctl_saved; u16 vec; int i; if (!((ctrl_pin_rev.clr & PIN_POST_INTR) && (ctrl_cpu_rev[1].clr & CPU_VINTD) && (ctrl_exit_rev.clr & EXI_INTA))) return; vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW); /* * Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit */ pin |= PIN_POST_INTR; vmcs_write(PIN_CONTROLS, pin); secondary &= ~CPU_VINTD; vmcs_write(CPU_EXEC_CTRL1, secondary); report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled"); test_vmx_invalid_controls(); report_prefix_pop(); secondary |= CPU_VINTD; vmcs_write(CPU_EXEC_CTRL1, secondary); report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled"); test_vmx_invalid_controls(); report_prefix_pop(); exit_ctl &= ~EXI_INTA; vmcs_write(EXI_CONTROLS, exit_ctl); report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled"); test_vmx_invalid_controls(); report_prefix_pop(); exit_ctl |= EXI_INTA; vmcs_write(EXI_CONTROLS, exit_ctl); report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled"); test_vmx_valid_controls(); report_prefix_pop(); secondary &= ~CPU_VINTD; vmcs_write(CPU_EXEC_CTRL1, secondary); report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled"); test_vmx_invalid_controls(); report_prefix_pop(); secondary |= CPU_VINTD; vmcs_write(CPU_EXEC_CTRL1, secondary); report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled"); test_vmx_valid_controls(); report_prefix_pop(); /* * Test posted-interrupt notification vector */ for (i = 0; i < 8; i++) { vec = (1ul << i); vmcs_write(PINV, vec); report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); test_vmx_valid_controls(); report_prefix_pop(); } for (i = 8; i < 16; i++) { vec = (1ul << i); vmcs_write(PINV, vec); report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); test_vmx_invalid_controls(); report_prefix_pop(); } vec &= ~(0xff << 8); vmcs_write(PINV, vec); report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); test_vmx_valid_controls(); report_prefix_pop(); /* * Test posted-interrupt descriptor addresss */ for (i = 0; i < 6; i++) { test_pi_desc_addr(1ul << i, false); } test_pi_desc_addr(0xf0, false); test_pi_desc_addr(0xff, false); test_pi_desc_addr(0x0f, false); test_pi_desc_addr(0x8000, true); test_pi_desc_addr(0x00, true); test_pi_desc_addr(0xc000, true); test_vmcs_addr_values("process-posted interrupts", POSTED_INTR_DESC_ADDR, 64, false, false, 0, 63); vmcs_write(CPU_EXEC_CTRL0, saved_primary); vmcs_write(CPU_EXEC_CTRL1, saved_secondary); vmcs_write(PIN_CONTROLS, saved_pin); } static void test_apic_ctls(void) { test_apic_virt_addr(); test_apic_access_addr(); test_apic_virtual_ctls(); test_virtual_intr_ctls(); test_posted_intr(); } /* * If the “enable VPID†VM-execution control is 1, the value of the * of the VPID VM-execution control field must not be 0000H. * [Intel SDM] */ static void test_vpid(void) { u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); u16 vpid = 0x0000; int i; if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && (ctrl_cpu_rev[1].clr & CPU_VPID))) { printf("Secondary controls and/or VPID not supported\n"); return; } vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY); vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID); vmcs_write(VPID, vpid); report_prefix_pushf("VPID disabled; VPID value %x", vpid); test_vmx_valid_controls(); report_prefix_pop(); vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID); report_prefix_pushf("VPID enabled; VPID value %x", vpid); test_vmx_invalid_controls(); report_prefix_pop(); for (i = 0; i < 16; i++) { vpid = (short)1 << i;; vmcs_write(VPID, vpid); report_prefix_pushf("VPID enabled; VPID value %x", vpid); test_vmx_valid_controls(); report_prefix_pop(); } vmcs_write(CPU_EXEC_CTRL0, saved_primary); vmcs_write(CPU_EXEC_CTRL1, saved_secondary); } static void set_vtpr(unsigned vtpr) { *(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr; } static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr) { bool valid = true; u32 primary = vmcs_read(CPU_EXEC_CTRL0); u32 secondary = vmcs_read(CPU_EXEC_CTRL1); if ((primary & CPU_TPR_SHADOW) && (!(primary & CPU_SECONDARY) || !(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)))) valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf); set_vtpr(vtpr); report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x", threshold, (vtpr >> 4) & 0xf); if (valid) test_vmx_valid_controls(); else test_vmx_invalid_controls(); report_prefix_pop(); } static void test_invalid_event_injection(void) { u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO); u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR); u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN); u32 primary_save = vmcs_read(CPU_EXEC_CTRL0); u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1); u64 guest_cr0_save = vmcs_read(GUEST_CR0); u32 ent_intr_info_base = INTR_INFO_VALID_MASK; u32 ent_intr_info, ent_intr_err, ent_intr_len; u32 cnt; /* Setup */ report_prefix_push("invalid event injection"); vmcs_write(ENT_INTR_ERROR, 0x00000000); vmcs_write(ENT_INST_LEN, 0x00000001); /* The field’s interruption type is not set to a reserved value. */ ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR; report_prefix_pushf("%s, VM-entry intr info=0x%x", "RESERVED interruption type invalid [-]", ent_intr_info); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_invalid_controls(); report_prefix_pop(); ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR | DE_VECTOR; report_prefix_pushf("%s, VM-entry intr info=0x%x", "RESERVED interruption type invalid [+]", ent_intr_info); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_valid_controls(); report_prefix_pop(); /* If the interruption type is other event, the vector is 0. */ ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR; report_prefix_pushf("%s, VM-entry intr info=0x%x", "(OTHER EVENT && vector != 0) invalid [-]", ent_intr_info); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_invalid_controls(); report_prefix_pop(); /* If the interruption type is NMI, the vector is 2 (negative case). */ ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR; report_prefix_pushf("%s, VM-entry intr info=0x%x", "(NMI && vector != 2) invalid [-]", ent_intr_info); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_invalid_controls(); report_prefix_pop(); /* If the interruption type is NMI, the vector is 2 (positive case). */ ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR; report_prefix_pushf("%s, VM-entry intr info=0x%x", "(NMI && vector == 2) valid [+]", ent_intr_info); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_valid_controls(); report_prefix_pop(); /* * If the interruption type * is HW exception, the vector is at most 31. */ ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20; report_prefix_pushf("%s, VM-entry intr info=0x%x", "(HW exception && vector > 31) invalid [-]", ent_intr_info); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_invalid_controls(); report_prefix_pop(); /* * deliver-error-code is 1 iff either * (a) the "unrestricted guest" VM-execution control is 0 * (b) CR0.PE is set. */ /* Assert that unrestricted guest is disabled or unsupported */ assert(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || !(secondary_save & CPU_URG)); ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; report_prefix_pushf("%s, VM-entry intr info=0x%x", "error code <-> (!URG || prot_mode) [-]", ent_intr_info); vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_invalid_controls(); report_prefix_pop(); ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; report_prefix_pushf("%s, VM-entry intr info=0x%x", "error code <-> (!URG || prot_mode) [+]", ent_intr_info); vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_valid_controls(); report_prefix_pop(); if (enable_unrestricted_guest()) goto skip_unrestricted_guest; ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; report_prefix_pushf("%s, VM-entry intr info=0x%x", "error code <-> (!URG || prot_mode) [-]", ent_intr_info); vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_invalid_controls(); report_prefix_pop(); ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; report_prefix_pushf("%s, VM-entry intr info=0x%x", "error code <-> (!URG || prot_mode) [-]", ent_intr_info); vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_invalid_controls(); report_prefix_pop(); vmcs_write(CPU_EXEC_CTRL1, secondary_save); vmcs_write(CPU_EXEC_CTRL0, primary_save); skip_unrestricted_guest: vmcs_write(GUEST_CR0, guest_cr0_save); /* deliver-error-code is 1 iff the interruption type is HW exception */ report_prefix_push("error code <-> HW exception"); for (cnt = 0; cnt < 8; cnt++) { u32 exception_type_mask = cnt << 8; u32 deliver_error_code_mask = exception_type_mask != INTR_TYPE_HARD_EXCEPTION ? INTR_INFO_DELIVER_CODE_MASK : 0; ent_intr_info = ent_intr_info_base | deliver_error_code_mask | exception_type_mask | GP_VECTOR; report_prefix_pushf("VM-entry intr info=0x%x [-]", ent_intr_info); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_invalid_controls(); report_prefix_pop(); } report_prefix_pop(); /* * deliver-error-code is 1 iff the the vector * indicates an exception that would normally deliver an error code */ report_prefix_push("error code <-> vector delivers error code"); for (cnt = 0; cnt < 32; cnt++) { bool has_error_code = false; u32 deliver_error_code_mask; switch (cnt) { case DF_VECTOR: case TS_VECTOR: case NP_VECTOR: case SS_VECTOR: case GP_VECTOR: case PF_VECTOR: case AC_VECTOR: has_error_code = true; } /* Negative case */ deliver_error_code_mask = has_error_code ? 0 : INTR_INFO_DELIVER_CODE_MASK; ent_intr_info = ent_intr_info_base | deliver_error_code_mask | INTR_TYPE_HARD_EXCEPTION | cnt; report_prefix_pushf("VM-entry intr info=0x%x [-]", ent_intr_info); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_invalid_controls(); report_prefix_pop(); /* Positive case */ deliver_error_code_mask = has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0; ent_intr_info = ent_intr_info_base | deliver_error_code_mask | INTR_TYPE_HARD_EXCEPTION | cnt; report_prefix_pushf("VM-entry intr info=0x%x [+]", ent_intr_info); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_valid_controls(); report_prefix_pop(); } report_prefix_pop(); /* Reserved bits in the field (30:12) are 0. */ report_prefix_push("reserved bits clear"); for (cnt = 12; cnt <= 30; cnt++) { ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | INTR_TYPE_HARD_EXCEPTION | GP_VECTOR | (1U << cnt); report_prefix_pushf("VM-entry intr info=0x%x [-]", ent_intr_info); vmcs_write(ENT_INTR_INFO, ent_intr_info); test_vmx_invalid_controls(); report_prefix_pop(); } report_prefix_pop(); /* * If deliver-error-code is 1 * bits 31:16 of the VM-entry exception error-code field are 0. */ ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; report_prefix_pushf("%s, VM-entry intr info=0x%x", "VM-entry exception error code[31:16] clear", ent_intr_info); vmcs_write(ENT_INTR_INFO, ent_intr_info); for (cnt = 16; cnt <= 31; cnt++) { ent_intr_err = 1U << cnt; report_prefix_pushf("VM-entry intr error=0x%x [-]", ent_intr_err); vmcs_write(ENT_INTR_ERROR, ent_intr_err); test_vmx_invalid_controls(); report_prefix_pop(); } vmcs_write(ENT_INTR_ERROR, 0x00000000); report_prefix_pop(); /* * If the interruption type is software interrupt, software exception, * or privileged software exception, the VM-entry instruction-length * field is in the range 0–15. */ for (cnt = 0; cnt < 3; cnt++) { switch (cnt) { case 0: ent_intr_info = ent_intr_info_base | INTR_TYPE_SOFT_INTR; break; case 1: ent_intr_info = ent_intr_info_base | INTR_TYPE_SOFT_EXCEPTION; break; case 2: ent_intr_info = ent_intr_info_base | INTR_TYPE_PRIV_SW_EXCEPTION; break; } report_prefix_pushf("%s, VM-entry intr info=0x%x", "VM-entry instruction-length check", ent_intr_info); vmcs_write(ENT_INTR_INFO, ent_intr_info); /* Instruction length set to -1 (0xFFFFFFFF) should fail */ ent_intr_len = -1; report_prefix_pushf("VM-entry intr length = 0x%x [-]", ent_intr_len); vmcs_write(ENT_INST_LEN, ent_intr_len); test_vmx_invalid_controls(); report_prefix_pop(); /* Instruction length set to 16 should fail */ ent_intr_len = 0x00000010; report_prefix_pushf("VM-entry intr length = 0x%x [-]", ent_intr_len); vmcs_write(ENT_INST_LEN, 0x00000010); test_vmx_invalid_controls(); report_prefix_pop(); report_prefix_pop(); } /* Cleanup */ vmcs_write(ENT_INTR_INFO, ent_intr_info_save); vmcs_write(ENT_INTR_ERROR, ent_intr_error_save); vmcs_write(ENT_INST_LEN, ent_inst_len_save); vmcs_write(CPU_EXEC_CTRL0, primary_save); vmcs_write(CPU_EXEC_CTRL1, secondary_save); vmcs_write(GUEST_CR0, guest_cr0_save); report_prefix_pop(); } /* * Test interesting vTPR values for a given TPR threshold. */ static void test_vtpr_values(unsigned threshold) { try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4); try_tpr_threshold_and_vtpr(threshold, threshold << 4); try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4); } static void try_tpr_threshold(unsigned threshold) { bool valid = true; u32 primary = vmcs_read(CPU_EXEC_CTRL0); u32 secondary = vmcs_read(CPU_EXEC_CTRL1); if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) && (secondary & CPU_VINTD))) valid = !(threshold >> 4); set_vtpr(-1); vmcs_write(TPR_THRESHOLD, threshold); report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold); if (valid) test_vmx_valid_controls(); else test_vmx_invalid_controls(); report_prefix_pop(); if (valid) test_vtpr_values(threshold); } /* * Test interesting TPR threshold values. */ static void test_tpr_threshold_values(void) { unsigned i; for (i = 0; i < 0x10; i++) try_tpr_threshold(i); for (i = 4; i < 32; i++) try_tpr_threshold(1u << i); try_tpr_threshold(-1u); try_tpr_threshold(0x7fffffff); } /* * This test covers the following two VM entry checks: * * i) If the "use TPR shadow" VM-execution control is 1 and the * "virtual-interrupt delivery" VM-execution control is 0, bits * 31:4 of the TPR threshold VM-execution control field must be 0. * [Intel SDM] * * ii) If the "use TPR shadow" VM-execution control is 1, the * "virtual-interrupt delivery" VM-execution control is 0 * and the "virtualize APIC accesses" VM-execution control * is 0, the value of bits 3:0 of the TPR threshold VM-execution * control field must not be greater than the value of bits * 7:4 of VTPR. * [Intel SDM] */ static void test_tpr_threshold(void) { u32 primary = vmcs_read(CPU_EXEC_CTRL0); u64 apic_virt_addr = vmcs_read(APIC_VIRT_ADDR); u64 threshold = vmcs_read(TPR_THRESHOLD); void *virtual_apic_page; if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) return; virtual_apic_page = alloc_page(); memset(virtual_apic_page, 0xff, PAGE_SIZE); vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY)); report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled"); test_tpr_threshold_values(); report_prefix_pop(); vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW); report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled"); test_tpr_threshold_values(); report_prefix_pop(); if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && (ctrl_cpu_rev[1].clr & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)))) goto out; u32 secondary = vmcs_read(CPU_EXEC_CTRL1); if (ctrl_cpu_rev[1].clr & CPU_VINTD) { vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD); report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled"); test_tpr_threshold_values(); report_prefix_pop(); vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled"); test_tpr_threshold_values(); report_prefix_pop(); } if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) { vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY); vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES); report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); test_tpr_threshold_values(); report_prefix_pop(); vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); test_tpr_threshold_values(); report_prefix_pop(); } if ((ctrl_cpu_rev[1].clr & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) == (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) { vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY); vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_APIC_ACCESSES); report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); test_tpr_threshold_values(); report_prefix_pop(); vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); test_tpr_threshold_values(); report_prefix_pop(); } vmcs_write(CPU_EXEC_CTRL1, secondary); out: vmcs_write(TPR_THRESHOLD, threshold); vmcs_write(APIC_VIRT_ADDR, apic_virt_addr); vmcs_write(CPU_EXEC_CTRL0, primary); } /* * This test verifies the following two vmentry checks: * * If the "NMI exiting" VM-execution control is 0, "Virtual NMIs" * VM-execution control must be 0. * [Intel SDM] * * If the “virtual NMIs” VM-execution control is 0, the “NMI-window * exiting” VM-execution control must be 0. * [Intel SDM] */ static void test_nmi_ctrls(void) { u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0; if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) != (PIN_NMI | PIN_VIRT_NMI)) { printf("NMI exiting and Virtual NMIs are not supported !\n"); return; } /* Save the controls so that we can restore them after our tests */ pin_ctrls = vmcs_read(PIN_CONTROLS); cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0); test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI); test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW; vmcs_write(PIN_CONTROLS, test_pin_ctrls); report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled"); test_vmx_valid_controls(); report_prefix_pop(); vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI); report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled"); test_vmx_invalid_controls(); report_prefix_pop(); vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled"); test_vmx_valid_controls(); report_prefix_pop(); vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI); report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled"); test_vmx_valid_controls(); report_prefix_pop(); if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) { report_info("NMI-window exiting is not supported, skipping..."); goto done; } vmcs_write(PIN_CONTROLS, test_pin_ctrls); vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW); report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled"); test_vmx_invalid_controls(); report_prefix_pop(); vmcs_write(PIN_CONTROLS, test_pin_ctrls); vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0); report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled"); test_vmx_valid_controls(); report_prefix_pop(); vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW); report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled"); test_vmx_valid_controls(); report_prefix_pop(); vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0); report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled"); test_vmx_valid_controls(); report_prefix_pop(); /* Restore the controls to their original values */ vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0); done: vmcs_write(PIN_CONTROLS, pin_ctrls); } static void test_eptp_ad_bit(u64 eptp, bool ctrl) { vmcs_write(EPTP, eptp); report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s", (eptp & EPTP_AD_FLAG) ? "1": "0"); if (ctrl) test_vmx_valid_controls(); else test_vmx_invalid_controls(); report_prefix_pop(); } /* * 1. If the "enable EPT" VM-execution control is 1, the "EPTP VM-execution" * control field must satisfy the following checks: * * - The EPT memory type (bits 2:0) must be a value supported by the * processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR. * - Bits 5:3 (1 less than the EPT page-walk length) must be 3, * indicating an EPT page-walk length of 4. * - Bit 6 (enable bit for accessed and dirty flags for EPT) must be * 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0, * indicating that the processor does not support accessed and dirty * dirty flags for EPT. * - Reserved bits 11:7 and 63:N (where N is the processor's * physical-address width) must all be 0. * * 2. If the "unrestricted guest" VM-execution control is 1, the * "enable EPT" VM-execution control must also be 1. */ static void test_ept_eptp(void) { u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0); u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1); u64 eptp_saved = vmcs_read(EPTP); u32 primary = primary_saved; u32 secondary = secondary_saved; u64 msr, eptp = eptp_saved; bool un_cache = false; bool wr_bk = false; bool ctrl; u32 i, maxphysaddr; u64 j, resv_bits_mask = 0; if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && (ctrl_cpu_rev[1].clr & CPU_EPT))) { printf("\"CPU secondary\" and/or \"enable EPT\" execution controls are not supported !\n"); return; } /* * Memory type (bits 2:0) */ msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); if (msr & EPT_CAP_UC) un_cache = true; if (msr & EPT_CAP_WB) wr_bk = true; primary |= CPU_SECONDARY; vmcs_write(CPU_EXEC_CTRL0, primary); secondary |= CPU_EPT; vmcs_write(CPU_EXEC_CTRL1, secondary); eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | (3ul << EPTP_PG_WALK_LEN_SHIFT); vmcs_write(EPTP, eptp); for (i = 0; i < 8; i++) { if (i == 0) { if (un_cache) { report_info("EPT paging structure memory-type is Un-cacheable\n"); ctrl = true; } else { ctrl = false; } } else if (i == 6) { if (wr_bk) { report_info("EPT paging structure memory-type is Write-back\n"); ctrl = true; } else { ctrl = false; } } else { ctrl = false; } eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i; vmcs_write(EPTP, eptp); report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu", eptp & EPT_MEM_TYPE_MASK); if (ctrl) test_vmx_valid_controls(); else test_vmx_invalid_controls(); report_prefix_pop(); } eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul; /* * Page walk length (bits 5:3) */ for (i = 0; i < 8; i++) { eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | (i << EPTP_PG_WALK_LEN_SHIFT); if (i == 3) ctrl = true; else ctrl = false; vmcs_write(EPTP, eptp); report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu", eptp & EPTP_PG_WALK_LEN_MASK); if (ctrl) test_vmx_valid_controls(); else test_vmx_invalid_controls(); report_prefix_pop(); } eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | 3ul << EPTP_PG_WALK_LEN_SHIFT; /* * Accessed and dirty flag (bit 6) */ if (msr & EPT_CAP_AD_FLAG) { report_info("Processor supports accessed and dirty flag"); eptp &= ~EPTP_AD_FLAG; test_eptp_ad_bit(eptp, true); eptp |= EPTP_AD_FLAG; test_eptp_ad_bit(eptp, true); } else { report_info("Processor does not supports accessed and dirty flag"); eptp &= ~EPTP_AD_FLAG; test_eptp_ad_bit(eptp, true); eptp |= EPTP_AD_FLAG; test_eptp_ad_bit(eptp, false); } /* * Reserved bits [11:7] and [63:N] */ for (i = 0; i < 32; i++) { eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) | (i << EPTP_RESERV_BITS_SHIFT); vmcs_write(EPTP, eptp); report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu", (eptp >> EPTP_RESERV_BITS_SHIFT) & EPTP_RESERV_BITS_MASK); if (i == 0) test_vmx_valid_controls(); else test_vmx_invalid_controls(); report_prefix_pop(); } eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)); maxphysaddr = cpuid_maxphyaddr(); for (i = 0; i < (63 - maxphysaddr + 1); i++) { resv_bits_mask |= 1ul << i; } for (j = maxphysaddr - 1; j <= 63; j++) { eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) | (j < maxphysaddr ? 0 : 1ul << j); vmcs_write(EPTP, eptp); report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu", (eptp >> maxphysaddr) & resv_bits_mask); if (j < maxphysaddr) test_vmx_valid_controls(); else test_vmx_invalid_controls(); report_prefix_pop(); } secondary &= ~(CPU_EPT | CPU_URG); vmcs_write(CPU_EXEC_CTRL1, secondary); report_prefix_pushf("Enable-EPT disabled, unrestricted-guest disabled"); test_vmx_valid_controls(); report_prefix_pop(); if (!(ctrl_cpu_rev[1].clr & CPU_URG)) goto skip_unrestricted_guest; secondary |= CPU_URG; vmcs_write(CPU_EXEC_CTRL1, secondary); report_prefix_pushf("Enable-EPT disabled, unrestricted-guest enabled"); test_vmx_invalid_controls(); report_prefix_pop(); secondary |= CPU_EPT; setup_dummy_ept(); report_prefix_pushf("Enable-EPT enabled, unrestricted-guest enabled"); test_vmx_valid_controls(); report_prefix_pop(); skip_unrestricted_guest: secondary &= ~CPU_URG; vmcs_write(CPU_EXEC_CTRL1, secondary); report_prefix_pushf("Enable-EPT enabled, unrestricted-guest disabled"); test_vmx_valid_controls(); report_prefix_pop(); vmcs_write(CPU_EXEC_CTRL0, primary_saved); vmcs_write(CPU_EXEC_CTRL1, secondary_saved); vmcs_write(EPTP, eptp_saved); } /* * If the 'enable PML' VM-execution control is 1, the 'enable EPT' * VM-execution control must also be 1. In addition, the PML address * must satisfy the following checks: * * * Bits 11:0 of the address must be 0. * * The address should not set any bits beyond the processor's * physical-address width. * * [Intel SDM] */ static void test_pml(void) { u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0); u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1); u32 primary = primary_saved; u32 secondary = secondary_saved; if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && (ctrl_cpu_rev[1].clr & CPU_EPT) && (ctrl_cpu_rev[1].clr & CPU_PML))) { printf("\"Secondary execution\" control or \"enable EPT\" control or \"enable PML\" control is not supported !\n"); return; } primary |= CPU_SECONDARY; vmcs_write(CPU_EXEC_CTRL0, primary); secondary &= ~(CPU_PML | CPU_EPT); vmcs_write(CPU_EXEC_CTRL1, secondary); report_prefix_pushf("enable-PML disabled, enable-EPT disabled"); test_vmx_valid_controls(); report_prefix_pop(); secondary |= CPU_PML; vmcs_write(CPU_EXEC_CTRL1, secondary); report_prefix_pushf("enable-PML enabled, enable-EPT disabled"); test_vmx_invalid_controls(); report_prefix_pop(); secondary |= CPU_EPT; setup_dummy_ept(); report_prefix_pushf("enable-PML enabled, enable-EPT enabled"); test_vmx_valid_controls(); report_prefix_pop(); secondary &= ~CPU_PML; vmcs_write(CPU_EXEC_CTRL1, secondary); report_prefix_pushf("enable-PML disabled, enable EPT enabled"); test_vmx_valid_controls(); report_prefix_pop(); test_vmcs_addr_reference(CPU_PML, PMLADDR, "PML address", "PML", PAGE_SIZE, false, false); vmcs_write(CPU_EXEC_CTRL0, primary_saved); vmcs_write(CPU_EXEC_CTRL1, secondary_saved); } /* * If the "activate VMX-preemption timer" VM-execution control is 0, the * the "save VMX-preemption timer value" VM-exit control must also be 0. * * [Intel SDM] */ static void test_vmx_preemption_timer(void) { u32 saved_pin = vmcs_read(PIN_CONTROLS); u32 saved_exit = vmcs_read(EXI_CONTROLS); u32 pin = saved_pin; u32 exit = saved_exit; if (!((ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) || (ctrl_pin_rev.clr & PIN_PREEMPT))) { printf("\"Save-VMX-preemption-timer\" control and/or \"Enable-VMX-preemption-timer\" control is not supported\n"); return; } pin |= PIN_PREEMPT; vmcs_write(PIN_CONTROLS, pin); exit &= ~EXI_SAVE_PREEMPT; vmcs_write(EXI_CONTROLS, exit); report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer disabled"); test_vmx_valid_controls(); report_prefix_pop(); exit |= EXI_SAVE_PREEMPT; vmcs_write(EXI_CONTROLS, exit); report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer enabled"); test_vmx_valid_controls(); report_prefix_pop(); pin &= ~PIN_PREEMPT; vmcs_write(PIN_CONTROLS, pin); report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer enabled"); test_vmx_invalid_controls(); report_prefix_pop(); exit &= ~EXI_SAVE_PREEMPT; vmcs_write(EXI_CONTROLS, exit); report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer disabled"); test_vmx_valid_controls(); report_prefix_pop(); vmcs_write(PIN_CONTROLS, saved_pin); vmcs_write(EXI_CONTROLS, saved_exit); } /* * Tests for VM-execution control fields */ static void test_vm_execution_ctls(void) { test_pin_based_ctls(); test_primary_processor_based_ctls(); test_secondary_processor_based_ctls(); test_cr3_targets(); test_io_bitmaps(); test_msr_bitmap(); test_apic_ctls(); test_tpr_threshold(); test_nmi_ctrls(); test_pml(); test_vpid(); test_ept_eptp(); test_vmx_preemption_timer(); } /* * The following checks are performed for the VM-entry MSR-load address if * the VM-entry MSR-load count field is non-zero: * * - The lower 4 bits of the VM-entry MSR-load address must be 0. * The address should not set any bits beyond the processor’s * physical-address width. * * - The address of the last byte in the VM-entry MSR-load area * should not set any bits beyond the processor’s physical-address * width. The address of this last byte is VM-entry MSR-load address * + (MSR count * 16) - 1. (The arithmetic used for the computation * uses more bits than the processor’s physical-address width.) * * * [Intel SDM] */ static void test_entry_msr_load(void) { entry_msr_load = alloc_page(); u64 tmp; u32 entry_msr_ld_cnt = 1; int i; u32 addr_len = 64; vmcs_write(ENT_MSR_LD_CNT, entry_msr_ld_cnt); /* Check first 4 bits of VM-entry MSR-load address */ for (i = 0; i < 4; i++) { tmp = (u64)entry_msr_load | 1ull << i; vmcs_write(ENTER_MSR_LD_ADDR, tmp); report_prefix_pushf("VM-entry MSR-load addr [4:0] %lx", tmp & 0xf); test_vmx_invalid_controls(); report_prefix_pop(); } if (basic.val & (1ul << 48)) addr_len = 32; test_vmcs_addr_values("VM-entry-MSR-load address", ENTER_MSR_LD_ADDR, 16, false, false, 4, addr_len - 1); /* * Check last byte of VM-entry MSR-load address */ entry_msr_load = (struct vmx_msr_entry *)((u64)entry_msr_load & ~0xf); for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len); i < 64; i++) { tmp = ((u64)entry_msr_load + entry_msr_ld_cnt * 16 - 1) | 1ul << i; vmcs_write(ENTER_MSR_LD_ADDR, tmp - (entry_msr_ld_cnt * 16 - 1)); test_vmx_invalid_controls(); } vmcs_write(ENT_MSR_LD_CNT, 2); vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 16); test_vmx_invalid_controls(); vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 32); test_vmx_valid_controls(); vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 48); test_vmx_valid_controls(); } static void guest_state_test_main(void) { while (1) { if (vmx_get_test_stage() != 2) vmcall(); else break; } asm volatile("fnop"); } static void advance_guest_state_test(void) { u32 reason = vmcs_read(EXI_REASON); if (! (reason & 0x80000000)) { u64 guest_rip = vmcs_read(GUEST_RIP); u32 insn_len = vmcs_read(EXI_INST_LEN); vmcs_write(GUEST_RIP, guest_rip + insn_len); } } static void report_guest_state_test(const char *test, u32 xreason, u64 field, const char * field_name) { u32 reason = vmcs_read(EXI_REASON); report("%s, %s %lx", reason == xreason, test, field_name, field); advance_guest_state_test(); } /* * Tests for VM-entry control fields */ static void test_vm_entry_ctls(void) { test_invalid_event_injection(); test_entry_msr_load(); } /* * The following checks are performed for the VM-exit MSR-store address if * the VM-exit MSR-store count field is non-zero: * * - The lower 4 bits of the VM-exit MSR-store address must be 0. * The address should not set any bits beyond the processor’s * physical-address width. * * - The address of the last byte in the VM-exit MSR-store area * should not set any bits beyond the processor’s physical-address * width. The address of this last byte is VM-exit MSR-store address * + (MSR count * 16) - 1. (The arithmetic used for the computation * uses more bits than the processor’s physical-address width.) * * If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits * in the range 63:32. * * [Intel SDM] */ static void test_exit_msr_store(void) { exit_msr_store = alloc_page(); u64 tmp; u32 exit_msr_st_cnt = 1; int i; u32 addr_len = 64; vmcs_write(EXI_MSR_ST_CNT, exit_msr_st_cnt); /* Check first 4 bits of VM-exit MSR-store address */ for (i = 0; i < 4; i++) { tmp = (u64)exit_msr_store | 1ull << i; vmcs_write(EXIT_MSR_ST_ADDR, tmp); report_prefix_pushf("VM-exit MSR-store addr [4:0] %lx", tmp & 0xf); test_vmx_invalid_controls(); report_prefix_pop(); } if (basic.val & (1ul << 48)) addr_len = 32; test_vmcs_addr_values("VM-exit-MSR-store address", EXIT_MSR_ST_ADDR, 16, false, false, 4, addr_len - 1); /* * Check last byte of VM-exit MSR-store address */ exit_msr_store = (struct vmx_msr_entry *)((u64)exit_msr_store & ~0xf); for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len); i < 64; i++) { tmp = ((u64)exit_msr_store + exit_msr_st_cnt * 16 - 1) | 1ul << i; vmcs_write(EXIT_MSR_ST_ADDR, tmp - (exit_msr_st_cnt * 16 - 1)); test_vmx_invalid_controls(); } vmcs_write(EXI_MSR_ST_CNT, 2); vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 16); test_vmx_invalid_controls(); vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 32); test_vmx_valid_controls(); vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 48); test_vmx_valid_controls(); } /* * Tests for VM-exit controls */ static void test_vm_exit_ctls(void) { test_exit_msr_store(); } /* * Check that the virtual CPU checks all of the VMX controls as * documented in the Intel SDM. */ static void vmx_controls_test(void) { /* * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will * fail due to invalid guest state, should we make it that * far. */ vmcs_write(GUEST_RFLAGS, 0); test_vm_execution_ctls(); test_vm_exit_ctls(); test_vm_entry_ctls(); } struct apic_reg_virt_config { bool apic_register_virtualization; bool use_tpr_shadow; bool virtualize_apic_accesses; bool virtualize_x2apic_mode; bool activate_secondary_controls; }; struct apic_reg_test { const char *name; struct apic_reg_virt_config apic_reg_virt_config; }; struct apic_reg_virt_expectation { enum Reason rd_exit_reason; enum Reason wr_exit_reason; u32 val; u32 (*virt_fn)(u32); /* * If false, accessing the APIC access address from L2 is treated as a * normal memory operation, rather than triggering virtualization. */ bool virtualize_apic_accesses; }; static u32 apic_virt_identity(u32 val) { return val; } static u32 apic_virt_nibble1(u32 val) { return val & 0xf0; } static u32 apic_virt_byte3(u32 val) { return val & (0xff << 24); } static bool apic_reg_virt_exit_expectation( u32 reg, struct apic_reg_virt_config *config, struct apic_reg_virt_expectation *expectation) { /* Good configs, where some L2 APIC accesses are virtualized. */ bool virtualize_apic_accesses_only = config->virtualize_apic_accesses && !config->use_tpr_shadow && !config->apic_register_virtualization && !config->virtualize_x2apic_mode && config->activate_secondary_controls; bool virtualize_apic_accesses_and_use_tpr_shadow = config->virtualize_apic_accesses && config->use_tpr_shadow && !config->apic_register_virtualization && !config->virtualize_x2apic_mode && config->activate_secondary_controls; bool apic_register_virtualization = config->virtualize_apic_accesses && config->use_tpr_shadow && config->apic_register_virtualization && !config->virtualize_x2apic_mode && config->activate_secondary_controls; expectation->val = MAGIC_VAL_1; expectation->virt_fn = apic_virt_identity; expectation->virtualize_apic_accesses = config->virtualize_apic_accesses && config->activate_secondary_controls; if (virtualize_apic_accesses_only) { expectation->rd_exit_reason = VMX_APIC_ACCESS; expectation->wr_exit_reason = VMX_APIC_ACCESS; } else if (virtualize_apic_accesses_and_use_tpr_shadow) { switch (reg) { case APIC_TASKPRI: expectation->rd_exit_reason = VMX_VMCALL; expectation->wr_exit_reason = VMX_VMCALL; expectation->virt_fn = apic_virt_nibble1; break; default: expectation->rd_exit_reason = VMX_APIC_ACCESS; expectation->wr_exit_reason = VMX_APIC_ACCESS; } } else if (apic_register_virtualization) { expectation->rd_exit_reason = VMX_VMCALL; switch (reg) { case APIC_ID: case APIC_EOI: case APIC_LDR: case APIC_DFR: case APIC_SPIV: case APIC_ESR: case APIC_ICR: case APIC_LVTT: case APIC_LVTTHMR: case APIC_LVTPC: case APIC_LVT0: case APIC_LVT1: case APIC_LVTERR: case APIC_TMICT: case APIC_TDCR: expectation->wr_exit_reason = VMX_APIC_WRITE; break; case APIC_LVR: case APIC_ISR ... APIC_ISR + 0x70: case APIC_TMR ... APIC_TMR + 0x70: case APIC_IRR ... APIC_IRR + 0x70: expectation->wr_exit_reason = VMX_APIC_ACCESS; break; case APIC_TASKPRI: expectation->wr_exit_reason = VMX_VMCALL; expectation->virt_fn = apic_virt_nibble1; break; case APIC_ICR2: expectation->wr_exit_reason = VMX_VMCALL; expectation->virt_fn = apic_virt_byte3; break; default: expectation->rd_exit_reason = VMX_APIC_ACCESS; expectation->wr_exit_reason = VMX_APIC_ACCESS; } } else if (!expectation->virtualize_apic_accesses) { /* * No APIC registers are directly virtualized. This includes * VTPR, which can be virtualized through MOV to/from CR8 via * the use TPR shadow control, but not through directly * accessing VTPR. */ expectation->rd_exit_reason = VMX_VMCALL; expectation->wr_exit_reason = VMX_VMCALL; } else { printf("Cannot parse APIC register virtualization config:\n" "\tvirtualize_apic_accesses: %d\n" "\tuse_tpr_shadow: %d\n" "\tapic_register_virtualization: %d\n" "\tvirtualize_x2apic_mode: %d\n" "\tactivate_secondary_controls: %d\n", config->virtualize_apic_accesses, config->use_tpr_shadow, config->apic_register_virtualization, config->virtualize_x2apic_mode, config->activate_secondary_controls); return false; } return true; } struct apic_reg_test apic_reg_tests[] = { /* Good configs, where some L2 APIC accesses are virtualized. */ { .name = "Virtualize APIC accesses", .apic_reg_virt_config = { .virtualize_apic_accesses = true, .use_tpr_shadow = false, .apic_register_virtualization = false, .virtualize_x2apic_mode = false, .activate_secondary_controls = true, }, }, { .name = "Virtualize APIC accesses + Use TPR shadow", .apic_reg_virt_config = { .virtualize_apic_accesses = true, .use_tpr_shadow = true, .apic_register_virtualization = false, .virtualize_x2apic_mode = false, .activate_secondary_controls = true, }, }, { .name = "APIC-register virtualization", .apic_reg_virt_config = { .virtualize_apic_accesses = true, .use_tpr_shadow = true, .apic_register_virtualization = true, .virtualize_x2apic_mode = false, .activate_secondary_controls = true, }, }, /* * Test that the secondary processor-based VM-execution controls are * correctly ignored when "activate secondary controls" is disabled. */ { .name = "Activate secondary controls off", .apic_reg_virt_config = { .virtualize_apic_accesses = true, .use_tpr_shadow = false, .apic_register_virtualization = true, .virtualize_x2apic_mode = true, .activate_secondary_controls = false, }, }, { .name = "Activate secondary controls off + Use TPR shadow", .apic_reg_virt_config = { .virtualize_apic_accesses = true, .use_tpr_shadow = true, .apic_register_virtualization = true, .virtualize_x2apic_mode = true, .activate_secondary_controls = false, }, }, /* * Test that the APIC access address is treated like an arbitrary memory * address when "virtualize APIC accesses" is disabled. */ { .name = "Virtualize APIC accesses off + Use TPR shadow", .apic_reg_virt_config = { .virtualize_apic_accesses = false, .use_tpr_shadow = true, .apic_register_virtualization = true, .virtualize_x2apic_mode = true, .activate_secondary_controls = true, }, }, /* * Test that VM entry fails due to invalid controls when * "APIC-register virtualization" is enabled while "use TPR shadow" is * disabled. */ { .name = "APIC-register virtualization + Use TPR shadow off", .apic_reg_virt_config = { .virtualize_apic_accesses = true, .use_tpr_shadow = false, .apic_register_virtualization = true, .virtualize_x2apic_mode = false, .activate_secondary_controls = true, }, }, /* * Test that VM entry fails due to invalid controls when * "Virtualize x2APIC mode" is enabled while "use TPR shadow" is * disabled. */ { .name = "Virtualize x2APIC mode + Use TPR shadow off", .apic_reg_virt_config = { .virtualize_apic_accesses = false, .use_tpr_shadow = false, .apic_register_virtualization = false, .virtualize_x2apic_mode = true, .activate_secondary_controls = true, }, }, { .name = "Virtualize x2APIC mode + Use TPR shadow off v2", .apic_reg_virt_config = { .virtualize_apic_accesses = false, .use_tpr_shadow = false, .apic_register_virtualization = true, .virtualize_x2apic_mode = true, .activate_secondary_controls = true, }, }, /* * Test that VM entry fails due to invalid controls when * "virtualize x2APIC mode" is enabled while "virtualize APIC accesses" * is enabled. */ { .name = "Virtualize x2APIC mode + Virtualize APIC accesses", .apic_reg_virt_config = { .virtualize_apic_accesses = true, .use_tpr_shadow = true, .apic_register_virtualization = false, .virtualize_x2apic_mode = true, .activate_secondary_controls = true, }, }, { .name = "Virtualize x2APIC mode + Virtualize APIC accesses v2", .apic_reg_virt_config = { .virtualize_apic_accesses = true, .use_tpr_shadow = true, .apic_register_virtualization = true, .virtualize_x2apic_mode = true, .activate_secondary_controls = true, }, }, }; enum Apic_op { APIC_OP_XAPIC_RD, APIC_OP_XAPIC_WR, TERMINATE, }; static u32 vmx_xapic_read(u32 *apic_access_address, u32 reg) { return *(volatile u32 *)((uintptr_t)apic_access_address + reg); } static void vmx_xapic_write(u32 *apic_access_address, u32 reg, u32 val) { *(volatile u32 *)((uintptr_t)apic_access_address + reg) = val; } struct apic_reg_virt_guest_args { enum Apic_op op; u32 *apic_access_address; u32 reg; u32 val; bool check_rd; u32 (*virt_fn)(u32); } apic_reg_virt_guest_args; static void apic_reg_virt_guest(void) { volatile struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; for (;;) { enum Apic_op op = args->op; u32 *apic_access_address = args->apic_access_address; u32 reg = args->reg; u32 val = args->val; bool check_rd = args->check_rd; u32 (*virt_fn)(u32) = args->virt_fn; if (op == TERMINATE) break; if (op == APIC_OP_XAPIC_RD) { u32 ret = vmx_xapic_read(apic_access_address, reg); if (check_rd) { u32 want = virt_fn(val); u32 got = virt_fn(ret); report("read 0x%x, expected 0x%x.", got == want, got, want); } } else if (op == APIC_OP_XAPIC_WR) { vmx_xapic_write(apic_access_address, reg, val); } /* * The L1 should always execute a vmcall after it's done testing * an individual APIC operation. This helps to validate that the * L1 and L2 are in sync with each other, as expected. */ vmcall(); } } static void test_xapic_rd( u32 reg, struct apic_reg_virt_expectation *expectation, u32 *apic_access_address, u32 *virtual_apic_page) { u32 val = expectation->val; u32 exit_reason_want = expectation->rd_exit_reason; struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; report_prefix_pushf("xapic - reading 0x%03x", reg); /* Configure guest to do an xapic read */ args->op = APIC_OP_XAPIC_RD; args->apic_access_address = apic_access_address; args->reg = reg; args->val = val; args->check_rd = exit_reason_want == VMX_VMCALL; args->virt_fn = expectation->virt_fn; /* Setup virtual APIC page */ if (!expectation->virtualize_apic_accesses) { apic_access_address[apic_reg_index(reg)] = val; virtual_apic_page[apic_reg_index(reg)] = 0; } else if (exit_reason_want == VMX_VMCALL) { apic_access_address[apic_reg_index(reg)] = 0; virtual_apic_page[apic_reg_index(reg)] = val; } /* Enter guest */ enter_guest(); /* * Validate the behavior and * pass a magic value back to the guest. */ if (exit_reason_want == VMX_APIC_ACCESS) { u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff; assert_exit_reason(exit_reason_want); report("got APIC access exit @ page offset 0x%03x, want 0x%03x", apic_page_offset == reg, apic_page_offset, reg); skip_exit_insn(); /* Reenter guest so it can consume/check rcx and exit again. */ enter_guest(); } else if (exit_reason_want != VMX_VMCALL) { report("Oops, bad exit expectation: %u.", false, exit_reason_want); } skip_exit_vmcall(); report_prefix_pop(); } static void test_xapic_wr( u32 reg, struct apic_reg_virt_expectation *expectation, u32 *apic_access_address, u32 *virtual_apic_page) { u32 val = expectation->val; u32 exit_reason_want = expectation->wr_exit_reason; struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; bool virtualized = expectation->virtualize_apic_accesses && (exit_reason_want == VMX_APIC_WRITE || exit_reason_want == VMX_VMCALL); bool checked = false; report_prefix_pushf("xapic - writing 0x%x to 0x%03x", val, reg); /* Configure guest to do an xapic read */ args->op = APIC_OP_XAPIC_WR; args->apic_access_address = apic_access_address; args->reg = reg; args->val = val; /* Setup virtual APIC page */ if (virtualized || !expectation->virtualize_apic_accesses) { apic_access_address[apic_reg_index(reg)] = 0; virtual_apic_page[apic_reg_index(reg)] = 0; } /* Enter guest */ enter_guest(); /* * Validate the behavior and * pass a magic value back to the guest. */ if (exit_reason_want == VMX_APIC_ACCESS) { u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff; assert_exit_reason(exit_reason_want); report("got APIC access exit @ page offset 0x%03x, want 0x%03x", apic_page_offset == reg, apic_page_offset, reg); skip_exit_insn(); /* Reenter guest so it can consume/check rcx and exit again. */ enter_guest(); } else if (exit_reason_want == VMX_APIC_WRITE) { assert_exit_reason(exit_reason_want); report("got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%x", virtual_apic_page[apic_reg_index(reg)] == val, apic_reg_index(reg), virtual_apic_page[apic_reg_index(reg)], val); checked = true; /* Reenter guest so it can consume/check rcx and exit again. */ enter_guest(); } else if (exit_reason_want != VMX_VMCALL) { report("Oops, bad exit expectation: %u.", false, exit_reason_want); } assert_exit_reason(VMX_VMCALL); if (virtualized && !checked) { u32 want = expectation->virt_fn(val); u32 got = virtual_apic_page[apic_reg_index(reg)]; got = expectation->virt_fn(got); report("exitless write; val is 0x%x, want 0x%x", got == want, got, want); } else if (!expectation->virtualize_apic_accesses && !checked) { u32 got = apic_access_address[apic_reg_index(reg)]; report("non-virtualized write; val is 0x%x, want 0x%x", got == val, got, val); } else if (!expectation->virtualize_apic_accesses && checked) { report("Non-virtualized write was prematurely checked!", false); } skip_exit_vmcall(); report_prefix_pop(); } enum Config_type { CONFIG_TYPE_GOOD, CONFIG_TYPE_UNSUPPORTED, CONFIG_TYPE_VMENTRY_FAILS_EARLY, }; static enum Config_type configure_apic_reg_virt_test( struct apic_reg_virt_config *apic_reg_virt_config) { u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); u32 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); /* Configs where L2 entry fails early, due to invalid controls. */ bool use_tpr_shadow_incorrectly_off = !apic_reg_virt_config->use_tpr_shadow && (apic_reg_virt_config->apic_register_virtualization || apic_reg_virt_config->virtualize_x2apic_mode) && apic_reg_virt_config->activate_secondary_controls; bool virtualize_apic_accesses_incorrectly_on = apic_reg_virt_config->virtualize_apic_accesses && apic_reg_virt_config->virtualize_x2apic_mode && apic_reg_virt_config->activate_secondary_controls; bool vmentry_fails_early = use_tpr_shadow_incorrectly_off || virtualize_apic_accesses_incorrectly_on; if (apic_reg_virt_config->activate_secondary_controls) { if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) { printf("VM-execution control \"activate secondary controls\" NOT supported.\n"); return CONFIG_TYPE_UNSUPPORTED; } cpu_exec_ctrl0 |= CPU_SECONDARY; } else { cpu_exec_ctrl0 &= ~CPU_SECONDARY; } if (apic_reg_virt_config->virtualize_apic_accesses) { if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES)) { printf("VM-execution control \"virtualize APIC accesses\" NOT supported.\n"); return CONFIG_TYPE_UNSUPPORTED; } cpu_exec_ctrl1 |= CPU_VIRT_APIC_ACCESSES; } else { cpu_exec_ctrl1 &= ~CPU_VIRT_APIC_ACCESSES; } if (apic_reg_virt_config->use_tpr_shadow) { if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) { printf("VM-execution control \"use TPR shadow\" NOT supported.\n"); return CONFIG_TYPE_UNSUPPORTED; } cpu_exec_ctrl0 |= CPU_TPR_SHADOW; } else { cpu_exec_ctrl0 &= ~CPU_TPR_SHADOW; } if (apic_reg_virt_config->apic_register_virtualization) { if (!(ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT)) { printf("VM-execution control \"APIC-register virtualization\" NOT supported.\n"); return CONFIG_TYPE_UNSUPPORTED; } cpu_exec_ctrl1 |= CPU_APIC_REG_VIRT; } else { cpu_exec_ctrl1 &= ~CPU_APIC_REG_VIRT; } if (apic_reg_virt_config->virtualize_x2apic_mode) { if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_X2APIC)) { printf("VM-execution control \"virtualize x2APIC mode\" NOT supported.\n"); return CONFIG_TYPE_UNSUPPORTED; } cpu_exec_ctrl1 |= CPU_VIRT_X2APIC; } else { cpu_exec_ctrl1 &= ~CPU_VIRT_X2APIC; } vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); if (vmentry_fails_early) return CONFIG_TYPE_VMENTRY_FAILS_EARLY; return CONFIG_TYPE_GOOD; } static bool cpu_has_apicv(void) { return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) && (ctrl_cpu_rev[1].clr & CPU_VINTD) && (ctrl_pin_rev.clr & PIN_POST_INTR)); } /* Validates APIC register access across valid virtualization configurations. */ static void apic_reg_virt_test(void) { u32 *apic_access_address; u32 *virtual_apic_page; u64 control; u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); int i; struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; if (!cpu_has_apicv()) { report_skip(__func__); return; } control = cpu_exec_ctrl1; control &= ~CPU_VINTD; vmcs_write(CPU_EXEC_CTRL1, control); test_set_guest(apic_reg_virt_guest); /* * From the SDM: The 1-setting of the "virtualize APIC accesses" * VM-execution is guaranteed to apply only if translations to the * APIC-access address use a 4-KByte page. */ apic_access_address = alloc_page(); force_4k_page(apic_access_address); vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_address)); virtual_apic_page = alloc_page(); vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); for (i = 0; i < ARRAY_SIZE(apic_reg_tests); i++) { struct apic_reg_test *apic_reg_test = &apic_reg_tests[i]; struct apic_reg_virt_config *apic_reg_virt_config = &apic_reg_test->apic_reg_virt_config; enum Config_type config_type; u32 reg; printf("--- %s test ---\n", apic_reg_test->name); config_type = configure_apic_reg_virt_test(apic_reg_virt_config); if (config_type == CONFIG_TYPE_UNSUPPORTED) { printf("Skip because of missing features.\n"); continue; } if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) { enter_guest_with_bad_controls(); continue; } for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) { struct apic_reg_virt_expectation expectation = {}; bool ok; ok = apic_reg_virt_exit_expectation( reg, apic_reg_virt_config, &expectation); if (!ok) { report("Malformed test.", false); break; } test_xapic_rd(reg, &expectation, apic_access_address, virtual_apic_page); test_xapic_wr(reg, &expectation, apic_access_address, virtual_apic_page); } } /* Terminate the guest */ vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); args->op = TERMINATE; enter_guest(); assert_exit_reason(VMX_VMCALL); } struct virt_x2apic_mode_config { struct apic_reg_virt_config apic_reg_virt_config; bool virtual_interrupt_delivery; bool use_msr_bitmaps; bool disable_x2apic_msr_intercepts; bool disable_x2apic; }; struct virt_x2apic_mode_test_case { const char *name; struct virt_x2apic_mode_config virt_x2apic_mode_config; }; enum Virt_x2apic_mode_behavior_type { X2APIC_ACCESS_VIRTUALIZED, X2APIC_ACCESS_PASSED_THROUGH, X2APIC_ACCESS_TRIGGERS_GP, }; struct virt_x2apic_mode_expectation { enum Reason rd_exit_reason; enum Reason wr_exit_reason; /* * RDMSR and WRMSR handle 64-bit values. However, except for ICR, all of * the x2APIC registers are 32 bits. Notice: * 1. vmx_x2apic_read() clears the upper 32 bits for 32-bit registers. * 2. vmx_x2apic_write() expects the val arg to be well-formed. */ u64 rd_val; u64 wr_val; /* * Compares input to virtualized output; * 1st arg is pointer to return expected virtualization output. */ u64 (*virt_fn)(u64); enum Virt_x2apic_mode_behavior_type rd_behavior; enum Virt_x2apic_mode_behavior_type wr_behavior; bool wr_only; }; static u64 virt_x2apic_mode_identity(u64 val) { return val; } static u64 virt_x2apic_mode_nibble1(u64 val) { return val & 0xf0; } static bool is_cmci_enabled(void) { return rdmsr(MSR_IA32_MCG_CAP) & BIT_ULL(10); } static void virt_x2apic_mode_rd_expectation( u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic, bool apic_register_virtualization, bool virtual_interrupt_delivery, struct virt_x2apic_mode_expectation *expectation) { bool readable = !x2apic_reg_reserved(reg) && reg != APIC_EOI; if (reg == APIC_CMCI && !is_cmci_enabled()) readable = false; expectation->rd_exit_reason = VMX_VMCALL; expectation->virt_fn = virt_x2apic_mode_identity; if (virt_x2apic_mode_on && apic_register_virtualization) { expectation->rd_val = MAGIC_VAL_1; if (reg == APIC_PROCPRI && virtual_interrupt_delivery) expectation->virt_fn = virt_x2apic_mode_nibble1; else if (reg == APIC_TASKPRI) expectation->virt_fn = virt_x2apic_mode_nibble1; expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED; } else if (virt_x2apic_mode_on && !apic_register_virtualization && reg == APIC_TASKPRI) { expectation->rd_val = MAGIC_VAL_1; expectation->virt_fn = virt_x2apic_mode_nibble1; expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED; } else if (!disable_x2apic && readable) { expectation->rd_val = apic_read(reg); expectation->rd_behavior = X2APIC_ACCESS_PASSED_THROUGH; } else { expectation->rd_behavior = X2APIC_ACCESS_TRIGGERS_GP; } } /* * get_x2apic_wr_val() creates an innocuous write value for an x2APIC register. * * For writable registers, get_x2apic_wr_val() deposits the write value into the * val pointer arg and returns true. For non-writable registers, val is not * modified and get_x2apic_wr_val() returns false. */ static bool get_x2apic_wr_val(u32 reg, u64 *val) { switch (reg) { case APIC_TASKPRI: /* Bits 31:8 are reserved. */ *val &= 0xff; break; case APIC_EOI: case APIC_ESR: case APIC_TMICT: /* * EOI, ESR: WRMSR of a non-zero value causes #GP(0). * TMICT: A write of 0 to the initial-count register effectively * stops the local APIC timer, in both one-shot and * periodic mode. */ *val = 0; break; case APIC_SPIV: case APIC_LVTT: case APIC_LVTTHMR: case APIC_LVTPC: case APIC_LVT0: case APIC_LVT1: case APIC_LVTERR: case APIC_TDCR: /* * To avoid writing a 1 to a reserved bit or causing some other * unintended side effect, read the current value and use it as * the write value. */ *val = apic_read(reg); break; case APIC_CMCI: if (!is_cmci_enabled()) return false; *val = apic_read(reg); break; case APIC_ICR: *val = 0x40000 | 0xf1; break; case APIC_SELF_IPI: /* * With special processing (i.e., virtualize x2APIC mode + * virtual interrupt delivery), writing zero causes an * APIC-write VM exit. We plan to add a test for enabling * "virtual-interrupt delivery" in VMCS12, and that's where we * will test a self IPI with special processing. */ *val = 0x0; break; default: return false; } return true; } static bool special_processing_applies(u32 reg, u64 *val, bool virt_int_delivery) { bool special_processing = (reg == APIC_TASKPRI) || (virt_int_delivery && (reg == APIC_EOI || reg == APIC_SELF_IPI)); if (special_processing) { TEST_ASSERT(get_x2apic_wr_val(reg, val)); return true; } return false; } static void virt_x2apic_mode_wr_expectation( u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic, bool virt_int_delivery, struct virt_x2apic_mode_expectation *expectation) { expectation->wr_exit_reason = VMX_VMCALL; expectation->wr_val = MAGIC_VAL_1; expectation->wr_only = false; if (virt_x2apic_mode_on && special_processing_applies(reg, &expectation->wr_val, virt_int_delivery)) { expectation->wr_behavior = X2APIC_ACCESS_VIRTUALIZED; if (reg == APIC_SELF_IPI) expectation->wr_exit_reason = VMX_APIC_WRITE; } else if (!disable_x2apic && get_x2apic_wr_val(reg, &expectation->wr_val)) { expectation->wr_behavior = X2APIC_ACCESS_PASSED_THROUGH; if (reg == APIC_EOI || reg == APIC_SELF_IPI) expectation->wr_only = true; if (reg == APIC_ICR) expectation->wr_exit_reason = VMX_EXTINT; } else { expectation->wr_behavior = X2APIC_ACCESS_TRIGGERS_GP; /* * Writing 1 to a reserved bit triggers a #GP. * Thus, set the write value to 0, which seems * the most likely to detect a missed #GP. */ expectation->wr_val = 0; } } static void virt_x2apic_mode_exit_expectation( u32 reg, struct virt_x2apic_mode_config *config, struct virt_x2apic_mode_expectation *expectation) { struct apic_reg_virt_config *base_config = &config->apic_reg_virt_config; bool virt_x2apic_mode_on = base_config->virtualize_x2apic_mode && config->use_msr_bitmaps && config->disable_x2apic_msr_intercepts && base_config->activate_secondary_controls; virt_x2apic_mode_wr_expectation( reg, virt_x2apic_mode_on, config->disable_x2apic, config->virtual_interrupt_delivery, expectation); virt_x2apic_mode_rd_expectation( reg, virt_x2apic_mode_on, config->disable_x2apic, base_config->apic_register_virtualization, config->virtual_interrupt_delivery, expectation); } struct virt_x2apic_mode_test_case virt_x2apic_mode_tests[] = { /* * Baseline "virtualize x2APIC mode" configuration: * - virtualize x2APIC mode * - virtual-interrupt delivery * - APIC-register virtualization * - x2APIC MSR intercepts disabled * * Reads come from virtual APIC page, special processing applies to * VTPR, EOI, and SELF IPI, and all other writes pass through to L1 * APIC. */ { .name = "Baseline", .virt_x2apic_mode_config = { .virtual_interrupt_delivery = true, .use_msr_bitmaps = true, .disable_x2apic_msr_intercepts = true, .disable_x2apic = false, .apic_reg_virt_config = { .apic_register_virtualization = true, .use_tpr_shadow = true, .virtualize_apic_accesses = false, .virtualize_x2apic_mode = true, .activate_secondary_controls = true, }, }, }, { .name = "Baseline w/ x2apic disabled", .virt_x2apic_mode_config = { .virtual_interrupt_delivery = true, .use_msr_bitmaps = true, .disable_x2apic_msr_intercepts = true, .disable_x2apic = true, .apic_reg_virt_config = { .apic_register_virtualization = true, .use_tpr_shadow = true, .virtualize_apic_accesses = false, .virtualize_x2apic_mode = true, .activate_secondary_controls = true, }, }, }, /* * Baseline, minus virtual-interrupt delivery. Reads come from virtual * APIC page, special processing applies to VTPR, and all other writes * pass through to L1 APIC. */ { .name = "Baseline - virtual interrupt delivery", .virt_x2apic_mode_config = { .virtual_interrupt_delivery = false, .use_msr_bitmaps = true, .disable_x2apic_msr_intercepts = true, .disable_x2apic = false, .apic_reg_virt_config = { .apic_register_virtualization = true, .use_tpr_shadow = true, .virtualize_apic_accesses = false, .virtualize_x2apic_mode = true, .activate_secondary_controls = true, }, }, }, /* * Baseline, minus APIC-register virtualization. x2APIC reads pass * through to L1's APIC, unless reading VTPR */ { .name = "Virtualize x2APIC mode, no APIC reg virt", .virt_x2apic_mode_config = { .virtual_interrupt_delivery = true, .use_msr_bitmaps = true, .disable_x2apic_msr_intercepts = true, .disable_x2apic = false, .apic_reg_virt_config = { .apic_register_virtualization = false, .use_tpr_shadow = true, .virtualize_apic_accesses = false, .virtualize_x2apic_mode = true, .activate_secondary_controls = true, }, }, }, { .name = "Virtualize x2APIC mode, no APIC reg virt, x2APIC off", .virt_x2apic_mode_config = { .virtual_interrupt_delivery = true, .use_msr_bitmaps = true, .disable_x2apic_msr_intercepts = true, .disable_x2apic = true, .apic_reg_virt_config = { .apic_register_virtualization = false, .use_tpr_shadow = true, .virtualize_apic_accesses = false, .virtualize_x2apic_mode = true, .activate_secondary_controls = true, }, }, }, /* * Enable "virtualize x2APIC mode" and "APIC-register virtualization", * and disable intercepts for the x2APIC MSRs, but fail to enable * "activate secondary controls" (i.e. L2 gets access to L1's x2APIC * MSRs). */ { .name = "Fail to enable activate secondary controls", .virt_x2apic_mode_config = { .virtual_interrupt_delivery = true, .use_msr_bitmaps = true, .disable_x2apic_msr_intercepts = true, .disable_x2apic = false, .apic_reg_virt_config = { .apic_register_virtualization = true, .use_tpr_shadow = true, .virtualize_apic_accesses = false, .virtualize_x2apic_mode = true, .activate_secondary_controls = false, }, }, }, /* * Enable "APIC-register virtualization" and enable "activate secondary * controls" and disable intercepts for the x2APIC MSRs, but do not * enable the "virtualize x2APIC mode" VM-execution control (i.e. L2 * gets access to L1's x2APIC MSRs). */ { .name = "Fail to enable virtualize x2APIC mode", .virt_x2apic_mode_config = { .virtual_interrupt_delivery = true, .use_msr_bitmaps = true, .disable_x2apic_msr_intercepts = true, .disable_x2apic = false, .apic_reg_virt_config = { .apic_register_virtualization = true, .use_tpr_shadow = true, .virtualize_apic_accesses = false, .virtualize_x2apic_mode = false, .activate_secondary_controls = true, }, }, }, /* * Disable "Virtualize x2APIC mode", disable x2APIC MSR intercepts, and * enable "APIC-register virtualization" --> L2 gets L1's x2APIC MSRs. */ { .name = "Baseline", .virt_x2apic_mode_config = { .virtual_interrupt_delivery = true, .use_msr_bitmaps = true, .disable_x2apic_msr_intercepts = true, .disable_x2apic = false, .apic_reg_virt_config = { .apic_register_virtualization = true, .use_tpr_shadow = true, .virtualize_apic_accesses = false, .virtualize_x2apic_mode = false, .activate_secondary_controls = true, }, }, }, }; enum X2apic_op { X2APIC_OP_RD, X2APIC_OP_WR, X2APIC_TERMINATE, }; static u64 vmx_x2apic_read(u32 reg) { u32 msr_addr = x2apic_msr(reg); u64 val; val = rdmsr(msr_addr); return val; } static void vmx_x2apic_write(u32 reg, u64 val) { u32 msr_addr = x2apic_msr(reg); wrmsr(msr_addr, val); } struct virt_x2apic_mode_guest_args { enum X2apic_op op; u32 reg; u64 val; bool should_gp; u64 (*virt_fn)(u64); } virt_x2apic_mode_guest_args; static volatile bool handle_x2apic_gp_ran; static volatile u32 handle_x2apic_gp_insn_len; static void handle_x2apic_gp(struct ex_regs *regs) { handle_x2apic_gp_ran = true; regs->rip += handle_x2apic_gp_insn_len; } static handler setup_x2apic_gp_handler(void) { handler old_handler; old_handler = handle_exception(GP_VECTOR, handle_x2apic_gp); /* RDMSR and WRMSR are both 2 bytes, assuming no prefixes. */ handle_x2apic_gp_insn_len = 2; return old_handler; } static void teardown_x2apic_gp_handler(handler old_handler) { handle_exception(GP_VECTOR, old_handler); /* * Defensively reset instruction length, so that if the handler is * incorrectly used, it will loop infinitely, rather than run off into * la la land. */ handle_x2apic_gp_insn_len = 0; handle_x2apic_gp_ran = false; } static void virt_x2apic_mode_guest(void) { volatile struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; for (;;) { enum X2apic_op op = args->op; u32 reg = args->reg; u64 val = args->val; bool should_gp = args->should_gp; u64 (*virt_fn)(u64) = args->virt_fn; handler old_handler; if (op == X2APIC_TERMINATE) break; if (should_gp) { TEST_ASSERT(!handle_x2apic_gp_ran); old_handler = setup_x2apic_gp_handler(); } if (op == X2APIC_OP_RD) { u64 ret = vmx_x2apic_read(reg); if (!should_gp) { u64 want = virt_fn(val); u64 got = virt_fn(ret); report("APIC read; got 0x%lx, want 0x%lx.", got == want, got, want); } } else if (op == X2APIC_OP_WR) { vmx_x2apic_write(reg, val); } if (should_gp) { report("x2APIC op triggered GP.", handle_x2apic_gp_ran); teardown_x2apic_gp_handler(old_handler); } /* * The L1 should always execute a vmcall after it's done testing * an individual APIC operation. This helps to validate that the * L1 and L2 are in sync with each other, as expected. */ vmcall(); } } static void test_x2apic_rd( u32 reg, struct virt_x2apic_mode_expectation *expectation, u32 *virtual_apic_page) { u64 val = expectation->rd_val; u32 exit_reason_want = expectation->rd_exit_reason; struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; report_prefix_pushf("x2apic - reading 0x%03x", reg); /* Configure guest to do an x2apic read */ args->op = X2APIC_OP_RD; args->reg = reg; args->val = val; args->should_gp = expectation->rd_behavior == X2APIC_ACCESS_TRIGGERS_GP; args->virt_fn = expectation->virt_fn; /* Setup virtual APIC page */ if (expectation->rd_behavior == X2APIC_ACCESS_VIRTUALIZED) virtual_apic_page[apic_reg_index(reg)] = (u32)val; /* Enter guest */ enter_guest(); if (exit_reason_want != VMX_VMCALL) { report("Oops, bad exit expectation: %u.", false, exit_reason_want); } skip_exit_vmcall(); report_prefix_pop(); } static volatile bool handle_x2apic_ipi_ran; static void handle_x2apic_ipi(isr_regs_t *regs) { handle_x2apic_ipi_ran = true; eoi(); } static void test_x2apic_wr( u32 reg, struct virt_x2apic_mode_expectation *expectation, u32 *virtual_apic_page) { u64 val = expectation->wr_val; u32 exit_reason_want = expectation->wr_exit_reason; struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; int ipi_vector = 0xf1; u32 restore_val = 0; report_prefix_pushf("x2apic - writing 0x%lx to 0x%03x", val, reg); /* Configure guest to do an x2apic read */ args->op = X2APIC_OP_WR; args->reg = reg; args->val = val; args->should_gp = expectation->wr_behavior == X2APIC_ACCESS_TRIGGERS_GP; /* Setup virtual APIC page */ if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) virtual_apic_page[apic_reg_index(reg)] = 0; if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH && !expectation->wr_only) restore_val = apic_read(reg); /* Setup IPI handler */ handle_x2apic_ipi_ran = false; handle_irq(ipi_vector, handle_x2apic_ipi); /* Enter guest */ enter_guest(); /* * Validate the behavior and * pass a magic value back to the guest. */ if (exit_reason_want == VMX_EXTINT) { assert_exit_reason(exit_reason_want); /* Clear the external interrupt. */ irq_enable(); asm volatile ("nop"); irq_disable(); report("Got pending interrupt after IRQ enabled.", handle_x2apic_ipi_ran); enter_guest(); } else if (exit_reason_want == VMX_APIC_WRITE) { assert_exit_reason(exit_reason_want); report("got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%lx", virtual_apic_page[apic_reg_index(reg)] == val, apic_reg_index(reg), virtual_apic_page[apic_reg_index(reg)], val); /* Reenter guest so it can consume/check rcx and exit again. */ enter_guest(); } else if (exit_reason_want != VMX_VMCALL) { report("Oops, bad exit expectation: %u.", false, exit_reason_want); } assert_exit_reason(VMX_VMCALL); if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) { u64 want = val; u32 got = virtual_apic_page[apic_reg_index(reg)]; report("x2APIC write; got 0x%x, want 0x%lx", got == want, got, want); } else if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH) { if (!expectation->wr_only) { u32 got = apic_read(reg); bool ok; /* * When L1's TPR is passed through to L2, the lower * nibble can be lost. For example, if L2 executes * WRMSR(0x808, 0x78), then, L1 might read 0x70. * * Here's how the lower nibble can get lost: * 1. L2 executes WRMSR(0x808, 0x78). * 2. L2 exits to L0 with a WRMSR exit. * 3. L0 emulates WRMSR, by writing L1's TPR. * 4. L0 re-enters L2. * 5. L2 exits to L0 (reason doesn't matter). * 6. L0 reflects L2's exit to L1. * 7. Before entering L1, L0 exits to user-space * (e.g., to satisfy TPR access reporting). * 8. User-space executes KVM_SET_REGS ioctl, which * clears the lower nibble of L1's TPR. */ if (reg == APIC_TASKPRI) { got = apic_virt_nibble1(got); val = apic_virt_nibble1(val); } ok = got == val; report("non-virtualized write; val is 0x%x, want 0x%lx", ok, got, val); apic_write(reg, restore_val); } else { report("non-virtualized and write-only OK", true); } } skip_exit_insn(); report_prefix_pop(); } static enum Config_type configure_virt_x2apic_mode_test( struct virt_x2apic_mode_config *virt_x2apic_mode_config, u8 *msr_bitmap_page) { int msr; u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); /* x2apic-specific VMCS config */ if (virt_x2apic_mode_config->use_msr_bitmaps) { /* virt_x2apic_mode_test() checks for MSR bitmaps support */ cpu_exec_ctrl0 |= CPU_MSR_BITMAP; } else { cpu_exec_ctrl0 &= ~CPU_MSR_BITMAP; } if (virt_x2apic_mode_config->virtual_interrupt_delivery) { if (!(ctrl_cpu_rev[1].clr & CPU_VINTD)) { report_skip("VM-execution control \"virtual-interrupt delivery\" NOT supported.\n"); return CONFIG_TYPE_UNSUPPORTED; } cpu_exec_ctrl1 |= CPU_VINTD; } else { cpu_exec_ctrl1 &= ~CPU_VINTD; } vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); /* x2APIC MSR intercepts are usually off for "Virtualize x2APIC mode" */ for (msr = 0x800; msr <= 0x8ff; msr++) { if (virt_x2apic_mode_config->disable_x2apic_msr_intercepts) { clear_bit(msr, msr_bitmap_page + 0x000); clear_bit(msr, msr_bitmap_page + 0x800); } else { set_bit(msr, msr_bitmap_page + 0x000); set_bit(msr, msr_bitmap_page + 0x800); } } /* x2APIC mode can impact virtualization */ reset_apic(); if (!virt_x2apic_mode_config->disable_x2apic) enable_x2apic(); return configure_apic_reg_virt_test( &virt_x2apic_mode_config->apic_reg_virt_config); } static void virt_x2apic_mode_test(void) { u32 *virtual_apic_page; u8 *msr_bitmap_page; u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); int i; struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; if (!cpu_has_apicv()) { report_skip(__func__); return; } /* * This is to exercise an issue in KVM's logic to merge L0's and L1's * MSR bitmaps. Previously, an L1 could get at L0's x2APIC MSRs by * writing the IA32_SPEC_CTRL MSR or the IA32_PRED_CMD MSRs. KVM would * then proceed to manipulate the MSR bitmaps, as if VMCS12 had the * "Virtualize x2APIC mod" control set, even when it didn't. */ if (has_spec_ctrl()) wrmsr(MSR_IA32_SPEC_CTRL, 1); /* * Check that VMCS12 supports: * - "Virtual-APIC address", indicated by "use TPR shadow" * - "MSR-bitmap address", indicated by "use MSR bitmaps" */ if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) { report_skip("VM-execution control \"use TPR shadow\" NOT supported.\n"); return; } else if (!(ctrl_cpu_rev[0].clr & CPU_MSR_BITMAP)) { report_skip("VM-execution control \"use MSR bitmaps\" NOT supported.\n"); return; } test_set_guest(virt_x2apic_mode_guest); virtual_apic_page = alloc_page(); vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); msr_bitmap_page = alloc_page(); memset(msr_bitmap_page, 0xff, PAGE_SIZE); vmcs_write(MSR_BITMAP, virt_to_phys(msr_bitmap_page)); for (i = 0; i < ARRAY_SIZE(virt_x2apic_mode_tests); i++) { struct virt_x2apic_mode_test_case *virt_x2apic_mode_test_case = &virt_x2apic_mode_tests[i]; struct virt_x2apic_mode_config *virt_x2apic_mode_config = &virt_x2apic_mode_test_case->virt_x2apic_mode_config; enum Config_type config_type; u32 reg; printf("--- %s test ---\n", virt_x2apic_mode_test_case->name); config_type = configure_virt_x2apic_mode_test(virt_x2apic_mode_config, msr_bitmap_page); if (config_type == CONFIG_TYPE_UNSUPPORTED) { report_skip("Skip because of missing features.\n"); continue; } else if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) { enter_guest_with_bad_controls(); continue; } for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) { struct virt_x2apic_mode_expectation expectation; virt_x2apic_mode_exit_expectation( reg, virt_x2apic_mode_config, &expectation); test_x2apic_rd(reg, &expectation, virtual_apic_page); test_x2apic_wr(reg, &expectation, virtual_apic_page); } } /* Terminate the guest */ vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); args->op = X2APIC_TERMINATE; enter_guest(); assert_exit_reason(VMX_VMCALL); } /* * On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP * field and the IA32_SYSENTER_EIP field must each contain a canonical * address. * * [Intel SDM] */ static void test_sysenter_field(u32 field, const char *name) { u64 addr_saved = vmcs_read(field); vmcs_write(field, NONCANONICAL); report_prefix_pushf("%s non-canonical", name); test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); report_prefix_pop(); vmcs_write(field, 0xffffffff); report_prefix_pushf("%s canonical", name); test_vmx_vmlaunch(0); report_prefix_pop(); vmcs_write(field, addr_saved); } static void test_ctl_reg(const char *cr_name, u64 cr, u64 fixed0, u64 fixed1) { u64 val; u64 cr_saved = vmcs_read(cr); int i; val = fixed0 & fixed1; if (cr == HOST_CR4) vmcs_write(cr, val | X86_CR4_PAE); else vmcs_write(cr, val); report_prefix_pushf("%s %lx", cr_name, val); if (val == fixed0) test_vmx_vmlaunch(0); else test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); report_prefix_pop(); for (i = 0; i < 64; i++) { /* Set a bit when the corresponding bit in fixed1 is 0 */ if ((fixed1 & (1ull << i)) == 0) { if (cr == HOST_CR4 && ((1ull << i) & X86_CR4_SMEP || (1ull << i) & X86_CR4_SMAP)) continue; vmcs_write(cr, cr_saved | (1ull << i)); report_prefix_pushf("%s %llx", cr_name, cr_saved | (1ull << i)); test_vmx_vmlaunch( VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); report_prefix_pop(); } /* Unset a bit when the corresponding bit in fixed0 is 1 */ if (fixed0 & (1ull << i)) { vmcs_write(cr, cr_saved & ~(1ull << i)); report_prefix_pushf("%s %llx", cr_name, cr_saved & ~(1ull << i)); test_vmx_vmlaunch( VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); report_prefix_pop(); } } vmcs_write(cr, cr_saved); } /* * 1. The CR0 field must not set any bit to a value not supported in VMX * operation. * 2. The CR4 field must not set any bit to a value not supported in VMX * operation. * 3. On processors that support Intel 64 architecture, the CR3 field must * be such that bits 63:52 and bits in the range 51:32 beyond the * processor’s physical-address width must be 0. * * [Intel SDM] */ static void test_host_ctl_regs(void) { u64 fixed0, fixed1, cr3, cr3_saved; int i; /* Test CR0 */ fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0); fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1); test_ctl_reg("HOST_CR0", HOST_CR0, fixed0, fixed1); /* Test CR4 */ fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0); fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1) & ~(X86_CR4_SMEP | X86_CR4_SMAP); test_ctl_reg("HOST_CR4", HOST_CR4, fixed0, fixed1); /* Test CR3 */ cr3_saved = vmcs_read(HOST_CR3); for (i = cpuid_maxphyaddr(); i < 64; i++) { cr3 = cr3_saved | (1ul << i); vmcs_write(HOST_CR3, cr3); report_prefix_pushf("HOST_CR3 %lx", cr3); test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); report_prefix_pop(); } vmcs_write(HOST_CR3, cr3_saved); } static void test_efer_vmlaunch(u32 fld, bool ok) { if (fld == HOST_EFER) { if (ok) test_vmx_vmlaunch(0); else test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); } else { if (ok) { enter_guest(); report("vmlaunch succeeds", vmcs_read(EXI_REASON) == VMX_VMCALL); } else { enter_guest_with_invalid_guest_state(); report("vmlaunch fails", vmcs_read(EXI_REASON) == (VMX_ENTRY_FAILURE | VMX_FAIL_STATE)); } advance_guest_state_test(); } } static void test_efer_one(u32 fld, const char * fld_name, u64 efer, u32 ctrl_fld, u64 ctrl, int i, const char *efer_bit_name) { bool ok; ok = true; if (ctrl_fld == EXI_CONTROLS && (ctrl & EXI_LOAD_EFER)) { if (!!(efer & EFER_LMA) != !!(ctrl & EXI_HOST_64)) ok = false; if (!!(efer & EFER_LME) != !!(ctrl & EXI_HOST_64)) ok = false; } if (ctrl_fld == ENT_CONTROLS && (ctrl & ENT_LOAD_EFER)) { /* Check LMA too since CR0.PG is set. */ if (!!(efer & EFER_LMA) != !!(ctrl & ENT_GUEST_64)) ok = false; if (!!(efer & EFER_LME) != !!(ctrl & ENT_GUEST_64)) ok = false; } /* * Skip the test if it would enter the guest in 32-bit mode. * Perhaps write the test in assembly and make sure it * can be run in either mode? */ if (fld == GUEST_EFER && ok && !(ctrl & ENT_GUEST_64)) return; vmcs_write(ctrl_fld, ctrl); vmcs_write(fld, efer); report_prefix_pushf("%s %s bit turned %s, controls %s", fld_name, efer_bit_name, (i & 1) ? "on" : "off", (i & 2) ? "on" : "off"); test_efer_vmlaunch(fld, ok); report_prefix_pop(); } static void test_efer_bit(u32 fld, const char * fld_name, u32 ctrl_fld, u64 ctrl_bit, u64 efer_bit, const char *efer_bit_name) { u64 efer_saved = vmcs_read(fld); u32 ctrl_saved = vmcs_read(ctrl_fld); int i; for (i = 0; i < 4; i++) { u64 efer = efer_saved & ~efer_bit; u64 ctrl = ctrl_saved & ~ctrl_bit; if (i & 1) efer |= efer_bit; if (i & 2) ctrl |= ctrl_bit; test_efer_one(fld, fld_name, efer, ctrl_fld, ctrl, i, efer_bit_name); } vmcs_write(ctrl_fld, ctrl_saved); vmcs_write(fld, efer_saved); } static void test_efer(u32 fld, const char * fld_name, u32 ctrl_fld, u64 ctrl_bit1, u64 ctrl_bit2) { u64 efer_saved = vmcs_read(fld); u32 ctrl_saved = vmcs_read(ctrl_fld); u64 efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); u64 i; u64 efer; if (cpu_has_efer_nx()) efer_reserved_bits &= ~EFER_NX; if (!ctrl_bit1) { printf("\"Load-IA32-EFER\" exit control not supported\n"); goto test_entry_exit_mode; } report_prefix_pushf("%s %lx", fld_name, efer_saved); test_efer_vmlaunch(fld, true); report_prefix_pop(); /* * Check reserved bits */ vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit1); for (i = 0; i < 64; i++) { if ((1ull << i) & efer_reserved_bits) { efer = efer_saved | (1ull << i); vmcs_write(fld, efer); report_prefix_pushf("%s %lx", fld_name, efer); test_efer_vmlaunch(fld, true); report_prefix_pop(); } } vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit1); for (i = 0; i < 64; i++) { if ((1ull << i) & efer_reserved_bits) { efer = efer_saved | (1ull << i); vmcs_write(fld, efer); report_prefix_pushf("%s %lx", fld_name, efer); test_efer_vmlaunch(fld, false); report_prefix_pop(); } } vmcs_write(ctrl_fld, ctrl_saved); vmcs_write(fld, efer_saved); /* * Check LMA and LME bits */ test_efer_bit(fld, fld_name, ctrl_fld, ctrl_bit1, EFER_LMA, "EFER_LMA"); test_efer_bit(fld, fld_name, ctrl_fld, ctrl_bit1, EFER_LME, "EFER_LME"); test_entry_exit_mode: test_efer_bit(fld, fld_name, ctrl_fld, ctrl_bit2, EFER_LMA, "EFER_LMA"); test_efer_bit(fld, fld_name, ctrl_fld, ctrl_bit2, EFER_LME, "EFER_LME"); } /* * If the 'load IA32_EFER' VM-exit control is 1, bits reserved in the * IA32_EFER MSR must be 0 in the field for that register. In addition, * the values of the LMA and LME bits in the field must each be that of * the 'host address-space size' VM-exit control. * * [Intel SDM] */ static void test_host_efer(void) { test_efer(HOST_EFER, "HOST_EFER", EXI_CONTROLS, ctrl_exit_rev.clr & EXI_LOAD_EFER, EXI_HOST_64); } /* * If the 'load IA32_EFER' VM-enter control is 1, bits reserved in the * IA32_EFER MSR must be 0 in the field for that register. In addition, * the values of the LMA and LME bits in the field must each be that of * the 'IA32e-mode guest' VM-exit control. */ static void test_guest_efer(void) { if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) { printf("\"Load-IA32-EFER\" entry control not supported\n"); return; } vmcs_write(GUEST_EFER, rdmsr(MSR_EFER)); test_efer(GUEST_EFER, "GUEST_EFER", ENT_CONTROLS, ctrl_enter_rev.clr & ENT_LOAD_EFER, ENT_GUEST_64); } /* * PAT values higher than 8 are uninteresting since they're likely lumped * in with "8". We only test values above 8 one bit at a time, * in order to reduce the number of VM-Entries and keep the runtime reasonable. */ #define PAT_VAL_LIMIT 8 static void test_pat(u32 field, const char * field_name, u32 ctrl_field, u64 ctrl_bit) { u32 ctrl_saved = vmcs_read(ctrl_field); u64 pat_saved = vmcs_read(field); u64 i, val; u32 j; int error; vmcs_clear_bits(ctrl_field, ctrl_bit); for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) { /* Test PAT0..PAT7 fields */ for (j = 0; j < (i ? 8 : 1); j++) { val = i << j * 8; vmcs_write(field, val); if (field == HOST_PAT) { report_prefix_pushf("%s %lx", field_name, val); test_vmx_vmlaunch(0); report_prefix_pop(); } else { // GUEST_PAT enter_guest(); report_guest_state_test("ENT_LOAD_PAT enabled", VMX_VMCALL, val, "GUEST_PAT"); } } } vmcs_set_bits(ctrl_field, ctrl_bit); for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) { /* Test PAT0..PAT7 fields */ for (j = 0; j < (i ? 8 : 1); j++) { val = i << j * 8; vmcs_write(field, val); if (field == HOST_PAT) { report_prefix_pushf("%s %lx", field_name, val); if (i == 0x2 || i == 0x3 || i >= 0x8) error = VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; else error = 0; test_vmx_vmlaunch(error); report_prefix_pop(); } else { // GUEST_PAT if (i == 0x2 || i == 0x3 || i >= 0x8) { enter_guest_with_invalid_guest_state(); report_guest_state_test("ENT_LOAD_PAT " "enabled", VMX_FAIL_STATE | VMX_ENTRY_FAILURE, val, "GUEST_PAT"); } else { enter_guest(); report_guest_state_test("ENT_LOAD_PAT " "enabled", VMX_VMCALL, val, "GUEST_PAT"); } } } } vmcs_write(ctrl_field, ctrl_saved); vmcs_write(field, pat_saved); } /* * If the "load IA32_PAT" VM-exit control is 1, the value of the field * for the IA32_PAT MSR must be one that could be written by WRMSR * without fault at CPL 0. Specifically, each of the 8 bytes in the * field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), * 6 (WB), or 7 (UC-). * * [Intel SDM] */ static void test_load_host_pat(void) { /* * "load IA32_PAT" VM-exit control */ if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) { printf("\"Load-IA32-PAT\" exit control not supported\n"); return; } test_pat(HOST_PAT, "HOST_PAT", EXI_CONTROLS, EXI_LOAD_PAT); } /* * test_vmcs_field - test a value for the given VMCS field * @field: VMCS field * @field_name: string name of VMCS field * @bit_start: starting bit * @bit_end: ending bit * @val: value that the bit range must or must not contain * @valid_val: whether value given in 'val' must be valid or not * @error: expected VMCS error when vmentry fails for an invalid value */ static void test_vmcs_field(u64 field, const char *field_name, u32 bit_start, u32 bit_end, u64 val, bool valid_val, u32 error) { u64 field_saved = vmcs_read(field); u32 i; u64 tmp; u32 bit_on; u64 mask = ~0ull; mask = (mask >> bit_end) << bit_end; mask = mask | ((1 << bit_start) - 1); tmp = (field_saved & mask) | (val << bit_start); vmcs_write(field, tmp); report_prefix_pushf("%s %lx", field_name, tmp); if (valid_val) test_vmx_vmlaunch(0); else test_vmx_vmlaunch(error); report_prefix_pop(); for (i = bit_start; i <= bit_end; i = i + 2) { bit_on = ((1ull < i) & (val << bit_start)) ? 0 : 1; if (bit_on) tmp = field_saved | (1ull << i); else tmp = field_saved & ~(1ull << i); vmcs_write(field, tmp); report_prefix_pushf("%s %lx", field_name, tmp); if (valid_val) test_vmx_vmlaunch(error); else test_vmx_vmlaunch(0); report_prefix_pop(); } vmcs_write(field, field_saved); } static void test_canonical(u64 field, const char * field_name) { u64 addr_saved = vmcs_read(field); report_prefix_pushf("%s %lx", field_name, addr_saved); if (is_canonical(addr_saved)) { test_vmx_vmlaunch(0); report_prefix_pop(); vmcs_write(field, NONCANONICAL); report_prefix_pushf("%s %llx", field_name, NONCANONICAL); test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); vmcs_write(field, addr_saved); } else { test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); } report_prefix_pop(); } #define TEST_RPL_TI_FLAGS(reg, name) \ test_vmcs_field(reg, name, 0, 2, 0x0, true, \ VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); #define TEST_CS_TR_FLAGS(reg, name) \ test_vmcs_field(reg, name, 3, 15, 0x0000, false, \ VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); /* * 1. In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the * RPL (bits 1:0) and the TI flag (bit 2) must be 0. * 2. The selector fields for CS and TR cannot be 0000H. * 3. The selector field for SS cannot be 0000H if the "host address-space * size" VM-exit control is 0. * 4. On processors that support Intel 64 architecture, the base-address * fields for FS, GS and TR must contain canonical addresses. */ static void test_host_segment_regs(void) { u16 selector_saved; /* * Test RPL and TI flags */ TEST_RPL_TI_FLAGS(HOST_SEL_CS, "HOST_SEL_CS"); TEST_RPL_TI_FLAGS(HOST_SEL_SS, "HOST_SEL_SS"); TEST_RPL_TI_FLAGS(HOST_SEL_DS, "HOST_SEL_DS"); TEST_RPL_TI_FLAGS(HOST_SEL_ES, "HOST_SEL_ES"); TEST_RPL_TI_FLAGS(HOST_SEL_FS, "HOST_SEL_FS"); TEST_RPL_TI_FLAGS(HOST_SEL_GS, "HOST_SEL_GS"); TEST_RPL_TI_FLAGS(HOST_SEL_TR, "HOST_SEL_TR"); /* * Test that CS and TR fields can not be 0x0000 */ TEST_CS_TR_FLAGS(HOST_SEL_CS, "HOST_SEL_CS"); TEST_CS_TR_FLAGS(HOST_SEL_TR, "HOST_SEL_TR"); /* * SS field can not be 0x0000 if "host address-space size" VM-exit * control is 0 */ selector_saved = vmcs_read(HOST_SEL_SS); vmcs_write(HOST_SEL_SS, 0); report_prefix_pushf("HOST_SEL_SS 0"); if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) { test_vmx_vmlaunch(0); } else { test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); } report_prefix_pop(); vmcs_write(HOST_SEL_SS, selector_saved); #ifdef __x86_64__ /* * Base address for FS, GS and TR must be canonical */ test_canonical(HOST_BASE_FS, "HOST_BASE_FS"); test_canonical(HOST_BASE_GS, "HOST_BASE_GS"); test_canonical(HOST_BASE_TR, "HOST_BASE_TR"); #endif } /* * On processors that support Intel 64 architecture, the base-address * fields for GDTR and IDTR must contain canonical addresses. */ static void test_host_desc_tables(void) { #ifdef __x86_64__ test_canonical(HOST_BASE_GDTR, "HOST_BASE_GDTR"); test_canonical(HOST_BASE_IDTR, "HOST_BASE_IDTR"); #endif } /* * If the "host address-space size" VM-exit control is 0, the following must * hold: * - The "IA-32e mode guest" VM-entry control is 0. * - Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0. * - Bits 63:32 in the RIP field are 0. * * If the "host address-space size" VM-exit control is 1, the following must * hold: * - Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1. * - The RIP field contains a canonical address. * */ static void test_host_addr_size(void) { u64 cr4_saved = vmcs_read(HOST_CR4); u64 rip_saved = vmcs_read(HOST_RIP); u64 entry_ctrl_saved = vmcs_read(ENT_CONTROLS); int i; u64 tmp; if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) { vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64); report_prefix_pushf("\"IA-32e mode guest\" enabled"); test_vmx_vmlaunch(0); report_prefix_pop(); vmcs_write(HOST_CR4, cr4_saved | X86_CR4_PCIDE); report_prefix_pushf("\"CR4.PCIDE\" set"); test_vmx_vmlaunch(0); report_prefix_pop(); for (i = 32; i <= 63; i = i + 4) { tmp = rip_saved | 1ull << i; vmcs_write(HOST_RIP, tmp); report_prefix_pushf("HOST_RIP %lx", tmp); test_vmx_vmlaunch(0); report_prefix_pop(); } if (cr4_saved & X86_CR4_PAE) { vmcs_write(HOST_CR4, cr4_saved & ~X86_CR4_PAE); report_prefix_pushf("\"CR4.PAE\" unset"); test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); } else { report_prefix_pushf("\"CR4.PAE\" set"); test_vmx_vmlaunch(0); } report_prefix_pop(); vmcs_write(HOST_RIP, NONCANONICAL); report_prefix_pushf("HOST_RIP %llx", NONCANONICAL); test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); report_prefix_pop(); vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64); vmcs_write(HOST_RIP, rip_saved); vmcs_write(HOST_CR4, cr4_saved); } } /* * Check that the virtual CPU checks the VMX Host State Area as * documented in the Intel SDM. */ static void vmx_host_state_area_test(void) { /* * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will * fail due to invalid guest state, should we make it that * far. */ vmcs_write(GUEST_RFLAGS, 0); test_host_ctl_regs(); test_sysenter_field(HOST_SYSENTER_ESP, "HOST_SYSENTER_ESP"); test_sysenter_field(HOST_SYSENTER_EIP, "HOST_SYSENTER_EIP"); test_host_efer(); test_load_host_pat(); test_host_segment_regs(); test_host_desc_tables(); test_host_addr_size(); } /* * If the "load IA32_PAT" VM-entry control is 1, the value of the field * for the IA32_PAT MSR must be one that could be written by WRMSR * without fault at CPL 0. Specifically, each of the 8 bytes in the * field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), * 6 (WB), or 7 (UC-). * * [Intel SDM] */ static void test_load_guest_pat(void) { /* * "load IA32_PAT" VM-entry control */ if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) { printf("\"Load-IA32-PAT\" entry control not supported\n"); return; } test_pat(GUEST_PAT, "GUEST_PAT", ENT_CONTROLS, ENT_LOAD_PAT); } /* * Check that the virtual CPU checks the VMX Guest State Area as * documented in the Intel SDM. */ static void vmx_guest_state_area_test(void) { vmx_set_test_stage(1); test_set_guest(guest_state_test_main); test_load_guest_pat(); test_guest_efer(); /* * Let the guest finish execution */ vmx_set_test_stage(2); enter_guest(); } static bool valid_vmcs_for_vmentry(void) { struct vmcs *current_vmcs = NULL; if (vmcs_save(¤t_vmcs)) return false; return current_vmcs && !current_vmcs->hdr.shadow_vmcs; } static void try_vmentry_in_movss_shadow(void) { u32 vm_inst_err; u32 flags; bool early_failure = false; u32 expected_flags = X86_EFLAGS_FIXED; bool valid_vmcs = valid_vmcs_for_vmentry(); expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF; /* * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to * unsupported VMCS component"). */ vmcs_write(~0u, 0); __asm__ __volatile__ ("mov %[host_rsp], %%edx;" "vmwrite %%rsp, %%rdx;" "mov 0f, %%rax;" "mov %[host_rip], %%edx;" "vmwrite %%rax, %%rdx;" "mov $-1, %%ah;" "sahf;" "mov %%ss, %%ax;" "mov %%ax, %%ss;" "vmlaunch;" "mov $1, %[early_failure];" "0: lahf;" "movzbl %%ah, %[flags]" : [early_failure] "+r" (early_failure), [flags] "=&a" (flags) : [host_rsp] "i" (HOST_RSP), [host_rip] "i" (HOST_RIP) : "rdx", "cc", "memory"); vm_inst_err = vmcs_read(VMX_INST_ERROR); report("Early VM-entry failure", early_failure); report("RFLAGS[8:0] is %x (actual %x)", flags == expected_flags, expected_flags, flags); if (valid_vmcs) report("VM-instruction error is %d (actual %d)", vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err); } static void vmentry_movss_shadow_test(void) { struct vmcs *orig_vmcs; TEST_ASSERT(!vmcs_save(&orig_vmcs)); /* * Set the launched flag on the current VMCS to verify the correct * error priority, below. */ test_set_guest(v2_null_test_guest); enter_guest(); /* * With bit 1 of the guest's RFLAGS clear, VM-entry should * fail due to invalid guest state (if we make it that far). */ vmcs_write(GUEST_RFLAGS, 0); /* * "VM entry with events blocked by MOV SS" takes precedence over * "VMLAUNCH with non-clear VMCS." */ report_prefix_push("valid current-VMCS"); try_vmentry_in_movss_shadow(); report_prefix_pop(); /* * VMfailInvalid takes precedence over "VM entry with events * blocked by MOV SS." */ TEST_ASSERT(!vmcs_clear(orig_vmcs)); report_prefix_push("no current-VMCS"); try_vmentry_in_movss_shadow(); report_prefix_pop(); TEST_ASSERT(!make_vmcs_current(orig_vmcs)); vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); } static void vmx_cr_load_test(void) { unsigned long cr3, cr4, orig_cr3, orig_cr4; orig_cr4 = read_cr4(); orig_cr3 = read_cr3(); if (!this_cpu_has(X86_FEATURE_PCID)) { report_skip("PCID not detected"); return; } if (!this_cpu_has(X86_FEATURE_MCE)) { report_skip("MCE not detected"); return; } TEST_ASSERT(!(orig_cr3 & X86_CR3_PCID_MASK)); /* Enable PCID for L1. */ cr4 = orig_cr4 | X86_CR4_PCIDE; cr3 = orig_cr3 | 0x1; TEST_ASSERT(!write_cr4_checking(cr4)); write_cr3(cr3); test_set_guest(v2_null_test_guest); vmcs_write(HOST_CR4, cr4); vmcs_write(HOST_CR3, cr3); enter_guest(); /* * No exception is expected. * * NB. KVM loads the last guest write to CR4 into CR4 read * shadow. In order to trigger an exit to KVM, we can toggle a * bit that is owned by KVM. We use CR4.MCE, which shall * have no side effect because normally no guest MCE (e.g., as the * result of bad memory) would happen during this test. */ TEST_ASSERT(!write_cr4_checking(cr4 ^ X86_CR4_MCE)); /* Cleanup L1 state. */ write_cr3(orig_cr3); TEST_ASSERT(!write_cr4_checking(orig_cr4)); } static void vmx_nm_test_guest(void) { write_cr0(read_cr0() | X86_CR0_TS); asm volatile("fnop"); } static void check_nm_exit(const char *test) { u32 reason = vmcs_read(EXI_REASON); u32 intr_info = vmcs_read(EXI_INTR_INFO); const u32 expected = INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | NM_VECTOR; report("%s", reason == VMX_EXC_NMI && intr_info == expected, test); } /* * This test checks that: * * (a) If L2 launches with CR0.TS clear, but later sets CR0.TS, then * a subsequent #NM VM-exit is reflected to L1. * * (b) If L2 launches with CR0.TS clear and CR0.EM set, then a * subsequent #NM VM-exit is reflected to L1. */ static void vmx_nm_test(void) { unsigned long cr0 = read_cr0(); test_set_guest(vmx_nm_test_guest); /* * L1 wants to intercept #NM exceptions encountered in L2. */ vmcs_write(EXC_BITMAP, 1 << NM_VECTOR); /* * Launch L2 with CR0.TS clear, but don't claim host ownership of * any CR0 bits. L2 will set CR0.TS and then try to execute fnop, * which will raise #NM. L0 should reflect the #NM VM-exit to L1. */ vmcs_write(CR0_MASK, 0); vmcs_write(GUEST_CR0, cr0 & ~X86_CR0_TS); enter_guest(); check_nm_exit("fnop with CR0.TS set in L2 triggers #NM VM-exit to L1"); /* * Re-enter L2 at the fnop instruction, with CR0.TS clear but * CR0.EM set. The fnop will still raise #NM, and L0 should * reflect the #NM VM-exit to L1. */ vmcs_write(GUEST_CR0, (cr0 & ~X86_CR0_TS) | X86_CR0_EM); enter_guest(); check_nm_exit("fnop with CR0.EM set in L2 triggers #NM VM-exit to L1"); /* * Re-enter L2 at the fnop instruction, with both CR0.TS and * CR0.EM clear. There will be no #NM, and the L2 guest should * exit normally. */ vmcs_write(GUEST_CR0, cr0 & ~(X86_CR0_TS | X86_CR0_EM)); enter_guest(); } bool vmx_pending_event_ipi_fired; static void vmx_pending_event_ipi_isr(isr_regs_t *regs) { vmx_pending_event_ipi_fired = true; eoi(); } bool vmx_pending_event_guest_run; static void vmx_pending_event_guest(void) { vmcall(); vmx_pending_event_guest_run = true; } static void vmx_pending_event_test_core(bool guest_hlt) { int ipi_vector = 0xf1; vmx_pending_event_ipi_fired = false; handle_irq(ipi_vector, vmx_pending_event_ipi_isr); vmx_pending_event_guest_run = false; test_set_guest(vmx_pending_event_guest); vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT); enter_guest(); skip_exit_vmcall(); if (guest_hlt) vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); irq_disable(); apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_FIXED | ipi_vector, 0); enter_guest(); assert_exit_reason(VMX_EXTINT); report("Guest did not run before host received IPI", !vmx_pending_event_guest_run); irq_enable(); asm volatile ("nop"); irq_disable(); report("Got pending interrupt after IRQ enabled", vmx_pending_event_ipi_fired); if (guest_hlt) vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); enter_guest(); report("Guest finished running when no interrupt", vmx_pending_event_guest_run); } static void vmx_pending_event_test(void) { vmx_pending_event_test_core(false); } static void vmx_pending_event_hlt_test(void) { vmx_pending_event_test_core(true); } static int vmx_window_test_db_count; static void vmx_window_test_db_handler(struct ex_regs *regs) { vmx_window_test_db_count++; } static void vmx_nmi_window_test_guest(void) { handle_exception(DB_VECTOR, vmx_window_test_db_handler); asm volatile("vmcall\n\t" "nop\n\t"); handle_exception(DB_VECTOR, NULL); } static void verify_nmi_window_exit(u64 rip) { u32 exit_reason = vmcs_read(EXI_REASON); report("Exit reason (%d) is 'NMI window'", exit_reason == VMX_NMI_WINDOW, exit_reason); report("RIP (%#lx) is %#lx", vmcs_read(GUEST_RIP) == rip, vmcs_read(GUEST_RIP), rip); vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); } static void vmx_nmi_window_test(void) { u64 nop_addr; void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]); if (!(ctrl_pin_rev.clr & PIN_VIRT_NMI)) { report_skip("CPU does not support the \"Virtual NMIs\" VM-execution control."); return; } if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) { report_skip("CPU does not support the \"NMI-window exiting\" VM-execution control."); return; } vmx_window_test_db_count = 0; report_prefix_push("NMI-window"); test_set_guest(vmx_nmi_window_test_guest); vmcs_set_bits(PIN_CONTROLS, PIN_VIRT_NMI); enter_guest(); skip_exit_vmcall(); nop_addr = vmcs_read(GUEST_RIP); /* * Ask for "NMI-window exiting," and expect an immediate VM-exit. * RIP will not advance. */ report_prefix_push("active, no blocking"); vmcs_set_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW); enter_guest(); verify_nmi_window_exit(nop_addr); report_prefix_pop(); /* * Ask for "NMI-window exiting" in a MOV-SS shadow, and expect * a VM-exit on the next instruction after the nop. (The nop * is one byte.) */ report_prefix_push("active, blocking by MOV-SS"); vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); enter_guest(); verify_nmi_window_exit(nop_addr + 1); report_prefix_pop(); /* * Ask for "NMI-window exiting" (with event injection), and * expect a VM-exit after the event is injected. (RIP should * be at the address specified in the IDT entry for #DB.) */ report_prefix_push("active, no blocking, injecting #DB"); vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); enter_guest(); verify_nmi_window_exit((u64)db_fault_addr); report_prefix_pop(); /* * Ask for "NMI-window exiting" with NMI blocking, and expect * a VM-exit after the next IRET (i.e. after the #DB handler * returns). So, RIP should be back at one byte past the nop. */ report_prefix_push("active, blocking by NMI"); vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_NMI); enter_guest(); verify_nmi_window_exit(nop_addr + 1); report("#DB handler executed once (actual %d times)", vmx_window_test_db_count == 1, vmx_window_test_db_count); report_prefix_pop(); if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) { report_skip("CPU does not support activity state HLT."); } else { /* * Ask for "NMI-window exiting" when entering activity * state HLT, and expect an immediate VM-exit. RIP is * still one byte past the nop. */ report_prefix_push("halted, no blocking"); vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); enter_guest(); verify_nmi_window_exit(nop_addr + 1); report_prefix_pop(); /* * Ask for "NMI-window exiting" when entering activity * state HLT (with event injection), and expect a * VM-exit after the event is injected. (RIP should be * at the address specified in the IDT entry for #DB.) */ report_prefix_push("halted, no blocking, injecting #DB"); vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); enter_guest(); verify_nmi_window_exit((u64)db_fault_addr); report_prefix_pop(); } vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW); enter_guest(); report_prefix_pop(); } static void vmx_intr_window_test_guest(void) { handle_exception(DB_VECTOR, vmx_window_test_db_handler); /* * The two consecutive STIs are to ensure that only the first * one has a shadow. Note that NOP and STI are one byte * instructions. */ asm volatile("vmcall\n\t" "nop\n\t" "sti\n\t" "sti\n\t"); handle_exception(DB_VECTOR, NULL); } static void verify_intr_window_exit(u64 rip) { u32 exit_reason = vmcs_read(EXI_REASON); report("Exit reason (%d) is 'interrupt window'", exit_reason == VMX_INTR_WINDOW, exit_reason); report("RIP (%#lx) is %#lx", vmcs_read(GUEST_RIP) == rip, vmcs_read(GUEST_RIP), rip); vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); } static void vmx_intr_window_test(void) { u64 vmcall_addr; u64 nop_addr; unsigned int orig_db_gate_type; void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]); if (!(ctrl_cpu_rev[0].clr & CPU_INTR_WINDOW)) { report_skip("CPU does not support the \"interrupt-window exiting\" VM-execution control."); return; } /* * Change the IDT entry for #DB from interrupt gate to trap gate, * so that it won't clear RFLAGS.IF. We don't want interrupts to * be disabled after vectoring a #DB. */ orig_db_gate_type = boot_idt[DB_VECTOR].type; boot_idt[DB_VECTOR].type = 15; report_prefix_push("interrupt-window"); test_set_guest(vmx_intr_window_test_guest); enter_guest(); assert_exit_reason(VMX_VMCALL); vmcall_addr = vmcs_read(GUEST_RIP); /* * Ask for "interrupt-window exiting" with RFLAGS.IF set and * no blocking; expect an immediate VM-exit. Note that we have * not advanced past the vmcall instruction yet, so RIP should * point to the vmcall instruction. */ report_prefix_push("active, no blocking, RFLAGS.IF=1"); vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_IF); enter_guest(); verify_intr_window_exit(vmcall_addr); report_prefix_pop(); /* * Ask for "interrupt-window exiting" (with event injection) * with RFLAGS.IF set and no blocking; expect a VM-exit after * the event is injected. That is, RIP should should be at the * address specified in the IDT entry for #DB. */ report_prefix_push("active, no blocking, RFLAGS.IF=1, injecting #DB"); vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); vmcall_addr = vmcs_read(GUEST_RIP); enter_guest(); verify_intr_window_exit((u64)db_fault_addr); report_prefix_pop(); /* * Let the L2 guest run through the IRET, back to the VMCALL. * We have to clear the "interrupt-window exiting" * VM-execution control, or it would just keep causing * VM-exits. Then, advance past the VMCALL and set the * "interrupt-window exiting" VM-execution control again. */ vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); enter_guest(); skip_exit_vmcall(); nop_addr = vmcs_read(GUEST_RIP); vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); /* * Ask for "interrupt-window exiting" in a MOV-SS shadow with * RFLAGS.IF set, and expect a VM-exit on the next * instruction. (NOP is one byte.) */ report_prefix_push("active, blocking by MOV-SS, RFLAGS.IF=1"); vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); enter_guest(); verify_intr_window_exit(nop_addr + 1); report_prefix_pop(); /* * Back up to the NOP and ask for "interrupt-window exiting" * in an STI shadow with RFLAGS.IF set, and expect a VM-exit * on the next instruction. (NOP is one byte.) */ report_prefix_push("active, blocking by STI, RFLAGS.IF=1"); vmcs_write(GUEST_RIP, nop_addr); vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_STI); enter_guest(); verify_intr_window_exit(nop_addr + 1); report_prefix_pop(); /* * Ask for "interrupt-window exiting" with RFLAGS.IF clear, * and expect a VM-exit on the instruction following the STI * shadow. Only the first STI (which is one byte past the NOP) * should have a shadow. The second STI (which is two bytes * past the NOP) has no shadow. Therefore, the interrupt * window opens at three bytes past the NOP. */ report_prefix_push("active, RFLAGS.IF = 0"); vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); enter_guest(); verify_intr_window_exit(nop_addr + 3); report_prefix_pop(); if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) { report_skip("CPU does not support activity state HLT."); } else { /* * Ask for "interrupt-window exiting" when entering * activity state HLT, and expect an immediate * VM-exit. RIP is still three bytes past the nop. */ report_prefix_push("halted, no blocking"); vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); enter_guest(); verify_intr_window_exit(nop_addr + 3); report_prefix_pop(); /* * Ask for "interrupt-window exiting" when entering * activity state HLT (with event injection), and * expect a VM-exit after the event is injected. That * is, RIP should should be at the address specified * in the IDT entry for #DB. */ report_prefix_push("halted, no blocking, injecting #DB"); vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); enter_guest(); verify_intr_window_exit((u64)db_fault_addr); report_prefix_pop(); } boot_idt[DB_VECTOR].type = orig_db_gate_type; vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); enter_guest(); report_prefix_pop(); } #define GUEST_TSC_OFFSET (1u << 30) static u64 guest_tsc; static void vmx_store_tsc_test_guest(void) { guest_tsc = rdtsc(); } /* * This test ensures that when IA32_TSC is in the VM-exit MSR-store * list, the value saved is not subject to the TSC offset that is * applied to RDTSC/RDTSCP/RDMSR(IA32_TSC) in guest execution. */ static void vmx_store_tsc_test(void) { struct vmx_msr_entry msr_entry = { .index = MSR_IA32_TSC }; u64 low, high; if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) { report_skip("'Use TSC offsetting' not supported"); return; } test_set_guest(vmx_store_tsc_test_guest); vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET); vmcs_write(EXI_MSR_ST_CNT, 1); vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(&msr_entry)); vmcs_write(TSC_OFFSET, GUEST_TSC_OFFSET); low = rdtsc(); enter_guest(); high = rdtsc(); report("RDTSC value in the guest (%lu) is in range [%lu, %lu]", low + GUEST_TSC_OFFSET <= guest_tsc && guest_tsc <= high + GUEST_TSC_OFFSET, guest_tsc, low + GUEST_TSC_OFFSET, high + GUEST_TSC_OFFSET); report("IA32_TSC value saved in the VM-exit MSR-store list (%lu) is in range [%lu, %lu]", low <= msr_entry.value && msr_entry.value <= high, msr_entry.value, low, high); } static void vmx_db_test_guest(void) { /* * For a hardware generated single-step #DB. */ asm volatile("vmcall;" "nop;" ".Lpost_nop:"); /* * ...in a MOVSS shadow, with pending debug exceptions. */ asm volatile("vmcall;" "nop;" ".Lpost_movss_nop:"); /* * For an L0 synthesized single-step #DB. (L0 intercepts WBINVD and * emulates it in software.) */ asm volatile("vmcall;" "wbinvd;" ".Lpost_wbinvd:"); /* * ...in a MOVSS shadow, with pending debug exceptions. */ asm volatile("vmcall;" "wbinvd;" ".Lpost_movss_wbinvd:"); /* * For a hardware generated single-step #DB in a transactional region. */ asm volatile("vmcall;" ".Lxbegin: xbegin .Lskip_rtm;" "xend;" ".Lskip_rtm:"); } /* * Clear the pending debug exceptions and RFLAGS.TF and re-enter * L2. No #DB is delivered and L2 continues to the next point of * interest. */ static void dismiss_db(void) { vmcs_write(GUEST_PENDING_DEBUG, 0); vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); enter_guest(); } /* * Check a variety of VMCS fields relevant to an intercepted #DB exception. * Then throw away the #DB exception and resume L2. */ static void check_db_exit(bool xfail_qual, bool xfail_dr6, bool xfail_pdbg, void *expected_rip, u64 expected_exit_qual, u64 expected_dr6) { u32 reason = vmcs_read(EXI_REASON); u32 intr_info = vmcs_read(EXI_INTR_INFO); u64 exit_qual = vmcs_read(EXI_QUALIFICATION); u64 guest_rip = vmcs_read(GUEST_RIP); u64 guest_pending_dbg = vmcs_read(GUEST_PENDING_DEBUG); u64 dr6 = read_dr6(); const u32 expected_intr_info = INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR; report("Expected #DB VM-exit", reason == VMX_EXC_NMI && intr_info == expected_intr_info); report("Expected RIP %p (actual %lx)", (u64)expected_rip == guest_rip, expected_rip, guest_rip); report_xfail("Expected pending debug exceptions 0 (actual %lx)", xfail_pdbg, 0 == guest_pending_dbg, guest_pending_dbg); report_xfail("Expected exit qualification %lx (actual %lx)", xfail_qual, expected_exit_qual == exit_qual, expected_exit_qual, exit_qual); report_xfail("Expected DR6 %lx (actual %lx)", xfail_dr6, expected_dr6 == dr6, expected_dr6, dr6); dismiss_db(); } /* * Assuming the guest has just exited on a VMCALL instruction, skip * over the vmcall, and set the guest's RFLAGS.TF in the VMCS. If * pending debug exceptions are non-zero, set the VMCS up as if the * previous instruction was a MOVSS that generated the indicated * pending debug exceptions. Then enter L2. */ static void single_step_guest(const char *test_name, u64 starting_dr6, u64 pending_debug_exceptions) { printf("\n%s\n", test_name); skip_exit_vmcall(); write_dr6(starting_dr6); vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF); if (pending_debug_exceptions) { vmcs_write(GUEST_PENDING_DEBUG, pending_debug_exceptions); vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); } enter_guest(); } /* * When L1 intercepts #DB, verify that a single-step trap clears * pending debug exceptions, populates the exit qualification field * properly, and that DR6 is not prematurely clobbered. In a * (simulated) MOVSS shadow, make sure that the pending debug * exception bits are properly accumulated into the exit qualification * field. */ static void vmx_db_test(void) { /* * We are going to set a few arbitrary bits in DR6 to verify that * (a) DR6 is not modified by an intercepted #DB, and * (b) stale bits in DR6 (DR6.BD, in particular) don't leak into * the exit qualification field for a subsequent #DB exception. */ const u64 starting_dr6 = DR6_RESERVED | BIT(13) | DR_TRAP3 | DR_TRAP1; extern char post_nop asm(".Lpost_nop"); extern char post_movss_nop asm(".Lpost_movss_nop"); extern char post_wbinvd asm(".Lpost_wbinvd"); extern char post_movss_wbinvd asm(".Lpost_movss_wbinvd"); extern char xbegin asm(".Lxbegin"); extern char skip_rtm asm(".Lskip_rtm"); /* * L1 wants to intercept #DB exceptions encountered in L2. */ vmcs_write(EXC_BITMAP, BIT(DB_VECTOR)); /* * Start L2 and run it up to the first point of interest. */ test_set_guest(vmx_db_test_guest); enter_guest(); /* * Hardware-delivered #DB trap for single-step sets the * standard that L0 has to follow for emulated instructions. */ single_step_guest("Hardware delivered single-step", starting_dr6, 0); check_db_exit(false, false, false, &post_nop, DR_STEP, starting_dr6); /* * Hardware-delivered #DB trap for single-step in MOVSS shadow * also sets the standard that L0 has to follow for emulated * instructions. Here, we establish the VMCS pending debug * exceptions to indicate that the simulated MOVSS triggered a * data breakpoint as well as the single-step trap. */ single_step_guest("Hardware delivered single-step in MOVSS shadow", starting_dr6, BIT(12) | DR_STEP | DR_TRAP0 ); check_db_exit(false, false, false, &post_movss_nop, DR_STEP | DR_TRAP0, starting_dr6); /* * L0 synthesized #DB trap for single-step is buggy, because * kvm (a) clobbers DR6 too early, and (b) tries its best to * reconstitute the exit qualification from the prematurely * modified DR6, but fails miserably. */ single_step_guest("Software synthesized single-step", starting_dr6, 0); check_db_exit(true, true, false, &post_wbinvd, DR_STEP, starting_dr6); /* * L0 synthesized #DB trap for single-step in MOVSS shadow is * even worse, because L0 also leaves the pending debug * exceptions in the VMCS instead of accumulating them into * the exit qualification field for the #DB exception. */ single_step_guest("Software synthesized single-step in MOVSS shadow", starting_dr6, BIT(12) | DR_STEP | DR_TRAP0); check_db_exit(true, true, true, &post_movss_wbinvd, DR_STEP | DR_TRAP0, starting_dr6); /* * Optional RTM test for hardware that supports RTM, to * demonstrate that the current volume 3 of the SDM * (325384-067US), table 27-1 is incorrect. Bit 16 of the exit * qualification for debug exceptions is not reserved. It is * set to 1 if a debug exception (#DB) or a breakpoint * exception (#BP) occurs inside an RTM region while advanced * debugging of RTM transactional regions is enabled. */ if (this_cpu_has(X86_FEATURE_RTM)) { vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS); /* * Set DR7.RTM[bit 11] and IA32_DEBUGCTL.RTM[bit 15] * in the guest to enable advanced debugging of RTM * transactional regions. */ vmcs_write(GUEST_DR7, BIT(11)); vmcs_write(GUEST_DEBUGCTL, BIT(15)); single_step_guest("Hardware delivered single-step in " "transactional region", starting_dr6, 0); check_db_exit(false, false, false, &xbegin, BIT(16), starting_dr6); } else { vmcs_write(GUEST_RIP, (u64)&skip_rtm); enter_guest(); } } static void enable_vid(void) { void *virtual_apic_page; assert(cpu_has_apicv()); disable_intercept_for_x2apic_msrs(); virtual_apic_page = alloc_page(); vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page); vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT); vmcs_write(EOI_EXIT_BITMAP0, 0x0); vmcs_write(EOI_EXIT_BITMAP1, 0x0); vmcs_write(EOI_EXIT_BITMAP2, 0x0); vmcs_write(EOI_EXIT_BITMAP3, 0x0); vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW); vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC); } static void trigger_ioapic_scan_thread(void *data) { /* Wait until other CPU entered L2 */ while (vmx_get_test_stage() != 1) ; /* Trigger ioapic scan */ ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL); vmx_set_test_stage(2); } static void irq_79_handler_guest(isr_regs_t *regs) { eoi(); /* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */ vmcall(); } /* * Constant for num of busy-loop iterations after which * a timer interrupt should have happened in host */ #define TIMER_INTERRUPT_DELAY 100000000 static void vmx_eoi_bitmap_ioapic_scan_test_guest(void) { handle_irq(0x79, irq_79_handler_guest); irq_enable(); /* Signal to L1 CPU to trigger ioapic scan */ vmx_set_test_stage(1); /* Wait until L1 CPU to trigger ioapic scan */ while (vmx_get_test_stage() != 2) ; /* * Wait for L0 timer interrupt to be raised while we run in L2 * such that L0 will process the IOAPIC scan request before * resuming L2 */ delay(TIMER_INTERRUPT_DELAY); asm volatile ("int $0x79"); } static void vmx_eoi_bitmap_ioapic_scan_test(void) { if (!cpu_has_apicv() || (cpu_count() < 2)) { report_skip(__func__); return; } enable_vid(); on_cpu_async(1, trigger_ioapic_scan_thread, NULL); test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest); /* * Launch L2. * We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED). * In case the reason isn't VMX_VMCALL, the asserion inside * skip_exit_vmcall() will fail. */ enter_guest(); skip_exit_vmcall(); /* Let L2 finish */ enter_guest(); report(__func__, 1); } #define HLT_WITH_RVI_VECTOR (0xf1) bool vmx_hlt_with_rvi_guest_isr_fired; static void vmx_hlt_with_rvi_guest_isr(isr_regs_t *regs) { vmx_hlt_with_rvi_guest_isr_fired = true; eoi(); } static void vmx_hlt_with_rvi_guest(void) { handle_irq(HLT_WITH_RVI_VECTOR, vmx_hlt_with_rvi_guest_isr); irq_enable(); asm volatile ("nop"); vmcall(); } static void vmx_hlt_with_rvi_test(void) { if (!cpu_has_apicv()) { report_skip(__func__); return; } enable_vid(); vmx_hlt_with_rvi_guest_isr_fired = false; test_set_guest(vmx_hlt_with_rvi_guest); enter_guest(); skip_exit_vmcall(); vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); vmcs_write(GUEST_INT_STATUS, HLT_WITH_RVI_VECTOR); enter_guest(); report("Interrupt raised in guest", vmx_hlt_with_rvi_guest_isr_fired); } static void set_irq_line_thread(void *data) { /* Wait until other CPU entered L2 */ while (vmx_get_test_stage() != 1) ; /* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */ ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL); vmx_set_test_stage(2); } static bool irq_78_handler_vmcall_before_eoi; static void irq_78_handler_guest(isr_regs_t *regs) { set_irq_line(0xf, 0); if (irq_78_handler_vmcall_before_eoi) vmcall(); eoi(); vmcall(); } static void vmx_apic_passthrough_guest(void) { handle_irq(0x78, irq_78_handler_guest); irq_enable(); /* If requested, wait for other CPU to trigger ioapic scan */ if (vmx_get_test_stage() < 1) { vmx_set_test_stage(1); while (vmx_get_test_stage() != 2) ; } set_irq_line(0xf, 1); } static void vmx_apic_passthrough(bool set_irq_line_from_thread) { if (set_irq_line_from_thread && (cpu_count() < 2)) { report_skip(__func__); return; } /* Test device is required for generating IRQs */ if (!test_device_enabled()) { report_skip(__func__); return; } u64 cpu_ctrl_0 = CPU_SECONDARY; u64 cpu_ctrl_1 = 0; disable_intercept_for_x2apic_msrs(); vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); if (set_irq_line_from_thread) { irq_78_handler_vmcall_before_eoi = false; on_cpu_async(1, set_irq_line_thread, NULL); } else { irq_78_handler_vmcall_before_eoi = true; ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL); vmx_set_test_stage(2); } test_set_guest(vmx_apic_passthrough_guest); if (irq_78_handler_vmcall_before_eoi) { /* Before EOI remote_irr should still be set */ enter_guest(); skip_exit_vmcall(); TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr, "IOAPIC pass-through: remote_irr=1 before EOI"); } /* After EOI remote_irr should be cleared */ enter_guest(); skip_exit_vmcall(); TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr, "IOAPIC pass-through: remote_irr=0 after EOI"); /* Let L2 finish */ enter_guest(); report(__func__, 1); } static void vmx_apic_passthrough_test(void) { vmx_apic_passthrough(false); } static void vmx_apic_passthrough_thread_test(void) { vmx_apic_passthrough(true); } static void vmx_apic_passthrough_tpr_threshold_guest(void) { cli(); apic_set_tpr(0); } static bool vmx_apic_passthrough_tpr_threshold_ipi_isr_fired; static void vmx_apic_passthrough_tpr_threshold_ipi_isr(isr_regs_t *regs) { vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = true; eoi(); } static void vmx_apic_passthrough_tpr_threshold_test(void) { int ipi_vector = 0xe1; disable_intercept_for_x2apic_msrs(); vmcs_clear_bits(PIN_CONTROLS, PIN_EXTINT); /* Raise L0 TPR-threshold by queueing vector in LAPIC IRR */ cli(); apic_set_tpr((ipi_vector >> 4) + 1); apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_FIXED | ipi_vector, 0); test_set_guest(vmx_apic_passthrough_tpr_threshold_guest); enter_guest(); report("TPR was zero by guest", apic_get_tpr() == 0); /* Clean pending self-IPI */ vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = false; handle_irq(ipi_vector, vmx_apic_passthrough_tpr_threshold_ipi_isr); sti(); asm volatile ("nop"); report("self-IPI fired", vmx_apic_passthrough_tpr_threshold_ipi_isr_fired); report(__func__, 1); } static u64 init_signal_test_exit_reason; static bool init_signal_test_thread_continued; static void init_signal_test_thread(void *data) { struct vmcs *test_vmcs = data; /* Enter VMX operation (i.e. exec VMXON) */ u64 *ap_vmxon_region = alloc_page(); enable_vmx(); init_vmx(ap_vmxon_region); _vmx_on(ap_vmxon_region); /* Signal CPU have entered VMX operation */ vmx_set_test_stage(1); /* Wait for BSP CPU to send INIT signal */ while (vmx_get_test_stage() != 2) ; /* * Signal that we continue as usual as INIT signal * should be blocked while CPU is in VMX operation */ vmx_set_test_stage(3); /* Wait for signal to enter VMX non-root mode */ while (vmx_get_test_stage() != 4) ; /* Enter VMX non-root mode */ test_set_guest(v2_null_test_guest); make_vmcs_current(test_vmcs); enter_guest(); /* Save exit reason for BSP CPU to compare to expected result */ init_signal_test_exit_reason = vmcs_read(EXI_REASON); /* VMCLEAR test-vmcs so it could be loaded by BSP CPU */ vmcs_clear(test_vmcs); launched = false; /* Signal that CPU exited to VMX root mode */ vmx_set_test_stage(5); /* Wait for signal to exit VMX operation */ while (vmx_get_test_stage() != 6) ; /* Exit VMX operation (i.e. exec VMXOFF) */ vmx_off(); /* * Exiting VMX operation should result in latched * INIT signal being processed. Therefore, we should * never reach the below code. Thus, signal to BSP * CPU if we have reached here so it is able to * report an issue if it happens. */ init_signal_test_thread_continued = true; } #define INIT_SIGNAL_TEST_DELAY 100000000ULL static void vmx_init_signal_test(void) { struct vmcs *test_vmcs; if (cpu_count() < 2) { report_skip(__func__); return; } /* VMCLEAR test-vmcs so it could be loaded by other CPU */ vmcs_save(&test_vmcs); vmcs_clear(test_vmcs); vmx_set_test_stage(0); on_cpu_async(1, init_signal_test_thread, test_vmcs); /* Wait for other CPU to enter VMX operation */ while (vmx_get_test_stage() != 1) ; /* Send INIT signal to other CPU */ apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT, id_map[1]); /* Signal other CPU we have sent INIT signal */ vmx_set_test_stage(2); /* * Wait reasonable amount of time for INIT signal to * be received on other CPU and verify that other CPU * have proceed as usual to next test stage as INIT * signal should be blocked while other CPU in * VMX operation */ delay(INIT_SIGNAL_TEST_DELAY); report("INIT signal blocked when CPU in VMX operation", vmx_get_test_stage() == 3); /* No point to continue if we failed at this point */ if (vmx_get_test_stage() != 3) return; /* Signal other CPU to enter VMX non-root mode */ init_signal_test_exit_reason = -1ull; vmx_set_test_stage(4); /* * Wait reasonable amont of time for other CPU * to exit to VMX root mode */ delay(INIT_SIGNAL_TEST_DELAY); if (vmx_get_test_stage() != 5) { report("Pending INIT signal didn't result in VMX exit", false); return; } report("INIT signal during VMX non-root mode result in exit-reason %s (%lu)", init_signal_test_exit_reason == VMX_INIT, exit_reason_description(init_signal_test_exit_reason), init_signal_test_exit_reason); /* Run guest to completion */ make_vmcs_current(test_vmcs); enter_guest(); /* Signal other CPU to exit VMX operation */ init_signal_test_thread_continued = false; vmx_set_test_stage(6); /* * Wait reasonable amount of time for other CPU * to run after INIT signal was processed */ delay(INIT_SIGNAL_TEST_DELAY); report("INIT signal processed after exit VMX operation", !init_signal_test_thread_continued); /* * TODO: Send SIPI to other CPU to sipi_entry (See x86/cstart64.S) * to re-init it to kvm-unit-tests standard environment. * Somehow (?) verify that SIPI was indeed received. */ } enum vmcs_access { ACCESS_VMREAD, ACCESS_VMWRITE, ACCESS_NONE, }; struct vmcs_shadow_test_common { enum vmcs_access op; enum Reason reason; u64 field; u64 value; u64 flags; u64 time; } l1_l2_common; static inline u64 vmread_flags(u64 field, u64 *val) { u64 flags; asm volatile ("vmread %2, %1; pushf; pop %0" : "=r" (flags), "=rm" (*val) : "r" (field) : "cc"); return flags & X86_EFLAGS_ALU; } static inline u64 vmwrite_flags(u64 field, u64 val) { u64 flags; asm volatile ("vmwrite %1, %2; pushf; pop %0" : "=r"(flags) : "rm" (val), "r" (field) : "cc"); return flags & X86_EFLAGS_ALU; } static void vmx_vmcs_shadow_test_guest(void) { struct vmcs_shadow_test_common *c = &l1_l2_common; u64 start; while (c->op != ACCESS_NONE) { start = rdtsc(); switch (c->op) { default: c->flags = -1ull; break; case ACCESS_VMREAD: c->flags = vmread_flags(c->field, &c->value); break; case ACCESS_VMWRITE: c->flags = vmwrite_flags(c->field, 0); break; } c->time = rdtsc() - start; vmcall(); } } static u64 vmread_from_shadow(u64 field) { struct vmcs *primary; struct vmcs *shadow; u64 value; TEST_ASSERT(!vmcs_save(&primary)); shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); TEST_ASSERT(!make_vmcs_current(shadow)); value = vmcs_read(field); TEST_ASSERT(!make_vmcs_current(primary)); return value; } static u64 vmwrite_to_shadow(u64 field, u64 value) { struct vmcs *primary; struct vmcs *shadow; TEST_ASSERT(!vmcs_save(&primary)); shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); TEST_ASSERT(!make_vmcs_current(shadow)); vmcs_write(field, value); value = vmcs_read(field); TEST_ASSERT(!make_vmcs_current(primary)); return value; } static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access) { struct vmcs_shadow_test_common *c = &l1_l2_common; c->op = access; vmcs_write(VMX_INST_ERROR, 0); enter_guest(); c->reason = vmcs_read(EXI_REASON) & 0xffff; if (c->reason != VMX_VMCALL) { skip_exit_insn(); enter_guest(); } skip_exit_vmcall(); } static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field) { struct vmcs_shadow_test_common *c = &l1_l2_common; struct vmcs *shadow; u64 value; uintptr_t flags[2]; bool good_shadow; u32 vmx_inst_error; report_prefix_pushf("field %lx", field); c->field = field; shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); if (shadow != (struct vmcs *)-1ull) { flags[ACCESS_VMREAD] = vmread_flags(field, &value); flags[ACCESS_VMWRITE] = vmwrite_flags(field, value); good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE]; } else { /* * When VMCS link pointer is -1ull, VMWRITE/VMREAD on * shadowed-fields should fail with setting RFLAGS.CF. */ flags[ACCESS_VMREAD] = X86_EFLAGS_CF; flags[ACCESS_VMWRITE] = X86_EFLAGS_CF; good_shadow = false; } /* Intercept both VMREAD and VMWRITE. */ report_prefix_push("no VMREAD/VMWRITE permission"); /* VMWRITE/VMREAD done on reserved-bit should always intercept */ if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) { set_bit(field, bitmap[ACCESS_VMREAD]); set_bit(field, bitmap[ACCESS_VMWRITE]); } vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); report("not shadowed for VMWRITE", c->reason == VMX_VMWRITE); vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); report("not shadowed for VMREAD", c->reason == VMX_VMREAD); report_prefix_pop(); if (field >> VMCS_FIELD_RESERVED_SHIFT) goto out; /* Permit shadowed VMREAD. */ report_prefix_push("VMREAD permission only"); clear_bit(field, bitmap[ACCESS_VMREAD]); set_bit(field, bitmap[ACCESS_VMWRITE]); if (good_shadow) value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field); vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); report("not shadowed for VMWRITE", c->reason == VMX_VMWRITE); vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); vmx_inst_error = vmcs_read(VMX_INST_ERROR); report("shadowed for VMREAD (in %ld cycles)", c->reason == VMX_VMCALL, c->time); report("ALU flags after VMREAD (%lx) are as expected (%lx)", c->flags == flags[ACCESS_VMREAD], c->flags, flags[ACCESS_VMREAD]); if (good_shadow) report("value read from shadow (%lx) is as expected (%lx)", c->value == value, c->value, value); else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD]) report("VMX_INST_ERROR (%d) is as expected (%d)", vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); report_prefix_pop(); /* Permit shadowed VMWRITE. */ report_prefix_push("VMWRITE permission only"); set_bit(field, bitmap[ACCESS_VMREAD]); clear_bit(field, bitmap[ACCESS_VMWRITE]); if (good_shadow) vmwrite_to_shadow(field, MAGIC_VAL_1 + field); vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); vmx_inst_error = vmcs_read(VMX_INST_ERROR); report("shadowed for VMWRITE (in %ld cycles)", c->reason == VMX_VMCALL, c->time); report("ALU flags after VMWRITE (%lx) are as expected (%lx)", c->flags == flags[ACCESS_VMREAD], c->flags, flags[ACCESS_VMREAD]); if (good_shadow) { value = vmread_from_shadow(field); report("shadow VMCS value (%lx) is as expected (%lx)", value == 0, value, 0ul); } else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) { report("VMX_INST_ERROR (%d) is as expected (%d)", vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); } vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); report("not shadowed for VMREAD", c->reason == VMX_VMREAD); report_prefix_pop(); /* Permit shadowed VMREAD and VMWRITE. */ report_prefix_push("VMREAD and VMWRITE permission"); clear_bit(field, bitmap[ACCESS_VMREAD]); clear_bit(field, bitmap[ACCESS_VMWRITE]); if (good_shadow) vmwrite_to_shadow(field, MAGIC_VAL_1 + field); vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); vmx_inst_error = vmcs_read(VMX_INST_ERROR); report("shadowed for VMWRITE (in %ld cycles)", c->reason == VMX_VMCALL, c->time); report("ALU flags after VMWRITE (%lx) are as expected (%lx)", c->flags == flags[ACCESS_VMREAD], c->flags, flags[ACCESS_VMREAD]); if (good_shadow) { value = vmread_from_shadow(field); report("shadow VMCS value (%lx) is as expected (%lx)", value == 0, value, 0ul); } else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) { report("VMX_INST_ERROR (%d) is as expected (%d)", vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); } vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); vmx_inst_error = vmcs_read(VMX_INST_ERROR); report("shadowed for VMREAD (in %ld cycles)", c->reason == VMX_VMCALL, c->time); report("ALU flags after VMREAD (%lx) are as expected (%lx)", c->flags == flags[ACCESS_VMREAD], c->flags, flags[ACCESS_VMREAD]); if (good_shadow) report("value read from shadow (%lx) is as expected (%lx)", c->value == 0, c->value, 0ul); else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD]) report("VMX_INST_ERROR (%d) is as expected (%d)", vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); report_prefix_pop(); out: report_prefix_pop(); } static void vmx_vmcs_shadow_test_body(u8 *bitmap[2]) { unsigned base; unsigned index; unsigned bit; unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM); /* Run test on all possible valid VMCS fields */ for (base = 0; base < (1 << VMCS_FIELD_RESERVED_SHIFT); base += (1 << VMCS_FIELD_TYPE_SHIFT)) for (index = 0; index <= highest_index; index++) vmcs_shadow_test_field(bitmap, base + index); /* * Run tests on some invalid VMCS fields * (Have reserved bit set). */ for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++) vmcs_shadow_test_field(bitmap, (1ull << bit)); } static void vmx_vmcs_shadow_test(void) { u8 *bitmap[2]; struct vmcs *shadow; if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) { printf("\t'Activate secondary controls' not supported.\n"); return; } if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) { printf("\t'VMCS shadowing' not supported.\n"); return; } if (!(rdmsr(MSR_IA32_VMX_MISC) & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) { printf("\tVMWRITE can't modify VM-exit information fields.\n"); return; } test_set_guest(vmx_vmcs_shadow_test_guest); bitmap[ACCESS_VMREAD] = alloc_page(); bitmap[ACCESS_VMWRITE] = alloc_page(); vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD])); vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE])); shadow = alloc_page(); shadow->hdr.revision_id = basic.revision; shadow->hdr.shadow_vmcs = 1; TEST_ASSERT(!vmcs_clear(shadow)); vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC); vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY); vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS); vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow)); report_prefix_push("valid link pointer"); vmx_vmcs_shadow_test_body(bitmap); report_prefix_pop(); vmcs_write(VMCS_LINK_PTR, -1ull); report_prefix_push("invalid link pointer"); vmx_vmcs_shadow_test_body(bitmap); report_prefix_pop(); l1_l2_common.op = ACCESS_NONE; enter_guest(); } static int invalid_msr_init(struct vmcs *vmcs) { if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { printf("\tPreemption timer is not supported\n"); return VMX_TEST_EXIT; } vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); preempt_val = 10000000; vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F; if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT)) printf("\tSave preemption value is not supported\n"); vmcs_write(ENT_MSR_LD_CNT, 1); vmcs_write(ENTER_MSR_LD_ADDR, (u64)0x13370000); return VMX_TEST_START; } static void invalid_msr_main(void) { report("Invalid MSR load", 0); } static int invalid_msr_exit_handler(void) { report("Invalid MSR load", 0); print_vmexit_info(); return VMX_TEST_EXIT; } static int invalid_msr_entry_failure(struct vmentry_failure *failure) { ulong reason; reason = vmcs_read(EXI_REASON); report("Invalid MSR load", reason == (0x80000000u | VMX_FAIL_MSR)); return VMX_TEST_VMEXIT; } /* * The max number of MSRs in an atomic switch MSR list is: * (111B + 1) * 512 = 4096 * * Each list entry consumes: * 4-byte MSR index + 4 bytes reserved + 8-byte data = 16 bytes * * Allocate 128 kB to cover max_msr_list_size (i.e., 64 kB) and then some. */ static const u32 msr_list_page_order = 5; static void atomic_switch_msr_limit_test_guest(void) { vmcall(); } static void populate_msr_list(struct vmx_msr_entry *msr_list, size_t byte_capacity, int count) { int i; for (i = 0; i < count; i++) { msr_list[i].index = MSR_IA32_TSC; msr_list[i].reserved = 0; msr_list[i].value = 0x1234567890abcdef; } memset(msr_list + count, 0xff, byte_capacity - count * sizeof(*msr_list)); } static int max_msr_list_size(void) { u32 vmx_misc = rdmsr(MSR_IA32_VMX_MISC); u32 factor = ((vmx_misc & GENMASK(27, 25)) >> 25) + 1; return factor * 512; } static void atomic_switch_msrs_test(int count) { struct vmx_msr_entry *vm_enter_load; struct vmx_msr_entry *vm_exit_load; struct vmx_msr_entry *vm_exit_store; int max_allowed = max_msr_list_size(); int byte_capacity = 1ul << (msr_list_page_order + PAGE_SHIFT); /* Exceeding the max MSR list size at exit trigers KVM to abort. */ int exit_count = count > max_allowed ? max_allowed : count; int cleanup_count = count > max_allowed ? 2 : 1; int i; /* * Check for the IA32_TSC MSR, * available with the "TSC flag" and used to populate the MSR lists. */ if (!(cpuid(1).d & (1 << 4))) { report_skip(__func__); return; } /* Set L2 guest. */ test_set_guest(atomic_switch_msr_limit_test_guest); /* Setup atomic MSR switch lists. */ vm_enter_load = alloc_pages(msr_list_page_order); vm_exit_load = alloc_pages(msr_list_page_order); vm_exit_store = alloc_pages(msr_list_page_order); vmcs_write(ENTER_MSR_LD_ADDR, (u64)vm_enter_load); vmcs_write(EXIT_MSR_LD_ADDR, (u64)vm_exit_load); vmcs_write(EXIT_MSR_ST_ADDR, (u64)vm_exit_store); /* * VM-Enter should succeed up to the max number of MSRs per list, and * should not consume junk beyond the last entry. */ populate_msr_list(vm_enter_load, byte_capacity, count); populate_msr_list(vm_exit_load, byte_capacity, exit_count); populate_msr_list(vm_exit_store, byte_capacity, exit_count); vmcs_write(ENT_MSR_LD_CNT, count); vmcs_write(EXI_MSR_LD_CNT, exit_count); vmcs_write(EXI_MSR_ST_CNT, exit_count); if (count <= max_allowed) { enter_guest(); assert_exit_reason(VMX_VMCALL); skip_exit_vmcall(); } else { u32 exit_reason; u32 exit_reason_want; u32 exit_qual; enter_guest_with_invalid_guest_state(); exit_reason = vmcs_read(EXI_REASON); exit_reason_want = VMX_FAIL_MSR | VMX_ENTRY_FAILURE; report("exit_reason, %u, is %u.", exit_reason == exit_reason_want, exit_reason, exit_reason_want); exit_qual = vmcs_read(EXI_QUALIFICATION); report("exit_qual, %u, is %u.", exit_qual == max_allowed + 1, exit_qual, max_allowed + 1); } /* Cleanup. */ vmcs_write(ENT_MSR_LD_CNT, 0); vmcs_write(EXI_MSR_LD_CNT, 0); vmcs_write(EXI_MSR_ST_CNT, 0); for (i = 0; i < cleanup_count; i++) { enter_guest(); skip_exit_vmcall(); } free_pages_by_order(vm_enter_load, msr_list_page_order); free_pages_by_order(vm_exit_load, msr_list_page_order); free_pages_by_order(vm_exit_store, msr_list_page_order); } static void atomic_switch_max_msrs_test(void) { atomic_switch_msrs_test(max_msr_list_size()); } static void atomic_switch_overflow_msrs_test(void) { atomic_switch_msrs_test(max_msr_list_size() + 1); } #define TEST(name) { #name, .v2 = name } /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */ struct vmx_test vmx_tests[] = { { "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} }, { "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} }, { "preemption timer", preemption_timer_init, preemption_timer_main, preemption_timer_exit_handler, NULL, {0} }, { "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main, test_ctrl_pat_exit_handler, NULL, {0} }, { "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main, test_ctrl_efer_exit_handler, NULL, {0} }, { "CR shadowing", NULL, cr_shadowing_main, cr_shadowing_exit_handler, NULL, {0} }, { "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler, NULL, {0} }, { "instruction intercept", insn_intercept_init, insn_intercept_main, insn_intercept_exit_handler, NULL, {0} }, { "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} }, { "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} }, { "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} }, { "VPID", vpid_init, vpid_main, vpid_exit_handler, NULL, {0} }, { "interrupt", interrupt_init, interrupt_main, interrupt_exit_handler, NULL, {0} }, { "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler, NULL, {0} }, { "MSR switch", msr_switch_init, msr_switch_main, msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure }, { "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} }, { "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main, disable_rdtscp_exit_handler, NULL, {0} }, { "int3", int3_init, int3_guest_main, int3_exit_handler, NULL, {0} }, { "into", into_init, into_guest_main, into_exit_handler, NULL, {0} }, { "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main, exit_monitor_from_l2_handler, NULL, {0} }, { "invalid_msr", invalid_msr_init, invalid_msr_main, invalid_msr_exit_handler, NULL, {0}, invalid_msr_entry_failure}, /* Basic V2 tests. */ TEST(v2_null_test), TEST(v2_multiple_entries_test), TEST(fixture_test_case1), TEST(fixture_test_case2), /* Opcode tests. */ TEST(invvpid_test_v2), /* VM-entry tests */ TEST(vmx_controls_test), TEST(vmx_host_state_area_test), TEST(vmx_guest_state_area_test), TEST(vmentry_movss_shadow_test), /* APICv tests */ TEST(vmx_eoi_bitmap_ioapic_scan_test), TEST(vmx_hlt_with_rvi_test), TEST(apic_reg_virt_test), TEST(virt_x2apic_mode_test), /* APIC pass-through tests */ TEST(vmx_apic_passthrough_test), TEST(vmx_apic_passthrough_thread_test), TEST(vmx_apic_passthrough_tpr_threshold_test), TEST(vmx_init_signal_test), /* VMCS Shadowing tests */ TEST(vmx_vmcs_shadow_test), /* Regression tests */ TEST(vmx_cr_load_test), TEST(vmx_nm_test), TEST(vmx_db_test), TEST(vmx_nmi_window_test), TEST(vmx_intr_window_test), TEST(vmx_pending_event_test), TEST(vmx_pending_event_hlt_test), TEST(vmx_store_tsc_test), /* EPT access tests. */ TEST(ept_access_test_not_present), TEST(ept_access_test_read_only), TEST(ept_access_test_write_only), TEST(ept_access_test_read_write), TEST(ept_access_test_execute_only), TEST(ept_access_test_read_execute), TEST(ept_access_test_write_execute), TEST(ept_access_test_read_write_execute), TEST(ept_access_test_reserved_bits), TEST(ept_access_test_ignored_bits), TEST(ept_access_test_paddr_not_present_ad_disabled), TEST(ept_access_test_paddr_not_present_ad_enabled), TEST(ept_access_test_paddr_read_only_ad_disabled), TEST(ept_access_test_paddr_read_only_ad_enabled), TEST(ept_access_test_paddr_read_write), TEST(ept_access_test_paddr_read_write_execute), TEST(ept_access_test_paddr_read_execute_ad_disabled), TEST(ept_access_test_paddr_read_execute_ad_enabled), TEST(ept_access_test_paddr_not_present_page_fault), TEST(ept_access_test_force_2m_page), /* Atomic MSR switch tests. */ TEST(atomic_switch_max_msrs_test), TEST(atomic_switch_overflow_msrs_test), { NULL, NULL, NULL, NULL, NULL, {0} }, };