xref: /kvm-unit-tests/x86/lam.c (revision dca3f4c041143c8e8dc70c6890a19a5730310230)
1 /*
2  * Intel LAM unit test
3  *
4  * Copyright (C) 2023 Intel
5  *
6  * Author: Robert Hoo <robert.hu@linux.intel.com>
7  *         Binbin Wu <binbin.wu@linux.intel.com>
8  *
9  * This work is licensed under the terms of the GNU LGPL, version 2 or
10  * later.
11  */
12 
13 #include "libcflat.h"
14 #include "processor.h"
15 #include "desc.h"
16 #include "vmalloc.h"
17 #include "alloc_page.h"
18 #include "vm.h"
19 #include "asm/io.h"
20 #include "ioram.h"
21 
test_cr4_lam_set_clear(void)22 static void test_cr4_lam_set_clear(void)
23 {
24 	int vector;
25 	bool has_lam = this_cpu_has(X86_FEATURE_LAM);
26 
27 	vector = write_cr4_safe(read_cr4() | X86_CR4_LAM_SUP);
28 	report(has_lam ? !vector : vector == GP_VECTOR,
29 	       "Expected CR4.LAM_SUP=1 to %s", has_lam ? "succeed" : "#GP");
30 
31 	vector = write_cr4_safe(read_cr4() & ~X86_CR4_LAM_SUP);
32 	report(!vector, "Expected CR4.LAM_SUP=0 to succeed");
33 }
34 
35 /* Refer to emulator.c */
do_mov(void * mem)36 static void do_mov(void *mem)
37 {
38 	unsigned long t1, t2;
39 
40 	t1 = 0x123456789abcdefull & -1ul;
41 	asm volatile("mov %[t1], (%[mem])\n\t"
42 		     "mov (%[mem]), %[t2]"
43 		     : [t2]"=r"(t2)
44 		     : [t1]"r"(t1), [mem]"r"(mem)
45 		     : "memory");
46 	report(t1 == t2, "Mov result check");
47 }
48 
get_lam_mask(u64 address,u64 * lam_mask)49 static bool get_lam_mask(u64 address, u64* lam_mask)
50 {
51 	/*
52 	 * Use LAM57_MASK as mask to construct non-canonical address if LAM is
53 	 * not supported or enabled.
54 	 */
55 	*lam_mask = LAM57_MASK;
56 
57 	/*
58 	 * Bit 63 determines if the address should be treated as a user address
59 	 * or a supervisor address.
60 	 */
61 	if (address & BIT_ULL(63)) {
62 		if (!(is_lam_sup_enabled()))
63 			return false;
64 
65 		if (!is_la57_enabled())
66 			*lam_mask = LAM48_MASK;
67 		return true;
68 	}
69 
70 	if(is_lam_u48_enabled()) {
71 		*lam_mask = LAM48_MASK;
72 		return true;
73 	}
74 
75 	if(is_lam_u57_enabled())
76 		return true;
77 
78 	return false;
79 }
80 
81 
test_ptr(u64 * ptr,bool is_mmio)82 static void test_ptr(u64* ptr, bool is_mmio)
83 {
84 	u64 lam_mask;
85 	bool lam_active, fault;
86 
87 	lam_active = get_lam_mask((u64)ptr, &lam_mask);
88 
89 	fault = test_for_exception(GP_VECTOR, do_mov, ptr);
90 	report(!fault, "Expected access to untagged address for %s to succeed",
91 	       is_mmio ? "MMIO" : "memory");
92 
93 	ptr = (u64 *)get_non_canonical((u64)ptr, lam_mask);
94 	fault = test_for_exception(GP_VECTOR, do_mov, ptr);
95 	report(fault != lam_active, "Expected access to tagged address for %s %s LAM to %s",
96 	       is_mmio ? "MMIO" : "memory", lam_active ? "with" : "without",
97 	       lam_active ? "succeed" : "#GP");
98 
99 	/*
100 	 * This test case is only triggered when LAM_U57 is active and 4-level
101 	 * paging is used. For the case, bit[56:47] aren't all 0 triggers #GP.
102 	 */
103 	if (lam_active && (lam_mask == LAM57_MASK) && !is_la57_enabled()) {
104 		ptr = (u64 *)get_non_canonical((u64)ptr, LAM48_MASK);
105 		fault = test_for_exception(GP_VECTOR, do_mov, ptr);
106 		report(fault, "Expected access to non-LAM-canonical address for %s to #GP",
107 		       is_mmio ? "MMIO" : "memory");
108 	}
109 }
110 
111 /* invlpg with tagged address is same as NOP, no #GP expected. */
test_invlpg(void * va,bool fep)112 static void test_invlpg(void *va, bool fep)
113 {
114 	u64 lam_mask;
115 	u64 *ptr;
116 
117 	/*
118 	 * The return value is not checked, invlpg should never faults no matter
119 	 * LAM is supported or not.
120 	 */
121 	get_lam_mask((u64)va, &lam_mask);
122 	ptr = (u64 *)get_non_canonical((u64)va, lam_mask);
123 	if (fep)
124 		asm volatile(KVM_FEP "invlpg (%0)" ::"r" (ptr) : "memory");
125 	else
126 		invlpg(ptr);
127 
128 	report_pass("Expected %sINVLPG with tagged addr to succeed", fep ? "fep: " : "");
129 }
130 
131 /* LAM doesn't apply to the linear address in the descriptor of invpcid */
test_invpcid(void * data)132 static void test_invpcid(void *data)
133 {
134 	/*
135 	 * Reuse the memory address for the descriptor since stack memory
136 	 * address in KUT doesn't follow the kernel address space partitions.
137 	 */
138 	struct invpcid_desc *desc_ptr = data;
139 	int vector;
140 	u64 lam_mask;
141 	bool lam_active;
142 
143 	if (!this_cpu_has(X86_FEATURE_INVPCID)) {
144 		report_skip("INVPCID not supported");
145 		return;
146 	}
147 
148 	lam_active = get_lam_mask((u64)data, &lam_mask);
149 
150 	memset(desc_ptr, 0, sizeof(struct invpcid_desc));
151 	desc_ptr->addr = (u64)data;
152 
153 	vector = invpcid_safe(0, desc_ptr);
154 	report(!vector,
155 	       "Expected INVPCID with untagged pointer + untagged addr to succeed, got vector %u",
156 	       vector);
157 
158 	desc_ptr->addr = get_non_canonical(desc_ptr->addr, lam_mask);
159 	vector = invpcid_safe(0, desc_ptr);
160 	report(vector == GP_VECTOR,
161 	       "Expected INVPCID with untagged pointer + tagged addr to #GP, got vector %u",
162 	       vector);
163 
164 	desc_ptr = (void *)get_non_canonical((u64)desc_ptr, lam_mask);
165 	vector = invpcid_safe(0, desc_ptr);
166 	report(vector == GP_VECTOR,
167 	       "Expected INVPCID with tagged pointer + tagged addr to #GP, got vector %u",
168 	       vector);
169 
170 	desc_ptr = data;
171 	desc_ptr->addr = (u64)data;
172 	desc_ptr = (void *)get_non_canonical((u64)desc_ptr, lam_mask);
173 	vector = invpcid_safe(0, desc_ptr);
174 	report(lam_active ? !vector : vector == GP_VECTOR,
175 	       "Expected INVPCID with tagged pointer + untagged addr to %s, got vector %u",
176 	       lam_active ? "succeed" : "#GP", vector);
177 }
178 
__test_lam_sup(void * vaddr,void * vaddr_mmio)179 static void __test_lam_sup(void *vaddr, void *vaddr_mmio)
180 {
181 	/* Test for normal memory. */
182 	test_ptr(vaddr, false);
183 	/* Test for MMIO to trigger instruction emulation. */
184 	test_ptr(vaddr_mmio, true);
185 	test_invpcid(vaddr);
186 	test_invlpg(vaddr, false);
187 	if (is_fep_available())
188 		test_invlpg(vaddr, true);
189 }
190 
test_lam_sup(void)191 static void test_lam_sup(void)
192 {
193 	void *vaddr, *vaddr_mmio;
194 	phys_addr_t paddr;
195 	unsigned long cr4 = read_cr4();
196 	int vector;
197 
198 	/*
199 	 * KUT initializes vfree_top to 0 for X86_64, and each virtual address
200 	 * allocation decreases the size from vfree_top. It's guaranteed that
201 	 * the return value of alloc_vpage() is considered as kernel mode
202 	 * address and canonical since only a small amount of virtual address
203 	 * range is allocated in this test.
204 	 */
205 	vaddr = alloc_vpage();
206 	vaddr_mmio = alloc_vpage();
207 	paddr = virt_to_phys(alloc_page());
208 	install_page(current_page_table(), paddr, vaddr);
209 	install_page(current_page_table(), IORAM_BASE_PHYS, vaddr_mmio);
210 
211 	test_cr4_lam_set_clear();
212 
213 	/* Test without LAM Supervisor enabled. */
214 	__test_lam_sup(vaddr, vaddr_mmio);
215 
216 	/* Test with LAM Supervisor enabled, if supported. */
217 	if (this_cpu_has(X86_FEATURE_LAM)) {
218 		vector = write_cr4_safe(cr4 | X86_CR4_LAM_SUP);
219 		report(!vector && is_lam_sup_enabled(),
220 		       "Expected CR4.LAM_SUP=1 to succeed");
221 		__test_lam_sup(vaddr, vaddr_mmio);
222 	}
223 }
224 
test_lam_user(void)225 static void test_lam_user(void)
226 {
227 	void* vaddr;
228 	int vector;
229 	unsigned long cr3 = read_cr3() & ~(X86_CR3_LAM_U48 | X86_CR3_LAM_U57);
230 	bool has_lam = this_cpu_has(X86_FEATURE_LAM);
231 
232 	/*
233 	 * The physical address of AREA_NORMAL is within 36 bits, so that using
234 	 * identical mapping, the linear address will be considered as user mode
235 	 * address from the view of LAM, and the metadata bits are not used as
236 	 * address for both LAM48 and LAM57.
237 	 */
238 	vaddr = alloc_pages_flags(0, AREA_NORMAL);
239 	_Static_assert((AREA_NORMAL_PFN & GENMASK(63, 47)) == 0UL,
240 			"Identical mapping range check");
241 
242 	/*
243 	 * Note, LAM doesn't have a global control bit to turn on/off LAM
244 	 * completely, but purely depends on hardware's CPUID to determine it
245 	 * can be enabled or not. That means, when EPT is on, even when KVM
246 	 * doesn't expose LAM to guest, the guest can still set LAM control bits
247 	 * in CR3 w/o causing problem. This is an unfortunate virtualization
248 	 * hole. KVM doesn't choose to intercept CR3 in this case for
249 	 * performance.
250 	 * Only enable LAM CR3 bits when LAM feature is exposed.
251 	 */
252 	if (has_lam) {
253 		vector = write_cr3_safe(cr3 | X86_CR3_LAM_U48);
254 		report(!vector && is_lam_u48_enabled(), "Expected CR3.LAM_U48=1 to succeed");
255 	}
256 	/*
257 	 * Physical memory & MMIO have already been identical mapped in
258 	 * setup_mmu().
259 	 */
260 	test_ptr(vaddr, false);
261 	test_ptr(phys_to_virt(IORAM_BASE_PHYS), true);
262 
263 	if (has_lam) {
264 		vector = write_cr3_safe(cr3 | X86_CR3_LAM_U57);
265 		report(!vector && is_lam_u57_enabled(), "Expected CR3.LAM_U57=1 to succeed");
266 
267 		/* If !has_lam, it has been tested above, no need to test again. */
268 		test_ptr(vaddr, false);
269 		test_ptr(phys_to_virt(IORAM_BASE_PHYS), true);
270 	}
271 }
272 
main(int ac,char ** av)273 int main(int ac, char **av)
274 {
275 	setup_vm();
276 
277 	if (!this_cpu_has(X86_FEATURE_LAM))
278 		report_info("This CPU doesn't support LAM\n");
279 	else
280 		report_info("This CPU supports LAM\n");
281 
282 	test_lam_sup();
283 	test_lam_user();
284 
285 	return report_summary();
286 }
287