1a7053e6dSJason Wang #include "libcflat.h" 2a7053e6dSJason Wang #include "smp.h" 3a7053e6dSJason Wang #include "atomic.h" 4a7053e6dSJason Wang #include "processor.h" 5a7053e6dSJason Wang #include "kvmclock.h" 68226c540SAlexander Gordeev #include "asm/barrier.h" 7a7053e6dSJason Wang 8a7053e6dSJason Wang #define unlikely(x) __builtin_expect(!!(x), 0) 9a7053e6dSJason Wang #define likely(x) __builtin_expect(!!(x), 1) 10a7053e6dSJason Wang 11a7053e6dSJason Wang 12a7053e6dSJason Wang struct pvclock_vcpu_time_info __attribute__((aligned(4))) hv_clock[MAX_CPU]; 13a7053e6dSJason Wang struct pvclock_wall_clock wall_clock; 14a7053e6dSJason Wang static unsigned char valid_flags = 0; 15a7053e6dSJason Wang static atomic64_t last_value = ATOMIC64_INIT(0); 16a7053e6dSJason Wang 17a7053e6dSJason Wang /* 18a7053e6dSJason Wang * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction, 19a7053e6dSJason Wang * yielding a 64-bit result. 20a7053e6dSJason Wang */ 21a7053e6dSJason Wang static inline u64 scale_delta(u64 delta, u32 mul_frac, int shift) 22a7053e6dSJason Wang { 23a7053e6dSJason Wang u64 product; 24a7053e6dSJason Wang #ifdef __i386__ 25a7053e6dSJason Wang u32 tmp1, tmp2; 26a7053e6dSJason Wang #endif 27a7053e6dSJason Wang 28a7053e6dSJason Wang if (shift < 0) 29a7053e6dSJason Wang delta >>= -shift; 30a7053e6dSJason Wang else 31a7053e6dSJason Wang delta <<= shift; 32a7053e6dSJason Wang 33a7053e6dSJason Wang #ifdef __i386__ 34a7053e6dSJason Wang __asm__ ( 35a7053e6dSJason Wang "mul %5 ; " 36a7053e6dSJason Wang "mov %4,%%eax ; " 37a7053e6dSJason Wang "mov %%edx,%4 ; " 38a7053e6dSJason Wang "mul %5 ; " 39a7053e6dSJason Wang "xor %5,%5 ; " 40a7053e6dSJason Wang "add %4,%%eax ; " 41a7053e6dSJason Wang "adc %5,%%edx ; " 42a7053e6dSJason Wang : "=A" (product), "=r" (tmp1), "=r" (tmp2) 43a7053e6dSJason Wang : "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (mul_frac) ); 44a7053e6dSJason Wang #elif defined(__x86_64__) 45a7053e6dSJason Wang __asm__ ( 46a7053e6dSJason Wang "mul %%rdx ; shrd $32,%%rdx,%%rax" 47a7053e6dSJason Wang : "=a" (product) : "0" (delta), "d" ((u64)mul_frac) ); 48a7053e6dSJason Wang #else 49a7053e6dSJason Wang #error implement me! 50a7053e6dSJason Wang #endif 51a7053e6dSJason Wang 52a7053e6dSJason Wang return product; 53a7053e6dSJason Wang } 54a7053e6dSJason Wang 55a7053e6dSJason Wang #ifdef __i386__ 56a7053e6dSJason Wang # define do_div(n,base) ({ \ 57a7053e6dSJason Wang u32 __base = (base); \ 58a7053e6dSJason Wang u32 __rem; \ 59a7053e6dSJason Wang __rem = ((u64)(n)) % __base; \ 60a7053e6dSJason Wang (n) = ((u64)(n)) / __base; \ 61a7053e6dSJason Wang __rem; \ 62a7053e6dSJason Wang }) 63a7053e6dSJason Wang #else 64a7053e6dSJason Wang u32 __attribute__((weak)) __div64_32(u64 *n, u32 base) 65a7053e6dSJason Wang { 66a7053e6dSJason Wang u64 rem = *n; 67a7053e6dSJason Wang u64 b = base; 68a7053e6dSJason Wang u64 res, d = 1; 69a7053e6dSJason Wang u32 high = rem >> 32; 70a7053e6dSJason Wang 71a7053e6dSJason Wang /* Reduce the thing a bit first */ 72a7053e6dSJason Wang res = 0; 73a7053e6dSJason Wang if (high >= base) { 74a7053e6dSJason Wang high /= base; 75a7053e6dSJason Wang res = (u64) high << 32; 76a7053e6dSJason Wang rem -= (u64) (high*base) << 32; 77a7053e6dSJason Wang } 78a7053e6dSJason Wang 79a7053e6dSJason Wang while ((s64)b > 0 && b < rem) { 80a7053e6dSJason Wang b = b+b; 81a7053e6dSJason Wang d = d+d; 82a7053e6dSJason Wang } 83a7053e6dSJason Wang 84a7053e6dSJason Wang do { 85a7053e6dSJason Wang if (rem >= b) { 86a7053e6dSJason Wang rem -= b; 87a7053e6dSJason Wang res += d; 88a7053e6dSJason Wang } 89a7053e6dSJason Wang b >>= 1; 90a7053e6dSJason Wang d >>= 1; 91a7053e6dSJason Wang } while (d); 92a7053e6dSJason Wang 93a7053e6dSJason Wang *n = res; 94a7053e6dSJason Wang return rem; 95a7053e6dSJason Wang } 96a7053e6dSJason Wang 97a7053e6dSJason Wang # define do_div(n,base) ({ \ 98a7053e6dSJason Wang u32 __base = (base); \ 99a7053e6dSJason Wang u32 __rem; \ 100a7053e6dSJason Wang (void)(((typeof((n)) *)0) == ((u64 *)0)); \ 101a7053e6dSJason Wang if (likely(((n) >> 32) == 0)) { \ 102a7053e6dSJason Wang __rem = (u32)(n) % __base; \ 103a7053e6dSJason Wang (n) = (u32)(n) / __base; \ 104a7053e6dSJason Wang } else \ 105a7053e6dSJason Wang __rem = __div64_32(&(n), __base); \ 106a7053e6dSJason Wang __rem; \ 107a7053e6dSJason Wang }) 108a7053e6dSJason Wang #endif 109a7053e6dSJason Wang 110a7053e6dSJason Wang /** 111a7053e6dSJason Wang * set_normalized_timespec - set timespec sec and nsec parts and normalize 112a7053e6dSJason Wang * 113a7053e6dSJason Wang * @ts: pointer to timespec variable to be set 114a7053e6dSJason Wang * @sec: seconds to set 115a7053e6dSJason Wang * @nsec: nanoseconds to set 116a7053e6dSJason Wang * 117a7053e6dSJason Wang * Set seconds and nanoseconds field of a timespec variable and 118a7053e6dSJason Wang * normalize to the timespec storage format 119a7053e6dSJason Wang * 120a7053e6dSJason Wang * Note: The tv_nsec part is always in the range of 121a7053e6dSJason Wang * 0 <= tv_nsec < NSEC_PER_SEC 122a7053e6dSJason Wang * For negative values only the tv_sec field is negative ! 123a7053e6dSJason Wang */ 124a7053e6dSJason Wang void set_normalized_timespec(struct timespec *ts, long sec, s64 nsec) 125a7053e6dSJason Wang { 126a7053e6dSJason Wang while (nsec >= NSEC_PER_SEC) { 127a7053e6dSJason Wang /* 128a7053e6dSJason Wang * The following asm() prevents the compiler from 129a7053e6dSJason Wang * optimising this loop into a modulo operation. See 130a7053e6dSJason Wang * also __iter_div_u64_rem() in include/linux/time.h 131a7053e6dSJason Wang */ 132a7053e6dSJason Wang asm("" : "+rm"(nsec)); 133a7053e6dSJason Wang nsec -= NSEC_PER_SEC; 134a7053e6dSJason Wang ++sec; 135a7053e6dSJason Wang } 136a7053e6dSJason Wang while (nsec < 0) { 137a7053e6dSJason Wang asm("" : "+rm"(nsec)); 138a7053e6dSJason Wang nsec += NSEC_PER_SEC; 139a7053e6dSJason Wang --sec; 140a7053e6dSJason Wang } 141a7053e6dSJason Wang ts->tv_sec = sec; 142a7053e6dSJason Wang ts->tv_nsec = nsec; 143a7053e6dSJason Wang } 144a7053e6dSJason Wang 145*c7853445SRoman Kagan static inline 146*c7853445SRoman Kagan unsigned pvclock_read_begin(const struct pvclock_vcpu_time_info *src) 147a7053e6dSJason Wang { 148*c7853445SRoman Kagan unsigned version = src->version & ~1; 149*c7853445SRoman Kagan /* Make sure that the version is read before the data. */ 150*c7853445SRoman Kagan smp_rmb(); 151*c7853445SRoman Kagan return version; 152a7053e6dSJason Wang } 153a7053e6dSJason Wang 154*c7853445SRoman Kagan static inline 155*c7853445SRoman Kagan bool pvclock_read_retry(const struct pvclock_vcpu_time_info *src, 156*c7853445SRoman Kagan unsigned version) 157a7053e6dSJason Wang { 158*c7853445SRoman Kagan /* Make sure that the version is re-read after the data. */ 159*c7853445SRoman Kagan smp_rmb(); 160*c7853445SRoman Kagan return version != src->version; 161*c7853445SRoman Kagan } 162a7053e6dSJason Wang 163*c7853445SRoman Kagan static inline u64 rdtsc_ordered() 164*c7853445SRoman Kagan { 165*c7853445SRoman Kagan /* 166*c7853445SRoman Kagan * FIXME: on Intel CPUs rmb() aka lfence is sufficient which brings up 167*c7853445SRoman Kagan * to 2x speedup 168*c7853445SRoman Kagan */ 169*c7853445SRoman Kagan mb(); 170*c7853445SRoman Kagan return rdtsc(); 171*c7853445SRoman Kagan } 172*c7853445SRoman Kagan 173*c7853445SRoman Kagan static inline 174*c7853445SRoman Kagan cycle_t __pvclock_read_cycles(const struct pvclock_vcpu_time_info *src) 175*c7853445SRoman Kagan { 176*c7853445SRoman Kagan u64 delta = rdtsc_ordered() - src->tsc_timestamp; 177*c7853445SRoman Kagan cycle_t offset = scale_delta(delta, src->tsc_to_system_mul, 178*c7853445SRoman Kagan src->tsc_shift); 179*c7853445SRoman Kagan return src->system_time + offset; 180a7053e6dSJason Wang } 181a7053e6dSJason Wang 182a7053e6dSJason Wang cycle_t pvclock_clocksource_read(struct pvclock_vcpu_time_info *src) 183a7053e6dSJason Wang { 184a7053e6dSJason Wang unsigned version; 185*c7853445SRoman Kagan cycle_t ret; 186a7053e6dSJason Wang u64 last; 187*c7853445SRoman Kagan u8 flags; 188a7053e6dSJason Wang 189a7053e6dSJason Wang do { 190*c7853445SRoman Kagan version = pvclock_read_begin(src); 191*c7853445SRoman Kagan ret = __pvclock_read_cycles(src); 192*c7853445SRoman Kagan flags = src->flags; 193*c7853445SRoman Kagan } while (pvclock_read_retry(src, version)); 194a7053e6dSJason Wang 195a7053e6dSJason Wang if ((valid_flags & PVCLOCK_RAW_CYCLE_BIT) || 196a7053e6dSJason Wang ((valid_flags & PVCLOCK_TSC_STABLE_BIT) && 197*c7853445SRoman Kagan (flags & PVCLOCK_TSC_STABLE_BIT))) 198a7053e6dSJason Wang return ret; 199a7053e6dSJason Wang 200a7053e6dSJason Wang /* 201a7053e6dSJason Wang * Assumption here is that last_value, a global accumulator, always goes 202a7053e6dSJason Wang * forward. If we are less than that, we should not be much smaller. 203a7053e6dSJason Wang * We assume there is an error marging we're inside, and then the correction 204a7053e6dSJason Wang * does not sacrifice accuracy. 205a7053e6dSJason Wang * 206a7053e6dSJason Wang * For reads: global may have changed between test and return, 207a7053e6dSJason Wang * but this means someone else updated poked the clock at a later time. 208a7053e6dSJason Wang * We just need to make sure we are not seeing a backwards event. 209a7053e6dSJason Wang * 210a7053e6dSJason Wang * For updates: last_value = ret is not enough, since two vcpus could be 211a7053e6dSJason Wang * updating at the same time, and one of them could be slightly behind, 212a7053e6dSJason Wang * making the assumption that last_value always go forward fail to hold. 213a7053e6dSJason Wang */ 214a7053e6dSJason Wang last = atomic64_read(&last_value); 215a7053e6dSJason Wang do { 216a7053e6dSJason Wang if (ret < last) 217a7053e6dSJason Wang return last; 218a7053e6dSJason Wang last = atomic64_cmpxchg(&last_value, last, ret); 219a7053e6dSJason Wang } while (unlikely(last != ret)); 220a7053e6dSJason Wang 221a7053e6dSJason Wang return ret; 222a7053e6dSJason Wang } 223a7053e6dSJason Wang 224a7053e6dSJason Wang cycle_t kvm_clock_read() 225a7053e6dSJason Wang { 226a7053e6dSJason Wang struct pvclock_vcpu_time_info *src; 227a7053e6dSJason Wang cycle_t ret; 228a7053e6dSJason Wang int index = smp_id(); 229a7053e6dSJason Wang 230a7053e6dSJason Wang src = &hv_clock[index]; 231a7053e6dSJason Wang ret = pvclock_clocksource_read(src); 232a7053e6dSJason Wang return ret; 233a7053e6dSJason Wang } 234a7053e6dSJason Wang 235a7053e6dSJason Wang void kvm_clock_init(void *data) 236a7053e6dSJason Wang { 237a7053e6dSJason Wang int index = smp_id(); 238a7053e6dSJason Wang struct pvclock_vcpu_time_info *hvc = &hv_clock[index]; 239a7053e6dSJason Wang 240b006d7ebSAndrew Jones printf("kvm-clock: cpu %d, msr %p\n", index, hvc); 241b4711e11SDavid Matlack wrmsr(MSR_KVM_SYSTEM_TIME_NEW, (unsigned long)hvc | 1); 242a7053e6dSJason Wang } 243a7053e6dSJason Wang 244a7053e6dSJason Wang void kvm_clock_clear(void *data) 245a7053e6dSJason Wang { 246b4711e11SDavid Matlack wrmsr(MSR_KVM_SYSTEM_TIME_NEW, 0LL); 247a7053e6dSJason Wang } 248a7053e6dSJason Wang 249a7053e6dSJason Wang void pvclock_read_wallclock(struct pvclock_wall_clock *wall_clock, 250a7053e6dSJason Wang struct pvclock_vcpu_time_info *vcpu_time, 251a7053e6dSJason Wang struct timespec *ts) 252a7053e6dSJason Wang { 253a7053e6dSJason Wang u32 version; 254a7053e6dSJason Wang u64 delta; 255a7053e6dSJason Wang struct timespec now; 256a7053e6dSJason Wang 257a7053e6dSJason Wang /* get wallclock at system boot */ 258a7053e6dSJason Wang do { 259a7053e6dSJason Wang version = wall_clock->version; 260a7053e6dSJason Wang rmb(); /* fetch version before time */ 261a7053e6dSJason Wang now.tv_sec = wall_clock->sec; 262a7053e6dSJason Wang now.tv_nsec = wall_clock->nsec; 263a7053e6dSJason Wang rmb(); /* fetch time before checking version */ 264a7053e6dSJason Wang } while ((wall_clock->version & 1) || (version != wall_clock->version)); 265a7053e6dSJason Wang 266a7053e6dSJason Wang delta = pvclock_clocksource_read(vcpu_time); /* time since system boot */ 267a7053e6dSJason Wang delta += now.tv_sec * (u64)NSEC_PER_SEC + now.tv_nsec; 268a7053e6dSJason Wang 269a7053e6dSJason Wang now.tv_nsec = do_div(delta, NSEC_PER_SEC); 270a7053e6dSJason Wang now.tv_sec = delta; 271a7053e6dSJason Wang 272a7053e6dSJason Wang set_normalized_timespec(ts, now.tv_sec, now.tv_nsec); 273a7053e6dSJason Wang } 274a7053e6dSJason Wang 275a7053e6dSJason Wang void kvm_get_wallclock(struct timespec *ts) 276a7053e6dSJason Wang { 277a7053e6dSJason Wang struct pvclock_vcpu_time_info *vcpu_time; 278a7053e6dSJason Wang int index = smp_id(); 279a7053e6dSJason Wang 280b4711e11SDavid Matlack wrmsr(MSR_KVM_WALL_CLOCK_NEW, (unsigned long)&wall_clock); 281a7053e6dSJason Wang vcpu_time = &hv_clock[index]; 282a7053e6dSJason Wang pvclock_read_wallclock(&wall_clock, vcpu_time, ts); 283a7053e6dSJason Wang } 284a7053e6dSJason Wang 285a7053e6dSJason Wang void pvclock_set_flags(unsigned char flags) 286a7053e6dSJason Wang { 287a7053e6dSJason Wang valid_flags = flags; 288a7053e6dSJason Wang } 289