xref: /kvm-unit-tests/x86/kvmclock.c (revision e7235264c197cddd5bc1a2d1e05dca049152942f)
1 #include "libcflat.h"
2 #include "smp.h"
3 #include "atomic.h"
4 #include "processor.h"
5 #include "kvmclock.h"
6 #include "asm/barrier.h"
7 
8 #define unlikely(x)	__builtin_expect(!!(x), 0)
9 #define likely(x)	__builtin_expect(!!(x), 1)
10 
11 
12 struct pvclock_vcpu_time_info __attribute__((aligned(4))) hv_clock[MAX_CPU];
13 struct pvclock_wall_clock wall_clock;
14 static unsigned char valid_flags = 0;
15 static atomic64_t last_value = ATOMIC64_INIT(0);
16 
17 /*
18  * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction,
19  * yielding a 64-bit result.
20  */
scale_delta(u64 delta,u32 mul_frac,int shift)21 static inline u64 scale_delta(u64 delta, u32 mul_frac, int shift)
22 {
23 	u64 product;
24 #ifdef __i386__
25 	u32 tmp1, tmp2;
26 #endif
27 
28 	if (shift < 0)
29 		delta >>= -shift;
30 	else
31 		delta <<= shift;
32 
33 #ifdef __i386__
34 	__asm__ (
35 		"mul  %5       ; "
36 		"mov  %4,%%eax ; "
37 		"mov  %%edx,%4 ; "
38 		"mul  %5       ; "
39 		"xor  %5,%5    ; "
40 		"add  %4,%%eax ; "
41 		"adc  %5,%%edx ; "
42 		: "=A" (product), "=r" (tmp1), "=r" (tmp2)
43 		: "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (mul_frac) );
44 #elif defined(__x86_64__)
45 	__asm__ (
46 		"mul %%rdx ; shrd $32,%%rdx,%%rax"
47 		: "=a" (product) : "0" (delta), "d" ((u64)mul_frac) );
48 #else
49 #error implement me!
50 #endif
51 
52 	return product;
53 }
54 
55 #ifdef __i386__
56 # define do_div(n,base) ({					\
57 	u32 __base = (base);    				\
58 	u32 __rem;						\
59 	__rem = ((u64)(n)) % __base;                            \
60 	(n) = ((u64)(n)) / __base;				\
61 	__rem;							\
62  })
63 #else
64 u32 __attribute__((weak)) __div64_32(u64 *n, u32 base);
__div64_32(u64 * n,u32 base)65 u32 __attribute__((weak)) __div64_32(u64 *n, u32 base)
66 {
67 	u64 rem = *n;
68 	u64 b = base;
69 	u64 res, d = 1;
70 	u32 high = rem >> 32;
71 
72 	/* Reduce the thing a bit first */
73 	res = 0;
74 	if (high >= base) {
75 		high /= base;
76 		res = (u64) high << 32;
77 		rem -= (u64) (high*base) << 32;
78 	}
79 
80 	while ((s64)b > 0 && b < rem) {
81 		b = b+b;
82 		d = d+d;
83 	}
84 
85 	do {
86 		if (rem >= b) {
87 			rem -= b;
88 			res += d;
89 		}
90 		b >>= 1;
91 		d >>= 1;
92 	} while (d);
93 
94 	*n = res;
95 	return rem;
96 }
97 
98 # define do_div(n,base) ({				\
99 	u32 __base = (base);    			\
100 	u32 __rem;					\
101 	(void)(((typeof((n)) *)0) == ((u64 *)0));	\
102 	if (likely(((n) >> 32) == 0)) {			\
103 		__rem = (u32)(n) % __base;		\
104 		(n) = (u32)(n) / __base;		\
105 	} else 						\
106 		__rem = __div64_32(&(n), __base);	\
107 	__rem;						\
108  })
109 #endif
110 
111 /**
112  * set_normalized_timespec - set timespec sec and nsec parts and normalize
113  *
114  * @ts:		pointer to timespec variable to be set
115  * @sec:	seconds to set
116  * @nsec:	nanoseconds to set
117  *
118  * Set seconds and nanoseconds field of a timespec variable and
119  * normalize to the timespec storage format
120  *
121  * Note: The tv_nsec part is always in the range of
122  *	0 <= tv_nsec < NSEC_PER_SEC
123  * For negative values only the tv_sec field is negative !
124  */
set_normalized_timespec(struct timespec * ts,long sec,s64 nsec)125 static void set_normalized_timespec(struct timespec *ts, long sec, s64 nsec)
126 {
127 	while (nsec >= NSEC_PER_SEC) {
128 		/*
129 		 * The following asm() prevents the compiler from
130 		 * optimising this loop into a modulo operation. See
131 		 * also __iter_div_u64_rem() in include/linux/time.h
132 		 */
133 		asm("" : "+rm"(nsec));
134 		nsec -= NSEC_PER_SEC;
135 		++sec;
136 	}
137 	while (nsec < 0) {
138 		asm("" : "+rm"(nsec));
139 		nsec += NSEC_PER_SEC;
140 		--sec;
141 	}
142 	ts->tv_sec = sec;
143 	ts->tv_nsec = nsec;
144 }
145 
146 static inline
pvclock_read_begin(const struct pvclock_vcpu_time_info * src)147 unsigned pvclock_read_begin(const struct pvclock_vcpu_time_info *src)
148 {
149 	unsigned version = src->version & ~1;
150 	/* Make sure that the version is read before the data. */
151 	smp_rmb();
152 	return version;
153 }
154 
155 static inline
pvclock_read_retry(const struct pvclock_vcpu_time_info * src,unsigned version)156 bool pvclock_read_retry(const struct pvclock_vcpu_time_info *src,
157 			unsigned version)
158 {
159 	/* Make sure that the version is re-read after the data. */
160 	smp_rmb();
161 	return version != src->version;
162 }
163 
rdtsc_ordered(void)164 static inline u64 rdtsc_ordered(void)
165 {
166 	/*
167 	 * FIXME: on Intel CPUs rmb() aka lfence is sufficient which brings up
168 	 * to 2x speedup
169 	 */
170 	mb();
171 	return rdtsc();
172 }
173 
174 static inline
__pvclock_read_cycles(const struct pvclock_vcpu_time_info * src)175 cycle_t __pvclock_read_cycles(const struct pvclock_vcpu_time_info *src)
176 {
177 	u64 delta = rdtsc_ordered() - src->tsc_timestamp;
178 	cycle_t offset = scale_delta(delta, src->tsc_to_system_mul,
179 					     src->tsc_shift);
180 	return src->system_time + offset;
181 }
182 
pvclock_clocksource_read(struct pvclock_vcpu_time_info * src)183 static cycle_t pvclock_clocksource_read(struct pvclock_vcpu_time_info *src)
184 {
185 	unsigned version;
186 	cycle_t ret;
187 	u64 last;
188 	u8 flags;
189 
190 	do {
191 		version = pvclock_read_begin(src);
192 		ret = __pvclock_read_cycles(src);
193 		flags = src->flags;
194 	} while (pvclock_read_retry(src, version));
195 
196 	if ((valid_flags & PVCLOCK_RAW_CYCLE_BIT) ||
197             ((valid_flags & PVCLOCK_TSC_STABLE_BIT) &&
198              (flags & PVCLOCK_TSC_STABLE_BIT)))
199                 return ret;
200 
201 	/*
202 	 * Assumption here is that last_value, a global accumulator, always goes
203 	 * forward. If we are less than that, we should not be much smaller.
204 	 * We assume there is an error margin we're inside, and then the
205 	 * correction does not sacrifice accuracy.
206 	 *
207 	 * For reads: global may have changed between test and return,
208 	 * but this means someone else updated poked the clock at a later time.
209 	 * We just need to make sure we are not seeing a backwards event.
210 	 *
211 	 * For updates: last_value = ret is not enough, since two vcpus could be
212 	 * updating at the same time, and one of them could be slightly behind,
213 	 * making the assumption that last_value always go forward fail to hold.
214 	 */
215 	last = atomic64_read(&last_value);
216 	do {
217 		if (ret < last)
218 			return last;
219 		last = atomic64_cmpxchg(&last_value, last, ret);
220 	} while (unlikely(last != ret));
221 
222 	return ret;
223 }
224 
kvm_clock_read(void)225 cycle_t kvm_clock_read(void)
226 {
227         struct pvclock_vcpu_time_info *src;
228         cycle_t ret;
229         int index = smp_id();
230 
231         src = &hv_clock[index];
232         ret = pvclock_clocksource_read(src);
233         return ret;
234 }
235 
kvm_clock_init(void * data)236 void kvm_clock_init(void *data)
237 {
238         int index = smp_id();
239         struct pvclock_vcpu_time_info *hvc = &hv_clock[index];
240 
241         printf("kvm-clock: cpu %d, msr %p\n", index, hvc);
242         wrmsr(MSR_KVM_SYSTEM_TIME_NEW, (unsigned long)hvc | 1);
243 }
244 
kvm_clock_clear(void * data)245 void kvm_clock_clear(void *data)
246 {
247         wrmsr(MSR_KVM_SYSTEM_TIME_NEW, 0LL);
248 }
249 
pvclock_read_wallclock(struct pvclock_wall_clock * wall_clock,struct pvclock_vcpu_time_info * vcpu_time,struct timespec * ts)250 static void pvclock_read_wallclock(struct pvclock_wall_clock *wall_clock,
251 				   struct pvclock_vcpu_time_info *vcpu_time,
252 				   struct timespec *ts)
253 {
254 	u32 version;
255 	u64 delta;
256 	struct timespec now;
257 
258 	/* get wallclock at system boot */
259 	do {
260 		version = wall_clock->version;
261 		rmb();		/* fetch version before time */
262 		now.tv_sec  = wall_clock->sec;
263 		now.tv_nsec = wall_clock->nsec;
264 		rmb();		/* fetch time before checking version */
265 	} while ((wall_clock->version & 1) || (version != wall_clock->version));
266 
267 	delta = pvclock_clocksource_read(vcpu_time);	/* time since system boot */
268 	delta += now.tv_sec * (u64)NSEC_PER_SEC + now.tv_nsec;
269 
270 	now.tv_nsec = do_div(delta, NSEC_PER_SEC);
271 	now.tv_sec = delta;
272 
273 	set_normalized_timespec(ts, now.tv_sec, now.tv_nsec);
274 }
275 
kvm_get_wallclock(struct timespec * ts)276 void kvm_get_wallclock(struct timespec *ts)
277 {
278         struct pvclock_vcpu_time_info *vcpu_time;
279         int index = smp_id();
280 
281         wrmsr(MSR_KVM_WALL_CLOCK_NEW, (unsigned long)&wall_clock);
282         vcpu_time = &hv_clock[index];
283         pvclock_read_wallclock(&wall_clock, vcpu_time, ts);
284 }
285 
pvclock_set_flags(unsigned char flags)286 void pvclock_set_flags(unsigned char flags)
287 {
288         valid_flags = flags;
289 }
290