xref: /kvm-unit-tests/x86/kvmclock.c (revision b4711e111e7473c2a6cdf714ce4ad77aedc7905a)
1a7053e6dSJason Wang #include "libcflat.h"
2a7053e6dSJason Wang #include "smp.h"
3a7053e6dSJason Wang #include "atomic.h"
4a7053e6dSJason Wang #include "processor.h"
5a7053e6dSJason Wang #include "kvmclock.h"
6a7053e6dSJason Wang 
7a7053e6dSJason Wang #define unlikely(x)	__builtin_expect(!!(x), 0)
8a7053e6dSJason Wang #define likely(x)	__builtin_expect(!!(x), 1)
9a7053e6dSJason Wang 
10a7053e6dSJason Wang 
11a7053e6dSJason Wang struct pvclock_vcpu_time_info __attribute__((aligned(4))) hv_clock[MAX_CPU];
12a7053e6dSJason Wang struct pvclock_wall_clock wall_clock;
13a7053e6dSJason Wang static unsigned char valid_flags = 0;
14a7053e6dSJason Wang static atomic64_t last_value = ATOMIC64_INIT(0);
15a7053e6dSJason Wang 
16a7053e6dSJason Wang /*
17a7053e6dSJason Wang  * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction,
18a7053e6dSJason Wang  * yielding a 64-bit result.
19a7053e6dSJason Wang  */
20a7053e6dSJason Wang static inline u64 scale_delta(u64 delta, u32 mul_frac, int shift)
21a7053e6dSJason Wang {
22a7053e6dSJason Wang 	u64 product;
23a7053e6dSJason Wang #ifdef __i386__
24a7053e6dSJason Wang 	u32 tmp1, tmp2;
25a7053e6dSJason Wang #endif
26a7053e6dSJason Wang 
27a7053e6dSJason Wang 	if (shift < 0)
28a7053e6dSJason Wang 		delta >>= -shift;
29a7053e6dSJason Wang 	else
30a7053e6dSJason Wang 		delta <<= shift;
31a7053e6dSJason Wang 
32a7053e6dSJason Wang #ifdef __i386__
33a7053e6dSJason Wang 	__asm__ (
34a7053e6dSJason Wang 		"mul  %5       ; "
35a7053e6dSJason Wang 		"mov  %4,%%eax ; "
36a7053e6dSJason Wang 		"mov  %%edx,%4 ; "
37a7053e6dSJason Wang 		"mul  %5       ; "
38a7053e6dSJason Wang 		"xor  %5,%5    ; "
39a7053e6dSJason Wang 		"add  %4,%%eax ; "
40a7053e6dSJason Wang 		"adc  %5,%%edx ; "
41a7053e6dSJason Wang 		: "=A" (product), "=r" (tmp1), "=r" (tmp2)
42a7053e6dSJason Wang 		: "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (mul_frac) );
43a7053e6dSJason Wang #elif defined(__x86_64__)
44a7053e6dSJason Wang 	__asm__ (
45a7053e6dSJason Wang 		"mul %%rdx ; shrd $32,%%rdx,%%rax"
46a7053e6dSJason Wang 		: "=a" (product) : "0" (delta), "d" ((u64)mul_frac) );
47a7053e6dSJason Wang #else
48a7053e6dSJason Wang #error implement me!
49a7053e6dSJason Wang #endif
50a7053e6dSJason Wang 
51a7053e6dSJason Wang 	return product;
52a7053e6dSJason Wang }
53a7053e6dSJason Wang 
54a7053e6dSJason Wang #ifdef __i386__
55a7053e6dSJason Wang # define do_div(n,base) ({					\
56a7053e6dSJason Wang 	u32 __base = (base);    				\
57a7053e6dSJason Wang 	u32 __rem;						\
58a7053e6dSJason Wang 	__rem = ((u64)(n)) % __base;                            \
59a7053e6dSJason Wang 	(n) = ((u64)(n)) / __base;				\
60a7053e6dSJason Wang 	__rem;							\
61a7053e6dSJason Wang  })
62a7053e6dSJason Wang #else
63a7053e6dSJason Wang u32 __attribute__((weak)) __div64_32(u64 *n, u32 base)
64a7053e6dSJason Wang {
65a7053e6dSJason Wang 	u64 rem = *n;
66a7053e6dSJason Wang 	u64 b = base;
67a7053e6dSJason Wang 	u64 res, d = 1;
68a7053e6dSJason Wang 	u32 high = rem >> 32;
69a7053e6dSJason Wang 
70a7053e6dSJason Wang 	/* Reduce the thing a bit first */
71a7053e6dSJason Wang 	res = 0;
72a7053e6dSJason Wang 	if (high >= base) {
73a7053e6dSJason Wang 		high /= base;
74a7053e6dSJason Wang 		res = (u64) high << 32;
75a7053e6dSJason Wang 		rem -= (u64) (high*base) << 32;
76a7053e6dSJason Wang 	}
77a7053e6dSJason Wang 
78a7053e6dSJason Wang 	while ((s64)b > 0 && b < rem) {
79a7053e6dSJason Wang 		b = b+b;
80a7053e6dSJason Wang 		d = d+d;
81a7053e6dSJason Wang 	}
82a7053e6dSJason Wang 
83a7053e6dSJason Wang 	do {
84a7053e6dSJason Wang 		if (rem >= b) {
85a7053e6dSJason Wang 			rem -= b;
86a7053e6dSJason Wang 			res += d;
87a7053e6dSJason Wang 		}
88a7053e6dSJason Wang 		b >>= 1;
89a7053e6dSJason Wang 		d >>= 1;
90a7053e6dSJason Wang 	} while (d);
91a7053e6dSJason Wang 
92a7053e6dSJason Wang 	*n = res;
93a7053e6dSJason Wang 	return rem;
94a7053e6dSJason Wang }
95a7053e6dSJason Wang 
96a7053e6dSJason Wang # define do_div(n,base) ({				\
97a7053e6dSJason Wang 	u32 __base = (base);    			\
98a7053e6dSJason Wang 	u32 __rem;					\
99a7053e6dSJason Wang 	(void)(((typeof((n)) *)0) == ((u64 *)0));	\
100a7053e6dSJason Wang 	if (likely(((n) >> 32) == 0)) {			\
101a7053e6dSJason Wang 		__rem = (u32)(n) % __base;		\
102a7053e6dSJason Wang 		(n) = (u32)(n) / __base;		\
103a7053e6dSJason Wang 	} else 						\
104a7053e6dSJason Wang 		__rem = __div64_32(&(n), __base);	\
105a7053e6dSJason Wang 	__rem;						\
106a7053e6dSJason Wang  })
107a7053e6dSJason Wang #endif
108a7053e6dSJason Wang 
109a7053e6dSJason Wang /**
110a7053e6dSJason Wang  * set_normalized_timespec - set timespec sec and nsec parts and normalize
111a7053e6dSJason Wang  *
112a7053e6dSJason Wang  * @ts:		pointer to timespec variable to be set
113a7053e6dSJason Wang  * @sec:	seconds to set
114a7053e6dSJason Wang  * @nsec:	nanoseconds to set
115a7053e6dSJason Wang  *
116a7053e6dSJason Wang  * Set seconds and nanoseconds field of a timespec variable and
117a7053e6dSJason Wang  * normalize to the timespec storage format
118a7053e6dSJason Wang  *
119a7053e6dSJason Wang  * Note: The tv_nsec part is always in the range of
120a7053e6dSJason Wang  *	0 <= tv_nsec < NSEC_PER_SEC
121a7053e6dSJason Wang  * For negative values only the tv_sec field is negative !
122a7053e6dSJason Wang  */
123a7053e6dSJason Wang void set_normalized_timespec(struct timespec *ts, long sec, s64 nsec)
124a7053e6dSJason Wang {
125a7053e6dSJason Wang 	while (nsec >= NSEC_PER_SEC) {
126a7053e6dSJason Wang 		/*
127a7053e6dSJason Wang 		 * The following asm() prevents the compiler from
128a7053e6dSJason Wang 		 * optimising this loop into a modulo operation. See
129a7053e6dSJason Wang 		 * also __iter_div_u64_rem() in include/linux/time.h
130a7053e6dSJason Wang 		 */
131a7053e6dSJason Wang 		asm("" : "+rm"(nsec));
132a7053e6dSJason Wang 		nsec -= NSEC_PER_SEC;
133a7053e6dSJason Wang 		++sec;
134a7053e6dSJason Wang 	}
135a7053e6dSJason Wang 	while (nsec < 0) {
136a7053e6dSJason Wang 		asm("" : "+rm"(nsec));
137a7053e6dSJason Wang 		nsec += NSEC_PER_SEC;
138a7053e6dSJason Wang 		--sec;
139a7053e6dSJason Wang 	}
140a7053e6dSJason Wang 	ts->tv_sec = sec;
141a7053e6dSJason Wang 	ts->tv_nsec = nsec;
142a7053e6dSJason Wang }
143a7053e6dSJason Wang 
144a7053e6dSJason Wang static u64 pvclock_get_nsec_offset(struct pvclock_shadow_time *shadow)
145a7053e6dSJason Wang {
146a7053e6dSJason Wang 	u64 delta = rdtsc() - shadow->tsc_timestamp;
147a7053e6dSJason Wang 	return scale_delta(delta, shadow->tsc_to_nsec_mul, shadow->tsc_shift);
148a7053e6dSJason Wang }
149a7053e6dSJason Wang 
150a7053e6dSJason Wang /*
151a7053e6dSJason Wang  * Reads a consistent set of time-base values from hypervisor,
152a7053e6dSJason Wang  * into a shadow data area.
153a7053e6dSJason Wang  */
154a7053e6dSJason Wang static unsigned pvclock_get_time_values(struct pvclock_shadow_time *dst,
155a7053e6dSJason Wang 					struct pvclock_vcpu_time_info *src)
156a7053e6dSJason Wang {
157a7053e6dSJason Wang 	do {
158a7053e6dSJason Wang 		dst->version = src->version;
159a7053e6dSJason Wang 		rmb();		/* fetch version before data */
160a7053e6dSJason Wang 		dst->tsc_timestamp     = src->tsc_timestamp;
161a7053e6dSJason Wang 		dst->system_timestamp  = src->system_time;
162a7053e6dSJason Wang 		dst->tsc_to_nsec_mul   = src->tsc_to_system_mul;
163a7053e6dSJason Wang 		dst->tsc_shift         = src->tsc_shift;
164a7053e6dSJason Wang 		dst->flags             = src->flags;
165a7053e6dSJason Wang 		rmb();		/* test version after fetching data */
166a7053e6dSJason Wang 	} while ((src->version & 1) || (dst->version != src->version));
167a7053e6dSJason Wang 
168a7053e6dSJason Wang 	return dst->version;
169a7053e6dSJason Wang }
170a7053e6dSJason Wang 
171a7053e6dSJason Wang cycle_t pvclock_clocksource_read(struct pvclock_vcpu_time_info *src)
172a7053e6dSJason Wang {
173a7053e6dSJason Wang 	struct pvclock_shadow_time shadow;
174a7053e6dSJason Wang 	unsigned version;
175a7053e6dSJason Wang 	cycle_t ret, offset;
176a7053e6dSJason Wang 	u64 last;
177a7053e6dSJason Wang 
178a7053e6dSJason Wang 	do {
179a7053e6dSJason Wang 		version = pvclock_get_time_values(&shadow, src);
1806772db58SMarcelo Tosatti 		mb();
181a7053e6dSJason Wang 		offset = pvclock_get_nsec_offset(&shadow);
182a7053e6dSJason Wang 		ret = shadow.system_timestamp + offset;
1836772db58SMarcelo Tosatti 		mb();
184a7053e6dSJason Wang 	} while (version != src->version);
185a7053e6dSJason Wang 
186a7053e6dSJason Wang 	if ((valid_flags & PVCLOCK_RAW_CYCLE_BIT) ||
187a7053e6dSJason Wang             ((valid_flags & PVCLOCK_TSC_STABLE_BIT) &&
188a7053e6dSJason Wang              (shadow.flags & PVCLOCK_TSC_STABLE_BIT)))
189a7053e6dSJason Wang                 return ret;
190a7053e6dSJason Wang 
191a7053e6dSJason Wang 	/*
192a7053e6dSJason Wang 	 * Assumption here is that last_value, a global accumulator, always goes
193a7053e6dSJason Wang 	 * forward. If we are less than that, we should not be much smaller.
194a7053e6dSJason Wang 	 * We assume there is an error marging we're inside, and then the correction
195a7053e6dSJason Wang 	 * does not sacrifice accuracy.
196a7053e6dSJason Wang 	 *
197a7053e6dSJason Wang 	 * For reads: global may have changed between test and return,
198a7053e6dSJason Wang 	 * but this means someone else updated poked the clock at a later time.
199a7053e6dSJason Wang 	 * We just need to make sure we are not seeing a backwards event.
200a7053e6dSJason Wang 	 *
201a7053e6dSJason Wang 	 * For updates: last_value = ret is not enough, since two vcpus could be
202a7053e6dSJason Wang 	 * updating at the same time, and one of them could be slightly behind,
203a7053e6dSJason Wang 	 * making the assumption that last_value always go forward fail to hold.
204a7053e6dSJason Wang 	 */
205a7053e6dSJason Wang 	last = atomic64_read(&last_value);
206a7053e6dSJason Wang 	do {
207a7053e6dSJason Wang 		if (ret < last)
208a7053e6dSJason Wang 			return last;
209a7053e6dSJason Wang 		last = atomic64_cmpxchg(&last_value, last, ret);
210a7053e6dSJason Wang 	} while (unlikely(last != ret));
211a7053e6dSJason Wang 
212a7053e6dSJason Wang 	return ret;
213a7053e6dSJason Wang }
214a7053e6dSJason Wang 
215a7053e6dSJason Wang cycle_t kvm_clock_read()
216a7053e6dSJason Wang {
217a7053e6dSJason Wang         struct pvclock_vcpu_time_info *src;
218a7053e6dSJason Wang         cycle_t ret;
219a7053e6dSJason Wang         int index = smp_id();
220a7053e6dSJason Wang 
221a7053e6dSJason Wang         src = &hv_clock[index];
222a7053e6dSJason Wang         ret = pvclock_clocksource_read(src);
223a7053e6dSJason Wang         return ret;
224a7053e6dSJason Wang }
225a7053e6dSJason Wang 
226a7053e6dSJason Wang void kvm_clock_init(void *data)
227a7053e6dSJason Wang {
228a7053e6dSJason Wang         int index = smp_id();
229a7053e6dSJason Wang         struct pvclock_vcpu_time_info *hvc = &hv_clock[index];
230a7053e6dSJason Wang 
231b006d7ebSAndrew Jones         printf("kvm-clock: cpu %d, msr %p\n", index, hvc);
232*b4711e11SDavid Matlack         wrmsr(MSR_KVM_SYSTEM_TIME_NEW, (unsigned long)hvc | 1);
233a7053e6dSJason Wang }
234a7053e6dSJason Wang 
235a7053e6dSJason Wang void kvm_clock_clear(void *data)
236a7053e6dSJason Wang {
237*b4711e11SDavid Matlack         wrmsr(MSR_KVM_SYSTEM_TIME_NEW, 0LL);
238a7053e6dSJason Wang }
239a7053e6dSJason Wang 
240a7053e6dSJason Wang void pvclock_read_wallclock(struct pvclock_wall_clock *wall_clock,
241a7053e6dSJason Wang 			    struct pvclock_vcpu_time_info *vcpu_time,
242a7053e6dSJason Wang 			    struct timespec *ts)
243a7053e6dSJason Wang {
244a7053e6dSJason Wang 	u32 version;
245a7053e6dSJason Wang 	u64 delta;
246a7053e6dSJason Wang 	struct timespec now;
247a7053e6dSJason Wang 
248a7053e6dSJason Wang 	/* get wallclock at system boot */
249a7053e6dSJason Wang 	do {
250a7053e6dSJason Wang 		version = wall_clock->version;
251a7053e6dSJason Wang 		rmb();		/* fetch version before time */
252a7053e6dSJason Wang 		now.tv_sec  = wall_clock->sec;
253a7053e6dSJason Wang 		now.tv_nsec = wall_clock->nsec;
254a7053e6dSJason Wang 		rmb();		/* fetch time before checking version */
255a7053e6dSJason Wang 	} while ((wall_clock->version & 1) || (version != wall_clock->version));
256a7053e6dSJason Wang 
257a7053e6dSJason Wang 	delta = pvclock_clocksource_read(vcpu_time);	/* time since system boot */
258a7053e6dSJason Wang 	delta += now.tv_sec * (u64)NSEC_PER_SEC + now.tv_nsec;
259a7053e6dSJason Wang 
260a7053e6dSJason Wang 	now.tv_nsec = do_div(delta, NSEC_PER_SEC);
261a7053e6dSJason Wang 	now.tv_sec = delta;
262a7053e6dSJason Wang 
263a7053e6dSJason Wang 	set_normalized_timespec(ts, now.tv_sec, now.tv_nsec);
264a7053e6dSJason Wang }
265a7053e6dSJason Wang 
266a7053e6dSJason Wang void kvm_get_wallclock(struct timespec *ts)
267a7053e6dSJason Wang {
268a7053e6dSJason Wang         struct pvclock_vcpu_time_info *vcpu_time;
269a7053e6dSJason Wang         int index = smp_id();
270a7053e6dSJason Wang 
271*b4711e11SDavid Matlack         wrmsr(MSR_KVM_WALL_CLOCK_NEW, (unsigned long)&wall_clock);
272a7053e6dSJason Wang         vcpu_time = &hv_clock[index];
273a7053e6dSJason Wang         pvclock_read_wallclock(&wall_clock, vcpu_time, ts);
274a7053e6dSJason Wang }
275a7053e6dSJason Wang 
276a7053e6dSJason Wang void pvclock_set_flags(unsigned char flags)
277a7053e6dSJason Wang {
278a7053e6dSJason Wang         valid_flags = flags;
279a7053e6dSJason Wang }
280