xref: /linux/drivers/cpuidle/governors/menu.c (revision c28d28a7b005dd6459a6059dc7eff684bf0b7464)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * menu.c - the menu idle governor
4  *
5  * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
6  * Copyright (C) 2009 Intel Corporation
7  * Author:
8  *        Arjan van de Ven <arjan@linux.intel.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/cpuidle.h>
13 #include <linux/time.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/sched/stat.h>
18 #include <linux/math64.h>
19 
20 #include "gov.h"
21 
22 #define BUCKETS 6
23 #define INTERVAL_SHIFT 3
24 #define INTERVALS (1UL << INTERVAL_SHIFT)
25 #define RESOLUTION 1024
26 #define DECAY 8
27 #define MAX_INTERESTING (50000 * NSEC_PER_USEC)
28 
29 /*
30  * Concepts and ideas behind the menu governor
31  *
32  * For the menu governor, there are 2 decision factors for picking a C
33  * state:
34  * 1) Energy break even point
35  * 2) Latency tolerance (from pmqos infrastructure)
36  * These two factors are treated independently.
37  *
38  * Energy break even point
39  * -----------------------
40  * C state entry and exit have an energy cost, and a certain amount of time in
41  * the  C state is required to actually break even on this cost. CPUIDLE
42  * provides us this duration in the "target_residency" field. So all that we
43  * need is a good prediction of how long we'll be idle. Like the traditional
44  * menu governor, we take the actual known "next timer event" time.
45  *
46  * Since there are other source of wakeups (interrupts for example) than
47  * the next timer event, this estimation is rather optimistic. To get a
48  * more realistic estimate, a correction factor is applied to the estimate,
49  * that is based on historic behavior. For example, if in the past the actual
50  * duration always was 50% of the next timer tick, the correction factor will
51  * be 0.5.
52  *
53  * menu uses a running average for this correction factor, but it uses a set of
54  * factors, not just a single factor. This stems from the realization that the
55  * ratio is dependent on the order of magnitude of the expected duration; if we
56  * expect 500 milliseconds of idle time the likelihood of getting an interrupt
57  * very early is much higher than if we expect 50 micro seconds of idle time.
58  * For this reason, menu keeps an array of 6 independent factors, that gets
59  * indexed based on the magnitude of the expected duration.
60  *
61  * Repeatable-interval-detector
62  * ----------------------------
63  * There are some cases where "next timer" is a completely unusable predictor:
64  * Those cases where the interval is fixed, for example due to hardware
65  * interrupt mitigation, but also due to fixed transfer rate devices like mice.
66  * For this, we use a different predictor: We track the duration of the last 8
67  * intervals and use them to estimate the duration of the next one.
68  */
69 
70 struct menu_device {
71 	int             needs_update;
72 	int             tick_wakeup;
73 
74 	u64		next_timer_ns;
75 	unsigned int	bucket;
76 	unsigned int	correction_factor[BUCKETS];
77 	unsigned int	intervals[INTERVALS];
78 	int		interval_ptr;
79 };
80 
which_bucket(u64 duration_ns)81 static inline int which_bucket(u64 duration_ns)
82 {
83 	int bucket = 0;
84 
85 	if (duration_ns < 10ULL * NSEC_PER_USEC)
86 		return bucket;
87 	if (duration_ns < 100ULL * NSEC_PER_USEC)
88 		return bucket + 1;
89 	if (duration_ns < 1000ULL * NSEC_PER_USEC)
90 		return bucket + 2;
91 	if (duration_ns < 10000ULL * NSEC_PER_USEC)
92 		return bucket + 3;
93 	if (duration_ns < 100000ULL * NSEC_PER_USEC)
94 		return bucket + 4;
95 	return bucket + 5;
96 }
97 
98 static DEFINE_PER_CPU(struct menu_device, menu_devices);
99 
menu_update_intervals(struct menu_device * data,unsigned int interval_us)100 static void menu_update_intervals(struct menu_device *data, unsigned int interval_us)
101 {
102 	/* Update the repeating-pattern data. */
103 	data->intervals[data->interval_ptr++] = interval_us;
104 	if (data->interval_ptr >= INTERVALS)
105 		data->interval_ptr = 0;
106 }
107 
108 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
109 
110 /*
111  * Try detecting repeating patterns by keeping track of the last 8
112  * intervals, and checking if the standard deviation of that set
113  * of points is below a threshold. If it is... then use the
114  * average of these 8 points as the estimated value.
115  */
get_typical_interval(struct menu_device * data)116 static unsigned int get_typical_interval(struct menu_device *data)
117 {
118 	s64 value, min_thresh = -1, max_thresh = UINT_MAX;
119 	unsigned int max, min, divisor;
120 	u64 avg, variance, avg_sq;
121 	int i;
122 
123 again:
124 	/* Compute the average and variance of past intervals. */
125 	max = 0;
126 	min = UINT_MAX;
127 	avg = 0;
128 	variance = 0;
129 	divisor = 0;
130 	for (i = 0; i < INTERVALS; i++) {
131 		value = data->intervals[i];
132 		/*
133 		 * Discard the samples outside the interval between the min and
134 		 * max thresholds.
135 		 */
136 		if (value <= min_thresh || value >= max_thresh)
137 			continue;
138 
139 		divisor++;
140 
141 		avg += value;
142 		variance += value * value;
143 
144 		if (value > max)
145 			max = value;
146 
147 		if (value < min)
148 			min = value;
149 	}
150 
151 	if (!max)
152 		return UINT_MAX;
153 
154 	if (divisor == INTERVALS) {
155 		avg >>= INTERVAL_SHIFT;
156 		variance >>= INTERVAL_SHIFT;
157 	} else {
158 		do_div(avg, divisor);
159 		do_div(variance, divisor);
160 	}
161 
162 	avg_sq = avg * avg;
163 	variance -= avg_sq;
164 
165 	/*
166 	 * The typical interval is obtained when standard deviation is
167 	 * small (stddev <= 20 us, variance <= 400 us^2) or standard
168 	 * deviation is small compared to the average interval (avg >
169 	 * 6*stddev, avg^2 > 36*variance). The average is smaller than
170 	 * UINT_MAX aka U32_MAX, so computing its square does not
171 	 * overflow a u64. We simply reject this candidate average if
172 	 * the standard deviation is greater than 715 s (which is
173 	 * rather unlikely).
174 	 *
175 	 * Use this result only if there is no timer to wake us up sooner.
176 	 */
177 	if (likely(variance <= U64_MAX/36)) {
178 		if ((avg_sq > variance * 36 && divisor * 4 >= INTERVALS * 3) ||
179 		    variance <= 400)
180 			return avg;
181 	}
182 
183 	/*
184 	 * If there are outliers, discard them by setting thresholds to exclude
185 	 * data points at a large enough distance from the average, then
186 	 * calculate the average and standard deviation again. Once we get
187 	 * down to the last 3/4 of our samples, stop excluding samples.
188 	 *
189 	 * This can deal with workloads that have long pauses interspersed
190 	 * with sporadic activity with a bunch of short pauses.
191 	 */
192 	if (divisor * 4 <= INTERVALS * 3) {
193 		/*
194 		 * If there are sufficiently many data points still under
195 		 * consideration after the outliers have been eliminated,
196 		 * returning without a prediction would be a mistake because it
197 		 * is likely that the next interval will not exceed the current
198 		 * maximum, so return the latter in that case.
199 		 */
200 		if (divisor >= INTERVALS / 2)
201 			return max;
202 
203 		return UINT_MAX;
204 	}
205 
206 	/* Update the thresholds for the next round. */
207 	if (avg - min > max - avg)
208 		min_thresh = min;
209 	else
210 		max_thresh = max;
211 
212 	goto again;
213 }
214 
215 /**
216  * menu_select - selects the next idle state to enter
217  * @drv: cpuidle driver containing state data
218  * @dev: the CPU
219  * @stop_tick: indication on whether or not to stop the tick
220  */
menu_select(struct cpuidle_driver * drv,struct cpuidle_device * dev,bool * stop_tick)221 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
222 		       bool *stop_tick)
223 {
224 	struct menu_device *data = this_cpu_ptr(&menu_devices);
225 	s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
226 	u64 predicted_ns;
227 	ktime_t delta, delta_tick;
228 	int i, idx;
229 
230 	if (data->needs_update) {
231 		menu_update(drv, dev);
232 		data->needs_update = 0;
233 	} else if (!dev->last_residency_ns) {
234 		/*
235 		 * This happens when the driver rejects the previously selected
236 		 * idle state and returns an error, so update the recent
237 		 * intervals table to prevent invalid information from being
238 		 * used going forward.
239 		 */
240 		menu_update_intervals(data, UINT_MAX);
241 	}
242 
243 	/* Find the shortest expected idle interval. */
244 	predicted_ns = get_typical_interval(data) * NSEC_PER_USEC;
245 	if (predicted_ns > RESIDENCY_THRESHOLD_NS) {
246 		unsigned int timer_us;
247 
248 		/* Determine the time till the closest timer. */
249 		delta = tick_nohz_get_sleep_length(&delta_tick);
250 		if (unlikely(delta < 0)) {
251 			delta = 0;
252 			delta_tick = 0;
253 		}
254 
255 		data->next_timer_ns = delta;
256 		data->bucket = which_bucket(data->next_timer_ns);
257 
258 		/* Round up the result for half microseconds. */
259 		timer_us = div_u64((RESOLUTION * DECAY * NSEC_PER_USEC) / 2 +
260 					data->next_timer_ns *
261 						data->correction_factor[data->bucket],
262 				   RESOLUTION * DECAY * NSEC_PER_USEC);
263 		/* Use the lowest expected idle interval to pick the idle state. */
264 		predicted_ns = min((u64)timer_us * NSEC_PER_USEC, predicted_ns);
265 	} else {
266 		/*
267 		 * Because the next timer event is not going to be determined
268 		 * in this case, assume that without the tick the closest timer
269 		 * will be in distant future and that the closest tick will occur
270 		 * after 1/2 of the tick period.
271 		 */
272 		data->next_timer_ns = KTIME_MAX;
273 		delta_tick = TICK_NSEC / 2;
274 		data->bucket = BUCKETS - 1;
275 	}
276 
277 	if (unlikely(drv->state_count <= 1 || latency_req == 0) ||
278 	    ((data->next_timer_ns < drv->states[1].target_residency_ns ||
279 	      latency_req < drv->states[1].exit_latency_ns) &&
280 	     !dev->states_usage[0].disable)) {
281 		/*
282 		 * In this case state[0] will be used no matter what, so return
283 		 * it right away and keep the tick running if state[0] is a
284 		 * polling one.
285 		 */
286 		*stop_tick = !(drv->states[0].flags & CPUIDLE_FLAG_POLLING);
287 		return 0;
288 	}
289 
290 	if (tick_nohz_tick_stopped()) {
291 		/*
292 		 * If the tick is already stopped, the cost of possible short
293 		 * idle duration misprediction is much higher, because the CPU
294 		 * may be stuck in a shallow idle state for a long time as a
295 		 * result of it.  In that case say we might mispredict and use
296 		 * the known time till the closest timer event for the idle
297 		 * state selection.
298 		 */
299 		if (predicted_ns < TICK_NSEC)
300 			predicted_ns = data->next_timer_ns;
301 	} else if (latency_req > predicted_ns) {
302 		latency_req = predicted_ns;
303 	}
304 
305 	/*
306 	 * Find the idle state with the lowest power while satisfying
307 	 * our constraints.
308 	 */
309 	idx = -1;
310 	for (i = 0; i < drv->state_count; i++) {
311 		struct cpuidle_state *s = &drv->states[i];
312 
313 		if (dev->states_usage[i].disable)
314 			continue;
315 
316 		if (idx == -1)
317 			idx = i; /* first enabled state */
318 
319 		if (s->target_residency_ns > predicted_ns) {
320 			/*
321 			 * Use a physical idle state, not busy polling, unless
322 			 * a timer is going to trigger soon enough.
323 			 */
324 			if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
325 			    s->exit_latency_ns <= latency_req &&
326 			    s->target_residency_ns <= data->next_timer_ns) {
327 				predicted_ns = s->target_residency_ns;
328 				idx = i;
329 				break;
330 			}
331 			if (predicted_ns < TICK_NSEC)
332 				break;
333 
334 			if (!tick_nohz_tick_stopped()) {
335 				/*
336 				 * If the state selected so far is shallow,
337 				 * waking up early won't hurt, so retain the
338 				 * tick in that case and let the governor run
339 				 * again in the next iteration of the loop.
340 				 */
341 				predicted_ns = drv->states[idx].target_residency_ns;
342 				break;
343 			}
344 
345 			/*
346 			 * If the state selected so far is shallow and this
347 			 * state's target residency matches the time till the
348 			 * closest timer event, select this one to avoid getting
349 			 * stuck in the shallow one for too long.
350 			 */
351 			if (drv->states[idx].target_residency_ns < TICK_NSEC &&
352 			    s->target_residency_ns <= delta_tick)
353 				idx = i;
354 
355 			return idx;
356 		}
357 		if (s->exit_latency_ns > latency_req)
358 			break;
359 
360 		idx = i;
361 	}
362 
363 	if (idx == -1)
364 		idx = 0; /* No states enabled. Must use 0. */
365 
366 	/*
367 	 * Don't stop the tick if the selected state is a polling one or if the
368 	 * expected idle duration is shorter than the tick period length.
369 	 */
370 	if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
371 	     predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
372 		*stop_tick = false;
373 
374 		if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick) {
375 			/*
376 			 * The tick is not going to be stopped and the target
377 			 * residency of the state to be returned is not within
378 			 * the time until the next timer event including the
379 			 * tick, so try to correct that.
380 			 */
381 			for (i = idx - 1; i >= 0; i--) {
382 				if (dev->states_usage[i].disable)
383 					continue;
384 
385 				idx = i;
386 				if (drv->states[i].target_residency_ns <= delta_tick)
387 					break;
388 			}
389 		}
390 	}
391 
392 	return idx;
393 }
394 
395 /**
396  * menu_reflect - records that data structures need update
397  * @dev: the CPU
398  * @index: the index of actual entered state
399  *
400  * NOTE: it's important to be fast here because this operation will add to
401  *       the overall exit latency.
402  */
menu_reflect(struct cpuidle_device * dev,int index)403 static void menu_reflect(struct cpuidle_device *dev, int index)
404 {
405 	struct menu_device *data = this_cpu_ptr(&menu_devices);
406 
407 	dev->last_state_idx = index;
408 	data->needs_update = 1;
409 	data->tick_wakeup = tick_nohz_idle_got_tick();
410 }
411 
412 /**
413  * menu_update - attempts to guess what happened after entry
414  * @drv: cpuidle driver containing state data
415  * @dev: the CPU
416  */
menu_update(struct cpuidle_driver * drv,struct cpuidle_device * dev)417 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
418 {
419 	struct menu_device *data = this_cpu_ptr(&menu_devices);
420 	int last_idx = dev->last_state_idx;
421 	struct cpuidle_state *target = &drv->states[last_idx];
422 	u64 measured_ns;
423 	unsigned int new_factor;
424 
425 	/*
426 	 * Try to figure out how much time passed between entry to low
427 	 * power state and occurrence of the wakeup event.
428 	 *
429 	 * If the entered idle state didn't support residency measurements,
430 	 * we use them anyway if they are short, and if long,
431 	 * truncate to the whole expected time.
432 	 *
433 	 * Any measured amount of time will include the exit latency.
434 	 * Since we are interested in when the wakeup begun, not when it
435 	 * was completed, we must subtract the exit latency. However, if
436 	 * the measured amount of time is less than the exit latency,
437 	 * assume the state was never reached and the exit latency is 0.
438 	 */
439 
440 	if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) {
441 		/*
442 		 * The nohz code said that there wouldn't be any events within
443 		 * the tick boundary (if the tick was stopped), but the idle
444 		 * duration predictor had a differing opinion.  Since the CPU
445 		 * was woken up by a tick (that wasn't stopped after all), the
446 		 * predictor was not quite right, so assume that the CPU could
447 		 * have been idle long (but not forever) to help the idle
448 		 * duration predictor do a better job next time.
449 		 */
450 		measured_ns = 9 * MAX_INTERESTING / 10;
451 	} else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
452 		   dev->poll_time_limit) {
453 		/*
454 		 * The CPU exited the "polling" state due to a time limit, so
455 		 * the idle duration prediction leading to the selection of that
456 		 * state was inaccurate.  If a better prediction had been made,
457 		 * the CPU might have been woken up from idle by the next timer.
458 		 * Assume that to be the case.
459 		 */
460 		measured_ns = data->next_timer_ns;
461 	} else {
462 		/* measured value */
463 		measured_ns = dev->last_residency_ns;
464 
465 		/* Deduct exit latency */
466 		if (measured_ns > 2 * target->exit_latency_ns)
467 			measured_ns -= target->exit_latency_ns;
468 		else
469 			measured_ns /= 2;
470 	}
471 
472 	/* Make sure our coefficients do not exceed unity */
473 	if (measured_ns > data->next_timer_ns)
474 		measured_ns = data->next_timer_ns;
475 
476 	/* Update our correction ratio */
477 	new_factor = data->correction_factor[data->bucket];
478 	new_factor -= new_factor / DECAY;
479 
480 	if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING)
481 		new_factor += div64_u64(RESOLUTION * measured_ns,
482 					data->next_timer_ns);
483 	else
484 		/*
485 		 * we were idle so long that we count it as a perfect
486 		 * prediction
487 		 */
488 		new_factor += RESOLUTION;
489 
490 	/*
491 	 * We don't want 0 as factor; we always want at least
492 	 * a tiny bit of estimated time. Fortunately, due to rounding,
493 	 * new_factor will stay nonzero regardless of measured_us values
494 	 * and the compiler can eliminate this test as long as DECAY > 1.
495 	 */
496 	if (DECAY == 1 && unlikely(new_factor == 0))
497 		new_factor = 1;
498 
499 	data->correction_factor[data->bucket] = new_factor;
500 
501 	menu_update_intervals(data, ktime_to_us(measured_ns));
502 }
503 
504 /**
505  * menu_enable_device - scans a CPU's states and does setup
506  * @drv: cpuidle driver
507  * @dev: the CPU
508  */
menu_enable_device(struct cpuidle_driver * drv,struct cpuidle_device * dev)509 static int menu_enable_device(struct cpuidle_driver *drv,
510 				struct cpuidle_device *dev)
511 {
512 	struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
513 	int i;
514 
515 	memset(data, 0, sizeof(struct menu_device));
516 
517 	/*
518 	 * if the correction factor is 0 (eg first time init or cpu hotplug
519 	 * etc), we actually want to start out with a unity factor.
520 	 */
521 	for(i = 0; i < BUCKETS; i++)
522 		data->correction_factor[i] = RESOLUTION * DECAY;
523 
524 	return 0;
525 }
526 
527 static struct cpuidle_governor menu_governor = {
528 	.name =		"menu",
529 	.rating =	20,
530 	.enable =	menu_enable_device,
531 	.select =	menu_select,
532 	.reflect =	menu_reflect,
533 };
534 
535 /**
536  * init_menu - initializes the governor
537  */
init_menu(void)538 static int __init init_menu(void)
539 {
540 	return cpuidle_register_governor(&menu_governor);
541 }
542 
543 postcore_initcall(init_menu);
544