1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * menu.c - the menu idle governor
4 *
5 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
6 * Copyright (C) 2009 Intel Corporation
7 * Author:
8 * Arjan van de Ven <arjan@linux.intel.com>
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/cpuidle.h>
13 #include <linux/time.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/sched/stat.h>
18 #include <linux/math64.h>
19
20 #include "gov.h"
21
22 #define BUCKETS 6
23 #define INTERVAL_SHIFT 3
24 #define INTERVALS (1UL << INTERVAL_SHIFT)
25 #define RESOLUTION 1024
26 #define DECAY 8
27 #define MAX_INTERESTING (50000 * NSEC_PER_USEC)
28
29 /*
30 * Concepts and ideas behind the menu governor
31 *
32 * For the menu governor, there are 2 decision factors for picking a C
33 * state:
34 * 1) Energy break even point
35 * 2) Latency tolerance (from pmqos infrastructure)
36 * These two factors are treated independently.
37 *
38 * Energy break even point
39 * -----------------------
40 * C state entry and exit have an energy cost, and a certain amount of time in
41 * the C state is required to actually break even on this cost. CPUIDLE
42 * provides us this duration in the "target_residency" field. So all that we
43 * need is a good prediction of how long we'll be idle. Like the traditional
44 * menu governor, we take the actual known "next timer event" time.
45 *
46 * Since there are other source of wakeups (interrupts for example) than
47 * the next timer event, this estimation is rather optimistic. To get a
48 * more realistic estimate, a correction factor is applied to the estimate,
49 * that is based on historic behavior. For example, if in the past the actual
50 * duration always was 50% of the next timer tick, the correction factor will
51 * be 0.5.
52 *
53 * menu uses a running average for this correction factor, but it uses a set of
54 * factors, not just a single factor. This stems from the realization that the
55 * ratio is dependent on the order of magnitude of the expected duration; if we
56 * expect 500 milliseconds of idle time the likelihood of getting an interrupt
57 * very early is much higher than if we expect 50 micro seconds of idle time.
58 * For this reason, menu keeps an array of 6 independent factors, that gets
59 * indexed based on the magnitude of the expected duration.
60 *
61 * Repeatable-interval-detector
62 * ----------------------------
63 * There are some cases where "next timer" is a completely unusable predictor:
64 * Those cases where the interval is fixed, for example due to hardware
65 * interrupt mitigation, but also due to fixed transfer rate devices like mice.
66 * For this, we use a different predictor: We track the duration of the last 8
67 * intervals and use them to estimate the duration of the next one.
68 */
69
70 struct menu_device {
71 int needs_update;
72 int tick_wakeup;
73
74 u64 next_timer_ns;
75 unsigned int bucket;
76 unsigned int correction_factor[BUCKETS];
77 unsigned int intervals[INTERVALS];
78 int interval_ptr;
79 };
80
which_bucket(u64 duration_ns)81 static inline int which_bucket(u64 duration_ns)
82 {
83 int bucket = 0;
84
85 if (duration_ns < 10ULL * NSEC_PER_USEC)
86 return bucket;
87 if (duration_ns < 100ULL * NSEC_PER_USEC)
88 return bucket + 1;
89 if (duration_ns < 1000ULL * NSEC_PER_USEC)
90 return bucket + 2;
91 if (duration_ns < 10000ULL * NSEC_PER_USEC)
92 return bucket + 3;
93 if (duration_ns < 100000ULL * NSEC_PER_USEC)
94 return bucket + 4;
95 return bucket + 5;
96 }
97
98 static DEFINE_PER_CPU(struct menu_device, menu_devices);
99
menu_update_intervals(struct menu_device * data,unsigned int interval_us)100 static void menu_update_intervals(struct menu_device *data, unsigned int interval_us)
101 {
102 /* Update the repeating-pattern data. */
103 data->intervals[data->interval_ptr++] = interval_us;
104 if (data->interval_ptr >= INTERVALS)
105 data->interval_ptr = 0;
106 }
107
108 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
109
110 /*
111 * Try detecting repeating patterns by keeping track of the last 8
112 * intervals, and checking if the standard deviation of that set
113 * of points is below a threshold. If it is... then use the
114 * average of these 8 points as the estimated value.
115 */
get_typical_interval(struct menu_device * data)116 static unsigned int get_typical_interval(struct menu_device *data)
117 {
118 s64 value, min_thresh = -1, max_thresh = UINT_MAX;
119 unsigned int max, min, divisor;
120 u64 avg, variance, avg_sq;
121 int i;
122
123 again:
124 /* Compute the average and variance of past intervals. */
125 max = 0;
126 min = UINT_MAX;
127 avg = 0;
128 variance = 0;
129 divisor = 0;
130 for (i = 0; i < INTERVALS; i++) {
131 value = data->intervals[i];
132 /*
133 * Discard the samples outside the interval between the min and
134 * max thresholds.
135 */
136 if (value <= min_thresh || value >= max_thresh)
137 continue;
138
139 divisor++;
140
141 avg += value;
142 variance += value * value;
143
144 if (value > max)
145 max = value;
146
147 if (value < min)
148 min = value;
149 }
150
151 if (!max)
152 return UINT_MAX;
153
154 if (divisor == INTERVALS) {
155 avg >>= INTERVAL_SHIFT;
156 variance >>= INTERVAL_SHIFT;
157 } else {
158 do_div(avg, divisor);
159 do_div(variance, divisor);
160 }
161
162 avg_sq = avg * avg;
163 variance -= avg_sq;
164
165 /*
166 * The typical interval is obtained when standard deviation is
167 * small (stddev <= 20 us, variance <= 400 us^2) or standard
168 * deviation is small compared to the average interval (avg >
169 * 6*stddev, avg^2 > 36*variance). The average is smaller than
170 * UINT_MAX aka U32_MAX, so computing its square does not
171 * overflow a u64. We simply reject this candidate average if
172 * the standard deviation is greater than 715 s (which is
173 * rather unlikely).
174 *
175 * Use this result only if there is no timer to wake us up sooner.
176 */
177 if (likely(variance <= U64_MAX/36)) {
178 if ((avg_sq > variance * 36 && divisor * 4 >= INTERVALS * 3) ||
179 variance <= 400)
180 return avg;
181 }
182
183 /*
184 * If there are outliers, discard them by setting thresholds to exclude
185 * data points at a large enough distance from the average, then
186 * calculate the average and standard deviation again. Once we get
187 * down to the last 3/4 of our samples, stop excluding samples.
188 *
189 * This can deal with workloads that have long pauses interspersed
190 * with sporadic activity with a bunch of short pauses.
191 */
192 if (divisor * 4 <= INTERVALS * 3) {
193 /*
194 * If there are sufficiently many data points still under
195 * consideration after the outliers have been eliminated,
196 * returning without a prediction would be a mistake because it
197 * is likely that the next interval will not exceed the current
198 * maximum, so return the latter in that case.
199 */
200 if (divisor >= INTERVALS / 2)
201 return max;
202
203 return UINT_MAX;
204 }
205
206 /* Update the thresholds for the next round. */
207 if (avg - min > max - avg)
208 min_thresh = min;
209 else
210 max_thresh = max;
211
212 goto again;
213 }
214
215 /**
216 * menu_select - selects the next idle state to enter
217 * @drv: cpuidle driver containing state data
218 * @dev: the CPU
219 * @stop_tick: indication on whether or not to stop the tick
220 */
menu_select(struct cpuidle_driver * drv,struct cpuidle_device * dev,bool * stop_tick)221 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
222 bool *stop_tick)
223 {
224 struct menu_device *data = this_cpu_ptr(&menu_devices);
225 s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
226 u64 predicted_ns;
227 ktime_t delta, delta_tick;
228 int i, idx;
229
230 if (data->needs_update) {
231 menu_update(drv, dev);
232 data->needs_update = 0;
233 } else if (!dev->last_residency_ns) {
234 /*
235 * This happens when the driver rejects the previously selected
236 * idle state and returns an error, so update the recent
237 * intervals table to prevent invalid information from being
238 * used going forward.
239 */
240 menu_update_intervals(data, UINT_MAX);
241 }
242
243 /* Find the shortest expected idle interval. */
244 predicted_ns = get_typical_interval(data) * NSEC_PER_USEC;
245 if (predicted_ns > RESIDENCY_THRESHOLD_NS) {
246 unsigned int timer_us;
247
248 /* Determine the time till the closest timer. */
249 delta = tick_nohz_get_sleep_length(&delta_tick);
250 if (unlikely(delta < 0)) {
251 delta = 0;
252 delta_tick = 0;
253 }
254
255 data->next_timer_ns = delta;
256 data->bucket = which_bucket(data->next_timer_ns);
257
258 /* Round up the result for half microseconds. */
259 timer_us = div_u64((RESOLUTION * DECAY * NSEC_PER_USEC) / 2 +
260 data->next_timer_ns *
261 data->correction_factor[data->bucket],
262 RESOLUTION * DECAY * NSEC_PER_USEC);
263 /* Use the lowest expected idle interval to pick the idle state. */
264 predicted_ns = min((u64)timer_us * NSEC_PER_USEC, predicted_ns);
265 } else {
266 /*
267 * Because the next timer event is not going to be determined
268 * in this case, assume that without the tick the closest timer
269 * will be in distant future and that the closest tick will occur
270 * after 1/2 of the tick period.
271 */
272 data->next_timer_ns = KTIME_MAX;
273 delta_tick = TICK_NSEC / 2;
274 data->bucket = BUCKETS - 1;
275 }
276
277 if (unlikely(drv->state_count <= 1 || latency_req == 0) ||
278 ((data->next_timer_ns < drv->states[1].target_residency_ns ||
279 latency_req < drv->states[1].exit_latency_ns) &&
280 !dev->states_usage[0].disable)) {
281 /*
282 * In this case state[0] will be used no matter what, so return
283 * it right away and keep the tick running if state[0] is a
284 * polling one.
285 */
286 *stop_tick = !(drv->states[0].flags & CPUIDLE_FLAG_POLLING);
287 return 0;
288 }
289
290 if (tick_nohz_tick_stopped()) {
291 /*
292 * If the tick is already stopped, the cost of possible short
293 * idle duration misprediction is much higher, because the CPU
294 * may be stuck in a shallow idle state for a long time as a
295 * result of it. In that case say we might mispredict and use
296 * the known time till the closest timer event for the idle
297 * state selection.
298 */
299 if (predicted_ns < TICK_NSEC)
300 predicted_ns = data->next_timer_ns;
301 } else if (latency_req > predicted_ns) {
302 latency_req = predicted_ns;
303 }
304
305 /*
306 * Find the idle state with the lowest power while satisfying
307 * our constraints.
308 */
309 idx = -1;
310 for (i = 0; i < drv->state_count; i++) {
311 struct cpuidle_state *s = &drv->states[i];
312
313 if (dev->states_usage[i].disable)
314 continue;
315
316 if (idx == -1)
317 idx = i; /* first enabled state */
318
319 if (s->target_residency_ns > predicted_ns) {
320 /*
321 * Use a physical idle state, not busy polling, unless
322 * a timer is going to trigger soon enough.
323 */
324 if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
325 s->exit_latency_ns <= latency_req &&
326 s->target_residency_ns <= data->next_timer_ns) {
327 predicted_ns = s->target_residency_ns;
328 idx = i;
329 break;
330 }
331 if (predicted_ns < TICK_NSEC)
332 break;
333
334 if (!tick_nohz_tick_stopped()) {
335 /*
336 * If the state selected so far is shallow,
337 * waking up early won't hurt, so retain the
338 * tick in that case and let the governor run
339 * again in the next iteration of the loop.
340 */
341 predicted_ns = drv->states[idx].target_residency_ns;
342 break;
343 }
344
345 /*
346 * If the state selected so far is shallow and this
347 * state's target residency matches the time till the
348 * closest timer event, select this one to avoid getting
349 * stuck in the shallow one for too long.
350 */
351 if (drv->states[idx].target_residency_ns < TICK_NSEC &&
352 s->target_residency_ns <= delta_tick)
353 idx = i;
354
355 return idx;
356 }
357 if (s->exit_latency_ns > latency_req)
358 break;
359
360 idx = i;
361 }
362
363 if (idx == -1)
364 idx = 0; /* No states enabled. Must use 0. */
365
366 /*
367 * Don't stop the tick if the selected state is a polling one or if the
368 * expected idle duration is shorter than the tick period length.
369 */
370 if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
371 predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
372 *stop_tick = false;
373
374 if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick) {
375 /*
376 * The tick is not going to be stopped and the target
377 * residency of the state to be returned is not within
378 * the time until the next timer event including the
379 * tick, so try to correct that.
380 */
381 for (i = idx - 1; i >= 0; i--) {
382 if (dev->states_usage[i].disable)
383 continue;
384
385 idx = i;
386 if (drv->states[i].target_residency_ns <= delta_tick)
387 break;
388 }
389 }
390 }
391
392 return idx;
393 }
394
395 /**
396 * menu_reflect - records that data structures need update
397 * @dev: the CPU
398 * @index: the index of actual entered state
399 *
400 * NOTE: it's important to be fast here because this operation will add to
401 * the overall exit latency.
402 */
menu_reflect(struct cpuidle_device * dev,int index)403 static void menu_reflect(struct cpuidle_device *dev, int index)
404 {
405 struct menu_device *data = this_cpu_ptr(&menu_devices);
406
407 dev->last_state_idx = index;
408 data->needs_update = 1;
409 data->tick_wakeup = tick_nohz_idle_got_tick();
410 }
411
412 /**
413 * menu_update - attempts to guess what happened after entry
414 * @drv: cpuidle driver containing state data
415 * @dev: the CPU
416 */
menu_update(struct cpuidle_driver * drv,struct cpuidle_device * dev)417 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
418 {
419 struct menu_device *data = this_cpu_ptr(&menu_devices);
420 int last_idx = dev->last_state_idx;
421 struct cpuidle_state *target = &drv->states[last_idx];
422 u64 measured_ns;
423 unsigned int new_factor;
424
425 /*
426 * Try to figure out how much time passed between entry to low
427 * power state and occurrence of the wakeup event.
428 *
429 * If the entered idle state didn't support residency measurements,
430 * we use them anyway if they are short, and if long,
431 * truncate to the whole expected time.
432 *
433 * Any measured amount of time will include the exit latency.
434 * Since we are interested in when the wakeup begun, not when it
435 * was completed, we must subtract the exit latency. However, if
436 * the measured amount of time is less than the exit latency,
437 * assume the state was never reached and the exit latency is 0.
438 */
439
440 if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) {
441 /*
442 * The nohz code said that there wouldn't be any events within
443 * the tick boundary (if the tick was stopped), but the idle
444 * duration predictor had a differing opinion. Since the CPU
445 * was woken up by a tick (that wasn't stopped after all), the
446 * predictor was not quite right, so assume that the CPU could
447 * have been idle long (but not forever) to help the idle
448 * duration predictor do a better job next time.
449 */
450 measured_ns = 9 * MAX_INTERESTING / 10;
451 } else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
452 dev->poll_time_limit) {
453 /*
454 * The CPU exited the "polling" state due to a time limit, so
455 * the idle duration prediction leading to the selection of that
456 * state was inaccurate. If a better prediction had been made,
457 * the CPU might have been woken up from idle by the next timer.
458 * Assume that to be the case.
459 */
460 measured_ns = data->next_timer_ns;
461 } else {
462 /* measured value */
463 measured_ns = dev->last_residency_ns;
464
465 /* Deduct exit latency */
466 if (measured_ns > 2 * target->exit_latency_ns)
467 measured_ns -= target->exit_latency_ns;
468 else
469 measured_ns /= 2;
470 }
471
472 /* Make sure our coefficients do not exceed unity */
473 if (measured_ns > data->next_timer_ns)
474 measured_ns = data->next_timer_ns;
475
476 /* Update our correction ratio */
477 new_factor = data->correction_factor[data->bucket];
478 new_factor -= new_factor / DECAY;
479
480 if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING)
481 new_factor += div64_u64(RESOLUTION * measured_ns,
482 data->next_timer_ns);
483 else
484 /*
485 * we were idle so long that we count it as a perfect
486 * prediction
487 */
488 new_factor += RESOLUTION;
489
490 /*
491 * We don't want 0 as factor; we always want at least
492 * a tiny bit of estimated time. Fortunately, due to rounding,
493 * new_factor will stay nonzero regardless of measured_us values
494 * and the compiler can eliminate this test as long as DECAY > 1.
495 */
496 if (DECAY == 1 && unlikely(new_factor == 0))
497 new_factor = 1;
498
499 data->correction_factor[data->bucket] = new_factor;
500
501 menu_update_intervals(data, ktime_to_us(measured_ns));
502 }
503
504 /**
505 * menu_enable_device - scans a CPU's states and does setup
506 * @drv: cpuidle driver
507 * @dev: the CPU
508 */
menu_enable_device(struct cpuidle_driver * drv,struct cpuidle_device * dev)509 static int menu_enable_device(struct cpuidle_driver *drv,
510 struct cpuidle_device *dev)
511 {
512 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
513 int i;
514
515 memset(data, 0, sizeof(struct menu_device));
516
517 /*
518 * if the correction factor is 0 (eg first time init or cpu hotplug
519 * etc), we actually want to start out with a unity factor.
520 */
521 for(i = 0; i < BUCKETS; i++)
522 data->correction_factor[i] = RESOLUTION * DECAY;
523
524 return 0;
525 }
526
527 static struct cpuidle_governor menu_governor = {
528 .name = "menu",
529 .rating = 20,
530 .enable = menu_enable_device,
531 .select = menu_select,
532 .reflect = menu_reflect,
533 };
534
535 /**
536 * init_menu - initializes the governor
537 */
init_menu(void)538 static int __init init_menu(void)
539 {
540 return cpuidle_register_governor(&menu_governor);
541 }
542
543 postcore_initcall(init_menu);
544