xref: /linux/fs/namespace.c (revision b19a97d57c15643494ac8bfaaa35e3ee472d41da)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 
37 #include "pnode.h"
38 #include "internal.h"
39 
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47 
48 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)49 static int __init set_mhash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mhash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57 
58 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)59 static int __init set_mphash_entries(char *str)
60 {
61 	if (!str)
62 		return 0;
63 	mphash_entries = simple_strtoul(str, &str, 0);
64 	return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67 
68 static u64 event;
69 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
70 static DEFINE_IDA(mnt_group_ida);
71 
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
75 
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */
83 static DEFINE_SEQLOCK(mnt_ns_tree_lock);
84 
85 #ifdef CONFIG_FSNOTIFY
86 LIST_HEAD(notify_list); /* protected by namespace_sem */
87 #endif
88 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
89 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */
90 
91 enum mount_kattr_flags_t {
92 	MOUNT_KATTR_RECURSE		= (1 << 0),
93 	MOUNT_KATTR_IDMAP_REPLACE	= (1 << 1),
94 };
95 
96 struct mount_kattr {
97 	unsigned int attr_set;
98 	unsigned int attr_clr;
99 	unsigned int propagation;
100 	unsigned int lookup_flags;
101 	enum mount_kattr_flags_t kflags;
102 	struct user_namespace *mnt_userns;
103 	struct mnt_idmap *mnt_idmap;
104 };
105 
106 /* /sys/fs */
107 struct kobject *fs_kobj __ro_after_init;
108 EXPORT_SYMBOL_GPL(fs_kobj);
109 
110 /*
111  * vfsmount lock may be taken for read to prevent changes to the
112  * vfsmount hash, ie. during mountpoint lookups or walking back
113  * up the tree.
114  *
115  * It should be taken for write in all cases where the vfsmount
116  * tree or hash is modified or when a vfsmount structure is modified.
117  */
118 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
119 
node_to_mnt_ns(const struct rb_node * node)120 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
121 {
122 	if (!node)
123 		return NULL;
124 	return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
125 }
126 
mnt_ns_cmp(struct rb_node * a,const struct rb_node * b)127 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b)
128 {
129 	struct mnt_namespace *ns_a = node_to_mnt_ns(a);
130 	struct mnt_namespace *ns_b = node_to_mnt_ns(b);
131 	u64 seq_a = ns_a->seq;
132 	u64 seq_b = ns_b->seq;
133 
134 	if (seq_a < seq_b)
135 		return -1;
136 	if (seq_a > seq_b)
137 		return 1;
138 	return 0;
139 }
140 
mnt_ns_tree_write_lock(void)141 static inline void mnt_ns_tree_write_lock(void)
142 {
143 	write_seqlock(&mnt_ns_tree_lock);
144 }
145 
mnt_ns_tree_write_unlock(void)146 static inline void mnt_ns_tree_write_unlock(void)
147 {
148 	write_sequnlock(&mnt_ns_tree_lock);
149 }
150 
mnt_ns_tree_add(struct mnt_namespace * ns)151 static void mnt_ns_tree_add(struct mnt_namespace *ns)
152 {
153 	struct rb_node *node, *prev;
154 
155 	mnt_ns_tree_write_lock();
156 	node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp);
157 	/*
158 	 * If there's no previous entry simply add it after the
159 	 * head and if there is add it after the previous entry.
160 	 */
161 	prev = rb_prev(&ns->mnt_ns_tree_node);
162 	if (!prev)
163 		list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list);
164 	else
165 		list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list);
166 	mnt_ns_tree_write_unlock();
167 
168 	WARN_ON_ONCE(node);
169 }
170 
mnt_ns_release(struct mnt_namespace * ns)171 static void mnt_ns_release(struct mnt_namespace *ns)
172 {
173 	/* keep alive for {list,stat}mount() */
174 	if (refcount_dec_and_test(&ns->passive)) {
175 		fsnotify_mntns_delete(ns);
176 		put_user_ns(ns->user_ns);
177 		kfree(ns);
178 	}
179 }
DEFINE_FREE(mnt_ns_release,struct mnt_namespace *,if (_T)mnt_ns_release (_T))180 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
181 
182 static void mnt_ns_release_rcu(struct rcu_head *rcu)
183 {
184 	mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu));
185 }
186 
mnt_ns_tree_remove(struct mnt_namespace * ns)187 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
188 {
189 	/* remove from global mount namespace list */
190 	if (!is_anon_ns(ns)) {
191 		mnt_ns_tree_write_lock();
192 		rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
193 		list_bidir_del_rcu(&ns->mnt_ns_list);
194 		mnt_ns_tree_write_unlock();
195 	}
196 
197 	call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu);
198 }
199 
mnt_ns_find(const void * key,const struct rb_node * node)200 static int mnt_ns_find(const void *key, const struct rb_node *node)
201 {
202 	const u64 mnt_ns_id = *(u64 *)key;
203 	const struct mnt_namespace *ns = node_to_mnt_ns(node);
204 
205 	if (mnt_ns_id < ns->seq)
206 		return -1;
207 	if (mnt_ns_id > ns->seq)
208 		return 1;
209 	return 0;
210 }
211 
212 /*
213  * Lookup a mount namespace by id and take a passive reference count. Taking a
214  * passive reference means the mount namespace can be emptied if e.g., the last
215  * task holding an active reference exits. To access the mounts of the
216  * namespace the @namespace_sem must first be acquired. If the namespace has
217  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
218  * see that the mount rbtree of the namespace is empty.
219  *
220  * Note the lookup is lockless protected by a sequence counter. We only
221  * need to guard against false negatives as false positives aren't
222  * possible. So if we didn't find a mount namespace and the sequence
223  * counter has changed we need to retry. If the sequence counter is
224  * still the same we know the search actually failed.
225  */
lookup_mnt_ns(u64 mnt_ns_id)226 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
227 {
228 	struct mnt_namespace *ns;
229 	struct rb_node *node;
230 	unsigned int seq;
231 
232 	guard(rcu)();
233 	do {
234 		seq = read_seqbegin(&mnt_ns_tree_lock);
235 		node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find);
236 		if (node)
237 			break;
238 	} while (read_seqretry(&mnt_ns_tree_lock, seq));
239 
240 	if (!node)
241 		return NULL;
242 
243 	/*
244 	 * The last reference count is put with RCU delay so we can
245 	 * unconditonally acquire a reference here.
246 	 */
247 	ns = node_to_mnt_ns(node);
248 	refcount_inc(&ns->passive);
249 	return ns;
250 }
251 
lock_mount_hash(void)252 static inline void lock_mount_hash(void)
253 {
254 	write_seqlock(&mount_lock);
255 }
256 
unlock_mount_hash(void)257 static inline void unlock_mount_hash(void)
258 {
259 	write_sequnlock(&mount_lock);
260 }
261 
m_hash(struct vfsmount * mnt,struct dentry * dentry)262 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
263 {
264 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
265 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
266 	tmp = tmp + (tmp >> m_hash_shift);
267 	return &mount_hashtable[tmp & m_hash_mask];
268 }
269 
mp_hash(struct dentry * dentry)270 static inline struct hlist_head *mp_hash(struct dentry *dentry)
271 {
272 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
273 	tmp = tmp + (tmp >> mp_hash_shift);
274 	return &mountpoint_hashtable[tmp & mp_hash_mask];
275 }
276 
mnt_alloc_id(struct mount * mnt)277 static int mnt_alloc_id(struct mount *mnt)
278 {
279 	int res;
280 
281 	xa_lock(&mnt_id_xa);
282 	res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
283 	if (!res)
284 		mnt->mnt_id_unique = ++mnt_id_ctr;
285 	xa_unlock(&mnt_id_xa);
286 	return res;
287 }
288 
mnt_free_id(struct mount * mnt)289 static void mnt_free_id(struct mount *mnt)
290 {
291 	xa_erase(&mnt_id_xa, mnt->mnt_id);
292 }
293 
294 /*
295  * Allocate a new peer group ID
296  */
mnt_alloc_group_id(struct mount * mnt)297 static int mnt_alloc_group_id(struct mount *mnt)
298 {
299 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
300 
301 	if (res < 0)
302 		return res;
303 	mnt->mnt_group_id = res;
304 	return 0;
305 }
306 
307 /*
308  * Release a peer group ID
309  */
mnt_release_group_id(struct mount * mnt)310 void mnt_release_group_id(struct mount *mnt)
311 {
312 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
313 	mnt->mnt_group_id = 0;
314 }
315 
316 /*
317  * vfsmount lock must be held for read
318  */
mnt_add_count(struct mount * mnt,int n)319 static inline void mnt_add_count(struct mount *mnt, int n)
320 {
321 #ifdef CONFIG_SMP
322 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
323 #else
324 	preempt_disable();
325 	mnt->mnt_count += n;
326 	preempt_enable();
327 #endif
328 }
329 
330 /*
331  * vfsmount lock must be held for write
332  */
mnt_get_count(struct mount * mnt)333 int mnt_get_count(struct mount *mnt)
334 {
335 #ifdef CONFIG_SMP
336 	int count = 0;
337 	int cpu;
338 
339 	for_each_possible_cpu(cpu) {
340 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
341 	}
342 
343 	return count;
344 #else
345 	return mnt->mnt_count;
346 #endif
347 }
348 
alloc_vfsmnt(const char * name)349 static struct mount *alloc_vfsmnt(const char *name)
350 {
351 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
352 	if (mnt) {
353 		int err;
354 
355 		err = mnt_alloc_id(mnt);
356 		if (err)
357 			goto out_free_cache;
358 
359 		if (name)
360 			mnt->mnt_devname = kstrdup_const(name,
361 							 GFP_KERNEL_ACCOUNT);
362 		else
363 			mnt->mnt_devname = "none";
364 		if (!mnt->mnt_devname)
365 			goto out_free_id;
366 
367 #ifdef CONFIG_SMP
368 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
369 		if (!mnt->mnt_pcp)
370 			goto out_free_devname;
371 
372 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
373 #else
374 		mnt->mnt_count = 1;
375 		mnt->mnt_writers = 0;
376 #endif
377 
378 		INIT_HLIST_NODE(&mnt->mnt_hash);
379 		INIT_LIST_HEAD(&mnt->mnt_child);
380 		INIT_LIST_HEAD(&mnt->mnt_mounts);
381 		INIT_LIST_HEAD(&mnt->mnt_list);
382 		INIT_LIST_HEAD(&mnt->mnt_expire);
383 		INIT_LIST_HEAD(&mnt->mnt_share);
384 		INIT_HLIST_HEAD(&mnt->mnt_slave_list);
385 		INIT_HLIST_NODE(&mnt->mnt_slave);
386 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
387 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
388 		RB_CLEAR_NODE(&mnt->mnt_node);
389 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
390 	}
391 	return mnt;
392 
393 #ifdef CONFIG_SMP
394 out_free_devname:
395 	kfree_const(mnt->mnt_devname);
396 #endif
397 out_free_id:
398 	mnt_free_id(mnt);
399 out_free_cache:
400 	kmem_cache_free(mnt_cache, mnt);
401 	return NULL;
402 }
403 
404 /*
405  * Most r/o checks on a fs are for operations that take
406  * discrete amounts of time, like a write() or unlink().
407  * We must keep track of when those operations start
408  * (for permission checks) and when they end, so that
409  * we can determine when writes are able to occur to
410  * a filesystem.
411  */
412 /*
413  * __mnt_is_readonly: check whether a mount is read-only
414  * @mnt: the mount to check for its write status
415  *
416  * This shouldn't be used directly ouside of the VFS.
417  * It does not guarantee that the filesystem will stay
418  * r/w, just that it is right *now*.  This can not and
419  * should not be used in place of IS_RDONLY(inode).
420  * mnt_want/drop_write() will _keep_ the filesystem
421  * r/w.
422  */
__mnt_is_readonly(struct vfsmount * mnt)423 bool __mnt_is_readonly(struct vfsmount *mnt)
424 {
425 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
426 }
427 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
428 
mnt_inc_writers(struct mount * mnt)429 static inline void mnt_inc_writers(struct mount *mnt)
430 {
431 #ifdef CONFIG_SMP
432 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
433 #else
434 	mnt->mnt_writers++;
435 #endif
436 }
437 
mnt_dec_writers(struct mount * mnt)438 static inline void mnt_dec_writers(struct mount *mnt)
439 {
440 #ifdef CONFIG_SMP
441 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
442 #else
443 	mnt->mnt_writers--;
444 #endif
445 }
446 
mnt_get_writers(struct mount * mnt)447 static unsigned int mnt_get_writers(struct mount *mnt)
448 {
449 #ifdef CONFIG_SMP
450 	unsigned int count = 0;
451 	int cpu;
452 
453 	for_each_possible_cpu(cpu) {
454 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
455 	}
456 
457 	return count;
458 #else
459 	return mnt->mnt_writers;
460 #endif
461 }
462 
mnt_is_readonly(struct vfsmount * mnt)463 static int mnt_is_readonly(struct vfsmount *mnt)
464 {
465 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
466 		return 1;
467 	/*
468 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
469 	 * making sure if we don't see s_readonly_remount set yet, we also will
470 	 * not see any superblock / mount flag changes done by remount.
471 	 * It also pairs with the barrier in sb_end_ro_state_change()
472 	 * assuring that if we see s_readonly_remount already cleared, we will
473 	 * see the values of superblock / mount flags updated by remount.
474 	 */
475 	smp_rmb();
476 	return __mnt_is_readonly(mnt);
477 }
478 
479 /*
480  * Most r/o & frozen checks on a fs are for operations that take discrete
481  * amounts of time, like a write() or unlink().  We must keep track of when
482  * those operations start (for permission checks) and when they end, so that we
483  * can determine when writes are able to occur to a filesystem.
484  */
485 /**
486  * mnt_get_write_access - get write access to a mount without freeze protection
487  * @m: the mount on which to take a write
488  *
489  * This tells the low-level filesystem that a write is about to be performed to
490  * it, and makes sure that writes are allowed (mnt it read-write) before
491  * returning success. This operation does not protect against filesystem being
492  * frozen. When the write operation is finished, mnt_put_write_access() must be
493  * called. This is effectively a refcount.
494  */
mnt_get_write_access(struct vfsmount * m)495 int mnt_get_write_access(struct vfsmount *m)
496 {
497 	struct mount *mnt = real_mount(m);
498 	int ret = 0;
499 
500 	preempt_disable();
501 	mnt_inc_writers(mnt);
502 	/*
503 	 * The store to mnt_inc_writers must be visible before we pass
504 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
505 	 * incremented count after it has set MNT_WRITE_HOLD.
506 	 */
507 	smp_mb();
508 	might_lock(&mount_lock.lock);
509 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
510 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
511 			cpu_relax();
512 		} else {
513 			/*
514 			 * This prevents priority inversion, if the task
515 			 * setting MNT_WRITE_HOLD got preempted on a remote
516 			 * CPU, and it prevents life lock if the task setting
517 			 * MNT_WRITE_HOLD has a lower priority and is bound to
518 			 * the same CPU as the task that is spinning here.
519 			 */
520 			preempt_enable();
521 			lock_mount_hash();
522 			unlock_mount_hash();
523 			preempt_disable();
524 		}
525 	}
526 	/*
527 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
528 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
529 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
530 	 * mnt_is_readonly() and bail in case we are racing with remount
531 	 * read-only.
532 	 */
533 	smp_rmb();
534 	if (mnt_is_readonly(m)) {
535 		mnt_dec_writers(mnt);
536 		ret = -EROFS;
537 	}
538 	preempt_enable();
539 
540 	return ret;
541 }
542 EXPORT_SYMBOL_GPL(mnt_get_write_access);
543 
544 /**
545  * mnt_want_write - get write access to a mount
546  * @m: the mount on which to take a write
547  *
548  * This tells the low-level filesystem that a write is about to be performed to
549  * it, and makes sure that writes are allowed (mount is read-write, filesystem
550  * is not frozen) before returning success.  When the write operation is
551  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
552  */
mnt_want_write(struct vfsmount * m)553 int mnt_want_write(struct vfsmount *m)
554 {
555 	int ret;
556 
557 	sb_start_write(m->mnt_sb);
558 	ret = mnt_get_write_access(m);
559 	if (ret)
560 		sb_end_write(m->mnt_sb);
561 	return ret;
562 }
563 EXPORT_SYMBOL_GPL(mnt_want_write);
564 
565 /**
566  * mnt_get_write_access_file - get write access to a file's mount
567  * @file: the file who's mount on which to take a write
568  *
569  * This is like mnt_get_write_access, but if @file is already open for write it
570  * skips incrementing mnt_writers (since the open file already has a reference)
571  * and instead only does the check for emergency r/o remounts.  This must be
572  * paired with mnt_put_write_access_file.
573  */
mnt_get_write_access_file(struct file * file)574 int mnt_get_write_access_file(struct file *file)
575 {
576 	if (file->f_mode & FMODE_WRITER) {
577 		/*
578 		 * Superblock may have become readonly while there are still
579 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
580 		 */
581 		if (__mnt_is_readonly(file->f_path.mnt))
582 			return -EROFS;
583 		return 0;
584 	}
585 	return mnt_get_write_access(file->f_path.mnt);
586 }
587 
588 /**
589  * mnt_want_write_file - get write access to a file's mount
590  * @file: the file who's mount on which to take a write
591  *
592  * This is like mnt_want_write, but if the file is already open for writing it
593  * skips incrementing mnt_writers (since the open file already has a reference)
594  * and instead only does the freeze protection and the check for emergency r/o
595  * remounts.  This must be paired with mnt_drop_write_file.
596  */
mnt_want_write_file(struct file * file)597 int mnt_want_write_file(struct file *file)
598 {
599 	int ret;
600 
601 	sb_start_write(file_inode(file)->i_sb);
602 	ret = mnt_get_write_access_file(file);
603 	if (ret)
604 		sb_end_write(file_inode(file)->i_sb);
605 	return ret;
606 }
607 EXPORT_SYMBOL_GPL(mnt_want_write_file);
608 
609 /**
610  * mnt_put_write_access - give up write access to a mount
611  * @mnt: the mount on which to give up write access
612  *
613  * Tells the low-level filesystem that we are done
614  * performing writes to it.  Must be matched with
615  * mnt_get_write_access() call above.
616  */
mnt_put_write_access(struct vfsmount * mnt)617 void mnt_put_write_access(struct vfsmount *mnt)
618 {
619 	preempt_disable();
620 	mnt_dec_writers(real_mount(mnt));
621 	preempt_enable();
622 }
623 EXPORT_SYMBOL_GPL(mnt_put_write_access);
624 
625 /**
626  * mnt_drop_write - give up write access to a mount
627  * @mnt: the mount on which to give up write access
628  *
629  * Tells the low-level filesystem that we are done performing writes to it and
630  * also allows filesystem to be frozen again.  Must be matched with
631  * mnt_want_write() call above.
632  */
mnt_drop_write(struct vfsmount * mnt)633 void mnt_drop_write(struct vfsmount *mnt)
634 {
635 	mnt_put_write_access(mnt);
636 	sb_end_write(mnt->mnt_sb);
637 }
638 EXPORT_SYMBOL_GPL(mnt_drop_write);
639 
mnt_put_write_access_file(struct file * file)640 void mnt_put_write_access_file(struct file *file)
641 {
642 	if (!(file->f_mode & FMODE_WRITER))
643 		mnt_put_write_access(file->f_path.mnt);
644 }
645 
mnt_drop_write_file(struct file * file)646 void mnt_drop_write_file(struct file *file)
647 {
648 	mnt_put_write_access_file(file);
649 	sb_end_write(file_inode(file)->i_sb);
650 }
651 EXPORT_SYMBOL(mnt_drop_write_file);
652 
653 /**
654  * mnt_hold_writers - prevent write access to the given mount
655  * @mnt: mnt to prevent write access to
656  *
657  * Prevents write access to @mnt if there are no active writers for @mnt.
658  * This function needs to be called and return successfully before changing
659  * properties of @mnt that need to remain stable for callers with write access
660  * to @mnt.
661  *
662  * After this functions has been called successfully callers must pair it with
663  * a call to mnt_unhold_writers() in order to stop preventing write access to
664  * @mnt.
665  *
666  * Context: This function expects lock_mount_hash() to be held serializing
667  *          setting MNT_WRITE_HOLD.
668  * Return: On success 0 is returned.
669  *	   On error, -EBUSY is returned.
670  */
mnt_hold_writers(struct mount * mnt)671 static inline int mnt_hold_writers(struct mount *mnt)
672 {
673 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
674 	/*
675 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
676 	 * should be visible before we do.
677 	 */
678 	smp_mb();
679 
680 	/*
681 	 * With writers on hold, if this value is zero, then there are
682 	 * definitely no active writers (although held writers may subsequently
683 	 * increment the count, they'll have to wait, and decrement it after
684 	 * seeing MNT_READONLY).
685 	 *
686 	 * It is OK to have counter incremented on one CPU and decremented on
687 	 * another: the sum will add up correctly. The danger would be when we
688 	 * sum up each counter, if we read a counter before it is incremented,
689 	 * but then read another CPU's count which it has been subsequently
690 	 * decremented from -- we would see more decrements than we should.
691 	 * MNT_WRITE_HOLD protects against this scenario, because
692 	 * mnt_want_write first increments count, then smp_mb, then spins on
693 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
694 	 * we're counting up here.
695 	 */
696 	if (mnt_get_writers(mnt) > 0)
697 		return -EBUSY;
698 
699 	return 0;
700 }
701 
702 /**
703  * mnt_unhold_writers - stop preventing write access to the given mount
704  * @mnt: mnt to stop preventing write access to
705  *
706  * Stop preventing write access to @mnt allowing callers to gain write access
707  * to @mnt again.
708  *
709  * This function can only be called after a successful call to
710  * mnt_hold_writers().
711  *
712  * Context: This function expects lock_mount_hash() to be held.
713  */
mnt_unhold_writers(struct mount * mnt)714 static inline void mnt_unhold_writers(struct mount *mnt)
715 {
716 	/*
717 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
718 	 * that become unheld will see MNT_READONLY.
719 	 */
720 	smp_wmb();
721 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
722 }
723 
mnt_make_readonly(struct mount * mnt)724 static int mnt_make_readonly(struct mount *mnt)
725 {
726 	int ret;
727 
728 	ret = mnt_hold_writers(mnt);
729 	if (!ret)
730 		mnt->mnt.mnt_flags |= MNT_READONLY;
731 	mnt_unhold_writers(mnt);
732 	return ret;
733 }
734 
sb_prepare_remount_readonly(struct super_block * sb)735 int sb_prepare_remount_readonly(struct super_block *sb)
736 {
737 	struct mount *mnt;
738 	int err = 0;
739 
740 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
741 	if (atomic_long_read(&sb->s_remove_count))
742 		return -EBUSY;
743 
744 	lock_mount_hash();
745 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
746 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
747 			err = mnt_hold_writers(mnt);
748 			if (err)
749 				break;
750 		}
751 	}
752 	if (!err && atomic_long_read(&sb->s_remove_count))
753 		err = -EBUSY;
754 
755 	if (!err)
756 		sb_start_ro_state_change(sb);
757 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
758 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
759 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
760 	}
761 	unlock_mount_hash();
762 
763 	return err;
764 }
765 
free_vfsmnt(struct mount * mnt)766 static void free_vfsmnt(struct mount *mnt)
767 {
768 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
769 	kfree_const(mnt->mnt_devname);
770 #ifdef CONFIG_SMP
771 	free_percpu(mnt->mnt_pcp);
772 #endif
773 	kmem_cache_free(mnt_cache, mnt);
774 }
775 
delayed_free_vfsmnt(struct rcu_head * head)776 static void delayed_free_vfsmnt(struct rcu_head *head)
777 {
778 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
779 }
780 
781 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)782 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
783 {
784 	struct mount *mnt;
785 	if (read_seqretry(&mount_lock, seq))
786 		return 1;
787 	if (bastard == NULL)
788 		return 0;
789 	mnt = real_mount(bastard);
790 	mnt_add_count(mnt, 1);
791 	smp_mb();		// see mntput_no_expire() and do_umount()
792 	if (likely(!read_seqretry(&mount_lock, seq)))
793 		return 0;
794 	lock_mount_hash();
795 	if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
796 		mnt_add_count(mnt, -1);
797 		unlock_mount_hash();
798 		return 1;
799 	}
800 	unlock_mount_hash();
801 	/* caller will mntput() */
802 	return -1;
803 }
804 
805 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)806 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
807 {
808 	int res = __legitimize_mnt(bastard, seq);
809 	if (likely(!res))
810 		return true;
811 	if (unlikely(res < 0)) {
812 		rcu_read_unlock();
813 		mntput(bastard);
814 		rcu_read_lock();
815 	}
816 	return false;
817 }
818 
819 /**
820  * __lookup_mnt - find first child mount
821  * @mnt:	parent mount
822  * @dentry:	mountpoint
823  *
824  * If @mnt has a child mount @c mounted @dentry find and return it.
825  *
826  * Note that the child mount @c need not be unique. There are cases
827  * where shadow mounts are created. For example, during mount
828  * propagation when a source mount @mnt whose root got overmounted by a
829  * mount @o after path lookup but before @namespace_sem could be
830  * acquired gets copied and propagated. So @mnt gets copied including
831  * @o. When @mnt is propagated to a destination mount @d that already
832  * has another mount @n mounted at the same mountpoint then the source
833  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
834  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
835  * on @dentry.
836  *
837  * Return: The first child of @mnt mounted @dentry or NULL.
838  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)839 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
840 {
841 	struct hlist_head *head = m_hash(mnt, dentry);
842 	struct mount *p;
843 
844 	hlist_for_each_entry_rcu(p, head, mnt_hash)
845 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
846 			return p;
847 	return NULL;
848 }
849 
850 /*
851  * lookup_mnt - Return the first child mount mounted at path
852  *
853  * "First" means first mounted chronologically.  If you create the
854  * following mounts:
855  *
856  * mount /dev/sda1 /mnt
857  * mount /dev/sda2 /mnt
858  * mount /dev/sda3 /mnt
859  *
860  * Then lookup_mnt() on the base /mnt dentry in the root mount will
861  * return successively the root dentry and vfsmount of /dev/sda1, then
862  * /dev/sda2, then /dev/sda3, then NULL.
863  *
864  * lookup_mnt takes a reference to the found vfsmount.
865  */
lookup_mnt(const struct path * path)866 struct vfsmount *lookup_mnt(const struct path *path)
867 {
868 	struct mount *child_mnt;
869 	struct vfsmount *m;
870 	unsigned seq;
871 
872 	rcu_read_lock();
873 	do {
874 		seq = read_seqbegin(&mount_lock);
875 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
876 		m = child_mnt ? &child_mnt->mnt : NULL;
877 	} while (!legitimize_mnt(m, seq));
878 	rcu_read_unlock();
879 	return m;
880 }
881 
882 /*
883  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
884  *                         current mount namespace.
885  *
886  * The common case is dentries are not mountpoints at all and that
887  * test is handled inline.  For the slow case when we are actually
888  * dealing with a mountpoint of some kind, walk through all of the
889  * mounts in the current mount namespace and test to see if the dentry
890  * is a mountpoint.
891  *
892  * The mount_hashtable is not usable in the context because we
893  * need to identify all mounts that may be in the current mount
894  * namespace not just a mount that happens to have some specified
895  * parent mount.
896  */
__is_local_mountpoint(const struct dentry * dentry)897 bool __is_local_mountpoint(const struct dentry *dentry)
898 {
899 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
900 	struct mount *mnt, *n;
901 	bool is_covered = false;
902 
903 	down_read(&namespace_sem);
904 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
905 		is_covered = (mnt->mnt_mountpoint == dentry);
906 		if (is_covered)
907 			break;
908 	}
909 	up_read(&namespace_sem);
910 
911 	return is_covered;
912 }
913 
914 struct pinned_mountpoint {
915 	struct hlist_node node;
916 	struct mountpoint *mp;
917 };
918 
lookup_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)919 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
920 {
921 	struct hlist_head *chain = mp_hash(dentry);
922 	struct mountpoint *mp;
923 
924 	hlist_for_each_entry(mp, chain, m_hash) {
925 		if (mp->m_dentry == dentry) {
926 			hlist_add_head(&m->node, &mp->m_list);
927 			m->mp = mp;
928 			return true;
929 		}
930 	}
931 	return false;
932 }
933 
get_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)934 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
935 {
936 	struct mountpoint *mp __free(kfree) = NULL;
937 	bool found;
938 	int ret;
939 
940 	if (d_mountpoint(dentry)) {
941 		/* might be worth a WARN_ON() */
942 		if (d_unlinked(dentry))
943 			return -ENOENT;
944 mountpoint:
945 		read_seqlock_excl(&mount_lock);
946 		found = lookup_mountpoint(dentry, m);
947 		read_sequnlock_excl(&mount_lock);
948 		if (found)
949 			return 0;
950 	}
951 
952 	if (!mp)
953 		mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
954 	if (!mp)
955 		return -ENOMEM;
956 
957 	/* Exactly one processes may set d_mounted */
958 	ret = d_set_mounted(dentry);
959 
960 	/* Someone else set d_mounted? */
961 	if (ret == -EBUSY)
962 		goto mountpoint;
963 
964 	/* The dentry is not available as a mountpoint? */
965 	if (ret)
966 		return ret;
967 
968 	/* Add the new mountpoint to the hash table */
969 	read_seqlock_excl(&mount_lock);
970 	mp->m_dentry = dget(dentry);
971 	hlist_add_head(&mp->m_hash, mp_hash(dentry));
972 	INIT_HLIST_HEAD(&mp->m_list);
973 	hlist_add_head(&m->node, &mp->m_list);
974 	m->mp = no_free_ptr(mp);
975 	read_sequnlock_excl(&mount_lock);
976 	return 0;
977 }
978 
979 /*
980  * vfsmount lock must be held.  Additionally, the caller is responsible
981  * for serializing calls for given disposal list.
982  */
maybe_free_mountpoint(struct mountpoint * mp,struct list_head * list)983 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list)
984 {
985 	if (hlist_empty(&mp->m_list)) {
986 		struct dentry *dentry = mp->m_dentry;
987 		spin_lock(&dentry->d_lock);
988 		dentry->d_flags &= ~DCACHE_MOUNTED;
989 		spin_unlock(&dentry->d_lock);
990 		dput_to_list(dentry, list);
991 		hlist_del(&mp->m_hash);
992 		kfree(mp);
993 	}
994 }
995 
996 /*
997  * locks: mount_lock [read_seqlock_excl], namespace_sem [excl]
998  */
unpin_mountpoint(struct pinned_mountpoint * m)999 static void unpin_mountpoint(struct pinned_mountpoint *m)
1000 {
1001 	if (m->mp) {
1002 		hlist_del(&m->node);
1003 		maybe_free_mountpoint(m->mp, &ex_mountpoints);
1004 	}
1005 }
1006 
check_mnt(struct mount * mnt)1007 static inline int check_mnt(struct mount *mnt)
1008 {
1009 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
1010 }
1011 
check_anonymous_mnt(struct mount * mnt)1012 static inline bool check_anonymous_mnt(struct mount *mnt)
1013 {
1014 	u64 seq;
1015 
1016 	if (!is_anon_ns(mnt->mnt_ns))
1017 		return false;
1018 
1019 	seq = mnt->mnt_ns->seq_origin;
1020 	return !seq || (seq == current->nsproxy->mnt_ns->seq);
1021 }
1022 
1023 /*
1024  * vfsmount lock must be held for write
1025  */
touch_mnt_namespace(struct mnt_namespace * ns)1026 static void touch_mnt_namespace(struct mnt_namespace *ns)
1027 {
1028 	if (ns) {
1029 		ns->event = ++event;
1030 		wake_up_interruptible(&ns->poll);
1031 	}
1032 }
1033 
1034 /*
1035  * vfsmount lock must be held for write
1036  */
__touch_mnt_namespace(struct mnt_namespace * ns)1037 static void __touch_mnt_namespace(struct mnt_namespace *ns)
1038 {
1039 	if (ns && ns->event != event) {
1040 		ns->event = event;
1041 		wake_up_interruptible(&ns->poll);
1042 	}
1043 }
1044 
1045 /*
1046  * locks: mount_lock[write_seqlock]
1047  */
__umount_mnt(struct mount * mnt,struct list_head * shrink_list)1048 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list)
1049 {
1050 	struct mountpoint *mp;
1051 	struct mount *parent = mnt->mnt_parent;
1052 	if (unlikely(parent->overmount == mnt))
1053 		parent->overmount = NULL;
1054 	mnt->mnt_parent = mnt;
1055 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1056 	list_del_init(&mnt->mnt_child);
1057 	hlist_del_init_rcu(&mnt->mnt_hash);
1058 	hlist_del_init(&mnt->mnt_mp_list);
1059 	mp = mnt->mnt_mp;
1060 	mnt->mnt_mp = NULL;
1061 	maybe_free_mountpoint(mp, shrink_list);
1062 }
1063 
1064 /*
1065  * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints)
1066  */
umount_mnt(struct mount * mnt)1067 static void umount_mnt(struct mount *mnt)
1068 {
1069 	__umount_mnt(mnt, &ex_mountpoints);
1070 }
1071 
1072 /*
1073  * vfsmount lock must be held for write
1074  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1075 void mnt_set_mountpoint(struct mount *mnt,
1076 			struct mountpoint *mp,
1077 			struct mount *child_mnt)
1078 {
1079 	child_mnt->mnt_mountpoint = mp->m_dentry;
1080 	child_mnt->mnt_parent = mnt;
1081 	child_mnt->mnt_mp = mp;
1082 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1083 }
1084 
make_visible(struct mount * mnt)1085 static void make_visible(struct mount *mnt)
1086 {
1087 	struct mount *parent = mnt->mnt_parent;
1088 	if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root))
1089 		parent->overmount = mnt;
1090 	hlist_add_head_rcu(&mnt->mnt_hash,
1091 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1092 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1093 }
1094 
1095 /**
1096  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1097  *              list of child mounts
1098  * @parent:  the parent
1099  * @mnt:     the new mount
1100  * @mp:      the new mountpoint
1101  *
1102  * Mount @mnt at @mp on @parent. Then attach @mnt
1103  * to @parent's child mount list and to @mount_hashtable.
1104  *
1105  * Note, when make_visible() is called @mnt->mnt_parent already points
1106  * to the correct parent.
1107  *
1108  * Context: This function expects namespace_lock() and lock_mount_hash()
1109  *          to have been acquired in that order.
1110  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)1111 static void attach_mnt(struct mount *mnt, struct mount *parent,
1112 		       struct mountpoint *mp)
1113 {
1114 	mnt_set_mountpoint(parent, mp, mnt);
1115 	make_visible(mnt);
1116 }
1117 
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1118 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1119 {
1120 	struct mountpoint *old_mp = mnt->mnt_mp;
1121 
1122 	list_del_init(&mnt->mnt_child);
1123 	hlist_del_init(&mnt->mnt_mp_list);
1124 	hlist_del_init_rcu(&mnt->mnt_hash);
1125 
1126 	attach_mnt(mnt, parent, mp);
1127 
1128 	maybe_free_mountpoint(old_mp, &ex_mountpoints);
1129 }
1130 
node_to_mount(struct rb_node * node)1131 static inline struct mount *node_to_mount(struct rb_node *node)
1132 {
1133 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1134 }
1135 
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1136 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1137 {
1138 	struct rb_node **link = &ns->mounts.rb_node;
1139 	struct rb_node *parent = NULL;
1140 	bool mnt_first_node = true, mnt_last_node = true;
1141 
1142 	WARN_ON(mnt_ns_attached(mnt));
1143 	mnt->mnt_ns = ns;
1144 	while (*link) {
1145 		parent = *link;
1146 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1147 			link = &parent->rb_left;
1148 			mnt_last_node = false;
1149 		} else {
1150 			link = &parent->rb_right;
1151 			mnt_first_node = false;
1152 		}
1153 	}
1154 
1155 	if (mnt_last_node)
1156 		ns->mnt_last_node = &mnt->mnt_node;
1157 	if (mnt_first_node)
1158 		ns->mnt_first_node = &mnt->mnt_node;
1159 	rb_link_node(&mnt->mnt_node, parent, link);
1160 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1161 
1162 	mnt_notify_add(mnt);
1163 }
1164 
next_mnt(struct mount * p,struct mount * root)1165 static struct mount *next_mnt(struct mount *p, struct mount *root)
1166 {
1167 	struct list_head *next = p->mnt_mounts.next;
1168 	if (next == &p->mnt_mounts) {
1169 		while (1) {
1170 			if (p == root)
1171 				return NULL;
1172 			next = p->mnt_child.next;
1173 			if (next != &p->mnt_parent->mnt_mounts)
1174 				break;
1175 			p = p->mnt_parent;
1176 		}
1177 	}
1178 	return list_entry(next, struct mount, mnt_child);
1179 }
1180 
skip_mnt_tree(struct mount * p)1181 static struct mount *skip_mnt_tree(struct mount *p)
1182 {
1183 	struct list_head *prev = p->mnt_mounts.prev;
1184 	while (prev != &p->mnt_mounts) {
1185 		p = list_entry(prev, struct mount, mnt_child);
1186 		prev = p->mnt_mounts.prev;
1187 	}
1188 	return p;
1189 }
1190 
1191 /*
1192  * vfsmount lock must be held for write
1193  */
commit_tree(struct mount * mnt)1194 static void commit_tree(struct mount *mnt)
1195 {
1196 	struct mnt_namespace *n = mnt->mnt_parent->mnt_ns;
1197 
1198 	if (!mnt_ns_attached(mnt)) {
1199 		for (struct mount *m = mnt; m; m = next_mnt(m, mnt))
1200 			mnt_add_to_ns(n, m);
1201 		n->nr_mounts += n->pending_mounts;
1202 		n->pending_mounts = 0;
1203 	}
1204 
1205 	make_visible(mnt);
1206 	touch_mnt_namespace(n);
1207 }
1208 
1209 /**
1210  * vfs_create_mount - Create a mount for a configured superblock
1211  * @fc: The configuration context with the superblock attached
1212  *
1213  * Create a mount to an already configured superblock.  If necessary, the
1214  * caller should invoke vfs_get_tree() before calling this.
1215  *
1216  * Note that this does not attach the mount to anything.
1217  */
vfs_create_mount(struct fs_context * fc)1218 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1219 {
1220 	struct mount *mnt;
1221 
1222 	if (!fc->root)
1223 		return ERR_PTR(-EINVAL);
1224 
1225 	mnt = alloc_vfsmnt(fc->source);
1226 	if (!mnt)
1227 		return ERR_PTR(-ENOMEM);
1228 
1229 	if (fc->sb_flags & SB_KERNMOUNT)
1230 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1231 
1232 	atomic_inc(&fc->root->d_sb->s_active);
1233 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1234 	mnt->mnt.mnt_root	= dget(fc->root);
1235 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1236 	mnt->mnt_parent		= mnt;
1237 
1238 	lock_mount_hash();
1239 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1240 	unlock_mount_hash();
1241 	return &mnt->mnt;
1242 }
1243 EXPORT_SYMBOL(vfs_create_mount);
1244 
fc_mount(struct fs_context * fc)1245 struct vfsmount *fc_mount(struct fs_context *fc)
1246 {
1247 	int err = vfs_get_tree(fc);
1248 	if (!err) {
1249 		up_write(&fc->root->d_sb->s_umount);
1250 		return vfs_create_mount(fc);
1251 	}
1252 	return ERR_PTR(err);
1253 }
1254 EXPORT_SYMBOL(fc_mount);
1255 
fc_mount_longterm(struct fs_context * fc)1256 struct vfsmount *fc_mount_longterm(struct fs_context *fc)
1257 {
1258 	struct vfsmount *mnt = fc_mount(fc);
1259 	if (!IS_ERR(mnt))
1260 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
1261 	return mnt;
1262 }
1263 EXPORT_SYMBOL(fc_mount_longterm);
1264 
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1265 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1266 				int flags, const char *name,
1267 				void *data)
1268 {
1269 	struct fs_context *fc;
1270 	struct vfsmount *mnt;
1271 	int ret = 0;
1272 
1273 	if (!type)
1274 		return ERR_PTR(-EINVAL);
1275 
1276 	fc = fs_context_for_mount(type, flags);
1277 	if (IS_ERR(fc))
1278 		return ERR_CAST(fc);
1279 
1280 	if (name)
1281 		ret = vfs_parse_fs_string(fc, "source",
1282 					  name, strlen(name));
1283 	if (!ret)
1284 		ret = parse_monolithic_mount_data(fc, data);
1285 	if (!ret)
1286 		mnt = fc_mount(fc);
1287 	else
1288 		mnt = ERR_PTR(ret);
1289 
1290 	put_fs_context(fc);
1291 	return mnt;
1292 }
1293 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1294 
clone_mnt(struct mount * old,struct dentry * root,int flag)1295 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1296 					int flag)
1297 {
1298 	struct super_block *sb = old->mnt.mnt_sb;
1299 	struct mount *mnt;
1300 	int err;
1301 
1302 	mnt = alloc_vfsmnt(old->mnt_devname);
1303 	if (!mnt)
1304 		return ERR_PTR(-ENOMEM);
1305 
1306 	mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) &
1307 			     ~MNT_INTERNAL_FLAGS;
1308 
1309 	if (flag & (CL_SLAVE | CL_PRIVATE))
1310 		mnt->mnt_group_id = 0; /* not a peer of original */
1311 	else
1312 		mnt->mnt_group_id = old->mnt_group_id;
1313 
1314 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1315 		err = mnt_alloc_group_id(mnt);
1316 		if (err)
1317 			goto out_free;
1318 	}
1319 
1320 	if (mnt->mnt_group_id)
1321 		set_mnt_shared(mnt);
1322 
1323 	atomic_inc(&sb->s_active);
1324 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1325 
1326 	mnt->mnt.mnt_sb = sb;
1327 	mnt->mnt.mnt_root = dget(root);
1328 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1329 	mnt->mnt_parent = mnt;
1330 	lock_mount_hash();
1331 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1332 	unlock_mount_hash();
1333 
1334 	if (flag & CL_PRIVATE)	// we are done with it
1335 		return mnt;
1336 
1337 	if (peers(mnt, old))
1338 		list_add(&mnt->mnt_share, &old->mnt_share);
1339 
1340 	if ((flag & CL_SLAVE) && old->mnt_group_id) {
1341 		hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list);
1342 		mnt->mnt_master = old;
1343 	} else if (IS_MNT_SLAVE(old)) {
1344 		hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave);
1345 		mnt->mnt_master = old->mnt_master;
1346 	}
1347 	return mnt;
1348 
1349  out_free:
1350 	mnt_free_id(mnt);
1351 	free_vfsmnt(mnt);
1352 	return ERR_PTR(err);
1353 }
1354 
cleanup_mnt(struct mount * mnt)1355 static void cleanup_mnt(struct mount *mnt)
1356 {
1357 	struct hlist_node *p;
1358 	struct mount *m;
1359 	/*
1360 	 * The warning here probably indicates that somebody messed
1361 	 * up a mnt_want/drop_write() pair.  If this happens, the
1362 	 * filesystem was probably unable to make r/w->r/o transitions.
1363 	 * The locking used to deal with mnt_count decrement provides barriers,
1364 	 * so mnt_get_writers() below is safe.
1365 	 */
1366 	WARN_ON(mnt_get_writers(mnt));
1367 	if (unlikely(mnt->mnt_pins.first))
1368 		mnt_pin_kill(mnt);
1369 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1370 		hlist_del(&m->mnt_umount);
1371 		mntput(&m->mnt);
1372 	}
1373 	fsnotify_vfsmount_delete(&mnt->mnt);
1374 	dput(mnt->mnt.mnt_root);
1375 	deactivate_super(mnt->mnt.mnt_sb);
1376 	mnt_free_id(mnt);
1377 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1378 }
1379 
__cleanup_mnt(struct rcu_head * head)1380 static void __cleanup_mnt(struct rcu_head *head)
1381 {
1382 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1383 }
1384 
1385 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1386 static void delayed_mntput(struct work_struct *unused)
1387 {
1388 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1389 	struct mount *m, *t;
1390 
1391 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1392 		cleanup_mnt(m);
1393 }
1394 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1395 
mntput_no_expire(struct mount * mnt)1396 static void mntput_no_expire(struct mount *mnt)
1397 {
1398 	LIST_HEAD(list);
1399 	int count;
1400 
1401 	rcu_read_lock();
1402 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1403 		/*
1404 		 * Since we don't do lock_mount_hash() here,
1405 		 * ->mnt_ns can change under us.  However, if it's
1406 		 * non-NULL, then there's a reference that won't
1407 		 * be dropped until after an RCU delay done after
1408 		 * turning ->mnt_ns NULL.  So if we observe it
1409 		 * non-NULL under rcu_read_lock(), the reference
1410 		 * we are dropping is not the final one.
1411 		 */
1412 		mnt_add_count(mnt, -1);
1413 		rcu_read_unlock();
1414 		return;
1415 	}
1416 	lock_mount_hash();
1417 	/*
1418 	 * make sure that if __legitimize_mnt() has not seen us grab
1419 	 * mount_lock, we'll see their refcount increment here.
1420 	 */
1421 	smp_mb();
1422 	mnt_add_count(mnt, -1);
1423 	count = mnt_get_count(mnt);
1424 	if (count != 0) {
1425 		WARN_ON(count < 0);
1426 		rcu_read_unlock();
1427 		unlock_mount_hash();
1428 		return;
1429 	}
1430 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1431 		rcu_read_unlock();
1432 		unlock_mount_hash();
1433 		return;
1434 	}
1435 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1436 	rcu_read_unlock();
1437 
1438 	list_del(&mnt->mnt_instance);
1439 	if (unlikely(!list_empty(&mnt->mnt_expire)))
1440 		list_del(&mnt->mnt_expire);
1441 
1442 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1443 		struct mount *p, *tmp;
1444 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1445 			__umount_mnt(p, &list);
1446 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1447 		}
1448 	}
1449 	unlock_mount_hash();
1450 	shrink_dentry_list(&list);
1451 
1452 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1453 		struct task_struct *task = current;
1454 		if (likely(!(task->flags & PF_KTHREAD))) {
1455 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1456 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1457 				return;
1458 		}
1459 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1460 			schedule_delayed_work(&delayed_mntput_work, 1);
1461 		return;
1462 	}
1463 	cleanup_mnt(mnt);
1464 }
1465 
mntput(struct vfsmount * mnt)1466 void mntput(struct vfsmount *mnt)
1467 {
1468 	if (mnt) {
1469 		struct mount *m = real_mount(mnt);
1470 		/* avoid cacheline pingpong */
1471 		if (unlikely(m->mnt_expiry_mark))
1472 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1473 		mntput_no_expire(m);
1474 	}
1475 }
1476 EXPORT_SYMBOL(mntput);
1477 
mntget(struct vfsmount * mnt)1478 struct vfsmount *mntget(struct vfsmount *mnt)
1479 {
1480 	if (mnt)
1481 		mnt_add_count(real_mount(mnt), 1);
1482 	return mnt;
1483 }
1484 EXPORT_SYMBOL(mntget);
1485 
1486 /*
1487  * Make a mount point inaccessible to new lookups.
1488  * Because there may still be current users, the caller MUST WAIT
1489  * for an RCU grace period before destroying the mount point.
1490  */
mnt_make_shortterm(struct vfsmount * mnt)1491 void mnt_make_shortterm(struct vfsmount *mnt)
1492 {
1493 	if (mnt)
1494 		real_mount(mnt)->mnt_ns = NULL;
1495 }
1496 
1497 /**
1498  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1499  * @path: path to check
1500  *
1501  *  d_mountpoint() can only be used reliably to establish if a dentry is
1502  *  not mounted in any namespace and that common case is handled inline.
1503  *  d_mountpoint() isn't aware of the possibility there may be multiple
1504  *  mounts using a given dentry in a different namespace. This function
1505  *  checks if the passed in path is a mountpoint rather than the dentry
1506  *  alone.
1507  */
path_is_mountpoint(const struct path * path)1508 bool path_is_mountpoint(const struct path *path)
1509 {
1510 	unsigned seq;
1511 	bool res;
1512 
1513 	if (!d_mountpoint(path->dentry))
1514 		return false;
1515 
1516 	rcu_read_lock();
1517 	do {
1518 		seq = read_seqbegin(&mount_lock);
1519 		res = __path_is_mountpoint(path);
1520 	} while (read_seqretry(&mount_lock, seq));
1521 	rcu_read_unlock();
1522 
1523 	return res;
1524 }
1525 EXPORT_SYMBOL(path_is_mountpoint);
1526 
mnt_clone_internal(const struct path * path)1527 struct vfsmount *mnt_clone_internal(const struct path *path)
1528 {
1529 	struct mount *p;
1530 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1531 	if (IS_ERR(p))
1532 		return ERR_CAST(p);
1533 	p->mnt.mnt_flags |= MNT_INTERNAL;
1534 	return &p->mnt;
1535 }
1536 
1537 /*
1538  * Returns the mount which either has the specified mnt_id, or has the next
1539  * smallest id afer the specified one.
1540  */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1541 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1542 {
1543 	struct rb_node *node = ns->mounts.rb_node;
1544 	struct mount *ret = NULL;
1545 
1546 	while (node) {
1547 		struct mount *m = node_to_mount(node);
1548 
1549 		if (mnt_id <= m->mnt_id_unique) {
1550 			ret = node_to_mount(node);
1551 			if (mnt_id == m->mnt_id_unique)
1552 				break;
1553 			node = node->rb_left;
1554 		} else {
1555 			node = node->rb_right;
1556 		}
1557 	}
1558 	return ret;
1559 }
1560 
1561 /*
1562  * Returns the mount which either has the specified mnt_id, or has the next
1563  * greater id before the specified one.
1564  */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1565 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1566 {
1567 	struct rb_node *node = ns->mounts.rb_node;
1568 	struct mount *ret = NULL;
1569 
1570 	while (node) {
1571 		struct mount *m = node_to_mount(node);
1572 
1573 		if (mnt_id >= m->mnt_id_unique) {
1574 			ret = node_to_mount(node);
1575 			if (mnt_id == m->mnt_id_unique)
1576 				break;
1577 			node = node->rb_right;
1578 		} else {
1579 			node = node->rb_left;
1580 		}
1581 	}
1582 	return ret;
1583 }
1584 
1585 #ifdef CONFIG_PROC_FS
1586 
1587 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1588 static void *m_start(struct seq_file *m, loff_t *pos)
1589 {
1590 	struct proc_mounts *p = m->private;
1591 
1592 	down_read(&namespace_sem);
1593 
1594 	return mnt_find_id_at(p->ns, *pos);
1595 }
1596 
m_next(struct seq_file * m,void * v,loff_t * pos)1597 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1598 {
1599 	struct mount *next = NULL, *mnt = v;
1600 	struct rb_node *node = rb_next(&mnt->mnt_node);
1601 
1602 	++*pos;
1603 	if (node) {
1604 		next = node_to_mount(node);
1605 		*pos = next->mnt_id_unique;
1606 	}
1607 	return next;
1608 }
1609 
m_stop(struct seq_file * m,void * v)1610 static void m_stop(struct seq_file *m, void *v)
1611 {
1612 	up_read(&namespace_sem);
1613 }
1614 
m_show(struct seq_file * m,void * v)1615 static int m_show(struct seq_file *m, void *v)
1616 {
1617 	struct proc_mounts *p = m->private;
1618 	struct mount *r = v;
1619 	return p->show(m, &r->mnt);
1620 }
1621 
1622 const struct seq_operations mounts_op = {
1623 	.start	= m_start,
1624 	.next	= m_next,
1625 	.stop	= m_stop,
1626 	.show	= m_show,
1627 };
1628 
1629 #endif  /* CONFIG_PROC_FS */
1630 
1631 /**
1632  * may_umount_tree - check if a mount tree is busy
1633  * @m: root of mount tree
1634  *
1635  * This is called to check if a tree of mounts has any
1636  * open files, pwds, chroots or sub mounts that are
1637  * busy.
1638  */
may_umount_tree(struct vfsmount * m)1639 int may_umount_tree(struct vfsmount *m)
1640 {
1641 	struct mount *mnt = real_mount(m);
1642 	bool busy = false;
1643 
1644 	/* write lock needed for mnt_get_count */
1645 	lock_mount_hash();
1646 	for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) {
1647 		if (mnt_get_count(p) > (p == mnt ? 2 : 1)) {
1648 			busy = true;
1649 			break;
1650 		}
1651 	}
1652 	unlock_mount_hash();
1653 
1654 	return !busy;
1655 }
1656 
1657 EXPORT_SYMBOL(may_umount_tree);
1658 
1659 /**
1660  * may_umount - check if a mount point is busy
1661  * @mnt: root of mount
1662  *
1663  * This is called to check if a mount point has any
1664  * open files, pwds, chroots or sub mounts. If the
1665  * mount has sub mounts this will return busy
1666  * regardless of whether the sub mounts are busy.
1667  *
1668  * Doesn't take quota and stuff into account. IOW, in some cases it will
1669  * give false negatives. The main reason why it's here is that we need
1670  * a non-destructive way to look for easily umountable filesystems.
1671  */
may_umount(struct vfsmount * mnt)1672 int may_umount(struct vfsmount *mnt)
1673 {
1674 	int ret = 1;
1675 	down_read(&namespace_sem);
1676 	lock_mount_hash();
1677 	if (propagate_mount_busy(real_mount(mnt), 2))
1678 		ret = 0;
1679 	unlock_mount_hash();
1680 	up_read(&namespace_sem);
1681 	return ret;
1682 }
1683 
1684 EXPORT_SYMBOL(may_umount);
1685 
1686 #ifdef CONFIG_FSNOTIFY
mnt_notify(struct mount * p)1687 static void mnt_notify(struct mount *p)
1688 {
1689 	if (!p->prev_ns && p->mnt_ns) {
1690 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1691 	} else if (p->prev_ns && !p->mnt_ns) {
1692 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1693 	} else if (p->prev_ns == p->mnt_ns) {
1694 		fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1695 	} else {
1696 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1697 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1698 	}
1699 	p->prev_ns = p->mnt_ns;
1700 }
1701 
notify_mnt_list(void)1702 static void notify_mnt_list(void)
1703 {
1704 	struct mount *m, *tmp;
1705 	/*
1706 	 * Notify about mounts that were added/reparented/detached/remain
1707 	 * connected after unmount.
1708 	 */
1709 	list_for_each_entry_safe(m, tmp, &notify_list, to_notify) {
1710 		mnt_notify(m);
1711 		list_del_init(&m->to_notify);
1712 	}
1713 }
1714 
need_notify_mnt_list(void)1715 static bool need_notify_mnt_list(void)
1716 {
1717 	return !list_empty(&notify_list);
1718 }
1719 #else
notify_mnt_list(void)1720 static void notify_mnt_list(void)
1721 {
1722 }
1723 
need_notify_mnt_list(void)1724 static bool need_notify_mnt_list(void)
1725 {
1726 	return false;
1727 }
1728 #endif
1729 
1730 static void free_mnt_ns(struct mnt_namespace *);
namespace_unlock(void)1731 static void namespace_unlock(void)
1732 {
1733 	struct hlist_head head;
1734 	struct hlist_node *p;
1735 	struct mount *m;
1736 	struct mnt_namespace *ns = emptied_ns;
1737 	LIST_HEAD(list);
1738 
1739 	hlist_move_list(&unmounted, &head);
1740 	list_splice_init(&ex_mountpoints, &list);
1741 	emptied_ns = NULL;
1742 
1743 	if (need_notify_mnt_list()) {
1744 		/*
1745 		 * No point blocking out concurrent readers while notifications
1746 		 * are sent. This will also allow statmount()/listmount() to run
1747 		 * concurrently.
1748 		 */
1749 		downgrade_write(&namespace_sem);
1750 		notify_mnt_list();
1751 		up_read(&namespace_sem);
1752 	} else {
1753 		up_write(&namespace_sem);
1754 	}
1755 	if (unlikely(ns)) {
1756 		/* Make sure we notice when we leak mounts. */
1757 		VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
1758 		free_mnt_ns(ns);
1759 	}
1760 
1761 	shrink_dentry_list(&list);
1762 
1763 	if (likely(hlist_empty(&head)))
1764 		return;
1765 
1766 	synchronize_rcu_expedited();
1767 
1768 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1769 		hlist_del(&m->mnt_umount);
1770 		mntput(&m->mnt);
1771 	}
1772 }
1773 
namespace_lock(void)1774 static inline void namespace_lock(void)
1775 {
1776 	down_write(&namespace_sem);
1777 }
1778 
1779 DEFINE_GUARD(namespace_lock, struct rw_semaphore *, namespace_lock(), namespace_unlock())
1780 
1781 enum umount_tree_flags {
1782 	UMOUNT_SYNC = 1,
1783 	UMOUNT_PROPAGATE = 2,
1784 	UMOUNT_CONNECTED = 4,
1785 };
1786 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1787 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1788 {
1789 	/* Leaving mounts connected is only valid for lazy umounts */
1790 	if (how & UMOUNT_SYNC)
1791 		return true;
1792 
1793 	/* A mount without a parent has nothing to be connected to */
1794 	if (!mnt_has_parent(mnt))
1795 		return true;
1796 
1797 	/* Because the reference counting rules change when mounts are
1798 	 * unmounted and connected, umounted mounts may not be
1799 	 * connected to mounted mounts.
1800 	 */
1801 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1802 		return true;
1803 
1804 	/* Has it been requested that the mount remain connected? */
1805 	if (how & UMOUNT_CONNECTED)
1806 		return false;
1807 
1808 	/* Is the mount locked such that it needs to remain connected? */
1809 	if (IS_MNT_LOCKED(mnt))
1810 		return false;
1811 
1812 	/* By default disconnect the mount */
1813 	return true;
1814 }
1815 
1816 /*
1817  * mount_lock must be held
1818  * namespace_sem must be held for write
1819  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1820 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1821 {
1822 	LIST_HEAD(tmp_list);
1823 	struct mount *p;
1824 
1825 	if (how & UMOUNT_PROPAGATE)
1826 		propagate_mount_unlock(mnt);
1827 
1828 	/* Gather the mounts to umount */
1829 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1830 		p->mnt.mnt_flags |= MNT_UMOUNT;
1831 		if (mnt_ns_attached(p))
1832 			move_from_ns(p);
1833 		list_add_tail(&p->mnt_list, &tmp_list);
1834 	}
1835 
1836 	/* Hide the mounts from mnt_mounts */
1837 	list_for_each_entry(p, &tmp_list, mnt_list) {
1838 		list_del_init(&p->mnt_child);
1839 	}
1840 
1841 	/* Add propagated mounts to the tmp_list */
1842 	if (how & UMOUNT_PROPAGATE)
1843 		propagate_umount(&tmp_list);
1844 
1845 	while (!list_empty(&tmp_list)) {
1846 		struct mnt_namespace *ns;
1847 		bool disconnect;
1848 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1849 		list_del_init(&p->mnt_expire);
1850 		list_del_init(&p->mnt_list);
1851 		ns = p->mnt_ns;
1852 		if (ns) {
1853 			ns->nr_mounts--;
1854 			__touch_mnt_namespace(ns);
1855 		}
1856 		p->mnt_ns = NULL;
1857 		if (how & UMOUNT_SYNC)
1858 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1859 
1860 		disconnect = disconnect_mount(p, how);
1861 		if (mnt_has_parent(p)) {
1862 			if (!disconnect) {
1863 				/* Don't forget about p */
1864 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1865 			} else {
1866 				umount_mnt(p);
1867 			}
1868 		}
1869 		change_mnt_propagation(p, MS_PRIVATE);
1870 		if (disconnect)
1871 			hlist_add_head(&p->mnt_umount, &unmounted);
1872 
1873 		/*
1874 		 * At this point p->mnt_ns is NULL, notification will be queued
1875 		 * only if
1876 		 *
1877 		 *  - p->prev_ns is non-NULL *and*
1878 		 *  - p->prev_ns->n_fsnotify_marks is non-NULL
1879 		 *
1880 		 * This will preclude queuing the mount if this is a cleanup
1881 		 * after a failed copy_tree() or destruction of an anonymous
1882 		 * namespace, etc.
1883 		 */
1884 		mnt_notify_add(p);
1885 	}
1886 }
1887 
1888 static void shrink_submounts(struct mount *mnt);
1889 
do_umount_root(struct super_block * sb)1890 static int do_umount_root(struct super_block *sb)
1891 {
1892 	int ret = 0;
1893 
1894 	down_write(&sb->s_umount);
1895 	if (!sb_rdonly(sb)) {
1896 		struct fs_context *fc;
1897 
1898 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1899 						SB_RDONLY);
1900 		if (IS_ERR(fc)) {
1901 			ret = PTR_ERR(fc);
1902 		} else {
1903 			ret = parse_monolithic_mount_data(fc, NULL);
1904 			if (!ret)
1905 				ret = reconfigure_super(fc);
1906 			put_fs_context(fc);
1907 		}
1908 	}
1909 	up_write(&sb->s_umount);
1910 	return ret;
1911 }
1912 
do_umount(struct mount * mnt,int flags)1913 static int do_umount(struct mount *mnt, int flags)
1914 {
1915 	struct super_block *sb = mnt->mnt.mnt_sb;
1916 	int retval;
1917 
1918 	retval = security_sb_umount(&mnt->mnt, flags);
1919 	if (retval)
1920 		return retval;
1921 
1922 	/*
1923 	 * Allow userspace to request a mountpoint be expired rather than
1924 	 * unmounting unconditionally. Unmount only happens if:
1925 	 *  (1) the mark is already set (the mark is cleared by mntput())
1926 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1927 	 */
1928 	if (flags & MNT_EXPIRE) {
1929 		if (&mnt->mnt == current->fs->root.mnt ||
1930 		    flags & (MNT_FORCE | MNT_DETACH))
1931 			return -EINVAL;
1932 
1933 		/*
1934 		 * probably don't strictly need the lock here if we examined
1935 		 * all race cases, but it's a slowpath.
1936 		 */
1937 		lock_mount_hash();
1938 		if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) {
1939 			unlock_mount_hash();
1940 			return -EBUSY;
1941 		}
1942 		unlock_mount_hash();
1943 
1944 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1945 			return -EAGAIN;
1946 	}
1947 
1948 	/*
1949 	 * If we may have to abort operations to get out of this
1950 	 * mount, and they will themselves hold resources we must
1951 	 * allow the fs to do things. In the Unix tradition of
1952 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1953 	 * might fail to complete on the first run through as other tasks
1954 	 * must return, and the like. Thats for the mount program to worry
1955 	 * about for the moment.
1956 	 */
1957 
1958 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1959 		sb->s_op->umount_begin(sb);
1960 	}
1961 
1962 	/*
1963 	 * No sense to grab the lock for this test, but test itself looks
1964 	 * somewhat bogus. Suggestions for better replacement?
1965 	 * Ho-hum... In principle, we might treat that as umount + switch
1966 	 * to rootfs. GC would eventually take care of the old vfsmount.
1967 	 * Actually it makes sense, especially if rootfs would contain a
1968 	 * /reboot - static binary that would close all descriptors and
1969 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1970 	 */
1971 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1972 		/*
1973 		 * Special case for "unmounting" root ...
1974 		 * we just try to remount it readonly.
1975 		 */
1976 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1977 			return -EPERM;
1978 		return do_umount_root(sb);
1979 	}
1980 
1981 	namespace_lock();
1982 	lock_mount_hash();
1983 
1984 	/* Repeat the earlier racy checks, now that we are holding the locks */
1985 	retval = -EINVAL;
1986 	if (!check_mnt(mnt))
1987 		goto out;
1988 
1989 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1990 		goto out;
1991 
1992 	if (!mnt_has_parent(mnt)) /* not the absolute root */
1993 		goto out;
1994 
1995 	event++;
1996 	if (flags & MNT_DETACH) {
1997 		umount_tree(mnt, UMOUNT_PROPAGATE);
1998 		retval = 0;
1999 	} else {
2000 		smp_mb(); // paired with __legitimize_mnt()
2001 		shrink_submounts(mnt);
2002 		retval = -EBUSY;
2003 		if (!propagate_mount_busy(mnt, 2)) {
2004 			umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2005 			retval = 0;
2006 		}
2007 	}
2008 out:
2009 	unlock_mount_hash();
2010 	namespace_unlock();
2011 	return retval;
2012 }
2013 
2014 /*
2015  * __detach_mounts - lazily unmount all mounts on the specified dentry
2016  *
2017  * During unlink, rmdir, and d_drop it is possible to loose the path
2018  * to an existing mountpoint, and wind up leaking the mount.
2019  * detach_mounts allows lazily unmounting those mounts instead of
2020  * leaking them.
2021  *
2022  * The caller may hold dentry->d_inode->i_rwsem.
2023  */
__detach_mounts(struct dentry * dentry)2024 void __detach_mounts(struct dentry *dentry)
2025 {
2026 	struct pinned_mountpoint mp = {};
2027 	struct mount *mnt;
2028 
2029 	namespace_lock();
2030 	lock_mount_hash();
2031 	if (!lookup_mountpoint(dentry, &mp))
2032 		goto out_unlock;
2033 
2034 	event++;
2035 	while (mp.node.next) {
2036 		mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list);
2037 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
2038 			umount_mnt(mnt);
2039 			hlist_add_head(&mnt->mnt_umount, &unmounted);
2040 		}
2041 		else umount_tree(mnt, UMOUNT_CONNECTED);
2042 	}
2043 	unpin_mountpoint(&mp);
2044 out_unlock:
2045 	unlock_mount_hash();
2046 	namespace_unlock();
2047 }
2048 
2049 /*
2050  * Is the caller allowed to modify his namespace?
2051  */
may_mount(void)2052 bool may_mount(void)
2053 {
2054 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2055 }
2056 
warn_mandlock(void)2057 static void warn_mandlock(void)
2058 {
2059 	pr_warn_once("=======================================================\n"
2060 		     "WARNING: The mand mount option has been deprecated and\n"
2061 		     "         and is ignored by this kernel. Remove the mand\n"
2062 		     "         option from the mount to silence this warning.\n"
2063 		     "=======================================================\n");
2064 }
2065 
can_umount(const struct path * path,int flags)2066 static int can_umount(const struct path *path, int flags)
2067 {
2068 	struct mount *mnt = real_mount(path->mnt);
2069 	struct super_block *sb = path->dentry->d_sb;
2070 
2071 	if (!may_mount())
2072 		return -EPERM;
2073 	if (!path_mounted(path))
2074 		return -EINVAL;
2075 	if (!check_mnt(mnt))
2076 		return -EINVAL;
2077 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2078 		return -EINVAL;
2079 	if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2080 		return -EPERM;
2081 	return 0;
2082 }
2083 
2084 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)2085 int path_umount(struct path *path, int flags)
2086 {
2087 	struct mount *mnt = real_mount(path->mnt);
2088 	int ret;
2089 
2090 	ret = can_umount(path, flags);
2091 	if (!ret)
2092 		ret = do_umount(mnt, flags);
2093 
2094 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2095 	dput(path->dentry);
2096 	mntput_no_expire(mnt);
2097 	return ret;
2098 }
2099 
ksys_umount(char __user * name,int flags)2100 static int ksys_umount(char __user *name, int flags)
2101 {
2102 	int lookup_flags = LOOKUP_MOUNTPOINT;
2103 	struct path path;
2104 	int ret;
2105 
2106 	// basic validity checks done first
2107 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2108 		return -EINVAL;
2109 
2110 	if (!(flags & UMOUNT_NOFOLLOW))
2111 		lookup_flags |= LOOKUP_FOLLOW;
2112 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2113 	if (ret)
2114 		return ret;
2115 	return path_umount(&path, flags);
2116 }
2117 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2118 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2119 {
2120 	return ksys_umount(name, flags);
2121 }
2122 
2123 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2124 
2125 /*
2126  *	The 2.0 compatible umount. No flags.
2127  */
SYSCALL_DEFINE1(oldumount,char __user *,name)2128 SYSCALL_DEFINE1(oldumount, char __user *, name)
2129 {
2130 	return ksys_umount(name, 0);
2131 }
2132 
2133 #endif
2134 
is_mnt_ns_file(struct dentry * dentry)2135 static bool is_mnt_ns_file(struct dentry *dentry)
2136 {
2137 	struct ns_common *ns;
2138 
2139 	/* Is this a proxy for a mount namespace? */
2140 	if (dentry->d_op != &ns_dentry_operations)
2141 		return false;
2142 
2143 	ns = d_inode(dentry)->i_private;
2144 
2145 	return ns->ops == &mntns_operations;
2146 }
2147 
from_mnt_ns(struct mnt_namespace * mnt)2148 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2149 {
2150 	return &mnt->ns;
2151 }
2152 
get_sequential_mnt_ns(struct mnt_namespace * mntns,bool previous)2153 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2154 {
2155 	guard(rcu)();
2156 
2157 	for (;;) {
2158 		struct list_head *list;
2159 
2160 		if (previous)
2161 			list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list));
2162 		else
2163 			list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list));
2164 		if (list_is_head(list, &mnt_ns_list))
2165 			return ERR_PTR(-ENOENT);
2166 
2167 		mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list);
2168 
2169 		/*
2170 		 * The last passive reference count is put with RCU
2171 		 * delay so accessing the mount namespace is not just
2172 		 * safe but all relevant members are still valid.
2173 		 */
2174 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2175 			continue;
2176 
2177 		/*
2178 		 * We need an active reference count as we're persisting
2179 		 * the mount namespace and it might already be on its
2180 		 * deathbed.
2181 		 */
2182 		if (!refcount_inc_not_zero(&mntns->ns.count))
2183 			continue;
2184 
2185 		return mntns;
2186 	}
2187 }
2188 
mnt_ns_from_dentry(struct dentry * dentry)2189 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2190 {
2191 	if (!is_mnt_ns_file(dentry))
2192 		return NULL;
2193 
2194 	return to_mnt_ns(get_proc_ns(dentry->d_inode));
2195 }
2196 
mnt_ns_loop(struct dentry * dentry)2197 static bool mnt_ns_loop(struct dentry *dentry)
2198 {
2199 	/* Could bind mounting the mount namespace inode cause a
2200 	 * mount namespace loop?
2201 	 */
2202 	struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2203 
2204 	if (!mnt_ns)
2205 		return false;
2206 
2207 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2208 }
2209 
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2210 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2211 					int flag)
2212 {
2213 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2214 		*dst_parent, *dst_mnt;
2215 
2216 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2217 		return ERR_PTR(-EINVAL);
2218 
2219 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2220 		return ERR_PTR(-EINVAL);
2221 
2222 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2223 	if (IS_ERR(dst_mnt))
2224 		return dst_mnt;
2225 
2226 	src_parent = src_root;
2227 
2228 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2229 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2230 			continue;
2231 
2232 		for (src_mnt = src_root_child; src_mnt;
2233 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2234 			if (!(flag & CL_COPY_UNBINDABLE) &&
2235 			    IS_MNT_UNBINDABLE(src_mnt)) {
2236 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2237 					/* Both unbindable and locked. */
2238 					dst_mnt = ERR_PTR(-EPERM);
2239 					goto out;
2240 				} else {
2241 					src_mnt = skip_mnt_tree(src_mnt);
2242 					continue;
2243 				}
2244 			}
2245 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2246 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2247 				src_mnt = skip_mnt_tree(src_mnt);
2248 				continue;
2249 			}
2250 			while (src_parent != src_mnt->mnt_parent) {
2251 				src_parent = src_parent->mnt_parent;
2252 				dst_mnt = dst_mnt->mnt_parent;
2253 			}
2254 
2255 			src_parent = src_mnt;
2256 			dst_parent = dst_mnt;
2257 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2258 			if (IS_ERR(dst_mnt))
2259 				goto out;
2260 			lock_mount_hash();
2261 			if (src_mnt->mnt.mnt_flags & MNT_LOCKED)
2262 				dst_mnt->mnt.mnt_flags |= MNT_LOCKED;
2263 			if (unlikely(flag & CL_EXPIRE)) {
2264 				/* stick the duplicate mount on the same expiry
2265 				 * list as the original if that was on one */
2266 				if (!list_empty(&src_mnt->mnt_expire))
2267 					list_add(&dst_mnt->mnt_expire,
2268 						 &src_mnt->mnt_expire);
2269 			}
2270 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp);
2271 			unlock_mount_hash();
2272 		}
2273 	}
2274 	return res;
2275 
2276 out:
2277 	if (res) {
2278 		lock_mount_hash();
2279 		umount_tree(res, UMOUNT_SYNC);
2280 		unlock_mount_hash();
2281 	}
2282 	return dst_mnt;
2283 }
2284 
extend_array(struct path ** res,struct path ** to_free,unsigned n,unsigned * count,unsigned new_count)2285 static inline bool extend_array(struct path **res, struct path **to_free,
2286 				unsigned n, unsigned *count, unsigned new_count)
2287 {
2288 	struct path *p;
2289 
2290 	if (likely(n < *count))
2291 		return true;
2292 	p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2293 	if (p && *count)
2294 		memcpy(p, *res, *count * sizeof(struct path));
2295 	*count = new_count;
2296 	kfree(*to_free);
2297 	*to_free = *res = p;
2298 	return p;
2299 }
2300 
collect_paths(const struct path * path,struct path * prealloc,unsigned count)2301 struct path *collect_paths(const struct path *path,
2302 			      struct path *prealloc, unsigned count)
2303 {
2304 	struct mount *root = real_mount(path->mnt);
2305 	struct mount *child;
2306 	struct path *res = prealloc, *to_free = NULL;
2307 	unsigned n = 0;
2308 
2309 	guard(rwsem_read)(&namespace_sem);
2310 
2311 	if (!check_mnt(root))
2312 		return ERR_PTR(-EINVAL);
2313 	if (!extend_array(&res, &to_free, 0, &count, 32))
2314 		return ERR_PTR(-ENOMEM);
2315 	res[n++] = *path;
2316 	list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2317 		if (!is_subdir(child->mnt_mountpoint, path->dentry))
2318 			continue;
2319 		for (struct mount *m = child; m; m = next_mnt(m, child)) {
2320 			if (!extend_array(&res, &to_free, n, &count, 2 * count))
2321 				return ERR_PTR(-ENOMEM);
2322 			res[n].mnt = &m->mnt;
2323 			res[n].dentry = m->mnt.mnt_root;
2324 			n++;
2325 		}
2326 	}
2327 	if (!extend_array(&res, &to_free, n, &count, count + 1))
2328 		return ERR_PTR(-ENOMEM);
2329 	memset(res + n, 0, (count - n) * sizeof(struct path));
2330 	for (struct path *p = res; p->mnt; p++)
2331 		path_get(p);
2332 	return res;
2333 }
2334 
drop_collected_paths(struct path * paths,struct path * prealloc)2335 void drop_collected_paths(struct path *paths, struct path *prealloc)
2336 {
2337 	for (struct path *p = paths; p->mnt; p++)
2338 		path_put(p);
2339 	if (paths != prealloc)
2340 		kfree(paths);
2341 }
2342 
2343 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2344 
dissolve_on_fput(struct vfsmount * mnt)2345 void dissolve_on_fput(struct vfsmount *mnt)
2346 {
2347 	struct mount *m = real_mount(mnt);
2348 
2349 	/*
2350 	 * m used to be the root of anon namespace; if it still is one,
2351 	 * we need to dissolve the mount tree and free that namespace.
2352 	 * Let's try to avoid taking namespace_sem if we can determine
2353 	 * that there's nothing to do without it - rcu_read_lock() is
2354 	 * enough to make anon_ns_root() memory-safe and once m has
2355 	 * left its namespace, it's no longer our concern, since it will
2356 	 * never become a root of anon ns again.
2357 	 */
2358 
2359 	scoped_guard(rcu) {
2360 		if (!anon_ns_root(m))
2361 			return;
2362 	}
2363 
2364 	scoped_guard(namespace_lock, &namespace_sem) {
2365 		if (!anon_ns_root(m))
2366 			return;
2367 
2368 		emptied_ns = m->mnt_ns;
2369 		lock_mount_hash();
2370 		umount_tree(m, UMOUNT_CONNECTED);
2371 		unlock_mount_hash();
2372 	}
2373 }
2374 
__has_locked_children(struct mount * mnt,struct dentry * dentry)2375 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2376 {
2377 	struct mount *child;
2378 
2379 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2380 		if (!is_subdir(child->mnt_mountpoint, dentry))
2381 			continue;
2382 
2383 		if (child->mnt.mnt_flags & MNT_LOCKED)
2384 			return true;
2385 	}
2386 	return false;
2387 }
2388 
has_locked_children(struct mount * mnt,struct dentry * dentry)2389 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2390 {
2391 	bool res;
2392 
2393 	read_seqlock_excl(&mount_lock);
2394 	res = __has_locked_children(mnt, dentry);
2395 	read_sequnlock_excl(&mount_lock);
2396 	return res;
2397 }
2398 
2399 /*
2400  * Check that there aren't references to earlier/same mount namespaces in the
2401  * specified subtree.  Such references can act as pins for mount namespaces
2402  * that aren't checked by the mount-cycle checking code, thereby allowing
2403  * cycles to be made.
2404  */
check_for_nsfs_mounts(struct mount * subtree)2405 static bool check_for_nsfs_mounts(struct mount *subtree)
2406 {
2407 	struct mount *p;
2408 	bool ret = false;
2409 
2410 	lock_mount_hash();
2411 	for (p = subtree; p; p = next_mnt(p, subtree))
2412 		if (mnt_ns_loop(p->mnt.mnt_root))
2413 			goto out;
2414 
2415 	ret = true;
2416 out:
2417 	unlock_mount_hash();
2418 	return ret;
2419 }
2420 
2421 /**
2422  * clone_private_mount - create a private clone of a path
2423  * @path: path to clone
2424  *
2425  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2426  * will not be attached anywhere in the namespace and will be private (i.e.
2427  * changes to the originating mount won't be propagated into this).
2428  *
2429  * This assumes caller has called or done the equivalent of may_mount().
2430  *
2431  * Release with mntput().
2432  */
clone_private_mount(const struct path * path)2433 struct vfsmount *clone_private_mount(const struct path *path)
2434 {
2435 	struct mount *old_mnt = real_mount(path->mnt);
2436 	struct mount *new_mnt;
2437 
2438 	guard(rwsem_read)(&namespace_sem);
2439 
2440 	if (IS_MNT_UNBINDABLE(old_mnt))
2441 		return ERR_PTR(-EINVAL);
2442 
2443 	/*
2444 	 * Make sure the source mount is acceptable.
2445 	 * Anything mounted in our mount namespace is allowed.
2446 	 * Otherwise, it must be the root of an anonymous mount
2447 	 * namespace, and we need to make sure no namespace
2448 	 * loops get created.
2449 	 */
2450 	if (!check_mnt(old_mnt)) {
2451 		if (!anon_ns_root(old_mnt))
2452 			return ERR_PTR(-EINVAL);
2453 
2454 		if (!check_for_nsfs_mounts(old_mnt))
2455 			return ERR_PTR(-EINVAL);
2456 	}
2457 
2458         if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2459 		return ERR_PTR(-EPERM);
2460 
2461 	if (__has_locked_children(old_mnt, path->dentry))
2462 		return ERR_PTR(-EINVAL);
2463 
2464 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2465 	if (IS_ERR(new_mnt))
2466 		return ERR_PTR(-EINVAL);
2467 
2468 	/* Longterm mount to be removed by kern_unmount*() */
2469 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2470 	return &new_mnt->mnt;
2471 }
2472 EXPORT_SYMBOL_GPL(clone_private_mount);
2473 
lock_mnt_tree(struct mount * mnt)2474 static void lock_mnt_tree(struct mount *mnt)
2475 {
2476 	struct mount *p;
2477 
2478 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2479 		int flags = p->mnt.mnt_flags;
2480 		/* Don't allow unprivileged users to change mount flags */
2481 		flags |= MNT_LOCK_ATIME;
2482 
2483 		if (flags & MNT_READONLY)
2484 			flags |= MNT_LOCK_READONLY;
2485 
2486 		if (flags & MNT_NODEV)
2487 			flags |= MNT_LOCK_NODEV;
2488 
2489 		if (flags & MNT_NOSUID)
2490 			flags |= MNT_LOCK_NOSUID;
2491 
2492 		if (flags & MNT_NOEXEC)
2493 			flags |= MNT_LOCK_NOEXEC;
2494 		/* Don't allow unprivileged users to reveal what is under a mount */
2495 		if (list_empty(&p->mnt_expire) && p != mnt)
2496 			flags |= MNT_LOCKED;
2497 		p->mnt.mnt_flags = flags;
2498 	}
2499 }
2500 
cleanup_group_ids(struct mount * mnt,struct mount * end)2501 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2502 {
2503 	struct mount *p;
2504 
2505 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2506 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2507 			mnt_release_group_id(p);
2508 	}
2509 }
2510 
invent_group_ids(struct mount * mnt,bool recurse)2511 static int invent_group_ids(struct mount *mnt, bool recurse)
2512 {
2513 	struct mount *p;
2514 
2515 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2516 		if (!p->mnt_group_id) {
2517 			int err = mnt_alloc_group_id(p);
2518 			if (err) {
2519 				cleanup_group_ids(mnt, p);
2520 				return err;
2521 			}
2522 		}
2523 	}
2524 
2525 	return 0;
2526 }
2527 
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2528 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2529 {
2530 	unsigned int max = READ_ONCE(sysctl_mount_max);
2531 	unsigned int mounts = 0;
2532 	struct mount *p;
2533 
2534 	if (ns->nr_mounts >= max)
2535 		return -ENOSPC;
2536 	max -= ns->nr_mounts;
2537 	if (ns->pending_mounts >= max)
2538 		return -ENOSPC;
2539 	max -= ns->pending_mounts;
2540 
2541 	for (p = mnt; p; p = next_mnt(p, mnt))
2542 		mounts++;
2543 
2544 	if (mounts > max)
2545 		return -ENOSPC;
2546 
2547 	ns->pending_mounts += mounts;
2548 	return 0;
2549 }
2550 
2551 enum mnt_tree_flags_t {
2552 	MNT_TREE_BENEATH = BIT(0),
2553 	MNT_TREE_PROPAGATION = BIT(1),
2554 };
2555 
2556 /**
2557  * attach_recursive_mnt - attach a source mount tree
2558  * @source_mnt: mount tree to be attached
2559  * @dest_mnt:   mount that @source_mnt will be mounted on
2560  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2561  *
2562  *  NOTE: in the table below explains the semantics when a source mount
2563  *  of a given type is attached to a destination mount of a given type.
2564  * ---------------------------------------------------------------------------
2565  * |         BIND MOUNT OPERATION                                            |
2566  * |**************************************************************************
2567  * | source-->| shared        |       private  |       slave    | unbindable |
2568  * | dest     |               |                |                |            |
2569  * |   |      |               |                |                |            |
2570  * |   v      |               |                |                |            |
2571  * |**************************************************************************
2572  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2573  * |          |               |                |                |            |
2574  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2575  * ***************************************************************************
2576  * A bind operation clones the source mount and mounts the clone on the
2577  * destination mount.
2578  *
2579  * (++)  the cloned mount is propagated to all the mounts in the propagation
2580  * 	 tree of the destination mount and the cloned mount is added to
2581  * 	 the peer group of the source mount.
2582  * (+)   the cloned mount is created under the destination mount and is marked
2583  *       as shared. The cloned mount is added to the peer group of the source
2584  *       mount.
2585  * (+++) the mount is propagated to all the mounts in the propagation tree
2586  *       of the destination mount and the cloned mount is made slave
2587  *       of the same master as that of the source mount. The cloned mount
2588  *       is marked as 'shared and slave'.
2589  * (*)   the cloned mount is made a slave of the same master as that of the
2590  * 	 source mount.
2591  *
2592  * ---------------------------------------------------------------------------
2593  * |         		MOVE MOUNT OPERATION                                 |
2594  * |**************************************************************************
2595  * | source-->| shared        |       private  |       slave    | unbindable |
2596  * | dest     |               |                |                |            |
2597  * |   |      |               |                |                |            |
2598  * |   v      |               |                |                |            |
2599  * |**************************************************************************
2600  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2601  * |          |               |                |                |            |
2602  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2603  * ***************************************************************************
2604  *
2605  * (+)  the mount is moved to the destination. And is then propagated to
2606  * 	all the mounts in the propagation tree of the destination mount.
2607  * (+*)  the mount is moved to the destination.
2608  * (+++)  the mount is moved to the destination and is then propagated to
2609  * 	all the mounts belonging to the destination mount's propagation tree.
2610  * 	the mount is marked as 'shared and slave'.
2611  * (*)	the mount continues to be a slave at the new location.
2612  *
2613  * if the source mount is a tree, the operations explained above is
2614  * applied to each mount in the tree.
2615  * Must be called without spinlocks held, since this function can sleep
2616  * in allocations.
2617  *
2618  * Context: The function expects namespace_lock() to be held.
2619  * Return: If @source_mnt was successfully attached 0 is returned.
2620  *         Otherwise a negative error code is returned.
2621  */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp)2622 static int attach_recursive_mnt(struct mount *source_mnt,
2623 				struct mount *dest_mnt,
2624 				struct mountpoint *dest_mp)
2625 {
2626 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2627 	HLIST_HEAD(tree_list);
2628 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2629 	struct pinned_mountpoint root = {};
2630 	struct mountpoint *shorter = NULL;
2631 	struct mount *child, *p;
2632 	struct mount *top;
2633 	struct hlist_node *n;
2634 	int err = 0;
2635 	bool moving = mnt_has_parent(source_mnt);
2636 
2637 	/*
2638 	 * Preallocate a mountpoint in case the new mounts need to be
2639 	 * mounted beneath mounts on the same mountpoint.
2640 	 */
2641 	for (top = source_mnt; unlikely(top->overmount); top = top->overmount) {
2642 		if (!shorter && is_mnt_ns_file(top->mnt.mnt_root))
2643 			shorter = top->mnt_mp;
2644 	}
2645 	err = get_mountpoint(top->mnt.mnt_root, &root);
2646 	if (err)
2647 		return err;
2648 
2649 	/* Is there space to add these mounts to the mount namespace? */
2650 	if (!moving) {
2651 		err = count_mounts(ns, source_mnt);
2652 		if (err)
2653 			goto out;
2654 	}
2655 
2656 	if (IS_MNT_SHARED(dest_mnt)) {
2657 		err = invent_group_ids(source_mnt, true);
2658 		if (err)
2659 			goto out;
2660 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2661 	}
2662 	lock_mount_hash();
2663 	if (err)
2664 		goto out_cleanup_ids;
2665 
2666 	if (IS_MNT_SHARED(dest_mnt)) {
2667 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2668 			set_mnt_shared(p);
2669 	}
2670 
2671 	if (moving) {
2672 		umount_mnt(source_mnt);
2673 		mnt_notify_add(source_mnt);
2674 		/* if the mount is moved, it should no longer be expired
2675 		 * automatically */
2676 		list_del_init(&source_mnt->mnt_expire);
2677 	} else {
2678 		if (source_mnt->mnt_ns) {
2679 			/* move from anon - the caller will destroy */
2680 			emptied_ns = source_mnt->mnt_ns;
2681 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2682 				move_from_ns(p);
2683 		}
2684 	}
2685 
2686 	mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2687 	/*
2688 	 * Now the original copy is in the same state as the secondaries -
2689 	 * its root attached to mountpoint, but not hashed and all mounts
2690 	 * in it are either in our namespace or in no namespace at all.
2691 	 * Add the original to the list of copies and deal with the
2692 	 * rest of work for all of them uniformly.
2693 	 */
2694 	hlist_add_head(&source_mnt->mnt_hash, &tree_list);
2695 
2696 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2697 		struct mount *q;
2698 		hlist_del_init(&child->mnt_hash);
2699 		/* Notice when we are propagating across user namespaces */
2700 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2701 			lock_mnt_tree(child);
2702 		q = __lookup_mnt(&child->mnt_parent->mnt,
2703 				 child->mnt_mountpoint);
2704 		commit_tree(child);
2705 		if (q) {
2706 			struct mountpoint *mp = root.mp;
2707 			struct mount *r = child;
2708 			while (unlikely(r->overmount))
2709 				r = r->overmount;
2710 			if (unlikely(shorter) && child != source_mnt)
2711 				mp = shorter;
2712 			mnt_change_mountpoint(r, mp, q);
2713 		}
2714 	}
2715 	unpin_mountpoint(&root);
2716 	unlock_mount_hash();
2717 
2718 	return 0;
2719 
2720  out_cleanup_ids:
2721 	while (!hlist_empty(&tree_list)) {
2722 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2723 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2724 		umount_tree(child, UMOUNT_SYNC);
2725 	}
2726 	unlock_mount_hash();
2727 	cleanup_group_ids(source_mnt, NULL);
2728  out:
2729 	ns->pending_mounts = 0;
2730 
2731 	read_seqlock_excl(&mount_lock);
2732 	unpin_mountpoint(&root);
2733 	read_sequnlock_excl(&mount_lock);
2734 
2735 	return err;
2736 }
2737 
2738 /**
2739  * do_lock_mount - lock mount and mountpoint
2740  * @path:    target path
2741  * @beneath: whether the intention is to mount beneath @path
2742  *
2743  * Follow the mount stack on @path until the top mount @mnt is found. If
2744  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2745  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2746  * until nothing is stacked on top of it anymore.
2747  *
2748  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2749  * against concurrent removal of the new mountpoint from another mount
2750  * namespace.
2751  *
2752  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2753  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2754  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2755  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2756  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2757  * on top of it for @beneath.
2758  *
2759  * In addition, @beneath needs to make sure that @mnt hasn't been
2760  * unmounted or moved from its current mountpoint in between dropping
2761  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2762  * being unmounted would be detected later by e.g., calling
2763  * check_mnt(mnt) in the function it's called from. For the @beneath
2764  * case however, it's useful to detect it directly in do_lock_mount().
2765  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2766  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2767  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2768  *
2769  * Return: Either the target mountpoint on the top mount or the top
2770  *         mount's mountpoint.
2771  */
do_lock_mount(struct path * path,struct pinned_mountpoint * pinned,bool beneath)2772 static int do_lock_mount(struct path *path, struct pinned_mountpoint *pinned, bool beneath)
2773 {
2774 	struct vfsmount *mnt = path->mnt;
2775 	struct dentry *dentry;
2776 	struct path under = {};
2777 	int err = -ENOENT;
2778 
2779 	for (;;) {
2780 		struct mount *m = real_mount(mnt);
2781 
2782 		if (beneath) {
2783 			path_put(&under);
2784 			read_seqlock_excl(&mount_lock);
2785 			under.mnt = mntget(&m->mnt_parent->mnt);
2786 			under.dentry = dget(m->mnt_mountpoint);
2787 			read_sequnlock_excl(&mount_lock);
2788 			dentry = under.dentry;
2789 		} else {
2790 			dentry = path->dentry;
2791 		}
2792 
2793 		inode_lock(dentry->d_inode);
2794 		namespace_lock();
2795 
2796 		if (unlikely(cant_mount(dentry) || !is_mounted(mnt)))
2797 			break;		// not to be mounted on
2798 
2799 		if (beneath && unlikely(m->mnt_mountpoint != dentry ||
2800 				        &m->mnt_parent->mnt != under.mnt)) {
2801 			namespace_unlock();
2802 			inode_unlock(dentry->d_inode);
2803 			continue;	// got moved
2804 		}
2805 
2806 		mnt = lookup_mnt(path);
2807 		if (unlikely(mnt)) {
2808 			namespace_unlock();
2809 			inode_unlock(dentry->d_inode);
2810 			path_put(path);
2811 			path->mnt = mnt;
2812 			path->dentry = dget(mnt->mnt_root);
2813 			continue;	// got overmounted
2814 		}
2815 		err = get_mountpoint(dentry, pinned);
2816 		if (err)
2817 			break;
2818 		if (beneath) {
2819 			/*
2820 			 * @under duplicates the references that will stay
2821 			 * at least until namespace_unlock(), so the path_put()
2822 			 * below is safe (and OK to do under namespace_lock -
2823 			 * we are not dropping the final references here).
2824 			 */
2825 			path_put(&under);
2826 		}
2827 		return 0;
2828 	}
2829 	namespace_unlock();
2830 	inode_unlock(dentry->d_inode);
2831 	if (beneath)
2832 		path_put(&under);
2833 	return err;
2834 }
2835 
lock_mount(struct path * path,struct pinned_mountpoint * m)2836 static inline int lock_mount(struct path *path, struct pinned_mountpoint *m)
2837 {
2838 	return do_lock_mount(path, m, false);
2839 }
2840 
unlock_mount(struct pinned_mountpoint * m)2841 static void unlock_mount(struct pinned_mountpoint *m)
2842 {
2843 	inode_unlock(m->mp->m_dentry->d_inode);
2844 	read_seqlock_excl(&mount_lock);
2845 	unpin_mountpoint(m);
2846 	read_sequnlock_excl(&mount_lock);
2847 	namespace_unlock();
2848 }
2849 
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2850 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2851 {
2852 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2853 		return -EINVAL;
2854 
2855 	if (d_is_dir(mp->m_dentry) !=
2856 	      d_is_dir(mnt->mnt.mnt_root))
2857 		return -ENOTDIR;
2858 
2859 	return attach_recursive_mnt(mnt, p, mp);
2860 }
2861 
may_change_propagation(const struct mount * m)2862 static int may_change_propagation(const struct mount *m)
2863 {
2864         struct mnt_namespace *ns = m->mnt_ns;
2865 
2866 	 // it must be mounted in some namespace
2867 	 if (IS_ERR_OR_NULL(ns))         // is_mounted()
2868 		 return -EINVAL;
2869 	 // and the caller must be admin in userns of that namespace
2870 	 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
2871 		 return -EPERM;
2872 	 return 0;
2873 }
2874 
2875 /*
2876  * Sanity check the flags to change_mnt_propagation.
2877  */
2878 
flags_to_propagation_type(int ms_flags)2879 static int flags_to_propagation_type(int ms_flags)
2880 {
2881 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2882 
2883 	/* Fail if any non-propagation flags are set */
2884 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2885 		return 0;
2886 	/* Only one propagation flag should be set */
2887 	if (!is_power_of_2(type))
2888 		return 0;
2889 	return type;
2890 }
2891 
2892 /*
2893  * recursively change the type of the mountpoint.
2894  */
do_change_type(struct path * path,int ms_flags)2895 static int do_change_type(struct path *path, int ms_flags)
2896 {
2897 	struct mount *m;
2898 	struct mount *mnt = real_mount(path->mnt);
2899 	int recurse = ms_flags & MS_REC;
2900 	int type;
2901 	int err = 0;
2902 
2903 	if (!path_mounted(path))
2904 		return -EINVAL;
2905 
2906 	type = flags_to_propagation_type(ms_flags);
2907 	if (!type)
2908 		return -EINVAL;
2909 
2910 	namespace_lock();
2911 	err = may_change_propagation(mnt);
2912 	if (err)
2913 		goto out_unlock;
2914 
2915 	if (type == MS_SHARED) {
2916 		err = invent_group_ids(mnt, recurse);
2917 		if (err)
2918 			goto out_unlock;
2919 	}
2920 
2921 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2922 		change_mnt_propagation(m, type);
2923 
2924  out_unlock:
2925 	namespace_unlock();
2926 	return err;
2927 }
2928 
2929 /* may_copy_tree() - check if a mount tree can be copied
2930  * @path: path to the mount tree to be copied
2931  *
2932  * This helper checks if the caller may copy the mount tree starting
2933  * from @path->mnt. The caller may copy the mount tree under the
2934  * following circumstances:
2935  *
2936  * (1) The caller is located in the mount namespace of the mount tree.
2937  *     This also implies that the mount does not belong to an anonymous
2938  *     mount namespace.
2939  * (2) The caller tries to copy an nfs mount referring to a mount
2940  *     namespace, i.e., the caller is trying to copy a mount namespace
2941  *     entry from nsfs.
2942  * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2943  * (4) The caller is trying to copy a mount tree that belongs to an
2944  *     anonymous mount namespace.
2945  *
2946  *     For that to be safe, this helper enforces that the origin mount
2947  *     namespace the anonymous mount namespace was created from is the
2948  *     same as the caller's mount namespace by comparing the sequence
2949  *     numbers.
2950  *
2951  *     This is not strictly necessary. The current semantics of the new
2952  *     mount api enforce that the caller must be located in the same
2953  *     mount namespace as the mount tree it interacts with. Using the
2954  *     origin sequence number preserves these semantics even for
2955  *     anonymous mount namespaces. However, one could envision extending
2956  *     the api to directly operate across mount namespace if needed.
2957  *
2958  *     The ownership of a non-anonymous mount namespace such as the
2959  *     caller's cannot change.
2960  *     => We know that the caller's mount namespace is stable.
2961  *
2962  *     If the origin sequence number of the anonymous mount namespace is
2963  *     the same as the sequence number of the caller's mount namespace.
2964  *     => The owning namespaces are the same.
2965  *
2966  *     ==> The earlier capability check on the owning namespace of the
2967  *         caller's mount namespace ensures that the caller has the
2968  *         ability to copy the mount tree.
2969  *
2970  * Returns true if the mount tree can be copied, false otherwise.
2971  */
may_copy_tree(struct path * path)2972 static inline bool may_copy_tree(struct path *path)
2973 {
2974 	struct mount *mnt = real_mount(path->mnt);
2975 	const struct dentry_operations *d_op;
2976 
2977 	if (check_mnt(mnt))
2978 		return true;
2979 
2980 	d_op = path->dentry->d_op;
2981 	if (d_op == &ns_dentry_operations)
2982 		return true;
2983 
2984 	if (d_op == &pidfs_dentry_operations)
2985 		return true;
2986 
2987 	if (!is_mounted(path->mnt))
2988 		return false;
2989 
2990 	return check_anonymous_mnt(mnt);
2991 }
2992 
2993 
__do_loopback(struct path * old_path,int recurse)2994 static struct mount *__do_loopback(struct path *old_path, int recurse)
2995 {
2996 	struct mount *old = real_mount(old_path->mnt);
2997 
2998 	if (IS_MNT_UNBINDABLE(old))
2999 		return ERR_PTR(-EINVAL);
3000 
3001 	if (!may_copy_tree(old_path))
3002 		return ERR_PTR(-EINVAL);
3003 
3004 	if (!recurse && __has_locked_children(old, old_path->dentry))
3005 		return ERR_PTR(-EINVAL);
3006 
3007 	if (recurse)
3008 		return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
3009 	else
3010 		return clone_mnt(old, old_path->dentry, 0);
3011 }
3012 
3013 /*
3014  * do loopback mount.
3015  */
do_loopback(struct path * path,const char * old_name,int recurse)3016 static int do_loopback(struct path *path, const char *old_name,
3017 				int recurse)
3018 {
3019 	struct path old_path;
3020 	struct mount *mnt = NULL, *parent;
3021 	struct pinned_mountpoint mp = {};
3022 	int err;
3023 	if (!old_name || !*old_name)
3024 		return -EINVAL;
3025 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
3026 	if (err)
3027 		return err;
3028 
3029 	err = -EINVAL;
3030 	if (mnt_ns_loop(old_path.dentry))
3031 		goto out;
3032 
3033 	err = lock_mount(path, &mp);
3034 	if (err)
3035 		goto out;
3036 
3037 	parent = real_mount(path->mnt);
3038 	if (!check_mnt(parent))
3039 		goto out2;
3040 
3041 	mnt = __do_loopback(&old_path, recurse);
3042 	if (IS_ERR(mnt)) {
3043 		err = PTR_ERR(mnt);
3044 		goto out2;
3045 	}
3046 
3047 	err = graft_tree(mnt, parent, mp.mp);
3048 	if (err) {
3049 		lock_mount_hash();
3050 		umount_tree(mnt, UMOUNT_SYNC);
3051 		unlock_mount_hash();
3052 	}
3053 out2:
3054 	unlock_mount(&mp);
3055 out:
3056 	path_put(&old_path);
3057 	return err;
3058 }
3059 
open_detached_copy(struct path * path,bool recursive)3060 static struct file *open_detached_copy(struct path *path, bool recursive)
3061 {
3062 	struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3063 	struct user_namespace *user_ns = mnt_ns->user_ns;
3064 	struct mount *mnt, *p;
3065 	struct file *file;
3066 
3067 	ns = alloc_mnt_ns(user_ns, true);
3068 	if (IS_ERR(ns))
3069 		return ERR_CAST(ns);
3070 
3071 	namespace_lock();
3072 
3073 	/*
3074 	 * Record the sequence number of the source mount namespace.
3075 	 * This needs to hold namespace_sem to ensure that the mount
3076 	 * doesn't get attached.
3077 	 */
3078 	if (is_mounted(path->mnt)) {
3079 		src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3080 		if (is_anon_ns(src_mnt_ns))
3081 			ns->seq_origin = src_mnt_ns->seq_origin;
3082 		else
3083 			ns->seq_origin = src_mnt_ns->seq;
3084 	}
3085 
3086 	mnt = __do_loopback(path, recursive);
3087 	if (IS_ERR(mnt)) {
3088 		namespace_unlock();
3089 		free_mnt_ns(ns);
3090 		return ERR_CAST(mnt);
3091 	}
3092 
3093 	lock_mount_hash();
3094 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3095 		mnt_add_to_ns(ns, p);
3096 		ns->nr_mounts++;
3097 	}
3098 	ns->root = mnt;
3099 	mntget(&mnt->mnt);
3100 	unlock_mount_hash();
3101 	namespace_unlock();
3102 
3103 	mntput(path->mnt);
3104 	path->mnt = &mnt->mnt;
3105 	file = dentry_open(path, O_PATH, current_cred());
3106 	if (IS_ERR(file))
3107 		dissolve_on_fput(path->mnt);
3108 	else
3109 		file->f_mode |= FMODE_NEED_UNMOUNT;
3110 	return file;
3111 }
3112 
vfs_open_tree(int dfd,const char __user * filename,unsigned int flags)3113 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3114 {
3115 	int ret;
3116 	struct path path __free(path_put) = {};
3117 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3118 	bool detached = flags & OPEN_TREE_CLONE;
3119 
3120 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3121 
3122 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3123 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3124 		      OPEN_TREE_CLOEXEC))
3125 		return ERR_PTR(-EINVAL);
3126 
3127 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3128 		return ERR_PTR(-EINVAL);
3129 
3130 	if (flags & AT_NO_AUTOMOUNT)
3131 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
3132 	if (flags & AT_SYMLINK_NOFOLLOW)
3133 		lookup_flags &= ~LOOKUP_FOLLOW;
3134 	if (flags & AT_EMPTY_PATH)
3135 		lookup_flags |= LOOKUP_EMPTY;
3136 
3137 	if (detached && !may_mount())
3138 		return ERR_PTR(-EPERM);
3139 
3140 	ret = user_path_at(dfd, filename, lookup_flags, &path);
3141 	if (unlikely(ret))
3142 		return ERR_PTR(ret);
3143 
3144 	if (detached)
3145 		return open_detached_copy(&path, flags & AT_RECURSIVE);
3146 
3147 	return dentry_open(&path, O_PATH, current_cred());
3148 }
3149 
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)3150 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3151 {
3152 	int fd;
3153 	struct file *file __free(fput) = NULL;
3154 
3155 	file = vfs_open_tree(dfd, filename, flags);
3156 	if (IS_ERR(file))
3157 		return PTR_ERR(file);
3158 
3159 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
3160 	if (fd < 0)
3161 		return fd;
3162 
3163 	fd_install(fd, no_free_ptr(file));
3164 	return fd;
3165 }
3166 
3167 /*
3168  * Don't allow locked mount flags to be cleared.
3169  *
3170  * No locks need to be held here while testing the various MNT_LOCK
3171  * flags because those flags can never be cleared once they are set.
3172  */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)3173 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3174 {
3175 	unsigned int fl = mnt->mnt.mnt_flags;
3176 
3177 	if ((fl & MNT_LOCK_READONLY) &&
3178 	    !(mnt_flags & MNT_READONLY))
3179 		return false;
3180 
3181 	if ((fl & MNT_LOCK_NODEV) &&
3182 	    !(mnt_flags & MNT_NODEV))
3183 		return false;
3184 
3185 	if ((fl & MNT_LOCK_NOSUID) &&
3186 	    !(mnt_flags & MNT_NOSUID))
3187 		return false;
3188 
3189 	if ((fl & MNT_LOCK_NOEXEC) &&
3190 	    !(mnt_flags & MNT_NOEXEC))
3191 		return false;
3192 
3193 	if ((fl & MNT_LOCK_ATIME) &&
3194 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3195 		return false;
3196 
3197 	return true;
3198 }
3199 
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)3200 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3201 {
3202 	bool readonly_request = (mnt_flags & MNT_READONLY);
3203 
3204 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3205 		return 0;
3206 
3207 	if (readonly_request)
3208 		return mnt_make_readonly(mnt);
3209 
3210 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
3211 	return 0;
3212 }
3213 
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)3214 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3215 {
3216 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3217 	mnt->mnt.mnt_flags = mnt_flags;
3218 	touch_mnt_namespace(mnt->mnt_ns);
3219 }
3220 
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)3221 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
3222 {
3223 	struct super_block *sb = mnt->mnt_sb;
3224 
3225 	if (!__mnt_is_readonly(mnt) &&
3226 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3227 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3228 		char *buf, *mntpath;
3229 
3230 		buf = (char *)__get_free_page(GFP_KERNEL);
3231 		if (buf)
3232 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3233 		else
3234 			mntpath = ERR_PTR(-ENOMEM);
3235 		if (IS_ERR(mntpath))
3236 			mntpath = "(unknown)";
3237 
3238 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3239 			sb->s_type->name,
3240 			is_mounted(mnt) ? "remounted" : "mounted",
3241 			mntpath, &sb->s_time_max,
3242 			(unsigned long long)sb->s_time_max);
3243 
3244 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3245 		if (buf)
3246 			free_page((unsigned long)buf);
3247 	}
3248 }
3249 
3250 /*
3251  * Handle reconfiguration of the mountpoint only without alteration of the
3252  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
3253  * to mount(2).
3254  */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)3255 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
3256 {
3257 	struct super_block *sb = path->mnt->mnt_sb;
3258 	struct mount *mnt = real_mount(path->mnt);
3259 	int ret;
3260 
3261 	if (!check_mnt(mnt))
3262 		return -EINVAL;
3263 
3264 	if (!path_mounted(path))
3265 		return -EINVAL;
3266 
3267 	if (!can_change_locked_flags(mnt, mnt_flags))
3268 		return -EPERM;
3269 
3270 	/*
3271 	 * We're only checking whether the superblock is read-only not
3272 	 * changing it, so only take down_read(&sb->s_umount).
3273 	 */
3274 	down_read(&sb->s_umount);
3275 	lock_mount_hash();
3276 	ret = change_mount_ro_state(mnt, mnt_flags);
3277 	if (ret == 0)
3278 		set_mount_attributes(mnt, mnt_flags);
3279 	unlock_mount_hash();
3280 	up_read(&sb->s_umount);
3281 
3282 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3283 
3284 	return ret;
3285 }
3286 
3287 /*
3288  * change filesystem flags. dir should be a physical root of filesystem.
3289  * If you've mounted a non-root directory somewhere and want to do remount
3290  * on it - tough luck.
3291  */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)3292 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3293 		      int mnt_flags, void *data)
3294 {
3295 	int err;
3296 	struct super_block *sb = path->mnt->mnt_sb;
3297 	struct mount *mnt = real_mount(path->mnt);
3298 	struct fs_context *fc;
3299 
3300 	if (!check_mnt(mnt))
3301 		return -EINVAL;
3302 
3303 	if (!path_mounted(path))
3304 		return -EINVAL;
3305 
3306 	if (!can_change_locked_flags(mnt, mnt_flags))
3307 		return -EPERM;
3308 
3309 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3310 	if (IS_ERR(fc))
3311 		return PTR_ERR(fc);
3312 
3313 	/*
3314 	 * Indicate to the filesystem that the remount request is coming
3315 	 * from the legacy mount system call.
3316 	 */
3317 	fc->oldapi = true;
3318 
3319 	err = parse_monolithic_mount_data(fc, data);
3320 	if (!err) {
3321 		down_write(&sb->s_umount);
3322 		err = -EPERM;
3323 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3324 			err = reconfigure_super(fc);
3325 			if (!err) {
3326 				lock_mount_hash();
3327 				set_mount_attributes(mnt, mnt_flags);
3328 				unlock_mount_hash();
3329 			}
3330 		}
3331 		up_write(&sb->s_umount);
3332 	}
3333 
3334 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3335 
3336 	put_fs_context(fc);
3337 	return err;
3338 }
3339 
tree_contains_unbindable(struct mount * mnt)3340 static inline int tree_contains_unbindable(struct mount *mnt)
3341 {
3342 	struct mount *p;
3343 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3344 		if (IS_MNT_UNBINDABLE(p))
3345 			return 1;
3346 	}
3347 	return 0;
3348 }
3349 
do_set_group(struct path * from_path,struct path * to_path)3350 static int do_set_group(struct path *from_path, struct path *to_path)
3351 {
3352 	struct mount *from, *to;
3353 	int err;
3354 
3355 	from = real_mount(from_path->mnt);
3356 	to = real_mount(to_path->mnt);
3357 
3358 	namespace_lock();
3359 
3360 	err = may_change_propagation(from);
3361 	if (err)
3362 		goto out;
3363 	err = may_change_propagation(to);
3364 	if (err)
3365 		goto out;
3366 
3367 	err = -EINVAL;
3368 	/* To and From paths should be mount roots */
3369 	if (!path_mounted(from_path))
3370 		goto out;
3371 	if (!path_mounted(to_path))
3372 		goto out;
3373 
3374 	/* Setting sharing groups is only allowed across same superblock */
3375 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3376 		goto out;
3377 
3378 	/* From mount root should be wider than To mount root */
3379 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3380 		goto out;
3381 
3382 	/* From mount should not have locked children in place of To's root */
3383 	if (__has_locked_children(from, to->mnt.mnt_root))
3384 		goto out;
3385 
3386 	/* Setting sharing groups is only allowed on private mounts */
3387 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3388 		goto out;
3389 
3390 	/* From should not be private */
3391 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3392 		goto out;
3393 
3394 	if (IS_MNT_SLAVE(from)) {
3395 		hlist_add_behind(&to->mnt_slave, &from->mnt_slave);
3396 		to->mnt_master = from->mnt_master;
3397 	}
3398 
3399 	if (IS_MNT_SHARED(from)) {
3400 		to->mnt_group_id = from->mnt_group_id;
3401 		list_add(&to->mnt_share, &from->mnt_share);
3402 		set_mnt_shared(to);
3403 	}
3404 
3405 	err = 0;
3406 out:
3407 	namespace_unlock();
3408 	return err;
3409 }
3410 
3411 /**
3412  * path_overmounted - check if path is overmounted
3413  * @path: path to check
3414  *
3415  * Check if path is overmounted, i.e., if there's a mount on top of
3416  * @path->mnt with @path->dentry as mountpoint.
3417  *
3418  * Context: namespace_sem must be held at least shared.
3419  * MUST NOT be called under lock_mount_hash() (there one should just
3420  * call __lookup_mnt() and check if it returns NULL).
3421  * Return: If path is overmounted true is returned, false if not.
3422  */
path_overmounted(const struct path * path)3423 static inline bool path_overmounted(const struct path *path)
3424 {
3425 	unsigned seq = read_seqbegin(&mount_lock);
3426 	bool no_child;
3427 
3428 	rcu_read_lock();
3429 	no_child = !__lookup_mnt(path->mnt, path->dentry);
3430 	rcu_read_unlock();
3431 	if (need_seqretry(&mount_lock, seq)) {
3432 		read_seqlock_excl(&mount_lock);
3433 		no_child = !__lookup_mnt(path->mnt, path->dentry);
3434 		read_sequnlock_excl(&mount_lock);
3435 	}
3436 	return unlikely(!no_child);
3437 }
3438 
3439 /*
3440  * Check if there is a possibly empty chain of descent from p1 to p2.
3441  * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl).
3442  */
mount_is_ancestor(const struct mount * p1,const struct mount * p2)3443 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2)
3444 {
3445 	while (p2 != p1 && mnt_has_parent(p2))
3446 		p2 = p2->mnt_parent;
3447 	return p2 == p1;
3448 }
3449 
3450 /**
3451  * can_move_mount_beneath - check that we can mount beneath the top mount
3452  * @from: mount to mount beneath
3453  * @to:   mount under which to mount
3454  * @mp:   mountpoint of @to
3455  *
3456  * - Make sure that @to->dentry is actually the root of a mount under
3457  *   which we can mount another mount.
3458  * - Make sure that nothing can be mounted beneath the caller's current
3459  *   root or the rootfs of the namespace.
3460  * - Make sure that the caller can unmount the topmost mount ensuring
3461  *   that the caller could reveal the underlying mountpoint.
3462  * - Ensure that nothing has been mounted on top of @from before we
3463  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3464  * - Prevent mounting beneath a mount if the propagation relationship
3465  *   between the source mount, parent mount, and top mount would lead to
3466  *   nonsensical mount trees.
3467  *
3468  * Context: This function expects namespace_lock() to be held.
3469  * Return: On success 0, and on error a negative error code is returned.
3470  */
can_move_mount_beneath(const struct path * from,const struct path * to,const struct mountpoint * mp)3471 static int can_move_mount_beneath(const struct path *from,
3472 				  const struct path *to,
3473 				  const struct mountpoint *mp)
3474 {
3475 	struct mount *mnt_from = real_mount(from->mnt),
3476 		     *mnt_to = real_mount(to->mnt),
3477 		     *parent_mnt_to = mnt_to->mnt_parent;
3478 
3479 	if (!mnt_has_parent(mnt_to))
3480 		return -EINVAL;
3481 
3482 	if (!path_mounted(to))
3483 		return -EINVAL;
3484 
3485 	if (IS_MNT_LOCKED(mnt_to))
3486 		return -EINVAL;
3487 
3488 	/* Avoid creating shadow mounts during mount propagation. */
3489 	if (path_overmounted(from))
3490 		return -EINVAL;
3491 
3492 	/*
3493 	 * Mounting beneath the rootfs only makes sense when the
3494 	 * semantics of pivot_root(".", ".") are used.
3495 	 */
3496 	if (&mnt_to->mnt == current->fs->root.mnt)
3497 		return -EINVAL;
3498 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3499 		return -EINVAL;
3500 
3501 	if (mount_is_ancestor(mnt_to, mnt_from))
3502 		return -EINVAL;
3503 
3504 	/*
3505 	 * If the parent mount propagates to the child mount this would
3506 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3507 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3508 	 * defeats the whole purpose of mounting beneath another mount.
3509 	 */
3510 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3511 		return -EINVAL;
3512 
3513 	/*
3514 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3515 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3516 	 * Afterwards @mnt_from would be mounted on top of
3517 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3518 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3519 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3520 	 * remounted on top of @c. Afterwards, @mnt_from would be
3521 	 * covered by a copy @c of @mnt_from and @c would be covered by
3522 	 * @mnt_from itself. This defeats the whole purpose of mounting
3523 	 * @mnt_from beneath @mnt_to.
3524 	 */
3525 	if (check_mnt(mnt_from) &&
3526 	    propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3527 		return -EINVAL;
3528 
3529 	return 0;
3530 }
3531 
3532 /* may_use_mount() - check if a mount tree can be used
3533  * @mnt: vfsmount to be used
3534  *
3535  * This helper checks if the caller may use the mount tree starting
3536  * from @path->mnt. The caller may use the mount tree under the
3537  * following circumstances:
3538  *
3539  * (1) The caller is located in the mount namespace of the mount tree.
3540  *     This also implies that the mount does not belong to an anonymous
3541  *     mount namespace.
3542  * (2) The caller is trying to use a mount tree that belongs to an
3543  *     anonymous mount namespace.
3544  *
3545  *     For that to be safe, this helper enforces that the origin mount
3546  *     namespace the anonymous mount namespace was created from is the
3547  *     same as the caller's mount namespace by comparing the sequence
3548  *     numbers.
3549  *
3550  *     The ownership of a non-anonymous mount namespace such as the
3551  *     caller's cannot change.
3552  *     => We know that the caller's mount namespace is stable.
3553  *
3554  *     If the origin sequence number of the anonymous mount namespace is
3555  *     the same as the sequence number of the caller's mount namespace.
3556  *     => The owning namespaces are the same.
3557  *
3558  *     ==> The earlier capability check on the owning namespace of the
3559  *         caller's mount namespace ensures that the caller has the
3560  *         ability to use the mount tree.
3561  *
3562  * Returns true if the mount tree can be used, false otherwise.
3563  */
may_use_mount(struct mount * mnt)3564 static inline bool may_use_mount(struct mount *mnt)
3565 {
3566 	if (check_mnt(mnt))
3567 		return true;
3568 
3569 	/*
3570 	 * Make sure that noone unmounted the target path or somehow
3571 	 * managed to get their hands on something purely kernel
3572 	 * internal.
3573 	 */
3574 	if (!is_mounted(&mnt->mnt))
3575 		return false;
3576 
3577 	return check_anonymous_mnt(mnt);
3578 }
3579 
do_move_mount(struct path * old_path,struct path * new_path,enum mnt_tree_flags_t flags)3580 static int do_move_mount(struct path *old_path,
3581 			 struct path *new_path, enum mnt_tree_flags_t flags)
3582 {
3583 	struct mnt_namespace *ns;
3584 	struct mount *p;
3585 	struct mount *old;
3586 	struct mount *parent;
3587 	struct pinned_mountpoint mp;
3588 	int err;
3589 	bool beneath = flags & MNT_TREE_BENEATH;
3590 
3591 	err = do_lock_mount(new_path, &mp, beneath);
3592 	if (err)
3593 		return err;
3594 
3595 	old = real_mount(old_path->mnt);
3596 	p = real_mount(new_path->mnt);
3597 	parent = old->mnt_parent;
3598 	ns = old->mnt_ns;
3599 
3600 	err = -EINVAL;
3601 
3602 	if (check_mnt(old)) {
3603 		/* if the source is in our namespace... */
3604 		/* ... it should be detachable from parent */
3605 		if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3606 			goto out;
3607 		/* ... and the target should be in our namespace */
3608 		if (!check_mnt(p))
3609 			goto out;
3610 		/* parent of the source should not be shared */
3611 		if (IS_MNT_SHARED(parent))
3612 			goto out;
3613 	} else {
3614 		/*
3615 		 * otherwise the source must be the root of some anon namespace.
3616 		 */
3617 		if (!anon_ns_root(old))
3618 			goto out;
3619 		/*
3620 		 * Bail out early if the target is within the same namespace -
3621 		 * subsequent checks would've rejected that, but they lose
3622 		 * some corner cases if we check it early.
3623 		 */
3624 		if (ns == p->mnt_ns)
3625 			goto out;
3626 		/*
3627 		 * Target should be either in our namespace or in an acceptable
3628 		 * anon namespace, sensu check_anonymous_mnt().
3629 		 */
3630 		if (!may_use_mount(p))
3631 			goto out;
3632 	}
3633 
3634 	if (!path_mounted(old_path))
3635 		goto out;
3636 
3637 	if (d_is_dir(new_path->dentry) !=
3638 	    d_is_dir(old_path->dentry))
3639 		goto out;
3640 
3641 	if (beneath) {
3642 		err = can_move_mount_beneath(old_path, new_path, mp.mp);
3643 		if (err)
3644 			goto out;
3645 
3646 		err = -EINVAL;
3647 		p = p->mnt_parent;
3648 	}
3649 
3650 	/*
3651 	 * Don't move a mount tree containing unbindable mounts to a destination
3652 	 * mount which is shared.
3653 	 */
3654 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3655 		goto out;
3656 	err = -ELOOP;
3657 	if (!check_for_nsfs_mounts(old))
3658 		goto out;
3659 	if (mount_is_ancestor(old, p))
3660 		goto out;
3661 
3662 	err = attach_recursive_mnt(old, p, mp.mp);
3663 out:
3664 	unlock_mount(&mp);
3665 	return err;
3666 }
3667 
do_move_mount_old(struct path * path,const char * old_name)3668 static int do_move_mount_old(struct path *path, const char *old_name)
3669 {
3670 	struct path old_path;
3671 	int err;
3672 
3673 	if (!old_name || !*old_name)
3674 		return -EINVAL;
3675 
3676 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3677 	if (err)
3678 		return err;
3679 
3680 	err = do_move_mount(&old_path, path, 0);
3681 	path_put(&old_path);
3682 	return err;
3683 }
3684 
3685 /*
3686  * add a mount into a namespace's mount tree
3687  */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,const struct path * path,int mnt_flags)3688 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3689 			const struct path *path, int mnt_flags)
3690 {
3691 	struct mount *parent = real_mount(path->mnt);
3692 
3693 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3694 
3695 	if (unlikely(!check_mnt(parent))) {
3696 		/* that's acceptable only for automounts done in private ns */
3697 		if (!(mnt_flags & MNT_SHRINKABLE))
3698 			return -EINVAL;
3699 		/* ... and for those we'd better have mountpoint still alive */
3700 		if (!parent->mnt_ns)
3701 			return -EINVAL;
3702 	}
3703 
3704 	/* Refuse the same filesystem on the same mount point */
3705 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3706 		return -EBUSY;
3707 
3708 	if (d_is_symlink(newmnt->mnt.mnt_root))
3709 		return -EINVAL;
3710 
3711 	newmnt->mnt.mnt_flags = mnt_flags;
3712 	return graft_tree(newmnt, parent, mp);
3713 }
3714 
3715 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3716 
3717 /*
3718  * Create a new mount using a superblock configuration and request it
3719  * be added to the namespace tree.
3720  */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)3721 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3722 			   unsigned int mnt_flags)
3723 {
3724 	struct vfsmount *mnt;
3725 	struct pinned_mountpoint mp = {};
3726 	struct super_block *sb = fc->root->d_sb;
3727 	int error;
3728 
3729 	error = security_sb_kern_mount(sb);
3730 	if (!error && mount_too_revealing(sb, &mnt_flags))
3731 		error = -EPERM;
3732 
3733 	if (unlikely(error)) {
3734 		fc_drop_locked(fc);
3735 		return error;
3736 	}
3737 
3738 	up_write(&sb->s_umount);
3739 
3740 	mnt = vfs_create_mount(fc);
3741 	if (IS_ERR(mnt))
3742 		return PTR_ERR(mnt);
3743 
3744 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3745 
3746 	error = lock_mount(mountpoint, &mp);
3747 	if (!error) {
3748 		error = do_add_mount(real_mount(mnt), mp.mp,
3749 				     mountpoint, mnt_flags);
3750 		unlock_mount(&mp);
3751 	}
3752 	if (error < 0)
3753 		mntput(mnt);
3754 	return error;
3755 }
3756 
3757 /*
3758  * create a new mount for userspace and request it to be added into the
3759  * namespace's tree
3760  */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3761 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3762 			int mnt_flags, const char *name, void *data)
3763 {
3764 	struct file_system_type *type;
3765 	struct fs_context *fc;
3766 	const char *subtype = NULL;
3767 	int err = 0;
3768 
3769 	if (!fstype)
3770 		return -EINVAL;
3771 
3772 	type = get_fs_type(fstype);
3773 	if (!type)
3774 		return -ENODEV;
3775 
3776 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3777 		subtype = strchr(fstype, '.');
3778 		if (subtype) {
3779 			subtype++;
3780 			if (!*subtype) {
3781 				put_filesystem(type);
3782 				return -EINVAL;
3783 			}
3784 		}
3785 	}
3786 
3787 	fc = fs_context_for_mount(type, sb_flags);
3788 	put_filesystem(type);
3789 	if (IS_ERR(fc))
3790 		return PTR_ERR(fc);
3791 
3792 	/*
3793 	 * Indicate to the filesystem that the mount request is coming
3794 	 * from the legacy mount system call.
3795 	 */
3796 	fc->oldapi = true;
3797 
3798 	if (subtype)
3799 		err = vfs_parse_fs_string(fc, "subtype",
3800 					  subtype, strlen(subtype));
3801 	if (!err && name)
3802 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3803 	if (!err)
3804 		err = parse_monolithic_mount_data(fc, data);
3805 	if (!err && !mount_capable(fc))
3806 		err = -EPERM;
3807 	if (!err)
3808 		err = vfs_get_tree(fc);
3809 	if (!err)
3810 		err = do_new_mount_fc(fc, path, mnt_flags);
3811 
3812 	put_fs_context(fc);
3813 	return err;
3814 }
3815 
finish_automount(struct vfsmount * m,const struct path * path)3816 int finish_automount(struct vfsmount *m, const struct path *path)
3817 {
3818 	struct dentry *dentry = path->dentry;
3819 	struct pinned_mountpoint mp = {};
3820 	struct mount *mnt;
3821 	int err;
3822 
3823 	if (!m)
3824 		return 0;
3825 	if (IS_ERR(m))
3826 		return PTR_ERR(m);
3827 
3828 	mnt = real_mount(m);
3829 
3830 	if (m->mnt_sb == path->mnt->mnt_sb &&
3831 	    m->mnt_root == dentry) {
3832 		err = -ELOOP;
3833 		goto discard;
3834 	}
3835 
3836 	/*
3837 	 * we don't want to use lock_mount() - in this case finding something
3838 	 * that overmounts our mountpoint to be means "quitely drop what we've
3839 	 * got", not "try to mount it on top".
3840 	 */
3841 	inode_lock(dentry->d_inode);
3842 	namespace_lock();
3843 	if (unlikely(cant_mount(dentry))) {
3844 		err = -ENOENT;
3845 		goto discard_locked;
3846 	}
3847 	if (path_overmounted(path)) {
3848 		err = 0;
3849 		goto discard_locked;
3850 	}
3851 	err = get_mountpoint(dentry, &mp);
3852 	if (err)
3853 		goto discard_locked;
3854 
3855 	err = do_add_mount(mnt, mp.mp, path,
3856 			   path->mnt->mnt_flags | MNT_SHRINKABLE);
3857 	unlock_mount(&mp);
3858 	if (unlikely(err))
3859 		goto discard;
3860 	return 0;
3861 
3862 discard_locked:
3863 	namespace_unlock();
3864 	inode_unlock(dentry->d_inode);
3865 discard:
3866 	mntput(m);
3867 	return err;
3868 }
3869 
3870 /**
3871  * mnt_set_expiry - Put a mount on an expiration list
3872  * @mnt: The mount to list.
3873  * @expiry_list: The list to add the mount to.
3874  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3875 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3876 {
3877 	read_seqlock_excl(&mount_lock);
3878 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3879 	read_sequnlock_excl(&mount_lock);
3880 }
3881 EXPORT_SYMBOL(mnt_set_expiry);
3882 
3883 /*
3884  * process a list of expirable mountpoints with the intent of discarding any
3885  * mountpoints that aren't in use and haven't been touched since last we came
3886  * here
3887  */
mark_mounts_for_expiry(struct list_head * mounts)3888 void mark_mounts_for_expiry(struct list_head *mounts)
3889 {
3890 	struct mount *mnt, *next;
3891 	LIST_HEAD(graveyard);
3892 
3893 	if (list_empty(mounts))
3894 		return;
3895 
3896 	namespace_lock();
3897 	lock_mount_hash();
3898 
3899 	/* extract from the expiration list every vfsmount that matches the
3900 	 * following criteria:
3901 	 * - already mounted
3902 	 * - only referenced by its parent vfsmount
3903 	 * - still marked for expiry (marked on the last call here; marks are
3904 	 *   cleared by mntput())
3905 	 */
3906 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3907 		if (!is_mounted(&mnt->mnt))
3908 			continue;
3909 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3910 			propagate_mount_busy(mnt, 1))
3911 			continue;
3912 		list_move(&mnt->mnt_expire, &graveyard);
3913 	}
3914 	while (!list_empty(&graveyard)) {
3915 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3916 		touch_mnt_namespace(mnt->mnt_ns);
3917 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3918 	}
3919 	unlock_mount_hash();
3920 	namespace_unlock();
3921 }
3922 
3923 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3924 
3925 /*
3926  * Ripoff of 'select_parent()'
3927  *
3928  * search the list of submounts for a given mountpoint, and move any
3929  * shrinkable submounts to the 'graveyard' list.
3930  */
select_submounts(struct mount * parent,struct list_head * graveyard)3931 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3932 {
3933 	struct mount *this_parent = parent;
3934 	struct list_head *next;
3935 	int found = 0;
3936 
3937 repeat:
3938 	next = this_parent->mnt_mounts.next;
3939 resume:
3940 	while (next != &this_parent->mnt_mounts) {
3941 		struct list_head *tmp = next;
3942 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3943 
3944 		next = tmp->next;
3945 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3946 			continue;
3947 		/*
3948 		 * Descend a level if the d_mounts list is non-empty.
3949 		 */
3950 		if (!list_empty(&mnt->mnt_mounts)) {
3951 			this_parent = mnt;
3952 			goto repeat;
3953 		}
3954 
3955 		if (!propagate_mount_busy(mnt, 1)) {
3956 			list_move_tail(&mnt->mnt_expire, graveyard);
3957 			found++;
3958 		}
3959 	}
3960 	/*
3961 	 * All done at this level ... ascend and resume the search
3962 	 */
3963 	if (this_parent != parent) {
3964 		next = this_parent->mnt_child.next;
3965 		this_parent = this_parent->mnt_parent;
3966 		goto resume;
3967 	}
3968 	return found;
3969 }
3970 
3971 /*
3972  * process a list of expirable mountpoints with the intent of discarding any
3973  * submounts of a specific parent mountpoint
3974  *
3975  * mount_lock must be held for write
3976  */
shrink_submounts(struct mount * mnt)3977 static void shrink_submounts(struct mount *mnt)
3978 {
3979 	LIST_HEAD(graveyard);
3980 	struct mount *m;
3981 
3982 	/* extract submounts of 'mountpoint' from the expiration list */
3983 	while (select_submounts(mnt, &graveyard)) {
3984 		while (!list_empty(&graveyard)) {
3985 			m = list_first_entry(&graveyard, struct mount,
3986 						mnt_expire);
3987 			touch_mnt_namespace(m->mnt_ns);
3988 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3989 		}
3990 	}
3991 }
3992 
copy_mount_options(const void __user * data)3993 static void *copy_mount_options(const void __user * data)
3994 {
3995 	char *copy;
3996 	unsigned left, offset;
3997 
3998 	if (!data)
3999 		return NULL;
4000 
4001 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
4002 	if (!copy)
4003 		return ERR_PTR(-ENOMEM);
4004 
4005 	left = copy_from_user(copy, data, PAGE_SIZE);
4006 
4007 	/*
4008 	 * Not all architectures have an exact copy_from_user(). Resort to
4009 	 * byte at a time.
4010 	 */
4011 	offset = PAGE_SIZE - left;
4012 	while (left) {
4013 		char c;
4014 		if (get_user(c, (const char __user *)data + offset))
4015 			break;
4016 		copy[offset] = c;
4017 		left--;
4018 		offset++;
4019 	}
4020 
4021 	if (left == PAGE_SIZE) {
4022 		kfree(copy);
4023 		return ERR_PTR(-EFAULT);
4024 	}
4025 
4026 	return copy;
4027 }
4028 
copy_mount_string(const void __user * data)4029 static char *copy_mount_string(const void __user *data)
4030 {
4031 	return data ? strndup_user(data, PATH_MAX) : NULL;
4032 }
4033 
4034 /*
4035  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
4036  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
4037  *
4038  * data is a (void *) that can point to any structure up to
4039  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
4040  * information (or be NULL).
4041  *
4042  * Pre-0.97 versions of mount() didn't have a flags word.
4043  * When the flags word was introduced its top half was required
4044  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
4045  * Therefore, if this magic number is present, it carries no information
4046  * and must be discarded.
4047  */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)4048 int path_mount(const char *dev_name, struct path *path,
4049 		const char *type_page, unsigned long flags, void *data_page)
4050 {
4051 	unsigned int mnt_flags = 0, sb_flags;
4052 	int ret;
4053 
4054 	/* Discard magic */
4055 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
4056 		flags &= ~MS_MGC_MSK;
4057 
4058 	/* Basic sanity checks */
4059 	if (data_page)
4060 		((char *)data_page)[PAGE_SIZE - 1] = 0;
4061 
4062 	if (flags & MS_NOUSER)
4063 		return -EINVAL;
4064 
4065 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
4066 	if (ret)
4067 		return ret;
4068 	if (!may_mount())
4069 		return -EPERM;
4070 	if (flags & SB_MANDLOCK)
4071 		warn_mandlock();
4072 
4073 	/* Default to relatime unless overriden */
4074 	if (!(flags & MS_NOATIME))
4075 		mnt_flags |= MNT_RELATIME;
4076 
4077 	/* Separate the per-mountpoint flags */
4078 	if (flags & MS_NOSUID)
4079 		mnt_flags |= MNT_NOSUID;
4080 	if (flags & MS_NODEV)
4081 		mnt_flags |= MNT_NODEV;
4082 	if (flags & MS_NOEXEC)
4083 		mnt_flags |= MNT_NOEXEC;
4084 	if (flags & MS_NOATIME)
4085 		mnt_flags |= MNT_NOATIME;
4086 	if (flags & MS_NODIRATIME)
4087 		mnt_flags |= MNT_NODIRATIME;
4088 	if (flags & MS_STRICTATIME)
4089 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
4090 	if (flags & MS_RDONLY)
4091 		mnt_flags |= MNT_READONLY;
4092 	if (flags & MS_NOSYMFOLLOW)
4093 		mnt_flags |= MNT_NOSYMFOLLOW;
4094 
4095 	/* The default atime for remount is preservation */
4096 	if ((flags & MS_REMOUNT) &&
4097 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4098 		       MS_STRICTATIME)) == 0)) {
4099 		mnt_flags &= ~MNT_ATIME_MASK;
4100 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4101 	}
4102 
4103 	sb_flags = flags & (SB_RDONLY |
4104 			    SB_SYNCHRONOUS |
4105 			    SB_MANDLOCK |
4106 			    SB_DIRSYNC |
4107 			    SB_SILENT |
4108 			    SB_POSIXACL |
4109 			    SB_LAZYTIME |
4110 			    SB_I_VERSION);
4111 
4112 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4113 		return do_reconfigure_mnt(path, mnt_flags);
4114 	if (flags & MS_REMOUNT)
4115 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
4116 	if (flags & MS_BIND)
4117 		return do_loopback(path, dev_name, flags & MS_REC);
4118 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4119 		return do_change_type(path, flags);
4120 	if (flags & MS_MOVE)
4121 		return do_move_mount_old(path, dev_name);
4122 
4123 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4124 			    data_page);
4125 }
4126 
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)4127 int do_mount(const char *dev_name, const char __user *dir_name,
4128 		const char *type_page, unsigned long flags, void *data_page)
4129 {
4130 	struct path path;
4131 	int ret;
4132 
4133 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4134 	if (ret)
4135 		return ret;
4136 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
4137 	path_put(&path);
4138 	return ret;
4139 }
4140 
inc_mnt_namespaces(struct user_namespace * ns)4141 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4142 {
4143 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4144 }
4145 
dec_mnt_namespaces(struct ucounts * ucounts)4146 static void dec_mnt_namespaces(struct ucounts *ucounts)
4147 {
4148 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4149 }
4150 
free_mnt_ns(struct mnt_namespace * ns)4151 static void free_mnt_ns(struct mnt_namespace *ns)
4152 {
4153 	if (!is_anon_ns(ns))
4154 		ns_free_inum(&ns->ns);
4155 	dec_mnt_namespaces(ns->ucounts);
4156 	mnt_ns_tree_remove(ns);
4157 }
4158 
4159 /*
4160  * Assign a sequence number so we can detect when we attempt to bind
4161  * mount a reference to an older mount namespace into the current
4162  * mount namespace, preventing reference counting loops.  A 64bit
4163  * number incrementing at 10Ghz will take 12,427 years to wrap which
4164  * is effectively never, so we can ignore the possibility.
4165  */
4166 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
4167 
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)4168 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4169 {
4170 	struct mnt_namespace *new_ns;
4171 	struct ucounts *ucounts;
4172 	int ret;
4173 
4174 	ucounts = inc_mnt_namespaces(user_ns);
4175 	if (!ucounts)
4176 		return ERR_PTR(-ENOSPC);
4177 
4178 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4179 	if (!new_ns) {
4180 		dec_mnt_namespaces(ucounts);
4181 		return ERR_PTR(-ENOMEM);
4182 	}
4183 	if (!anon) {
4184 		ret = ns_alloc_inum(&new_ns->ns);
4185 		if (ret) {
4186 			kfree(new_ns);
4187 			dec_mnt_namespaces(ucounts);
4188 			return ERR_PTR(ret);
4189 		}
4190 	}
4191 	new_ns->ns.ops = &mntns_operations;
4192 	if (!anon)
4193 		new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
4194 	refcount_set(&new_ns->ns.count, 1);
4195 	refcount_set(&new_ns->passive, 1);
4196 	new_ns->mounts = RB_ROOT;
4197 	INIT_LIST_HEAD(&new_ns->mnt_ns_list);
4198 	RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
4199 	init_waitqueue_head(&new_ns->poll);
4200 	new_ns->user_ns = get_user_ns(user_ns);
4201 	new_ns->ucounts = ucounts;
4202 	return new_ns;
4203 }
4204 
4205 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)4206 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
4207 		struct user_namespace *user_ns, struct fs_struct *new_fs)
4208 {
4209 	struct mnt_namespace *new_ns;
4210 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
4211 	struct mount *p, *q;
4212 	struct mount *old;
4213 	struct mount *new;
4214 	int copy_flags;
4215 
4216 	BUG_ON(!ns);
4217 
4218 	if (likely(!(flags & CLONE_NEWNS))) {
4219 		get_mnt_ns(ns);
4220 		return ns;
4221 	}
4222 
4223 	old = ns->root;
4224 
4225 	new_ns = alloc_mnt_ns(user_ns, false);
4226 	if (IS_ERR(new_ns))
4227 		return new_ns;
4228 
4229 	namespace_lock();
4230 	/* First pass: copy the tree topology */
4231 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4232 	if (user_ns != ns->user_ns)
4233 		copy_flags |= CL_SLAVE;
4234 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4235 	if (IS_ERR(new)) {
4236 		namespace_unlock();
4237 		ns_free_inum(&new_ns->ns);
4238 		dec_mnt_namespaces(new_ns->ucounts);
4239 		mnt_ns_release(new_ns);
4240 		return ERR_CAST(new);
4241 	}
4242 	if (user_ns != ns->user_ns) {
4243 		lock_mount_hash();
4244 		lock_mnt_tree(new);
4245 		unlock_mount_hash();
4246 	}
4247 	new_ns->root = new;
4248 
4249 	/*
4250 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4251 	 * as belonging to new namespace.  We have already acquired a private
4252 	 * fs_struct, so tsk->fs->lock is not needed.
4253 	 */
4254 	p = old;
4255 	q = new;
4256 	while (p) {
4257 		mnt_add_to_ns(new_ns, q);
4258 		new_ns->nr_mounts++;
4259 		if (new_fs) {
4260 			if (&p->mnt == new_fs->root.mnt) {
4261 				new_fs->root.mnt = mntget(&q->mnt);
4262 				rootmnt = &p->mnt;
4263 			}
4264 			if (&p->mnt == new_fs->pwd.mnt) {
4265 				new_fs->pwd.mnt = mntget(&q->mnt);
4266 				pwdmnt = &p->mnt;
4267 			}
4268 		}
4269 		p = next_mnt(p, old);
4270 		q = next_mnt(q, new);
4271 		if (!q)
4272 			break;
4273 		// an mntns binding we'd skipped?
4274 		while (p->mnt.mnt_root != q->mnt.mnt_root)
4275 			p = next_mnt(skip_mnt_tree(p), old);
4276 	}
4277 	namespace_unlock();
4278 
4279 	if (rootmnt)
4280 		mntput(rootmnt);
4281 	if (pwdmnt)
4282 		mntput(pwdmnt);
4283 
4284 	mnt_ns_tree_add(new_ns);
4285 	return new_ns;
4286 }
4287 
mount_subtree(struct vfsmount * m,const char * name)4288 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4289 {
4290 	struct mount *mnt = real_mount(m);
4291 	struct mnt_namespace *ns;
4292 	struct super_block *s;
4293 	struct path path;
4294 	int err;
4295 
4296 	ns = alloc_mnt_ns(&init_user_ns, true);
4297 	if (IS_ERR(ns)) {
4298 		mntput(m);
4299 		return ERR_CAST(ns);
4300 	}
4301 	ns->root = mnt;
4302 	ns->nr_mounts++;
4303 	mnt_add_to_ns(ns, mnt);
4304 
4305 	err = vfs_path_lookup(m->mnt_root, m,
4306 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4307 
4308 	put_mnt_ns(ns);
4309 
4310 	if (err)
4311 		return ERR_PTR(err);
4312 
4313 	/* trade a vfsmount reference for active sb one */
4314 	s = path.mnt->mnt_sb;
4315 	atomic_inc(&s->s_active);
4316 	mntput(path.mnt);
4317 	/* lock the sucker */
4318 	down_write(&s->s_umount);
4319 	/* ... and return the root of (sub)tree on it */
4320 	return path.dentry;
4321 }
4322 EXPORT_SYMBOL(mount_subtree);
4323 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)4324 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4325 		char __user *, type, unsigned long, flags, void __user *, data)
4326 {
4327 	int ret;
4328 	char *kernel_type;
4329 	char *kernel_dev;
4330 	void *options;
4331 
4332 	kernel_type = copy_mount_string(type);
4333 	ret = PTR_ERR(kernel_type);
4334 	if (IS_ERR(kernel_type))
4335 		goto out_type;
4336 
4337 	kernel_dev = copy_mount_string(dev_name);
4338 	ret = PTR_ERR(kernel_dev);
4339 	if (IS_ERR(kernel_dev))
4340 		goto out_dev;
4341 
4342 	options = copy_mount_options(data);
4343 	ret = PTR_ERR(options);
4344 	if (IS_ERR(options))
4345 		goto out_data;
4346 
4347 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4348 
4349 	kfree(options);
4350 out_data:
4351 	kfree(kernel_dev);
4352 out_dev:
4353 	kfree(kernel_type);
4354 out_type:
4355 	return ret;
4356 }
4357 
4358 #define FSMOUNT_VALID_FLAGS                                                    \
4359 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4360 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4361 	 MOUNT_ATTR_NOSYMFOLLOW)
4362 
4363 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4364 
4365 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4366 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4367 
attr_flags_to_mnt_flags(u64 attr_flags)4368 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4369 {
4370 	unsigned int mnt_flags = 0;
4371 
4372 	if (attr_flags & MOUNT_ATTR_RDONLY)
4373 		mnt_flags |= MNT_READONLY;
4374 	if (attr_flags & MOUNT_ATTR_NOSUID)
4375 		mnt_flags |= MNT_NOSUID;
4376 	if (attr_flags & MOUNT_ATTR_NODEV)
4377 		mnt_flags |= MNT_NODEV;
4378 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4379 		mnt_flags |= MNT_NOEXEC;
4380 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4381 		mnt_flags |= MNT_NODIRATIME;
4382 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4383 		mnt_flags |= MNT_NOSYMFOLLOW;
4384 
4385 	return mnt_flags;
4386 }
4387 
4388 /*
4389  * Create a kernel mount representation for a new, prepared superblock
4390  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4391  */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4392 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4393 		unsigned int, attr_flags)
4394 {
4395 	struct mnt_namespace *ns;
4396 	struct fs_context *fc;
4397 	struct file *file;
4398 	struct path newmount;
4399 	struct mount *mnt;
4400 	unsigned int mnt_flags = 0;
4401 	long ret;
4402 
4403 	if (!may_mount())
4404 		return -EPERM;
4405 
4406 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4407 		return -EINVAL;
4408 
4409 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4410 		return -EINVAL;
4411 
4412 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4413 
4414 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4415 	case MOUNT_ATTR_STRICTATIME:
4416 		break;
4417 	case MOUNT_ATTR_NOATIME:
4418 		mnt_flags |= MNT_NOATIME;
4419 		break;
4420 	case MOUNT_ATTR_RELATIME:
4421 		mnt_flags |= MNT_RELATIME;
4422 		break;
4423 	default:
4424 		return -EINVAL;
4425 	}
4426 
4427 	CLASS(fd, f)(fs_fd);
4428 	if (fd_empty(f))
4429 		return -EBADF;
4430 
4431 	if (fd_file(f)->f_op != &fscontext_fops)
4432 		return -EINVAL;
4433 
4434 	fc = fd_file(f)->private_data;
4435 
4436 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4437 	if (ret < 0)
4438 		return ret;
4439 
4440 	/* There must be a valid superblock or we can't mount it */
4441 	ret = -EINVAL;
4442 	if (!fc->root)
4443 		goto err_unlock;
4444 
4445 	ret = -EPERM;
4446 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4447 		pr_warn("VFS: Mount too revealing\n");
4448 		goto err_unlock;
4449 	}
4450 
4451 	ret = -EBUSY;
4452 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4453 		goto err_unlock;
4454 
4455 	if (fc->sb_flags & SB_MANDLOCK)
4456 		warn_mandlock();
4457 
4458 	newmount.mnt = vfs_create_mount(fc);
4459 	if (IS_ERR(newmount.mnt)) {
4460 		ret = PTR_ERR(newmount.mnt);
4461 		goto err_unlock;
4462 	}
4463 	newmount.dentry = dget(fc->root);
4464 	newmount.mnt->mnt_flags = mnt_flags;
4465 
4466 	/* We've done the mount bit - now move the file context into more or
4467 	 * less the same state as if we'd done an fspick().  We don't want to
4468 	 * do any memory allocation or anything like that at this point as we
4469 	 * don't want to have to handle any errors incurred.
4470 	 */
4471 	vfs_clean_context(fc);
4472 
4473 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4474 	if (IS_ERR(ns)) {
4475 		ret = PTR_ERR(ns);
4476 		goto err_path;
4477 	}
4478 	mnt = real_mount(newmount.mnt);
4479 	ns->root = mnt;
4480 	ns->nr_mounts = 1;
4481 	mnt_add_to_ns(ns, mnt);
4482 	mntget(newmount.mnt);
4483 
4484 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4485 	 * it, not just simply put it.
4486 	 */
4487 	file = dentry_open(&newmount, O_PATH, fc->cred);
4488 	if (IS_ERR(file)) {
4489 		dissolve_on_fput(newmount.mnt);
4490 		ret = PTR_ERR(file);
4491 		goto err_path;
4492 	}
4493 	file->f_mode |= FMODE_NEED_UNMOUNT;
4494 
4495 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4496 	if (ret >= 0)
4497 		fd_install(ret, file);
4498 	else
4499 		fput(file);
4500 
4501 err_path:
4502 	path_put(&newmount);
4503 err_unlock:
4504 	mutex_unlock(&fc->uapi_mutex);
4505 	return ret;
4506 }
4507 
vfs_move_mount(struct path * from_path,struct path * to_path,enum mnt_tree_flags_t mflags)4508 static inline int vfs_move_mount(struct path *from_path, struct path *to_path,
4509 				 enum mnt_tree_flags_t mflags)
4510 {
4511 	int ret;
4512 
4513 	ret = security_move_mount(from_path, to_path);
4514 	if (ret)
4515 		return ret;
4516 
4517 	if (mflags & MNT_TREE_PROPAGATION)
4518 		return do_set_group(from_path, to_path);
4519 
4520 	return do_move_mount(from_path, to_path, mflags);
4521 }
4522 
4523 /*
4524  * Move a mount from one place to another.  In combination with
4525  * fsopen()/fsmount() this is used to install a new mount and in combination
4526  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4527  * a mount subtree.
4528  *
4529  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4530  */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4531 SYSCALL_DEFINE5(move_mount,
4532 		int, from_dfd, const char __user *, from_pathname,
4533 		int, to_dfd, const char __user *, to_pathname,
4534 		unsigned int, flags)
4535 {
4536 	struct path to_path __free(path_put) = {};
4537 	struct path from_path __free(path_put) = {};
4538 	struct filename *to_name __free(putname) = NULL;
4539 	struct filename *from_name __free(putname) = NULL;
4540 	unsigned int lflags, uflags;
4541 	enum mnt_tree_flags_t mflags = 0;
4542 	int ret = 0;
4543 
4544 	if (!may_mount())
4545 		return -EPERM;
4546 
4547 	if (flags & ~MOVE_MOUNT__MASK)
4548 		return -EINVAL;
4549 
4550 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4551 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4552 		return -EINVAL;
4553 
4554 	if (flags & MOVE_MOUNT_SET_GROUP)	mflags |= MNT_TREE_PROPAGATION;
4555 	if (flags & MOVE_MOUNT_BENEATH)		mflags |= MNT_TREE_BENEATH;
4556 
4557 	uflags = 0;
4558 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)
4559 		uflags = AT_EMPTY_PATH;
4560 
4561 	to_name = getname_maybe_null(to_pathname, uflags);
4562 	if (IS_ERR(to_name))
4563 		return PTR_ERR(to_name);
4564 
4565 	if (!to_name && to_dfd >= 0) {
4566 		CLASS(fd_raw, f_to)(to_dfd);
4567 		if (fd_empty(f_to))
4568 			return -EBADF;
4569 
4570 		to_path = fd_file(f_to)->f_path;
4571 		path_get(&to_path);
4572 	} else {
4573 		lflags = 0;
4574 		if (flags & MOVE_MOUNT_T_SYMLINKS)
4575 			lflags |= LOOKUP_FOLLOW;
4576 		if (flags & MOVE_MOUNT_T_AUTOMOUNTS)
4577 			lflags |= LOOKUP_AUTOMOUNT;
4578 		ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4579 		if (ret)
4580 			return ret;
4581 	}
4582 
4583 	uflags = 0;
4584 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)
4585 		uflags = AT_EMPTY_PATH;
4586 
4587 	from_name = getname_maybe_null(from_pathname, uflags);
4588 	if (IS_ERR(from_name))
4589 		return PTR_ERR(from_name);
4590 
4591 	if (!from_name && from_dfd >= 0) {
4592 		CLASS(fd_raw, f_from)(from_dfd);
4593 		if (fd_empty(f_from))
4594 			return -EBADF;
4595 
4596 		return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4597 	}
4598 
4599 	lflags = 0;
4600 	if (flags & MOVE_MOUNT_F_SYMLINKS)
4601 		lflags |= LOOKUP_FOLLOW;
4602 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)
4603 		lflags |= LOOKUP_AUTOMOUNT;
4604 	ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4605 	if (ret)
4606 		return ret;
4607 
4608 	return vfs_move_mount(&from_path, &to_path, mflags);
4609 }
4610 
4611 /*
4612  * Return true if path is reachable from root
4613  *
4614  * namespace_sem or mount_lock is held
4615  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4616 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4617 			 const struct path *root)
4618 {
4619 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4620 		dentry = mnt->mnt_mountpoint;
4621 		mnt = mnt->mnt_parent;
4622 	}
4623 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4624 }
4625 
path_is_under(const struct path * path1,const struct path * path2)4626 bool path_is_under(const struct path *path1, const struct path *path2)
4627 {
4628 	bool res;
4629 	read_seqlock_excl(&mount_lock);
4630 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4631 	read_sequnlock_excl(&mount_lock);
4632 	return res;
4633 }
4634 EXPORT_SYMBOL(path_is_under);
4635 
4636 /*
4637  * pivot_root Semantics:
4638  * Moves the root file system of the current process to the directory put_old,
4639  * makes new_root as the new root file system of the current process, and sets
4640  * root/cwd of all processes which had them on the current root to new_root.
4641  *
4642  * Restrictions:
4643  * The new_root and put_old must be directories, and  must not be on the
4644  * same file  system as the current process root. The put_old  must  be
4645  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4646  * pointed to by put_old must yield the same directory as new_root. No other
4647  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4648  *
4649  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4650  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4651  * in this situation.
4652  *
4653  * Notes:
4654  *  - we don't move root/cwd if they are not at the root (reason: if something
4655  *    cared enough to change them, it's probably wrong to force them elsewhere)
4656  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4657  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4658  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4659  *    first.
4660  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4661 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4662 		const char __user *, put_old)
4663 {
4664 	struct path new, old, root;
4665 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4666 	struct pinned_mountpoint old_mp = {};
4667 	int error;
4668 
4669 	if (!may_mount())
4670 		return -EPERM;
4671 
4672 	error = user_path_at(AT_FDCWD, new_root,
4673 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4674 	if (error)
4675 		goto out0;
4676 
4677 	error = user_path_at(AT_FDCWD, put_old,
4678 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4679 	if (error)
4680 		goto out1;
4681 
4682 	error = security_sb_pivotroot(&old, &new);
4683 	if (error)
4684 		goto out2;
4685 
4686 	get_fs_root(current->fs, &root);
4687 	error = lock_mount(&old, &old_mp);
4688 	if (error)
4689 		goto out3;
4690 
4691 	error = -EINVAL;
4692 	new_mnt = real_mount(new.mnt);
4693 	root_mnt = real_mount(root.mnt);
4694 	old_mnt = real_mount(old.mnt);
4695 	ex_parent = new_mnt->mnt_parent;
4696 	root_parent = root_mnt->mnt_parent;
4697 	if (IS_MNT_SHARED(old_mnt) ||
4698 		IS_MNT_SHARED(ex_parent) ||
4699 		IS_MNT_SHARED(root_parent))
4700 		goto out4;
4701 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4702 		goto out4;
4703 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4704 		goto out4;
4705 	error = -ENOENT;
4706 	if (d_unlinked(new.dentry))
4707 		goto out4;
4708 	error = -EBUSY;
4709 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4710 		goto out4; /* loop, on the same file system  */
4711 	error = -EINVAL;
4712 	if (!path_mounted(&root))
4713 		goto out4; /* not a mountpoint */
4714 	if (!mnt_has_parent(root_mnt))
4715 		goto out4; /* absolute root */
4716 	if (!path_mounted(&new))
4717 		goto out4; /* not a mountpoint */
4718 	if (!mnt_has_parent(new_mnt))
4719 		goto out4; /* absolute root */
4720 	/* make sure we can reach put_old from new_root */
4721 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4722 		goto out4;
4723 	/* make certain new is below the root */
4724 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4725 		goto out4;
4726 	lock_mount_hash();
4727 	umount_mnt(new_mnt);
4728 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4729 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4730 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4731 	}
4732 	/* mount new_root on / */
4733 	attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp);
4734 	umount_mnt(root_mnt);
4735 	/* mount old root on put_old */
4736 	attach_mnt(root_mnt, old_mnt, old_mp.mp);
4737 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4738 	/* A moved mount should not expire automatically */
4739 	list_del_init(&new_mnt->mnt_expire);
4740 	unlock_mount_hash();
4741 	mnt_notify_add(root_mnt);
4742 	mnt_notify_add(new_mnt);
4743 	chroot_fs_refs(&root, &new);
4744 	error = 0;
4745 out4:
4746 	unlock_mount(&old_mp);
4747 out3:
4748 	path_put(&root);
4749 out2:
4750 	path_put(&old);
4751 out1:
4752 	path_put(&new);
4753 out0:
4754 	return error;
4755 }
4756 
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4757 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4758 {
4759 	unsigned int flags = mnt->mnt.mnt_flags;
4760 
4761 	/*  flags to clear */
4762 	flags &= ~kattr->attr_clr;
4763 	/* flags to raise */
4764 	flags |= kattr->attr_set;
4765 
4766 	return flags;
4767 }
4768 
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4769 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4770 {
4771 	struct vfsmount *m = &mnt->mnt;
4772 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4773 
4774 	if (!kattr->mnt_idmap)
4775 		return 0;
4776 
4777 	/*
4778 	 * Creating an idmapped mount with the filesystem wide idmapping
4779 	 * doesn't make sense so block that. We don't allow mushy semantics.
4780 	 */
4781 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4782 		return -EINVAL;
4783 
4784 	/*
4785 	 * We only allow an mount to change it's idmapping if it has
4786 	 * never been accessible to userspace.
4787 	 */
4788 	if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4789 		return -EPERM;
4790 
4791 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4792 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4793 		return -EINVAL;
4794 
4795 	/* The filesystem has turned off idmapped mounts. */
4796 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4797 		return -EINVAL;
4798 
4799 	/* We're not controlling the superblock. */
4800 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4801 		return -EPERM;
4802 
4803 	/* Mount has already been visible in the filesystem hierarchy. */
4804 	if (!is_anon_ns(mnt->mnt_ns))
4805 		return -EINVAL;
4806 
4807 	return 0;
4808 }
4809 
4810 /**
4811  * mnt_allow_writers() - check whether the attribute change allows writers
4812  * @kattr: the new mount attributes
4813  * @mnt: the mount to which @kattr will be applied
4814  *
4815  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4816  *
4817  * Return: true if writers need to be held, false if not
4818  */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4819 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4820 				     const struct mount *mnt)
4821 {
4822 	return (!(kattr->attr_set & MNT_READONLY) ||
4823 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4824 	       !kattr->mnt_idmap;
4825 }
4826 
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4827 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4828 {
4829 	struct mount *m;
4830 	int err;
4831 
4832 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4833 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4834 			err = -EPERM;
4835 			break;
4836 		}
4837 
4838 		err = can_idmap_mount(kattr, m);
4839 		if (err)
4840 			break;
4841 
4842 		if (!mnt_allow_writers(kattr, m)) {
4843 			err = mnt_hold_writers(m);
4844 			if (err)
4845 				break;
4846 		}
4847 
4848 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4849 			return 0;
4850 	}
4851 
4852 	if (err) {
4853 		struct mount *p;
4854 
4855 		/*
4856 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4857 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4858 		 * mounts and needs to take care to include the first mount.
4859 		 */
4860 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4861 			/* If we had to hold writers unblock them. */
4862 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4863 				mnt_unhold_writers(p);
4864 
4865 			/*
4866 			 * We're done once the first mount we changed got
4867 			 * MNT_WRITE_HOLD unset.
4868 			 */
4869 			if (p == m)
4870 				break;
4871 		}
4872 	}
4873 	return err;
4874 }
4875 
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4876 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4877 {
4878 	struct mnt_idmap *old_idmap;
4879 
4880 	if (!kattr->mnt_idmap)
4881 		return;
4882 
4883 	old_idmap = mnt_idmap(&mnt->mnt);
4884 
4885 	/* Pairs with smp_load_acquire() in mnt_idmap(). */
4886 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4887 	mnt_idmap_put(old_idmap);
4888 }
4889 
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4890 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4891 {
4892 	struct mount *m;
4893 
4894 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4895 		unsigned int flags;
4896 
4897 		do_idmap_mount(kattr, m);
4898 		flags = recalc_flags(kattr, m);
4899 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4900 
4901 		/* If we had to hold writers unblock them. */
4902 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4903 			mnt_unhold_writers(m);
4904 
4905 		if (kattr->propagation)
4906 			change_mnt_propagation(m, kattr->propagation);
4907 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4908 			break;
4909 	}
4910 	touch_mnt_namespace(mnt->mnt_ns);
4911 }
4912 
do_mount_setattr(struct path * path,struct mount_kattr * kattr)4913 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4914 {
4915 	struct mount *mnt = real_mount(path->mnt);
4916 	int err = 0;
4917 
4918 	if (!path_mounted(path))
4919 		return -EINVAL;
4920 
4921 	if (kattr->mnt_userns) {
4922 		struct mnt_idmap *mnt_idmap;
4923 
4924 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4925 		if (IS_ERR(mnt_idmap))
4926 			return PTR_ERR(mnt_idmap);
4927 		kattr->mnt_idmap = mnt_idmap;
4928 	}
4929 
4930 	if (kattr->propagation) {
4931 		/*
4932 		 * Only take namespace_lock() if we're actually changing
4933 		 * propagation.
4934 		 */
4935 		namespace_lock();
4936 		if (kattr->propagation == MS_SHARED) {
4937 			err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
4938 			if (err) {
4939 				namespace_unlock();
4940 				return err;
4941 			}
4942 		}
4943 	}
4944 
4945 	err = -EINVAL;
4946 	lock_mount_hash();
4947 
4948 	if (!anon_ns_root(mnt) && !check_mnt(mnt))
4949 		goto out;
4950 
4951 	/*
4952 	 * First, we get the mount tree in a shape where we can change mount
4953 	 * properties without failure. If we succeeded to do so we commit all
4954 	 * changes and if we failed we clean up.
4955 	 */
4956 	err = mount_setattr_prepare(kattr, mnt);
4957 	if (!err)
4958 		mount_setattr_commit(kattr, mnt);
4959 
4960 out:
4961 	unlock_mount_hash();
4962 
4963 	if (kattr->propagation) {
4964 		if (err)
4965 			cleanup_group_ids(mnt, NULL);
4966 		namespace_unlock();
4967 	}
4968 
4969 	return err;
4970 }
4971 
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)4972 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4973 				struct mount_kattr *kattr)
4974 {
4975 	struct ns_common *ns;
4976 	struct user_namespace *mnt_userns;
4977 
4978 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4979 		return 0;
4980 
4981 	if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
4982 		/*
4983 		 * We can only remove an idmapping if it's never been
4984 		 * exposed to userspace.
4985 		 */
4986 		if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
4987 			return -EINVAL;
4988 
4989 		/*
4990 		 * Removal of idmappings is equivalent to setting
4991 		 * nop_mnt_idmap.
4992 		 */
4993 		if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
4994 			kattr->mnt_idmap = &nop_mnt_idmap;
4995 			return 0;
4996 		}
4997 	}
4998 
4999 	if (attr->userns_fd > INT_MAX)
5000 		return -EINVAL;
5001 
5002 	CLASS(fd, f)(attr->userns_fd);
5003 	if (fd_empty(f))
5004 		return -EBADF;
5005 
5006 	if (!proc_ns_file(fd_file(f)))
5007 		return -EINVAL;
5008 
5009 	ns = get_proc_ns(file_inode(fd_file(f)));
5010 	if (ns->ops->type != CLONE_NEWUSER)
5011 		return -EINVAL;
5012 
5013 	/*
5014 	 * The initial idmapping cannot be used to create an idmapped
5015 	 * mount. We use the initial idmapping as an indicator of a mount
5016 	 * that is not idmapped. It can simply be passed into helpers that
5017 	 * are aware of idmapped mounts as a convenient shortcut. A user
5018 	 * can just create a dedicated identity mapping to achieve the same
5019 	 * result.
5020 	 */
5021 	mnt_userns = container_of(ns, struct user_namespace, ns);
5022 	if (mnt_userns == &init_user_ns)
5023 		return -EPERM;
5024 
5025 	/* We're not controlling the target namespace. */
5026 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
5027 		return -EPERM;
5028 
5029 	kattr->mnt_userns = get_user_ns(mnt_userns);
5030 	return 0;
5031 }
5032 
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)5033 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
5034 			     struct mount_kattr *kattr)
5035 {
5036 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
5037 		return -EINVAL;
5038 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
5039 		return -EINVAL;
5040 	kattr->propagation = attr->propagation;
5041 
5042 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
5043 		return -EINVAL;
5044 
5045 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
5046 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
5047 
5048 	/*
5049 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
5050 	 * users wanting to transition to a different atime setting cannot
5051 	 * simply specify the atime setting in @attr_set, but must also
5052 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
5053 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
5054 	 * @attr_clr and that @attr_set can't have any atime bits set if
5055 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
5056 	 */
5057 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
5058 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
5059 			return -EINVAL;
5060 
5061 		/*
5062 		 * Clear all previous time settings as they are mutually
5063 		 * exclusive.
5064 		 */
5065 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
5066 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
5067 		case MOUNT_ATTR_RELATIME:
5068 			kattr->attr_set |= MNT_RELATIME;
5069 			break;
5070 		case MOUNT_ATTR_NOATIME:
5071 			kattr->attr_set |= MNT_NOATIME;
5072 			break;
5073 		case MOUNT_ATTR_STRICTATIME:
5074 			break;
5075 		default:
5076 			return -EINVAL;
5077 		}
5078 	} else {
5079 		if (attr->attr_set & MOUNT_ATTR__ATIME)
5080 			return -EINVAL;
5081 	}
5082 
5083 	return build_mount_idmapped(attr, usize, kattr);
5084 }
5085 
finish_mount_kattr(struct mount_kattr * kattr)5086 static void finish_mount_kattr(struct mount_kattr *kattr)
5087 {
5088 	if (kattr->mnt_userns) {
5089 		put_user_ns(kattr->mnt_userns);
5090 		kattr->mnt_userns = NULL;
5091 	}
5092 
5093 	if (kattr->mnt_idmap)
5094 		mnt_idmap_put(kattr->mnt_idmap);
5095 }
5096 
wants_mount_setattr(struct mount_attr __user * uattr,size_t usize,struct mount_kattr * kattr)5097 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
5098 			       struct mount_kattr *kattr)
5099 {
5100 	int ret;
5101 	struct mount_attr attr;
5102 
5103 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
5104 
5105 	if (unlikely(usize > PAGE_SIZE))
5106 		return -E2BIG;
5107 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
5108 		return -EINVAL;
5109 
5110 	if (!may_mount())
5111 		return -EPERM;
5112 
5113 	ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
5114 	if (ret)
5115 		return ret;
5116 
5117 	/* Don't bother walking through the mounts if this is a nop. */
5118 	if (attr.attr_set == 0 &&
5119 	    attr.attr_clr == 0 &&
5120 	    attr.propagation == 0)
5121 		return 0; /* Tell caller to not bother. */
5122 
5123 	ret = build_mount_kattr(&attr, usize, kattr);
5124 	if (ret < 0)
5125 		return ret;
5126 
5127 	return 1;
5128 }
5129 
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)5130 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
5131 		unsigned int, flags, struct mount_attr __user *, uattr,
5132 		size_t, usize)
5133 {
5134 	int err;
5135 	struct path target;
5136 	struct mount_kattr kattr;
5137 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
5138 
5139 	if (flags & ~(AT_EMPTY_PATH |
5140 		      AT_RECURSIVE |
5141 		      AT_SYMLINK_NOFOLLOW |
5142 		      AT_NO_AUTOMOUNT))
5143 		return -EINVAL;
5144 
5145 	if (flags & AT_NO_AUTOMOUNT)
5146 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
5147 	if (flags & AT_SYMLINK_NOFOLLOW)
5148 		lookup_flags &= ~LOOKUP_FOLLOW;
5149 	if (flags & AT_EMPTY_PATH)
5150 		lookup_flags |= LOOKUP_EMPTY;
5151 
5152 	kattr = (struct mount_kattr) {
5153 		.lookup_flags	= lookup_flags,
5154 	};
5155 
5156 	if (flags & AT_RECURSIVE)
5157 		kattr.kflags |= MOUNT_KATTR_RECURSE;
5158 
5159 	err = wants_mount_setattr(uattr, usize, &kattr);
5160 	if (err <= 0)
5161 		return err;
5162 
5163 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5164 	if (!err) {
5165 		err = do_mount_setattr(&target, &kattr);
5166 		path_put(&target);
5167 	}
5168 	finish_mount_kattr(&kattr);
5169 	return err;
5170 }
5171 
SYSCALL_DEFINE5(open_tree_attr,int,dfd,const char __user *,filename,unsigned,flags,struct mount_attr __user *,uattr,size_t,usize)5172 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5173 		unsigned, flags, struct mount_attr __user *, uattr,
5174 		size_t, usize)
5175 {
5176 	struct file __free(fput) *file = NULL;
5177 	int fd;
5178 
5179 	if (!uattr && usize)
5180 		return -EINVAL;
5181 
5182 	file = vfs_open_tree(dfd, filename, flags);
5183 	if (IS_ERR(file))
5184 		return PTR_ERR(file);
5185 
5186 	if (uattr) {
5187 		int ret;
5188 		struct mount_kattr kattr = {};
5189 
5190 		if (flags & OPEN_TREE_CLONE)
5191 			kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5192 		if (flags & AT_RECURSIVE)
5193 			kattr.kflags |= MOUNT_KATTR_RECURSE;
5194 
5195 		ret = wants_mount_setattr(uattr, usize, &kattr);
5196 		if (ret > 0) {
5197 			ret = do_mount_setattr(&file->f_path, &kattr);
5198 			finish_mount_kattr(&kattr);
5199 		}
5200 		if (ret)
5201 			return ret;
5202 	}
5203 
5204 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
5205 	if (fd < 0)
5206 		return fd;
5207 
5208 	fd_install(fd, no_free_ptr(file));
5209 	return fd;
5210 }
5211 
show_path(struct seq_file * m,struct dentry * root)5212 int show_path(struct seq_file *m, struct dentry *root)
5213 {
5214 	if (root->d_sb->s_op->show_path)
5215 		return root->d_sb->s_op->show_path(m, root);
5216 
5217 	seq_dentry(m, root, " \t\n\\");
5218 	return 0;
5219 }
5220 
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)5221 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5222 {
5223 	struct mount *mnt = mnt_find_id_at(ns, id);
5224 
5225 	if (!mnt || mnt->mnt_id_unique != id)
5226 		return NULL;
5227 
5228 	return &mnt->mnt;
5229 }
5230 
5231 struct kstatmount {
5232 	struct statmount __user *buf;
5233 	size_t bufsize;
5234 	struct vfsmount *mnt;
5235 	struct mnt_idmap *idmap;
5236 	u64 mask;
5237 	struct path root;
5238 	struct seq_file seq;
5239 
5240 	/* Must be last --ends in a flexible-array member. */
5241 	struct statmount sm;
5242 };
5243 
mnt_to_attr_flags(struct vfsmount * mnt)5244 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5245 {
5246 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5247 	u64 attr_flags = 0;
5248 
5249 	if (mnt_flags & MNT_READONLY)
5250 		attr_flags |= MOUNT_ATTR_RDONLY;
5251 	if (mnt_flags & MNT_NOSUID)
5252 		attr_flags |= MOUNT_ATTR_NOSUID;
5253 	if (mnt_flags & MNT_NODEV)
5254 		attr_flags |= MOUNT_ATTR_NODEV;
5255 	if (mnt_flags & MNT_NOEXEC)
5256 		attr_flags |= MOUNT_ATTR_NOEXEC;
5257 	if (mnt_flags & MNT_NODIRATIME)
5258 		attr_flags |= MOUNT_ATTR_NODIRATIME;
5259 	if (mnt_flags & MNT_NOSYMFOLLOW)
5260 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5261 
5262 	if (mnt_flags & MNT_NOATIME)
5263 		attr_flags |= MOUNT_ATTR_NOATIME;
5264 	else if (mnt_flags & MNT_RELATIME)
5265 		attr_flags |= MOUNT_ATTR_RELATIME;
5266 	else
5267 		attr_flags |= MOUNT_ATTR_STRICTATIME;
5268 
5269 	if (is_idmapped_mnt(mnt))
5270 		attr_flags |= MOUNT_ATTR_IDMAP;
5271 
5272 	return attr_flags;
5273 }
5274 
mnt_to_propagation_flags(struct mount * m)5275 static u64 mnt_to_propagation_flags(struct mount *m)
5276 {
5277 	u64 propagation = 0;
5278 
5279 	if (IS_MNT_SHARED(m))
5280 		propagation |= MS_SHARED;
5281 	if (IS_MNT_SLAVE(m))
5282 		propagation |= MS_SLAVE;
5283 	if (IS_MNT_UNBINDABLE(m))
5284 		propagation |= MS_UNBINDABLE;
5285 	if (!propagation)
5286 		propagation |= MS_PRIVATE;
5287 
5288 	return propagation;
5289 }
5290 
statmount_sb_basic(struct kstatmount * s)5291 static void statmount_sb_basic(struct kstatmount *s)
5292 {
5293 	struct super_block *sb = s->mnt->mnt_sb;
5294 
5295 	s->sm.mask |= STATMOUNT_SB_BASIC;
5296 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
5297 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
5298 	s->sm.sb_magic = sb->s_magic;
5299 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5300 }
5301 
statmount_mnt_basic(struct kstatmount * s)5302 static void statmount_mnt_basic(struct kstatmount *s)
5303 {
5304 	struct mount *m = real_mount(s->mnt);
5305 
5306 	s->sm.mask |= STATMOUNT_MNT_BASIC;
5307 	s->sm.mnt_id = m->mnt_id_unique;
5308 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5309 	s->sm.mnt_id_old = m->mnt_id;
5310 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5311 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5312 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5313 	s->sm.mnt_peer_group = m->mnt_group_id;
5314 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5315 }
5316 
statmount_propagate_from(struct kstatmount * s)5317 static void statmount_propagate_from(struct kstatmount *s)
5318 {
5319 	struct mount *m = real_mount(s->mnt);
5320 
5321 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5322 	if (IS_MNT_SLAVE(m))
5323 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
5324 }
5325 
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)5326 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5327 {
5328 	int ret;
5329 	size_t start = seq->count;
5330 
5331 	ret = show_path(seq, s->mnt->mnt_root);
5332 	if (ret)
5333 		return ret;
5334 
5335 	if (unlikely(seq_has_overflowed(seq)))
5336 		return -EAGAIN;
5337 
5338 	/*
5339          * Unescape the result. It would be better if supplied string was not
5340          * escaped in the first place, but that's a pretty invasive change.
5341          */
5342 	seq->buf[seq->count] = '\0';
5343 	seq->count = start;
5344 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5345 	return 0;
5346 }
5347 
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)5348 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5349 {
5350 	struct vfsmount *mnt = s->mnt;
5351 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5352 	int err;
5353 
5354 	err = seq_path_root(seq, &mnt_path, &s->root, "");
5355 	return err == SEQ_SKIP ? 0 : err;
5356 }
5357 
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)5358 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5359 {
5360 	struct super_block *sb = s->mnt->mnt_sb;
5361 
5362 	seq_puts(seq, sb->s_type->name);
5363 	return 0;
5364 }
5365 
statmount_fs_subtype(struct kstatmount * s,struct seq_file * seq)5366 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5367 {
5368 	struct super_block *sb = s->mnt->mnt_sb;
5369 
5370 	if (sb->s_subtype)
5371 		seq_puts(seq, sb->s_subtype);
5372 }
5373 
statmount_sb_source(struct kstatmount * s,struct seq_file * seq)5374 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5375 {
5376 	struct super_block *sb = s->mnt->mnt_sb;
5377 	struct mount *r = real_mount(s->mnt);
5378 
5379 	if (sb->s_op->show_devname) {
5380 		size_t start = seq->count;
5381 		int ret;
5382 
5383 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5384 		if (ret)
5385 			return ret;
5386 
5387 		if (unlikely(seq_has_overflowed(seq)))
5388 			return -EAGAIN;
5389 
5390 		/* Unescape the result */
5391 		seq->buf[seq->count] = '\0';
5392 		seq->count = start;
5393 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5394 	} else {
5395 		seq_puts(seq, r->mnt_devname);
5396 	}
5397 	return 0;
5398 }
5399 
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)5400 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5401 {
5402 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5403 	s->sm.mnt_ns_id = ns->seq;
5404 }
5405 
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)5406 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5407 {
5408 	struct vfsmount *mnt = s->mnt;
5409 	struct super_block *sb = mnt->mnt_sb;
5410 	size_t start = seq->count;
5411 	int err;
5412 
5413 	err = security_sb_show_options(seq, sb);
5414 	if (err)
5415 		return err;
5416 
5417 	if (sb->s_op->show_options) {
5418 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5419 		if (err)
5420 			return err;
5421 	}
5422 
5423 	if (unlikely(seq_has_overflowed(seq)))
5424 		return -EAGAIN;
5425 
5426 	if (seq->count == start)
5427 		return 0;
5428 
5429 	/* skip leading comma */
5430 	memmove(seq->buf + start, seq->buf + start + 1,
5431 		seq->count - start - 1);
5432 	seq->count--;
5433 
5434 	return 0;
5435 }
5436 
statmount_opt_process(struct seq_file * seq,size_t start)5437 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5438 {
5439 	char *buf_end, *opt_end, *src, *dst;
5440 	int count = 0;
5441 
5442 	if (unlikely(seq_has_overflowed(seq)))
5443 		return -EAGAIN;
5444 
5445 	buf_end = seq->buf + seq->count;
5446 	dst = seq->buf + start;
5447 	src = dst + 1;	/* skip initial comma */
5448 
5449 	if (src >= buf_end) {
5450 		seq->count = start;
5451 		return 0;
5452 	}
5453 
5454 	*buf_end = '\0';
5455 	for (; src < buf_end; src = opt_end + 1) {
5456 		opt_end = strchrnul(src, ',');
5457 		*opt_end = '\0';
5458 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5459 		if (WARN_ON_ONCE(++count == INT_MAX))
5460 			return -EOVERFLOW;
5461 	}
5462 	seq->count = dst - 1 - seq->buf;
5463 	return count;
5464 }
5465 
statmount_opt_array(struct kstatmount * s,struct seq_file * seq)5466 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5467 {
5468 	struct vfsmount *mnt = s->mnt;
5469 	struct super_block *sb = mnt->mnt_sb;
5470 	size_t start = seq->count;
5471 	int err;
5472 
5473 	if (!sb->s_op->show_options)
5474 		return 0;
5475 
5476 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5477 	if (err)
5478 		return err;
5479 
5480 	err = statmount_opt_process(seq, start);
5481 	if (err < 0)
5482 		return err;
5483 
5484 	s->sm.opt_num = err;
5485 	return 0;
5486 }
5487 
statmount_opt_sec_array(struct kstatmount * s,struct seq_file * seq)5488 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5489 {
5490 	struct vfsmount *mnt = s->mnt;
5491 	struct super_block *sb = mnt->mnt_sb;
5492 	size_t start = seq->count;
5493 	int err;
5494 
5495 	err = security_sb_show_options(seq, sb);
5496 	if (err)
5497 		return err;
5498 
5499 	err = statmount_opt_process(seq, start);
5500 	if (err < 0)
5501 		return err;
5502 
5503 	s->sm.opt_sec_num = err;
5504 	return 0;
5505 }
5506 
statmount_mnt_uidmap(struct kstatmount * s,struct seq_file * seq)5507 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5508 {
5509 	int ret;
5510 
5511 	ret = statmount_mnt_idmap(s->idmap, seq, true);
5512 	if (ret < 0)
5513 		return ret;
5514 
5515 	s->sm.mnt_uidmap_num = ret;
5516 	/*
5517 	 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5518 	 * mappings. This allows userspace to distinguish between a
5519 	 * non-idmapped mount and an idmapped mount where none of the
5520 	 * individual mappings are valid in the caller's idmapping.
5521 	 */
5522 	if (is_valid_mnt_idmap(s->idmap))
5523 		s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5524 	return 0;
5525 }
5526 
statmount_mnt_gidmap(struct kstatmount * s,struct seq_file * seq)5527 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5528 {
5529 	int ret;
5530 
5531 	ret = statmount_mnt_idmap(s->idmap, seq, false);
5532 	if (ret < 0)
5533 		return ret;
5534 
5535 	s->sm.mnt_gidmap_num = ret;
5536 	/*
5537 	 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5538 	 * mappings. This allows userspace to distinguish between a
5539 	 * non-idmapped mount and an idmapped mount where none of the
5540 	 * individual mappings are valid in the caller's idmapping.
5541 	 */
5542 	if (is_valid_mnt_idmap(s->idmap))
5543 		s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5544 	return 0;
5545 }
5546 
statmount_string(struct kstatmount * s,u64 flag)5547 static int statmount_string(struct kstatmount *s, u64 flag)
5548 {
5549 	int ret = 0;
5550 	size_t kbufsize;
5551 	struct seq_file *seq = &s->seq;
5552 	struct statmount *sm = &s->sm;
5553 	u32 start, *offp;
5554 
5555 	/* Reserve an empty string at the beginning for any unset offsets */
5556 	if (!seq->count)
5557 		seq_putc(seq, 0);
5558 
5559 	start = seq->count;
5560 
5561 	switch (flag) {
5562 	case STATMOUNT_FS_TYPE:
5563 		offp = &sm->fs_type;
5564 		ret = statmount_fs_type(s, seq);
5565 		break;
5566 	case STATMOUNT_MNT_ROOT:
5567 		offp = &sm->mnt_root;
5568 		ret = statmount_mnt_root(s, seq);
5569 		break;
5570 	case STATMOUNT_MNT_POINT:
5571 		offp = &sm->mnt_point;
5572 		ret = statmount_mnt_point(s, seq);
5573 		break;
5574 	case STATMOUNT_MNT_OPTS:
5575 		offp = &sm->mnt_opts;
5576 		ret = statmount_mnt_opts(s, seq);
5577 		break;
5578 	case STATMOUNT_OPT_ARRAY:
5579 		offp = &sm->opt_array;
5580 		ret = statmount_opt_array(s, seq);
5581 		break;
5582 	case STATMOUNT_OPT_SEC_ARRAY:
5583 		offp = &sm->opt_sec_array;
5584 		ret = statmount_opt_sec_array(s, seq);
5585 		break;
5586 	case STATMOUNT_FS_SUBTYPE:
5587 		offp = &sm->fs_subtype;
5588 		statmount_fs_subtype(s, seq);
5589 		break;
5590 	case STATMOUNT_SB_SOURCE:
5591 		offp = &sm->sb_source;
5592 		ret = statmount_sb_source(s, seq);
5593 		break;
5594 	case STATMOUNT_MNT_UIDMAP:
5595 		sm->mnt_uidmap = start;
5596 		ret = statmount_mnt_uidmap(s, seq);
5597 		break;
5598 	case STATMOUNT_MNT_GIDMAP:
5599 		sm->mnt_gidmap = start;
5600 		ret = statmount_mnt_gidmap(s, seq);
5601 		break;
5602 	default:
5603 		WARN_ON_ONCE(true);
5604 		return -EINVAL;
5605 	}
5606 
5607 	/*
5608 	 * If nothing was emitted, return to avoid setting the flag
5609 	 * and terminating the buffer.
5610 	 */
5611 	if (seq->count == start)
5612 		return ret;
5613 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5614 		return -EOVERFLOW;
5615 	if (kbufsize >= s->bufsize)
5616 		return -EOVERFLOW;
5617 
5618 	/* signal a retry */
5619 	if (unlikely(seq_has_overflowed(seq)))
5620 		return -EAGAIN;
5621 
5622 	if (ret)
5623 		return ret;
5624 
5625 	seq->buf[seq->count++] = '\0';
5626 	sm->mask |= flag;
5627 	*offp = start;
5628 	return 0;
5629 }
5630 
copy_statmount_to_user(struct kstatmount * s)5631 static int copy_statmount_to_user(struct kstatmount *s)
5632 {
5633 	struct statmount *sm = &s->sm;
5634 	struct seq_file *seq = &s->seq;
5635 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5636 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5637 
5638 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5639 		return -EFAULT;
5640 
5641 	/* Return the number of bytes copied to the buffer */
5642 	sm->size = copysize + seq->count;
5643 	if (copy_to_user(s->buf, sm, copysize))
5644 		return -EFAULT;
5645 
5646 	return 0;
5647 }
5648 
listmnt_next(struct mount * curr,bool reverse)5649 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5650 {
5651 	struct rb_node *node;
5652 
5653 	if (reverse)
5654 		node = rb_prev(&curr->mnt_node);
5655 	else
5656 		node = rb_next(&curr->mnt_node);
5657 
5658 	return node_to_mount(node);
5659 }
5660 
grab_requested_root(struct mnt_namespace * ns,struct path * root)5661 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5662 {
5663 	struct mount *first, *child;
5664 
5665 	rwsem_assert_held(&namespace_sem);
5666 
5667 	/* We're looking at our own ns, just use get_fs_root. */
5668 	if (ns == current->nsproxy->mnt_ns) {
5669 		get_fs_root(current->fs, root);
5670 		return 0;
5671 	}
5672 
5673 	/*
5674 	 * We have to find the first mount in our ns and use that, however it
5675 	 * may not exist, so handle that properly.
5676 	 */
5677 	if (mnt_ns_empty(ns))
5678 		return -ENOENT;
5679 
5680 	first = child = ns->root;
5681 	for (;;) {
5682 		child = listmnt_next(child, false);
5683 		if (!child)
5684 			return -ENOENT;
5685 		if (child->mnt_parent == first)
5686 			break;
5687 	}
5688 
5689 	root->mnt = mntget(&child->mnt);
5690 	root->dentry = dget(root->mnt->mnt_root);
5691 	return 0;
5692 }
5693 
5694 /* This must be updated whenever a new flag is added */
5695 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5696 			     STATMOUNT_MNT_BASIC | \
5697 			     STATMOUNT_PROPAGATE_FROM | \
5698 			     STATMOUNT_MNT_ROOT | \
5699 			     STATMOUNT_MNT_POINT | \
5700 			     STATMOUNT_FS_TYPE | \
5701 			     STATMOUNT_MNT_NS_ID | \
5702 			     STATMOUNT_MNT_OPTS | \
5703 			     STATMOUNT_FS_SUBTYPE | \
5704 			     STATMOUNT_SB_SOURCE | \
5705 			     STATMOUNT_OPT_ARRAY | \
5706 			     STATMOUNT_OPT_SEC_ARRAY | \
5707 			     STATMOUNT_SUPPORTED_MASK | \
5708 			     STATMOUNT_MNT_UIDMAP | \
5709 			     STATMOUNT_MNT_GIDMAP)
5710 
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5711 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5712 			struct mnt_namespace *ns)
5713 {
5714 	struct path root __free(path_put) = {};
5715 	struct mount *m;
5716 	int err;
5717 
5718 	/* Has the namespace already been emptied? */
5719 	if (mnt_ns_id && mnt_ns_empty(ns))
5720 		return -ENOENT;
5721 
5722 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5723 	if (!s->mnt)
5724 		return -ENOENT;
5725 
5726 	err = grab_requested_root(ns, &root);
5727 	if (err)
5728 		return err;
5729 
5730 	/*
5731 	 * Don't trigger audit denials. We just want to determine what
5732 	 * mounts to show users.
5733 	 */
5734 	m = real_mount(s->mnt);
5735 	if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5736 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5737 		return -EPERM;
5738 
5739 	err = security_sb_statfs(s->mnt->mnt_root);
5740 	if (err)
5741 		return err;
5742 
5743 	s->root = root;
5744 
5745 	/*
5746 	 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5747 	 * can change concurrently as we only hold the read-side of the
5748 	 * namespace semaphore and mount properties may change with only
5749 	 * the mount lock held.
5750 	 *
5751 	 * We could sample the mount lock sequence counter to detect
5752 	 * those changes and retry. But it's not worth it. Worst that
5753 	 * happens is that the mnt->mnt_idmap pointer is already changed
5754 	 * while mnt->mnt_flags isn't or vica versa. So what.
5755 	 *
5756 	 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5757 	 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5758 	 * torn read/write. That's all we care about right now.
5759 	 */
5760 	s->idmap = mnt_idmap(s->mnt);
5761 	if (s->mask & STATMOUNT_MNT_BASIC)
5762 		statmount_mnt_basic(s);
5763 
5764 	if (s->mask & STATMOUNT_SB_BASIC)
5765 		statmount_sb_basic(s);
5766 
5767 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5768 		statmount_propagate_from(s);
5769 
5770 	if (s->mask & STATMOUNT_FS_TYPE)
5771 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5772 
5773 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5774 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5775 
5776 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5777 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5778 
5779 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5780 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5781 
5782 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5783 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5784 
5785 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5786 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5787 
5788 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5789 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5790 
5791 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5792 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5793 
5794 	if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5795 		err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5796 
5797 	if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5798 		err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5799 
5800 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5801 		statmount_mnt_ns_id(s, ns);
5802 
5803 	if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5804 		s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5805 		s->sm.supported_mask = STATMOUNT_SUPPORTED;
5806 	}
5807 
5808 	if (err)
5809 		return err;
5810 
5811 	/* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5812 	WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5813 
5814 	return 0;
5815 }
5816 
retry_statmount(const long ret,size_t * seq_size)5817 static inline bool retry_statmount(const long ret, size_t *seq_size)
5818 {
5819 	if (likely(ret != -EAGAIN))
5820 		return false;
5821 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5822 		return false;
5823 	if (unlikely(*seq_size > MAX_RW_COUNT))
5824 		return false;
5825 	return true;
5826 }
5827 
5828 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5829 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5830 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5831 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5832 			      STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5833 
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5834 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5835 			      struct statmount __user *buf, size_t bufsize,
5836 			      size_t seq_size)
5837 {
5838 	if (!access_ok(buf, bufsize))
5839 		return -EFAULT;
5840 
5841 	memset(ks, 0, sizeof(*ks));
5842 	ks->mask = kreq->param;
5843 	ks->buf = buf;
5844 	ks->bufsize = bufsize;
5845 
5846 	if (ks->mask & STATMOUNT_STRING_REQ) {
5847 		if (bufsize == sizeof(ks->sm))
5848 			return -EOVERFLOW;
5849 
5850 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5851 		if (!ks->seq.buf)
5852 			return -ENOMEM;
5853 
5854 		ks->seq.size = seq_size;
5855 	}
5856 
5857 	return 0;
5858 }
5859 
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5860 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5861 			   struct mnt_id_req *kreq)
5862 {
5863 	int ret;
5864 	size_t usize;
5865 
5866 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5867 
5868 	ret = get_user(usize, &req->size);
5869 	if (ret)
5870 		return -EFAULT;
5871 	if (unlikely(usize > PAGE_SIZE))
5872 		return -E2BIG;
5873 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5874 		return -EINVAL;
5875 	memset(kreq, 0, sizeof(*kreq));
5876 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5877 	if (ret)
5878 		return ret;
5879 	if (kreq->spare != 0)
5880 		return -EINVAL;
5881 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5882 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5883 		return -EINVAL;
5884 	return 0;
5885 }
5886 
5887 /*
5888  * If the user requested a specific mount namespace id, look that up and return
5889  * that, or if not simply grab a passive reference on our mount namespace and
5890  * return that.
5891  */
grab_requested_mnt_ns(const struct mnt_id_req * kreq)5892 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5893 {
5894 	struct mnt_namespace *mnt_ns;
5895 
5896 	if (kreq->mnt_ns_id && kreq->spare)
5897 		return ERR_PTR(-EINVAL);
5898 
5899 	if (kreq->mnt_ns_id)
5900 		return lookup_mnt_ns(kreq->mnt_ns_id);
5901 
5902 	if (kreq->spare) {
5903 		struct ns_common *ns;
5904 
5905 		CLASS(fd, f)(kreq->spare);
5906 		if (fd_empty(f))
5907 			return ERR_PTR(-EBADF);
5908 
5909 		if (!proc_ns_file(fd_file(f)))
5910 			return ERR_PTR(-EINVAL);
5911 
5912 		ns = get_proc_ns(file_inode(fd_file(f)));
5913 		if (ns->ops->type != CLONE_NEWNS)
5914 			return ERR_PTR(-EINVAL);
5915 
5916 		mnt_ns = to_mnt_ns(ns);
5917 	} else {
5918 		mnt_ns = current->nsproxy->mnt_ns;
5919 	}
5920 
5921 	refcount_inc(&mnt_ns->passive);
5922 	return mnt_ns;
5923 }
5924 
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)5925 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5926 		struct statmount __user *, buf, size_t, bufsize,
5927 		unsigned int, flags)
5928 {
5929 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5930 	struct kstatmount *ks __free(kfree) = NULL;
5931 	struct mnt_id_req kreq;
5932 	/* We currently support retrieval of 3 strings. */
5933 	size_t seq_size = 3 * PATH_MAX;
5934 	int ret;
5935 
5936 	if (flags)
5937 		return -EINVAL;
5938 
5939 	ret = copy_mnt_id_req(req, &kreq);
5940 	if (ret)
5941 		return ret;
5942 
5943 	ns = grab_requested_mnt_ns(&kreq);
5944 	if (!ns)
5945 		return -ENOENT;
5946 
5947 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5948 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5949 		return -ENOENT;
5950 
5951 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5952 	if (!ks)
5953 		return -ENOMEM;
5954 
5955 retry:
5956 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5957 	if (ret)
5958 		return ret;
5959 
5960 	scoped_guard(rwsem_read, &namespace_sem)
5961 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5962 
5963 	if (!ret)
5964 		ret = copy_statmount_to_user(ks);
5965 	kvfree(ks->seq.buf);
5966 	if (retry_statmount(ret, &seq_size))
5967 		goto retry;
5968 	return ret;
5969 }
5970 
do_listmount(struct mnt_namespace * ns,u64 mnt_parent_id,u64 last_mnt_id,u64 * mnt_ids,size_t nr_mnt_ids,bool reverse)5971 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5972 			    u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5973 			    bool reverse)
5974 {
5975 	struct path root __free(path_put) = {};
5976 	struct path orig;
5977 	struct mount *r, *first;
5978 	ssize_t ret;
5979 
5980 	rwsem_assert_held(&namespace_sem);
5981 
5982 	ret = grab_requested_root(ns, &root);
5983 	if (ret)
5984 		return ret;
5985 
5986 	if (mnt_parent_id == LSMT_ROOT) {
5987 		orig = root;
5988 	} else {
5989 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5990 		if (!orig.mnt)
5991 			return -ENOENT;
5992 		orig.dentry = orig.mnt->mnt_root;
5993 	}
5994 
5995 	/*
5996 	 * Don't trigger audit denials. We just want to determine what
5997 	 * mounts to show users.
5998 	 */
5999 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
6000 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6001 		return -EPERM;
6002 
6003 	ret = security_sb_statfs(orig.dentry);
6004 	if (ret)
6005 		return ret;
6006 
6007 	if (!last_mnt_id) {
6008 		if (reverse)
6009 			first = node_to_mount(ns->mnt_last_node);
6010 		else
6011 			first = node_to_mount(ns->mnt_first_node);
6012 	} else {
6013 		if (reverse)
6014 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
6015 		else
6016 			first = mnt_find_id_at(ns, last_mnt_id + 1);
6017 	}
6018 
6019 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
6020 		if (r->mnt_id_unique == mnt_parent_id)
6021 			continue;
6022 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
6023 			continue;
6024 		*mnt_ids = r->mnt_id_unique;
6025 		mnt_ids++;
6026 		nr_mnt_ids--;
6027 		ret++;
6028 	}
6029 	return ret;
6030 }
6031 
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)6032 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
6033 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
6034 {
6035 	u64 *kmnt_ids __free(kvfree) = NULL;
6036 	const size_t maxcount = 1000000;
6037 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
6038 	struct mnt_id_req kreq;
6039 	u64 last_mnt_id;
6040 	ssize_t ret;
6041 
6042 	if (flags & ~LISTMOUNT_REVERSE)
6043 		return -EINVAL;
6044 
6045 	/*
6046 	 * If the mount namespace really has more than 1 million mounts the
6047 	 * caller must iterate over the mount namespace (and reconsider their
6048 	 * system design...).
6049 	 */
6050 	if (unlikely(nr_mnt_ids > maxcount))
6051 		return -EOVERFLOW;
6052 
6053 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
6054 		return -EFAULT;
6055 
6056 	ret = copy_mnt_id_req(req, &kreq);
6057 	if (ret)
6058 		return ret;
6059 
6060 	last_mnt_id = kreq.param;
6061 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
6062 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
6063 		return -EINVAL;
6064 
6065 	kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
6066 				  GFP_KERNEL_ACCOUNT);
6067 	if (!kmnt_ids)
6068 		return -ENOMEM;
6069 
6070 	ns = grab_requested_mnt_ns(&kreq);
6071 	if (!ns)
6072 		return -ENOENT;
6073 
6074 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
6075 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6076 		return -ENOENT;
6077 
6078 	/*
6079 	 * We only need to guard against mount topology changes as
6080 	 * listmount() doesn't care about any mount properties.
6081 	 */
6082 	scoped_guard(rwsem_read, &namespace_sem)
6083 		ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
6084 				   nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
6085 	if (ret <= 0)
6086 		return ret;
6087 
6088 	if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
6089 		return -EFAULT;
6090 
6091 	return ret;
6092 }
6093 
init_mount_tree(void)6094 static void __init init_mount_tree(void)
6095 {
6096 	struct vfsmount *mnt;
6097 	struct mount *m;
6098 	struct mnt_namespace *ns;
6099 	struct path root;
6100 
6101 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
6102 	if (IS_ERR(mnt))
6103 		panic("Can't create rootfs");
6104 
6105 	ns = alloc_mnt_ns(&init_user_ns, true);
6106 	if (IS_ERR(ns))
6107 		panic("Can't allocate initial namespace");
6108 	ns->seq = atomic64_inc_return(&mnt_ns_seq);
6109 	ns->ns.inum = PROC_MNT_INIT_INO;
6110 	m = real_mount(mnt);
6111 	ns->root = m;
6112 	ns->nr_mounts = 1;
6113 	mnt_add_to_ns(ns, m);
6114 	init_task.nsproxy->mnt_ns = ns;
6115 	get_mnt_ns(ns);
6116 
6117 	root.mnt = mnt;
6118 	root.dentry = mnt->mnt_root;
6119 
6120 	set_fs_pwd(current->fs, &root);
6121 	set_fs_root(current->fs, &root);
6122 
6123 	mnt_ns_tree_add(ns);
6124 }
6125 
mnt_init(void)6126 void __init mnt_init(void)
6127 {
6128 	int err;
6129 
6130 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6131 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6132 
6133 	mount_hashtable = alloc_large_system_hash("Mount-cache",
6134 				sizeof(struct hlist_head),
6135 				mhash_entries, 19,
6136 				HASH_ZERO,
6137 				&m_hash_shift, &m_hash_mask, 0, 0);
6138 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6139 				sizeof(struct hlist_head),
6140 				mphash_entries, 19,
6141 				HASH_ZERO,
6142 				&mp_hash_shift, &mp_hash_mask, 0, 0);
6143 
6144 	if (!mount_hashtable || !mountpoint_hashtable)
6145 		panic("Failed to allocate mount hash table\n");
6146 
6147 	kernfs_init();
6148 
6149 	err = sysfs_init();
6150 	if (err)
6151 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6152 			__func__, err);
6153 	fs_kobj = kobject_create_and_add("fs", NULL);
6154 	if (!fs_kobj)
6155 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
6156 	shmem_init();
6157 	init_rootfs();
6158 	init_mount_tree();
6159 }
6160 
put_mnt_ns(struct mnt_namespace * ns)6161 void put_mnt_ns(struct mnt_namespace *ns)
6162 {
6163 	if (!refcount_dec_and_test(&ns->ns.count))
6164 		return;
6165 	namespace_lock();
6166 	emptied_ns = ns;
6167 	lock_mount_hash();
6168 	umount_tree(ns->root, 0);
6169 	unlock_mount_hash();
6170 	namespace_unlock();
6171 }
6172 
kern_mount(struct file_system_type * type)6173 struct vfsmount *kern_mount(struct file_system_type *type)
6174 {
6175 	struct vfsmount *mnt;
6176 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6177 	if (!IS_ERR(mnt)) {
6178 		/*
6179 		 * it is a longterm mount, don't release mnt until
6180 		 * we unmount before file sys is unregistered
6181 		*/
6182 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6183 	}
6184 	return mnt;
6185 }
6186 EXPORT_SYMBOL_GPL(kern_mount);
6187 
kern_unmount(struct vfsmount * mnt)6188 void kern_unmount(struct vfsmount *mnt)
6189 {
6190 	/* release long term mount so mount point can be released */
6191 	if (!IS_ERR(mnt)) {
6192 		mnt_make_shortterm(mnt);
6193 		synchronize_rcu();	/* yecchhh... */
6194 		mntput(mnt);
6195 	}
6196 }
6197 EXPORT_SYMBOL(kern_unmount);
6198 
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)6199 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6200 {
6201 	unsigned int i;
6202 
6203 	for (i = 0; i < num; i++)
6204 		mnt_make_shortterm(mnt[i]);
6205 	synchronize_rcu_expedited();
6206 	for (i = 0; i < num; i++)
6207 		mntput(mnt[i]);
6208 }
6209 EXPORT_SYMBOL(kern_unmount_array);
6210 
our_mnt(struct vfsmount * mnt)6211 bool our_mnt(struct vfsmount *mnt)
6212 {
6213 	return check_mnt(real_mount(mnt));
6214 }
6215 
current_chrooted(void)6216 bool current_chrooted(void)
6217 {
6218 	/* Does the current process have a non-standard root */
6219 	struct path ns_root;
6220 	struct path fs_root;
6221 	bool chrooted;
6222 
6223 	/* Find the namespace root */
6224 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
6225 	ns_root.dentry = ns_root.mnt->mnt_root;
6226 	path_get(&ns_root);
6227 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
6228 		;
6229 
6230 	get_fs_root(current->fs, &fs_root);
6231 
6232 	chrooted = !path_equal(&fs_root, &ns_root);
6233 
6234 	path_put(&fs_root);
6235 	path_put(&ns_root);
6236 
6237 	return chrooted;
6238 }
6239 
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)6240 static bool mnt_already_visible(struct mnt_namespace *ns,
6241 				const struct super_block *sb,
6242 				int *new_mnt_flags)
6243 {
6244 	int new_flags = *new_mnt_flags;
6245 	struct mount *mnt, *n;
6246 	bool visible = false;
6247 
6248 	down_read(&namespace_sem);
6249 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6250 		struct mount *child;
6251 		int mnt_flags;
6252 
6253 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6254 			continue;
6255 
6256 		/* This mount is not fully visible if it's root directory
6257 		 * is not the root directory of the filesystem.
6258 		 */
6259 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6260 			continue;
6261 
6262 		/* A local view of the mount flags */
6263 		mnt_flags = mnt->mnt.mnt_flags;
6264 
6265 		/* Don't miss readonly hidden in the superblock flags */
6266 		if (sb_rdonly(mnt->mnt.mnt_sb))
6267 			mnt_flags |= MNT_LOCK_READONLY;
6268 
6269 		/* Verify the mount flags are equal to or more permissive
6270 		 * than the proposed new mount.
6271 		 */
6272 		if ((mnt_flags & MNT_LOCK_READONLY) &&
6273 		    !(new_flags & MNT_READONLY))
6274 			continue;
6275 		if ((mnt_flags & MNT_LOCK_ATIME) &&
6276 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6277 			continue;
6278 
6279 		/* This mount is not fully visible if there are any
6280 		 * locked child mounts that cover anything except for
6281 		 * empty directories.
6282 		 */
6283 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6284 			struct inode *inode = child->mnt_mountpoint->d_inode;
6285 			/* Only worry about locked mounts */
6286 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
6287 				continue;
6288 			/* Is the directory permanently empty? */
6289 			if (!is_empty_dir_inode(inode))
6290 				goto next;
6291 		}
6292 		/* Preserve the locked attributes */
6293 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6294 					       MNT_LOCK_ATIME);
6295 		visible = true;
6296 		goto found;
6297 	next:	;
6298 	}
6299 found:
6300 	up_read(&namespace_sem);
6301 	return visible;
6302 }
6303 
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)6304 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6305 {
6306 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6307 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6308 	unsigned long s_iflags;
6309 
6310 	if (ns->user_ns == &init_user_ns)
6311 		return false;
6312 
6313 	/* Can this filesystem be too revealing? */
6314 	s_iflags = sb->s_iflags;
6315 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
6316 		return false;
6317 
6318 	if ((s_iflags & required_iflags) != required_iflags) {
6319 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6320 			  required_iflags);
6321 		return true;
6322 	}
6323 
6324 	return !mnt_already_visible(ns, sb, new_mnt_flags);
6325 }
6326 
mnt_may_suid(struct vfsmount * mnt)6327 bool mnt_may_suid(struct vfsmount *mnt)
6328 {
6329 	/*
6330 	 * Foreign mounts (accessed via fchdir or through /proc
6331 	 * symlinks) are always treated as if they are nosuid.  This
6332 	 * prevents namespaces from trusting potentially unsafe
6333 	 * suid/sgid bits, file caps, or security labels that originate
6334 	 * in other namespaces.
6335 	 */
6336 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6337 	       current_in_userns(mnt->mnt_sb->s_user_ns);
6338 }
6339 
mntns_get(struct task_struct * task)6340 static struct ns_common *mntns_get(struct task_struct *task)
6341 {
6342 	struct ns_common *ns = NULL;
6343 	struct nsproxy *nsproxy;
6344 
6345 	task_lock(task);
6346 	nsproxy = task->nsproxy;
6347 	if (nsproxy) {
6348 		ns = &nsproxy->mnt_ns->ns;
6349 		get_mnt_ns(to_mnt_ns(ns));
6350 	}
6351 	task_unlock(task);
6352 
6353 	return ns;
6354 }
6355 
mntns_put(struct ns_common * ns)6356 static void mntns_put(struct ns_common *ns)
6357 {
6358 	put_mnt_ns(to_mnt_ns(ns));
6359 }
6360 
mntns_install(struct nsset * nsset,struct ns_common * ns)6361 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6362 {
6363 	struct nsproxy *nsproxy = nsset->nsproxy;
6364 	struct fs_struct *fs = nsset->fs;
6365 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6366 	struct user_namespace *user_ns = nsset->cred->user_ns;
6367 	struct path root;
6368 	int err;
6369 
6370 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6371 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6372 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
6373 		return -EPERM;
6374 
6375 	if (is_anon_ns(mnt_ns))
6376 		return -EINVAL;
6377 
6378 	if (fs->users != 1)
6379 		return -EINVAL;
6380 
6381 	get_mnt_ns(mnt_ns);
6382 	old_mnt_ns = nsproxy->mnt_ns;
6383 	nsproxy->mnt_ns = mnt_ns;
6384 
6385 	/* Find the root */
6386 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6387 				"/", LOOKUP_DOWN, &root);
6388 	if (err) {
6389 		/* revert to old namespace */
6390 		nsproxy->mnt_ns = old_mnt_ns;
6391 		put_mnt_ns(mnt_ns);
6392 		return err;
6393 	}
6394 
6395 	put_mnt_ns(old_mnt_ns);
6396 
6397 	/* Update the pwd and root */
6398 	set_fs_pwd(fs, &root);
6399 	set_fs_root(fs, &root);
6400 
6401 	path_put(&root);
6402 	return 0;
6403 }
6404 
mntns_owner(struct ns_common * ns)6405 static struct user_namespace *mntns_owner(struct ns_common *ns)
6406 {
6407 	return to_mnt_ns(ns)->user_ns;
6408 }
6409 
6410 const struct proc_ns_operations mntns_operations = {
6411 	.name		= "mnt",
6412 	.type		= CLONE_NEWNS,
6413 	.get		= mntns_get,
6414 	.put		= mntns_put,
6415 	.install	= mntns_install,
6416 	.owner		= mntns_owner,
6417 };
6418 
6419 #ifdef CONFIG_SYSCTL
6420 static const struct ctl_table fs_namespace_sysctls[] = {
6421 	{
6422 		.procname	= "mount-max",
6423 		.data		= &sysctl_mount_max,
6424 		.maxlen		= sizeof(unsigned int),
6425 		.mode		= 0644,
6426 		.proc_handler	= proc_dointvec_minmax,
6427 		.extra1		= SYSCTL_ONE,
6428 	},
6429 };
6430 
init_fs_namespace_sysctls(void)6431 static int __init init_fs_namespace_sysctls(void)
6432 {
6433 	register_sysctl_init("fs", fs_namespace_sysctls);
6434 	return 0;
6435 }
6436 fs_initcall(init_fs_namespace_sysctls);
6437 
6438 #endif /* CONFIG_SYSCTL */
6439