1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36
37 #include "pnode.h"
38 #include "internal.h"
39
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47
48 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)49 static int __init set_mhash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mhash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57
58 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)59 static int __init set_mphash_entries(char *str)
60 {
61 if (!str)
62 return 0;
63 mphash_entries = simple_strtoul(str, &str, 0);
64 return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67
68 static u64 event;
69 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
70 static DEFINE_IDA(mnt_group_ida);
71
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
75
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */
83 static DEFINE_SEQLOCK(mnt_ns_tree_lock);
84
85 #ifdef CONFIG_FSNOTIFY
86 LIST_HEAD(notify_list); /* protected by namespace_sem */
87 #endif
88 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
89 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */
90
91 enum mount_kattr_flags_t {
92 MOUNT_KATTR_RECURSE = (1 << 0),
93 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1),
94 };
95
96 struct mount_kattr {
97 unsigned int attr_set;
98 unsigned int attr_clr;
99 unsigned int propagation;
100 unsigned int lookup_flags;
101 enum mount_kattr_flags_t kflags;
102 struct user_namespace *mnt_userns;
103 struct mnt_idmap *mnt_idmap;
104 };
105
106 /* /sys/fs */
107 struct kobject *fs_kobj __ro_after_init;
108 EXPORT_SYMBOL_GPL(fs_kobj);
109
110 /*
111 * vfsmount lock may be taken for read to prevent changes to the
112 * vfsmount hash, ie. during mountpoint lookups or walking back
113 * up the tree.
114 *
115 * It should be taken for write in all cases where the vfsmount
116 * tree or hash is modified or when a vfsmount structure is modified.
117 */
118 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
119
node_to_mnt_ns(const struct rb_node * node)120 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
121 {
122 if (!node)
123 return NULL;
124 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
125 }
126
mnt_ns_cmp(struct rb_node * a,const struct rb_node * b)127 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b)
128 {
129 struct mnt_namespace *ns_a = node_to_mnt_ns(a);
130 struct mnt_namespace *ns_b = node_to_mnt_ns(b);
131 u64 seq_a = ns_a->seq;
132 u64 seq_b = ns_b->seq;
133
134 if (seq_a < seq_b)
135 return -1;
136 if (seq_a > seq_b)
137 return 1;
138 return 0;
139 }
140
mnt_ns_tree_write_lock(void)141 static inline void mnt_ns_tree_write_lock(void)
142 {
143 write_seqlock(&mnt_ns_tree_lock);
144 }
145
mnt_ns_tree_write_unlock(void)146 static inline void mnt_ns_tree_write_unlock(void)
147 {
148 write_sequnlock(&mnt_ns_tree_lock);
149 }
150
mnt_ns_tree_add(struct mnt_namespace * ns)151 static void mnt_ns_tree_add(struct mnt_namespace *ns)
152 {
153 struct rb_node *node, *prev;
154
155 mnt_ns_tree_write_lock();
156 node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp);
157 /*
158 * If there's no previous entry simply add it after the
159 * head and if there is add it after the previous entry.
160 */
161 prev = rb_prev(&ns->mnt_ns_tree_node);
162 if (!prev)
163 list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list);
164 else
165 list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list);
166 mnt_ns_tree_write_unlock();
167
168 WARN_ON_ONCE(node);
169 }
170
mnt_ns_release(struct mnt_namespace * ns)171 static void mnt_ns_release(struct mnt_namespace *ns)
172 {
173 /* keep alive for {list,stat}mount() */
174 if (refcount_dec_and_test(&ns->passive)) {
175 fsnotify_mntns_delete(ns);
176 put_user_ns(ns->user_ns);
177 kfree(ns);
178 }
179 }
DEFINE_FREE(mnt_ns_release,struct mnt_namespace *,if (_T)mnt_ns_release (_T))180 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
181
182 static void mnt_ns_release_rcu(struct rcu_head *rcu)
183 {
184 mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu));
185 }
186
mnt_ns_tree_remove(struct mnt_namespace * ns)187 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
188 {
189 /* remove from global mount namespace list */
190 if (!is_anon_ns(ns)) {
191 mnt_ns_tree_write_lock();
192 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
193 list_bidir_del_rcu(&ns->mnt_ns_list);
194 mnt_ns_tree_write_unlock();
195 }
196
197 call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu);
198 }
199
mnt_ns_find(const void * key,const struct rb_node * node)200 static int mnt_ns_find(const void *key, const struct rb_node *node)
201 {
202 const u64 mnt_ns_id = *(u64 *)key;
203 const struct mnt_namespace *ns = node_to_mnt_ns(node);
204
205 if (mnt_ns_id < ns->seq)
206 return -1;
207 if (mnt_ns_id > ns->seq)
208 return 1;
209 return 0;
210 }
211
212 /*
213 * Lookup a mount namespace by id and take a passive reference count. Taking a
214 * passive reference means the mount namespace can be emptied if e.g., the last
215 * task holding an active reference exits. To access the mounts of the
216 * namespace the @namespace_sem must first be acquired. If the namespace has
217 * already shut down before acquiring @namespace_sem, {list,stat}mount() will
218 * see that the mount rbtree of the namespace is empty.
219 *
220 * Note the lookup is lockless protected by a sequence counter. We only
221 * need to guard against false negatives as false positives aren't
222 * possible. So if we didn't find a mount namespace and the sequence
223 * counter has changed we need to retry. If the sequence counter is
224 * still the same we know the search actually failed.
225 */
lookup_mnt_ns(u64 mnt_ns_id)226 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
227 {
228 struct mnt_namespace *ns;
229 struct rb_node *node;
230 unsigned int seq;
231
232 guard(rcu)();
233 do {
234 seq = read_seqbegin(&mnt_ns_tree_lock);
235 node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find);
236 if (node)
237 break;
238 } while (read_seqretry(&mnt_ns_tree_lock, seq));
239
240 if (!node)
241 return NULL;
242
243 /*
244 * The last reference count is put with RCU delay so we can
245 * unconditonally acquire a reference here.
246 */
247 ns = node_to_mnt_ns(node);
248 refcount_inc(&ns->passive);
249 return ns;
250 }
251
lock_mount_hash(void)252 static inline void lock_mount_hash(void)
253 {
254 write_seqlock(&mount_lock);
255 }
256
unlock_mount_hash(void)257 static inline void unlock_mount_hash(void)
258 {
259 write_sequnlock(&mount_lock);
260 }
261
m_hash(struct vfsmount * mnt,struct dentry * dentry)262 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
263 {
264 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
265 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
266 tmp = tmp + (tmp >> m_hash_shift);
267 return &mount_hashtable[tmp & m_hash_mask];
268 }
269
mp_hash(struct dentry * dentry)270 static inline struct hlist_head *mp_hash(struct dentry *dentry)
271 {
272 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
273 tmp = tmp + (tmp >> mp_hash_shift);
274 return &mountpoint_hashtable[tmp & mp_hash_mask];
275 }
276
mnt_alloc_id(struct mount * mnt)277 static int mnt_alloc_id(struct mount *mnt)
278 {
279 int res;
280
281 xa_lock(&mnt_id_xa);
282 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
283 if (!res)
284 mnt->mnt_id_unique = ++mnt_id_ctr;
285 xa_unlock(&mnt_id_xa);
286 return res;
287 }
288
mnt_free_id(struct mount * mnt)289 static void mnt_free_id(struct mount *mnt)
290 {
291 xa_erase(&mnt_id_xa, mnt->mnt_id);
292 }
293
294 /*
295 * Allocate a new peer group ID
296 */
mnt_alloc_group_id(struct mount * mnt)297 static int mnt_alloc_group_id(struct mount *mnt)
298 {
299 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
300
301 if (res < 0)
302 return res;
303 mnt->mnt_group_id = res;
304 return 0;
305 }
306
307 /*
308 * Release a peer group ID
309 */
mnt_release_group_id(struct mount * mnt)310 void mnt_release_group_id(struct mount *mnt)
311 {
312 ida_free(&mnt_group_ida, mnt->mnt_group_id);
313 mnt->mnt_group_id = 0;
314 }
315
316 /*
317 * vfsmount lock must be held for read
318 */
mnt_add_count(struct mount * mnt,int n)319 static inline void mnt_add_count(struct mount *mnt, int n)
320 {
321 #ifdef CONFIG_SMP
322 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
323 #else
324 preempt_disable();
325 mnt->mnt_count += n;
326 preempt_enable();
327 #endif
328 }
329
330 /*
331 * vfsmount lock must be held for write
332 */
mnt_get_count(struct mount * mnt)333 int mnt_get_count(struct mount *mnt)
334 {
335 #ifdef CONFIG_SMP
336 int count = 0;
337 int cpu;
338
339 for_each_possible_cpu(cpu) {
340 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
341 }
342
343 return count;
344 #else
345 return mnt->mnt_count;
346 #endif
347 }
348
alloc_vfsmnt(const char * name)349 static struct mount *alloc_vfsmnt(const char *name)
350 {
351 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
352 if (mnt) {
353 int err;
354
355 err = mnt_alloc_id(mnt);
356 if (err)
357 goto out_free_cache;
358
359 if (name)
360 mnt->mnt_devname = kstrdup_const(name,
361 GFP_KERNEL_ACCOUNT);
362 else
363 mnt->mnt_devname = "none";
364 if (!mnt->mnt_devname)
365 goto out_free_id;
366
367 #ifdef CONFIG_SMP
368 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
369 if (!mnt->mnt_pcp)
370 goto out_free_devname;
371
372 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
373 #else
374 mnt->mnt_count = 1;
375 mnt->mnt_writers = 0;
376 #endif
377
378 INIT_HLIST_NODE(&mnt->mnt_hash);
379 INIT_LIST_HEAD(&mnt->mnt_child);
380 INIT_LIST_HEAD(&mnt->mnt_mounts);
381 INIT_LIST_HEAD(&mnt->mnt_list);
382 INIT_LIST_HEAD(&mnt->mnt_expire);
383 INIT_LIST_HEAD(&mnt->mnt_share);
384 INIT_HLIST_HEAD(&mnt->mnt_slave_list);
385 INIT_HLIST_NODE(&mnt->mnt_slave);
386 INIT_HLIST_NODE(&mnt->mnt_mp_list);
387 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
388 RB_CLEAR_NODE(&mnt->mnt_node);
389 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
390 }
391 return mnt;
392
393 #ifdef CONFIG_SMP
394 out_free_devname:
395 kfree_const(mnt->mnt_devname);
396 #endif
397 out_free_id:
398 mnt_free_id(mnt);
399 out_free_cache:
400 kmem_cache_free(mnt_cache, mnt);
401 return NULL;
402 }
403
404 /*
405 * Most r/o checks on a fs are for operations that take
406 * discrete amounts of time, like a write() or unlink().
407 * We must keep track of when those operations start
408 * (for permission checks) and when they end, so that
409 * we can determine when writes are able to occur to
410 * a filesystem.
411 */
412 /*
413 * __mnt_is_readonly: check whether a mount is read-only
414 * @mnt: the mount to check for its write status
415 *
416 * This shouldn't be used directly ouside of the VFS.
417 * It does not guarantee that the filesystem will stay
418 * r/w, just that it is right *now*. This can not and
419 * should not be used in place of IS_RDONLY(inode).
420 * mnt_want/drop_write() will _keep_ the filesystem
421 * r/w.
422 */
__mnt_is_readonly(struct vfsmount * mnt)423 bool __mnt_is_readonly(struct vfsmount *mnt)
424 {
425 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
426 }
427 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
428
mnt_inc_writers(struct mount * mnt)429 static inline void mnt_inc_writers(struct mount *mnt)
430 {
431 #ifdef CONFIG_SMP
432 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
433 #else
434 mnt->mnt_writers++;
435 #endif
436 }
437
mnt_dec_writers(struct mount * mnt)438 static inline void mnt_dec_writers(struct mount *mnt)
439 {
440 #ifdef CONFIG_SMP
441 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
442 #else
443 mnt->mnt_writers--;
444 #endif
445 }
446
mnt_get_writers(struct mount * mnt)447 static unsigned int mnt_get_writers(struct mount *mnt)
448 {
449 #ifdef CONFIG_SMP
450 unsigned int count = 0;
451 int cpu;
452
453 for_each_possible_cpu(cpu) {
454 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
455 }
456
457 return count;
458 #else
459 return mnt->mnt_writers;
460 #endif
461 }
462
mnt_is_readonly(struct vfsmount * mnt)463 static int mnt_is_readonly(struct vfsmount *mnt)
464 {
465 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
466 return 1;
467 /*
468 * The barrier pairs with the barrier in sb_start_ro_state_change()
469 * making sure if we don't see s_readonly_remount set yet, we also will
470 * not see any superblock / mount flag changes done by remount.
471 * It also pairs with the barrier in sb_end_ro_state_change()
472 * assuring that if we see s_readonly_remount already cleared, we will
473 * see the values of superblock / mount flags updated by remount.
474 */
475 smp_rmb();
476 return __mnt_is_readonly(mnt);
477 }
478
479 /*
480 * Most r/o & frozen checks on a fs are for operations that take discrete
481 * amounts of time, like a write() or unlink(). We must keep track of when
482 * those operations start (for permission checks) and when they end, so that we
483 * can determine when writes are able to occur to a filesystem.
484 */
485 /**
486 * mnt_get_write_access - get write access to a mount without freeze protection
487 * @m: the mount on which to take a write
488 *
489 * This tells the low-level filesystem that a write is about to be performed to
490 * it, and makes sure that writes are allowed (mnt it read-write) before
491 * returning success. This operation does not protect against filesystem being
492 * frozen. When the write operation is finished, mnt_put_write_access() must be
493 * called. This is effectively a refcount.
494 */
mnt_get_write_access(struct vfsmount * m)495 int mnt_get_write_access(struct vfsmount *m)
496 {
497 struct mount *mnt = real_mount(m);
498 int ret = 0;
499
500 preempt_disable();
501 mnt_inc_writers(mnt);
502 /*
503 * The store to mnt_inc_writers must be visible before we pass
504 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
505 * incremented count after it has set MNT_WRITE_HOLD.
506 */
507 smp_mb();
508 might_lock(&mount_lock.lock);
509 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
510 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
511 cpu_relax();
512 } else {
513 /*
514 * This prevents priority inversion, if the task
515 * setting MNT_WRITE_HOLD got preempted on a remote
516 * CPU, and it prevents life lock if the task setting
517 * MNT_WRITE_HOLD has a lower priority and is bound to
518 * the same CPU as the task that is spinning here.
519 */
520 preempt_enable();
521 lock_mount_hash();
522 unlock_mount_hash();
523 preempt_disable();
524 }
525 }
526 /*
527 * The barrier pairs with the barrier sb_start_ro_state_change() making
528 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
529 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
530 * mnt_is_readonly() and bail in case we are racing with remount
531 * read-only.
532 */
533 smp_rmb();
534 if (mnt_is_readonly(m)) {
535 mnt_dec_writers(mnt);
536 ret = -EROFS;
537 }
538 preempt_enable();
539
540 return ret;
541 }
542 EXPORT_SYMBOL_GPL(mnt_get_write_access);
543
544 /**
545 * mnt_want_write - get write access to a mount
546 * @m: the mount on which to take a write
547 *
548 * This tells the low-level filesystem that a write is about to be performed to
549 * it, and makes sure that writes are allowed (mount is read-write, filesystem
550 * is not frozen) before returning success. When the write operation is
551 * finished, mnt_drop_write() must be called. This is effectively a refcount.
552 */
mnt_want_write(struct vfsmount * m)553 int mnt_want_write(struct vfsmount *m)
554 {
555 int ret;
556
557 sb_start_write(m->mnt_sb);
558 ret = mnt_get_write_access(m);
559 if (ret)
560 sb_end_write(m->mnt_sb);
561 return ret;
562 }
563 EXPORT_SYMBOL_GPL(mnt_want_write);
564
565 /**
566 * mnt_get_write_access_file - get write access to a file's mount
567 * @file: the file who's mount on which to take a write
568 *
569 * This is like mnt_get_write_access, but if @file is already open for write it
570 * skips incrementing mnt_writers (since the open file already has a reference)
571 * and instead only does the check for emergency r/o remounts. This must be
572 * paired with mnt_put_write_access_file.
573 */
mnt_get_write_access_file(struct file * file)574 int mnt_get_write_access_file(struct file *file)
575 {
576 if (file->f_mode & FMODE_WRITER) {
577 /*
578 * Superblock may have become readonly while there are still
579 * writable fd's, e.g. due to a fs error with errors=remount-ro
580 */
581 if (__mnt_is_readonly(file->f_path.mnt))
582 return -EROFS;
583 return 0;
584 }
585 return mnt_get_write_access(file->f_path.mnt);
586 }
587
588 /**
589 * mnt_want_write_file - get write access to a file's mount
590 * @file: the file who's mount on which to take a write
591 *
592 * This is like mnt_want_write, but if the file is already open for writing it
593 * skips incrementing mnt_writers (since the open file already has a reference)
594 * and instead only does the freeze protection and the check for emergency r/o
595 * remounts. This must be paired with mnt_drop_write_file.
596 */
mnt_want_write_file(struct file * file)597 int mnt_want_write_file(struct file *file)
598 {
599 int ret;
600
601 sb_start_write(file_inode(file)->i_sb);
602 ret = mnt_get_write_access_file(file);
603 if (ret)
604 sb_end_write(file_inode(file)->i_sb);
605 return ret;
606 }
607 EXPORT_SYMBOL_GPL(mnt_want_write_file);
608
609 /**
610 * mnt_put_write_access - give up write access to a mount
611 * @mnt: the mount on which to give up write access
612 *
613 * Tells the low-level filesystem that we are done
614 * performing writes to it. Must be matched with
615 * mnt_get_write_access() call above.
616 */
mnt_put_write_access(struct vfsmount * mnt)617 void mnt_put_write_access(struct vfsmount *mnt)
618 {
619 preempt_disable();
620 mnt_dec_writers(real_mount(mnt));
621 preempt_enable();
622 }
623 EXPORT_SYMBOL_GPL(mnt_put_write_access);
624
625 /**
626 * mnt_drop_write - give up write access to a mount
627 * @mnt: the mount on which to give up write access
628 *
629 * Tells the low-level filesystem that we are done performing writes to it and
630 * also allows filesystem to be frozen again. Must be matched with
631 * mnt_want_write() call above.
632 */
mnt_drop_write(struct vfsmount * mnt)633 void mnt_drop_write(struct vfsmount *mnt)
634 {
635 mnt_put_write_access(mnt);
636 sb_end_write(mnt->mnt_sb);
637 }
638 EXPORT_SYMBOL_GPL(mnt_drop_write);
639
mnt_put_write_access_file(struct file * file)640 void mnt_put_write_access_file(struct file *file)
641 {
642 if (!(file->f_mode & FMODE_WRITER))
643 mnt_put_write_access(file->f_path.mnt);
644 }
645
mnt_drop_write_file(struct file * file)646 void mnt_drop_write_file(struct file *file)
647 {
648 mnt_put_write_access_file(file);
649 sb_end_write(file_inode(file)->i_sb);
650 }
651 EXPORT_SYMBOL(mnt_drop_write_file);
652
653 /**
654 * mnt_hold_writers - prevent write access to the given mount
655 * @mnt: mnt to prevent write access to
656 *
657 * Prevents write access to @mnt if there are no active writers for @mnt.
658 * This function needs to be called and return successfully before changing
659 * properties of @mnt that need to remain stable for callers with write access
660 * to @mnt.
661 *
662 * After this functions has been called successfully callers must pair it with
663 * a call to mnt_unhold_writers() in order to stop preventing write access to
664 * @mnt.
665 *
666 * Context: This function expects lock_mount_hash() to be held serializing
667 * setting MNT_WRITE_HOLD.
668 * Return: On success 0 is returned.
669 * On error, -EBUSY is returned.
670 */
mnt_hold_writers(struct mount * mnt)671 static inline int mnt_hold_writers(struct mount *mnt)
672 {
673 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
674 /*
675 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
676 * should be visible before we do.
677 */
678 smp_mb();
679
680 /*
681 * With writers on hold, if this value is zero, then there are
682 * definitely no active writers (although held writers may subsequently
683 * increment the count, they'll have to wait, and decrement it after
684 * seeing MNT_READONLY).
685 *
686 * It is OK to have counter incremented on one CPU and decremented on
687 * another: the sum will add up correctly. The danger would be when we
688 * sum up each counter, if we read a counter before it is incremented,
689 * but then read another CPU's count which it has been subsequently
690 * decremented from -- we would see more decrements than we should.
691 * MNT_WRITE_HOLD protects against this scenario, because
692 * mnt_want_write first increments count, then smp_mb, then spins on
693 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
694 * we're counting up here.
695 */
696 if (mnt_get_writers(mnt) > 0)
697 return -EBUSY;
698
699 return 0;
700 }
701
702 /**
703 * mnt_unhold_writers - stop preventing write access to the given mount
704 * @mnt: mnt to stop preventing write access to
705 *
706 * Stop preventing write access to @mnt allowing callers to gain write access
707 * to @mnt again.
708 *
709 * This function can only be called after a successful call to
710 * mnt_hold_writers().
711 *
712 * Context: This function expects lock_mount_hash() to be held.
713 */
mnt_unhold_writers(struct mount * mnt)714 static inline void mnt_unhold_writers(struct mount *mnt)
715 {
716 /*
717 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
718 * that become unheld will see MNT_READONLY.
719 */
720 smp_wmb();
721 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
722 }
723
mnt_make_readonly(struct mount * mnt)724 static int mnt_make_readonly(struct mount *mnt)
725 {
726 int ret;
727
728 ret = mnt_hold_writers(mnt);
729 if (!ret)
730 mnt->mnt.mnt_flags |= MNT_READONLY;
731 mnt_unhold_writers(mnt);
732 return ret;
733 }
734
sb_prepare_remount_readonly(struct super_block * sb)735 int sb_prepare_remount_readonly(struct super_block *sb)
736 {
737 struct mount *mnt;
738 int err = 0;
739
740 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
741 if (atomic_long_read(&sb->s_remove_count))
742 return -EBUSY;
743
744 lock_mount_hash();
745 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
746 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
747 err = mnt_hold_writers(mnt);
748 if (err)
749 break;
750 }
751 }
752 if (!err && atomic_long_read(&sb->s_remove_count))
753 err = -EBUSY;
754
755 if (!err)
756 sb_start_ro_state_change(sb);
757 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
758 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
759 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
760 }
761 unlock_mount_hash();
762
763 return err;
764 }
765
free_vfsmnt(struct mount * mnt)766 static void free_vfsmnt(struct mount *mnt)
767 {
768 mnt_idmap_put(mnt_idmap(&mnt->mnt));
769 kfree_const(mnt->mnt_devname);
770 #ifdef CONFIG_SMP
771 free_percpu(mnt->mnt_pcp);
772 #endif
773 kmem_cache_free(mnt_cache, mnt);
774 }
775
delayed_free_vfsmnt(struct rcu_head * head)776 static void delayed_free_vfsmnt(struct rcu_head *head)
777 {
778 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
779 }
780
781 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)782 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
783 {
784 struct mount *mnt;
785 if (read_seqretry(&mount_lock, seq))
786 return 1;
787 if (bastard == NULL)
788 return 0;
789 mnt = real_mount(bastard);
790 mnt_add_count(mnt, 1);
791 smp_mb(); // see mntput_no_expire() and do_umount()
792 if (likely(!read_seqretry(&mount_lock, seq)))
793 return 0;
794 lock_mount_hash();
795 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
796 mnt_add_count(mnt, -1);
797 unlock_mount_hash();
798 return 1;
799 }
800 unlock_mount_hash();
801 /* caller will mntput() */
802 return -1;
803 }
804
805 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)806 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
807 {
808 int res = __legitimize_mnt(bastard, seq);
809 if (likely(!res))
810 return true;
811 if (unlikely(res < 0)) {
812 rcu_read_unlock();
813 mntput(bastard);
814 rcu_read_lock();
815 }
816 return false;
817 }
818
819 /**
820 * __lookup_mnt - find first child mount
821 * @mnt: parent mount
822 * @dentry: mountpoint
823 *
824 * If @mnt has a child mount @c mounted @dentry find and return it.
825 *
826 * Note that the child mount @c need not be unique. There are cases
827 * where shadow mounts are created. For example, during mount
828 * propagation when a source mount @mnt whose root got overmounted by a
829 * mount @o after path lookup but before @namespace_sem could be
830 * acquired gets copied and propagated. So @mnt gets copied including
831 * @o. When @mnt is propagated to a destination mount @d that already
832 * has another mount @n mounted at the same mountpoint then the source
833 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
834 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
835 * on @dentry.
836 *
837 * Return: The first child of @mnt mounted @dentry or NULL.
838 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)839 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
840 {
841 struct hlist_head *head = m_hash(mnt, dentry);
842 struct mount *p;
843
844 hlist_for_each_entry_rcu(p, head, mnt_hash)
845 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
846 return p;
847 return NULL;
848 }
849
850 /*
851 * lookup_mnt - Return the first child mount mounted at path
852 *
853 * "First" means first mounted chronologically. If you create the
854 * following mounts:
855 *
856 * mount /dev/sda1 /mnt
857 * mount /dev/sda2 /mnt
858 * mount /dev/sda3 /mnt
859 *
860 * Then lookup_mnt() on the base /mnt dentry in the root mount will
861 * return successively the root dentry and vfsmount of /dev/sda1, then
862 * /dev/sda2, then /dev/sda3, then NULL.
863 *
864 * lookup_mnt takes a reference to the found vfsmount.
865 */
lookup_mnt(const struct path * path)866 struct vfsmount *lookup_mnt(const struct path *path)
867 {
868 struct mount *child_mnt;
869 struct vfsmount *m;
870 unsigned seq;
871
872 rcu_read_lock();
873 do {
874 seq = read_seqbegin(&mount_lock);
875 child_mnt = __lookup_mnt(path->mnt, path->dentry);
876 m = child_mnt ? &child_mnt->mnt : NULL;
877 } while (!legitimize_mnt(m, seq));
878 rcu_read_unlock();
879 return m;
880 }
881
882 /*
883 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
884 * current mount namespace.
885 *
886 * The common case is dentries are not mountpoints at all and that
887 * test is handled inline. For the slow case when we are actually
888 * dealing with a mountpoint of some kind, walk through all of the
889 * mounts in the current mount namespace and test to see if the dentry
890 * is a mountpoint.
891 *
892 * The mount_hashtable is not usable in the context because we
893 * need to identify all mounts that may be in the current mount
894 * namespace not just a mount that happens to have some specified
895 * parent mount.
896 */
__is_local_mountpoint(const struct dentry * dentry)897 bool __is_local_mountpoint(const struct dentry *dentry)
898 {
899 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
900 struct mount *mnt, *n;
901 bool is_covered = false;
902
903 down_read(&namespace_sem);
904 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
905 is_covered = (mnt->mnt_mountpoint == dentry);
906 if (is_covered)
907 break;
908 }
909 up_read(&namespace_sem);
910
911 return is_covered;
912 }
913
914 struct pinned_mountpoint {
915 struct hlist_node node;
916 struct mountpoint *mp;
917 };
918
lookup_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)919 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
920 {
921 struct hlist_head *chain = mp_hash(dentry);
922 struct mountpoint *mp;
923
924 hlist_for_each_entry(mp, chain, m_hash) {
925 if (mp->m_dentry == dentry) {
926 hlist_add_head(&m->node, &mp->m_list);
927 m->mp = mp;
928 return true;
929 }
930 }
931 return false;
932 }
933
get_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)934 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
935 {
936 struct mountpoint *mp __free(kfree) = NULL;
937 bool found;
938 int ret;
939
940 if (d_mountpoint(dentry)) {
941 /* might be worth a WARN_ON() */
942 if (d_unlinked(dentry))
943 return -ENOENT;
944 mountpoint:
945 read_seqlock_excl(&mount_lock);
946 found = lookup_mountpoint(dentry, m);
947 read_sequnlock_excl(&mount_lock);
948 if (found)
949 return 0;
950 }
951
952 if (!mp)
953 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
954 if (!mp)
955 return -ENOMEM;
956
957 /* Exactly one processes may set d_mounted */
958 ret = d_set_mounted(dentry);
959
960 /* Someone else set d_mounted? */
961 if (ret == -EBUSY)
962 goto mountpoint;
963
964 /* The dentry is not available as a mountpoint? */
965 if (ret)
966 return ret;
967
968 /* Add the new mountpoint to the hash table */
969 read_seqlock_excl(&mount_lock);
970 mp->m_dentry = dget(dentry);
971 hlist_add_head(&mp->m_hash, mp_hash(dentry));
972 INIT_HLIST_HEAD(&mp->m_list);
973 hlist_add_head(&m->node, &mp->m_list);
974 m->mp = no_free_ptr(mp);
975 read_sequnlock_excl(&mount_lock);
976 return 0;
977 }
978
979 /*
980 * vfsmount lock must be held. Additionally, the caller is responsible
981 * for serializing calls for given disposal list.
982 */
maybe_free_mountpoint(struct mountpoint * mp,struct list_head * list)983 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list)
984 {
985 if (hlist_empty(&mp->m_list)) {
986 struct dentry *dentry = mp->m_dentry;
987 spin_lock(&dentry->d_lock);
988 dentry->d_flags &= ~DCACHE_MOUNTED;
989 spin_unlock(&dentry->d_lock);
990 dput_to_list(dentry, list);
991 hlist_del(&mp->m_hash);
992 kfree(mp);
993 }
994 }
995
996 /*
997 * locks: mount_lock [read_seqlock_excl], namespace_sem [excl]
998 */
unpin_mountpoint(struct pinned_mountpoint * m)999 static void unpin_mountpoint(struct pinned_mountpoint *m)
1000 {
1001 if (m->mp) {
1002 hlist_del(&m->node);
1003 maybe_free_mountpoint(m->mp, &ex_mountpoints);
1004 }
1005 }
1006
check_mnt(struct mount * mnt)1007 static inline int check_mnt(struct mount *mnt)
1008 {
1009 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1010 }
1011
check_anonymous_mnt(struct mount * mnt)1012 static inline bool check_anonymous_mnt(struct mount *mnt)
1013 {
1014 u64 seq;
1015
1016 if (!is_anon_ns(mnt->mnt_ns))
1017 return false;
1018
1019 seq = mnt->mnt_ns->seq_origin;
1020 return !seq || (seq == current->nsproxy->mnt_ns->seq);
1021 }
1022
1023 /*
1024 * vfsmount lock must be held for write
1025 */
touch_mnt_namespace(struct mnt_namespace * ns)1026 static void touch_mnt_namespace(struct mnt_namespace *ns)
1027 {
1028 if (ns) {
1029 ns->event = ++event;
1030 wake_up_interruptible(&ns->poll);
1031 }
1032 }
1033
1034 /*
1035 * vfsmount lock must be held for write
1036 */
__touch_mnt_namespace(struct mnt_namespace * ns)1037 static void __touch_mnt_namespace(struct mnt_namespace *ns)
1038 {
1039 if (ns && ns->event != event) {
1040 ns->event = event;
1041 wake_up_interruptible(&ns->poll);
1042 }
1043 }
1044
1045 /*
1046 * locks: mount_lock[write_seqlock]
1047 */
__umount_mnt(struct mount * mnt,struct list_head * shrink_list)1048 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list)
1049 {
1050 struct mountpoint *mp;
1051 struct mount *parent = mnt->mnt_parent;
1052 if (unlikely(parent->overmount == mnt))
1053 parent->overmount = NULL;
1054 mnt->mnt_parent = mnt;
1055 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1056 list_del_init(&mnt->mnt_child);
1057 hlist_del_init_rcu(&mnt->mnt_hash);
1058 hlist_del_init(&mnt->mnt_mp_list);
1059 mp = mnt->mnt_mp;
1060 mnt->mnt_mp = NULL;
1061 maybe_free_mountpoint(mp, shrink_list);
1062 }
1063
1064 /*
1065 * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints)
1066 */
umount_mnt(struct mount * mnt)1067 static void umount_mnt(struct mount *mnt)
1068 {
1069 __umount_mnt(mnt, &ex_mountpoints);
1070 }
1071
1072 /*
1073 * vfsmount lock must be held for write
1074 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1075 void mnt_set_mountpoint(struct mount *mnt,
1076 struct mountpoint *mp,
1077 struct mount *child_mnt)
1078 {
1079 child_mnt->mnt_mountpoint = mp->m_dentry;
1080 child_mnt->mnt_parent = mnt;
1081 child_mnt->mnt_mp = mp;
1082 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1083 }
1084
make_visible(struct mount * mnt)1085 static void make_visible(struct mount *mnt)
1086 {
1087 struct mount *parent = mnt->mnt_parent;
1088 if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root))
1089 parent->overmount = mnt;
1090 hlist_add_head_rcu(&mnt->mnt_hash,
1091 m_hash(&parent->mnt, mnt->mnt_mountpoint));
1092 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1093 }
1094
1095 /**
1096 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1097 * list of child mounts
1098 * @parent: the parent
1099 * @mnt: the new mount
1100 * @mp: the new mountpoint
1101 *
1102 * Mount @mnt at @mp on @parent. Then attach @mnt
1103 * to @parent's child mount list and to @mount_hashtable.
1104 *
1105 * Note, when make_visible() is called @mnt->mnt_parent already points
1106 * to the correct parent.
1107 *
1108 * Context: This function expects namespace_lock() and lock_mount_hash()
1109 * to have been acquired in that order.
1110 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)1111 static void attach_mnt(struct mount *mnt, struct mount *parent,
1112 struct mountpoint *mp)
1113 {
1114 mnt_set_mountpoint(parent, mp, mnt);
1115 make_visible(mnt);
1116 }
1117
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1118 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1119 {
1120 struct mountpoint *old_mp = mnt->mnt_mp;
1121
1122 list_del_init(&mnt->mnt_child);
1123 hlist_del_init(&mnt->mnt_mp_list);
1124 hlist_del_init_rcu(&mnt->mnt_hash);
1125
1126 attach_mnt(mnt, parent, mp);
1127
1128 maybe_free_mountpoint(old_mp, &ex_mountpoints);
1129 }
1130
node_to_mount(struct rb_node * node)1131 static inline struct mount *node_to_mount(struct rb_node *node)
1132 {
1133 return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1134 }
1135
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1136 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1137 {
1138 struct rb_node **link = &ns->mounts.rb_node;
1139 struct rb_node *parent = NULL;
1140 bool mnt_first_node = true, mnt_last_node = true;
1141
1142 WARN_ON(mnt_ns_attached(mnt));
1143 mnt->mnt_ns = ns;
1144 while (*link) {
1145 parent = *link;
1146 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1147 link = &parent->rb_left;
1148 mnt_last_node = false;
1149 } else {
1150 link = &parent->rb_right;
1151 mnt_first_node = false;
1152 }
1153 }
1154
1155 if (mnt_last_node)
1156 ns->mnt_last_node = &mnt->mnt_node;
1157 if (mnt_first_node)
1158 ns->mnt_first_node = &mnt->mnt_node;
1159 rb_link_node(&mnt->mnt_node, parent, link);
1160 rb_insert_color(&mnt->mnt_node, &ns->mounts);
1161
1162 mnt_notify_add(mnt);
1163 }
1164
next_mnt(struct mount * p,struct mount * root)1165 static struct mount *next_mnt(struct mount *p, struct mount *root)
1166 {
1167 struct list_head *next = p->mnt_mounts.next;
1168 if (next == &p->mnt_mounts) {
1169 while (1) {
1170 if (p == root)
1171 return NULL;
1172 next = p->mnt_child.next;
1173 if (next != &p->mnt_parent->mnt_mounts)
1174 break;
1175 p = p->mnt_parent;
1176 }
1177 }
1178 return list_entry(next, struct mount, mnt_child);
1179 }
1180
skip_mnt_tree(struct mount * p)1181 static struct mount *skip_mnt_tree(struct mount *p)
1182 {
1183 struct list_head *prev = p->mnt_mounts.prev;
1184 while (prev != &p->mnt_mounts) {
1185 p = list_entry(prev, struct mount, mnt_child);
1186 prev = p->mnt_mounts.prev;
1187 }
1188 return p;
1189 }
1190
1191 /*
1192 * vfsmount lock must be held for write
1193 */
commit_tree(struct mount * mnt)1194 static void commit_tree(struct mount *mnt)
1195 {
1196 struct mnt_namespace *n = mnt->mnt_parent->mnt_ns;
1197
1198 if (!mnt_ns_attached(mnt)) {
1199 for (struct mount *m = mnt; m; m = next_mnt(m, mnt))
1200 mnt_add_to_ns(n, m);
1201 n->nr_mounts += n->pending_mounts;
1202 n->pending_mounts = 0;
1203 }
1204
1205 make_visible(mnt);
1206 touch_mnt_namespace(n);
1207 }
1208
1209 /**
1210 * vfs_create_mount - Create a mount for a configured superblock
1211 * @fc: The configuration context with the superblock attached
1212 *
1213 * Create a mount to an already configured superblock. If necessary, the
1214 * caller should invoke vfs_get_tree() before calling this.
1215 *
1216 * Note that this does not attach the mount to anything.
1217 */
vfs_create_mount(struct fs_context * fc)1218 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1219 {
1220 struct mount *mnt;
1221
1222 if (!fc->root)
1223 return ERR_PTR(-EINVAL);
1224
1225 mnt = alloc_vfsmnt(fc->source);
1226 if (!mnt)
1227 return ERR_PTR(-ENOMEM);
1228
1229 if (fc->sb_flags & SB_KERNMOUNT)
1230 mnt->mnt.mnt_flags = MNT_INTERNAL;
1231
1232 atomic_inc(&fc->root->d_sb->s_active);
1233 mnt->mnt.mnt_sb = fc->root->d_sb;
1234 mnt->mnt.mnt_root = dget(fc->root);
1235 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1236 mnt->mnt_parent = mnt;
1237
1238 lock_mount_hash();
1239 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1240 unlock_mount_hash();
1241 return &mnt->mnt;
1242 }
1243 EXPORT_SYMBOL(vfs_create_mount);
1244
fc_mount(struct fs_context * fc)1245 struct vfsmount *fc_mount(struct fs_context *fc)
1246 {
1247 int err = vfs_get_tree(fc);
1248 if (!err) {
1249 up_write(&fc->root->d_sb->s_umount);
1250 return vfs_create_mount(fc);
1251 }
1252 return ERR_PTR(err);
1253 }
1254 EXPORT_SYMBOL(fc_mount);
1255
fc_mount_longterm(struct fs_context * fc)1256 struct vfsmount *fc_mount_longterm(struct fs_context *fc)
1257 {
1258 struct vfsmount *mnt = fc_mount(fc);
1259 if (!IS_ERR(mnt))
1260 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
1261 return mnt;
1262 }
1263 EXPORT_SYMBOL(fc_mount_longterm);
1264
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1265 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1266 int flags, const char *name,
1267 void *data)
1268 {
1269 struct fs_context *fc;
1270 struct vfsmount *mnt;
1271 int ret = 0;
1272
1273 if (!type)
1274 return ERR_PTR(-EINVAL);
1275
1276 fc = fs_context_for_mount(type, flags);
1277 if (IS_ERR(fc))
1278 return ERR_CAST(fc);
1279
1280 if (name)
1281 ret = vfs_parse_fs_string(fc, "source",
1282 name, strlen(name));
1283 if (!ret)
1284 ret = parse_monolithic_mount_data(fc, data);
1285 if (!ret)
1286 mnt = fc_mount(fc);
1287 else
1288 mnt = ERR_PTR(ret);
1289
1290 put_fs_context(fc);
1291 return mnt;
1292 }
1293 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1294
clone_mnt(struct mount * old,struct dentry * root,int flag)1295 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1296 int flag)
1297 {
1298 struct super_block *sb = old->mnt.mnt_sb;
1299 struct mount *mnt;
1300 int err;
1301
1302 mnt = alloc_vfsmnt(old->mnt_devname);
1303 if (!mnt)
1304 return ERR_PTR(-ENOMEM);
1305
1306 mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) &
1307 ~MNT_INTERNAL_FLAGS;
1308
1309 if (flag & (CL_SLAVE | CL_PRIVATE))
1310 mnt->mnt_group_id = 0; /* not a peer of original */
1311 else
1312 mnt->mnt_group_id = old->mnt_group_id;
1313
1314 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1315 err = mnt_alloc_group_id(mnt);
1316 if (err)
1317 goto out_free;
1318 }
1319
1320 if (mnt->mnt_group_id)
1321 set_mnt_shared(mnt);
1322
1323 atomic_inc(&sb->s_active);
1324 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1325
1326 mnt->mnt.mnt_sb = sb;
1327 mnt->mnt.mnt_root = dget(root);
1328 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1329 mnt->mnt_parent = mnt;
1330 lock_mount_hash();
1331 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1332 unlock_mount_hash();
1333
1334 if (flag & CL_PRIVATE) // we are done with it
1335 return mnt;
1336
1337 if (peers(mnt, old))
1338 list_add(&mnt->mnt_share, &old->mnt_share);
1339
1340 if ((flag & CL_SLAVE) && old->mnt_group_id) {
1341 hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list);
1342 mnt->mnt_master = old;
1343 } else if (IS_MNT_SLAVE(old)) {
1344 hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave);
1345 mnt->mnt_master = old->mnt_master;
1346 }
1347 return mnt;
1348
1349 out_free:
1350 mnt_free_id(mnt);
1351 free_vfsmnt(mnt);
1352 return ERR_PTR(err);
1353 }
1354
cleanup_mnt(struct mount * mnt)1355 static void cleanup_mnt(struct mount *mnt)
1356 {
1357 struct hlist_node *p;
1358 struct mount *m;
1359 /*
1360 * The warning here probably indicates that somebody messed
1361 * up a mnt_want/drop_write() pair. If this happens, the
1362 * filesystem was probably unable to make r/w->r/o transitions.
1363 * The locking used to deal with mnt_count decrement provides barriers,
1364 * so mnt_get_writers() below is safe.
1365 */
1366 WARN_ON(mnt_get_writers(mnt));
1367 if (unlikely(mnt->mnt_pins.first))
1368 mnt_pin_kill(mnt);
1369 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1370 hlist_del(&m->mnt_umount);
1371 mntput(&m->mnt);
1372 }
1373 fsnotify_vfsmount_delete(&mnt->mnt);
1374 dput(mnt->mnt.mnt_root);
1375 deactivate_super(mnt->mnt.mnt_sb);
1376 mnt_free_id(mnt);
1377 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1378 }
1379
__cleanup_mnt(struct rcu_head * head)1380 static void __cleanup_mnt(struct rcu_head *head)
1381 {
1382 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1383 }
1384
1385 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1386 static void delayed_mntput(struct work_struct *unused)
1387 {
1388 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1389 struct mount *m, *t;
1390
1391 llist_for_each_entry_safe(m, t, node, mnt_llist)
1392 cleanup_mnt(m);
1393 }
1394 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1395
mntput_no_expire(struct mount * mnt)1396 static void mntput_no_expire(struct mount *mnt)
1397 {
1398 LIST_HEAD(list);
1399 int count;
1400
1401 rcu_read_lock();
1402 if (likely(READ_ONCE(mnt->mnt_ns))) {
1403 /*
1404 * Since we don't do lock_mount_hash() here,
1405 * ->mnt_ns can change under us. However, if it's
1406 * non-NULL, then there's a reference that won't
1407 * be dropped until after an RCU delay done after
1408 * turning ->mnt_ns NULL. So if we observe it
1409 * non-NULL under rcu_read_lock(), the reference
1410 * we are dropping is not the final one.
1411 */
1412 mnt_add_count(mnt, -1);
1413 rcu_read_unlock();
1414 return;
1415 }
1416 lock_mount_hash();
1417 /*
1418 * make sure that if __legitimize_mnt() has not seen us grab
1419 * mount_lock, we'll see their refcount increment here.
1420 */
1421 smp_mb();
1422 mnt_add_count(mnt, -1);
1423 count = mnt_get_count(mnt);
1424 if (count != 0) {
1425 WARN_ON(count < 0);
1426 rcu_read_unlock();
1427 unlock_mount_hash();
1428 return;
1429 }
1430 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1431 rcu_read_unlock();
1432 unlock_mount_hash();
1433 return;
1434 }
1435 mnt->mnt.mnt_flags |= MNT_DOOMED;
1436 rcu_read_unlock();
1437
1438 list_del(&mnt->mnt_instance);
1439 if (unlikely(!list_empty(&mnt->mnt_expire)))
1440 list_del(&mnt->mnt_expire);
1441
1442 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1443 struct mount *p, *tmp;
1444 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1445 __umount_mnt(p, &list);
1446 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1447 }
1448 }
1449 unlock_mount_hash();
1450 shrink_dentry_list(&list);
1451
1452 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1453 struct task_struct *task = current;
1454 if (likely(!(task->flags & PF_KTHREAD))) {
1455 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1456 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1457 return;
1458 }
1459 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1460 schedule_delayed_work(&delayed_mntput_work, 1);
1461 return;
1462 }
1463 cleanup_mnt(mnt);
1464 }
1465
mntput(struct vfsmount * mnt)1466 void mntput(struct vfsmount *mnt)
1467 {
1468 if (mnt) {
1469 struct mount *m = real_mount(mnt);
1470 /* avoid cacheline pingpong */
1471 if (unlikely(m->mnt_expiry_mark))
1472 WRITE_ONCE(m->mnt_expiry_mark, 0);
1473 mntput_no_expire(m);
1474 }
1475 }
1476 EXPORT_SYMBOL(mntput);
1477
mntget(struct vfsmount * mnt)1478 struct vfsmount *mntget(struct vfsmount *mnt)
1479 {
1480 if (mnt)
1481 mnt_add_count(real_mount(mnt), 1);
1482 return mnt;
1483 }
1484 EXPORT_SYMBOL(mntget);
1485
1486 /*
1487 * Make a mount point inaccessible to new lookups.
1488 * Because there may still be current users, the caller MUST WAIT
1489 * for an RCU grace period before destroying the mount point.
1490 */
mnt_make_shortterm(struct vfsmount * mnt)1491 void mnt_make_shortterm(struct vfsmount *mnt)
1492 {
1493 if (mnt)
1494 real_mount(mnt)->mnt_ns = NULL;
1495 }
1496
1497 /**
1498 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1499 * @path: path to check
1500 *
1501 * d_mountpoint() can only be used reliably to establish if a dentry is
1502 * not mounted in any namespace and that common case is handled inline.
1503 * d_mountpoint() isn't aware of the possibility there may be multiple
1504 * mounts using a given dentry in a different namespace. This function
1505 * checks if the passed in path is a mountpoint rather than the dentry
1506 * alone.
1507 */
path_is_mountpoint(const struct path * path)1508 bool path_is_mountpoint(const struct path *path)
1509 {
1510 unsigned seq;
1511 bool res;
1512
1513 if (!d_mountpoint(path->dentry))
1514 return false;
1515
1516 rcu_read_lock();
1517 do {
1518 seq = read_seqbegin(&mount_lock);
1519 res = __path_is_mountpoint(path);
1520 } while (read_seqretry(&mount_lock, seq));
1521 rcu_read_unlock();
1522
1523 return res;
1524 }
1525 EXPORT_SYMBOL(path_is_mountpoint);
1526
mnt_clone_internal(const struct path * path)1527 struct vfsmount *mnt_clone_internal(const struct path *path)
1528 {
1529 struct mount *p;
1530 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1531 if (IS_ERR(p))
1532 return ERR_CAST(p);
1533 p->mnt.mnt_flags |= MNT_INTERNAL;
1534 return &p->mnt;
1535 }
1536
1537 /*
1538 * Returns the mount which either has the specified mnt_id, or has the next
1539 * smallest id afer the specified one.
1540 */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1541 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1542 {
1543 struct rb_node *node = ns->mounts.rb_node;
1544 struct mount *ret = NULL;
1545
1546 while (node) {
1547 struct mount *m = node_to_mount(node);
1548
1549 if (mnt_id <= m->mnt_id_unique) {
1550 ret = node_to_mount(node);
1551 if (mnt_id == m->mnt_id_unique)
1552 break;
1553 node = node->rb_left;
1554 } else {
1555 node = node->rb_right;
1556 }
1557 }
1558 return ret;
1559 }
1560
1561 /*
1562 * Returns the mount which either has the specified mnt_id, or has the next
1563 * greater id before the specified one.
1564 */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1565 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1566 {
1567 struct rb_node *node = ns->mounts.rb_node;
1568 struct mount *ret = NULL;
1569
1570 while (node) {
1571 struct mount *m = node_to_mount(node);
1572
1573 if (mnt_id >= m->mnt_id_unique) {
1574 ret = node_to_mount(node);
1575 if (mnt_id == m->mnt_id_unique)
1576 break;
1577 node = node->rb_right;
1578 } else {
1579 node = node->rb_left;
1580 }
1581 }
1582 return ret;
1583 }
1584
1585 #ifdef CONFIG_PROC_FS
1586
1587 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1588 static void *m_start(struct seq_file *m, loff_t *pos)
1589 {
1590 struct proc_mounts *p = m->private;
1591
1592 down_read(&namespace_sem);
1593
1594 return mnt_find_id_at(p->ns, *pos);
1595 }
1596
m_next(struct seq_file * m,void * v,loff_t * pos)1597 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1598 {
1599 struct mount *next = NULL, *mnt = v;
1600 struct rb_node *node = rb_next(&mnt->mnt_node);
1601
1602 ++*pos;
1603 if (node) {
1604 next = node_to_mount(node);
1605 *pos = next->mnt_id_unique;
1606 }
1607 return next;
1608 }
1609
m_stop(struct seq_file * m,void * v)1610 static void m_stop(struct seq_file *m, void *v)
1611 {
1612 up_read(&namespace_sem);
1613 }
1614
m_show(struct seq_file * m,void * v)1615 static int m_show(struct seq_file *m, void *v)
1616 {
1617 struct proc_mounts *p = m->private;
1618 struct mount *r = v;
1619 return p->show(m, &r->mnt);
1620 }
1621
1622 const struct seq_operations mounts_op = {
1623 .start = m_start,
1624 .next = m_next,
1625 .stop = m_stop,
1626 .show = m_show,
1627 };
1628
1629 #endif /* CONFIG_PROC_FS */
1630
1631 /**
1632 * may_umount_tree - check if a mount tree is busy
1633 * @m: root of mount tree
1634 *
1635 * This is called to check if a tree of mounts has any
1636 * open files, pwds, chroots or sub mounts that are
1637 * busy.
1638 */
may_umount_tree(struct vfsmount * m)1639 int may_umount_tree(struct vfsmount *m)
1640 {
1641 struct mount *mnt = real_mount(m);
1642 bool busy = false;
1643
1644 /* write lock needed for mnt_get_count */
1645 lock_mount_hash();
1646 for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) {
1647 if (mnt_get_count(p) > (p == mnt ? 2 : 1)) {
1648 busy = true;
1649 break;
1650 }
1651 }
1652 unlock_mount_hash();
1653
1654 return !busy;
1655 }
1656
1657 EXPORT_SYMBOL(may_umount_tree);
1658
1659 /**
1660 * may_umount - check if a mount point is busy
1661 * @mnt: root of mount
1662 *
1663 * This is called to check if a mount point has any
1664 * open files, pwds, chroots or sub mounts. If the
1665 * mount has sub mounts this will return busy
1666 * regardless of whether the sub mounts are busy.
1667 *
1668 * Doesn't take quota and stuff into account. IOW, in some cases it will
1669 * give false negatives. The main reason why it's here is that we need
1670 * a non-destructive way to look for easily umountable filesystems.
1671 */
may_umount(struct vfsmount * mnt)1672 int may_umount(struct vfsmount *mnt)
1673 {
1674 int ret = 1;
1675 down_read(&namespace_sem);
1676 lock_mount_hash();
1677 if (propagate_mount_busy(real_mount(mnt), 2))
1678 ret = 0;
1679 unlock_mount_hash();
1680 up_read(&namespace_sem);
1681 return ret;
1682 }
1683
1684 EXPORT_SYMBOL(may_umount);
1685
1686 #ifdef CONFIG_FSNOTIFY
mnt_notify(struct mount * p)1687 static void mnt_notify(struct mount *p)
1688 {
1689 if (!p->prev_ns && p->mnt_ns) {
1690 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1691 } else if (p->prev_ns && !p->mnt_ns) {
1692 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1693 } else if (p->prev_ns == p->mnt_ns) {
1694 fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1695 } else {
1696 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1697 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1698 }
1699 p->prev_ns = p->mnt_ns;
1700 }
1701
notify_mnt_list(void)1702 static void notify_mnt_list(void)
1703 {
1704 struct mount *m, *tmp;
1705 /*
1706 * Notify about mounts that were added/reparented/detached/remain
1707 * connected after unmount.
1708 */
1709 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) {
1710 mnt_notify(m);
1711 list_del_init(&m->to_notify);
1712 }
1713 }
1714
need_notify_mnt_list(void)1715 static bool need_notify_mnt_list(void)
1716 {
1717 return !list_empty(¬ify_list);
1718 }
1719 #else
notify_mnt_list(void)1720 static void notify_mnt_list(void)
1721 {
1722 }
1723
need_notify_mnt_list(void)1724 static bool need_notify_mnt_list(void)
1725 {
1726 return false;
1727 }
1728 #endif
1729
1730 static void free_mnt_ns(struct mnt_namespace *);
namespace_unlock(void)1731 static void namespace_unlock(void)
1732 {
1733 struct hlist_head head;
1734 struct hlist_node *p;
1735 struct mount *m;
1736 struct mnt_namespace *ns = emptied_ns;
1737 LIST_HEAD(list);
1738
1739 hlist_move_list(&unmounted, &head);
1740 list_splice_init(&ex_mountpoints, &list);
1741 emptied_ns = NULL;
1742
1743 if (need_notify_mnt_list()) {
1744 /*
1745 * No point blocking out concurrent readers while notifications
1746 * are sent. This will also allow statmount()/listmount() to run
1747 * concurrently.
1748 */
1749 downgrade_write(&namespace_sem);
1750 notify_mnt_list();
1751 up_read(&namespace_sem);
1752 } else {
1753 up_write(&namespace_sem);
1754 }
1755 if (unlikely(ns)) {
1756 /* Make sure we notice when we leak mounts. */
1757 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
1758 free_mnt_ns(ns);
1759 }
1760
1761 shrink_dentry_list(&list);
1762
1763 if (likely(hlist_empty(&head)))
1764 return;
1765
1766 synchronize_rcu_expedited();
1767
1768 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1769 hlist_del(&m->mnt_umount);
1770 mntput(&m->mnt);
1771 }
1772 }
1773
namespace_lock(void)1774 static inline void namespace_lock(void)
1775 {
1776 down_write(&namespace_sem);
1777 }
1778
1779 DEFINE_GUARD(namespace_lock, struct rw_semaphore *, namespace_lock(), namespace_unlock())
1780
1781 enum umount_tree_flags {
1782 UMOUNT_SYNC = 1,
1783 UMOUNT_PROPAGATE = 2,
1784 UMOUNT_CONNECTED = 4,
1785 };
1786
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1787 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1788 {
1789 /* Leaving mounts connected is only valid for lazy umounts */
1790 if (how & UMOUNT_SYNC)
1791 return true;
1792
1793 /* A mount without a parent has nothing to be connected to */
1794 if (!mnt_has_parent(mnt))
1795 return true;
1796
1797 /* Because the reference counting rules change when mounts are
1798 * unmounted and connected, umounted mounts may not be
1799 * connected to mounted mounts.
1800 */
1801 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1802 return true;
1803
1804 /* Has it been requested that the mount remain connected? */
1805 if (how & UMOUNT_CONNECTED)
1806 return false;
1807
1808 /* Is the mount locked such that it needs to remain connected? */
1809 if (IS_MNT_LOCKED(mnt))
1810 return false;
1811
1812 /* By default disconnect the mount */
1813 return true;
1814 }
1815
1816 /*
1817 * mount_lock must be held
1818 * namespace_sem must be held for write
1819 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1820 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1821 {
1822 LIST_HEAD(tmp_list);
1823 struct mount *p;
1824
1825 if (how & UMOUNT_PROPAGATE)
1826 propagate_mount_unlock(mnt);
1827
1828 /* Gather the mounts to umount */
1829 for (p = mnt; p; p = next_mnt(p, mnt)) {
1830 p->mnt.mnt_flags |= MNT_UMOUNT;
1831 if (mnt_ns_attached(p))
1832 move_from_ns(p);
1833 list_add_tail(&p->mnt_list, &tmp_list);
1834 }
1835
1836 /* Hide the mounts from mnt_mounts */
1837 list_for_each_entry(p, &tmp_list, mnt_list) {
1838 list_del_init(&p->mnt_child);
1839 }
1840
1841 /* Add propagated mounts to the tmp_list */
1842 if (how & UMOUNT_PROPAGATE)
1843 propagate_umount(&tmp_list);
1844
1845 while (!list_empty(&tmp_list)) {
1846 struct mnt_namespace *ns;
1847 bool disconnect;
1848 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1849 list_del_init(&p->mnt_expire);
1850 list_del_init(&p->mnt_list);
1851 ns = p->mnt_ns;
1852 if (ns) {
1853 ns->nr_mounts--;
1854 __touch_mnt_namespace(ns);
1855 }
1856 p->mnt_ns = NULL;
1857 if (how & UMOUNT_SYNC)
1858 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1859
1860 disconnect = disconnect_mount(p, how);
1861 if (mnt_has_parent(p)) {
1862 if (!disconnect) {
1863 /* Don't forget about p */
1864 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1865 } else {
1866 umount_mnt(p);
1867 }
1868 }
1869 change_mnt_propagation(p, MS_PRIVATE);
1870 if (disconnect)
1871 hlist_add_head(&p->mnt_umount, &unmounted);
1872
1873 /*
1874 * At this point p->mnt_ns is NULL, notification will be queued
1875 * only if
1876 *
1877 * - p->prev_ns is non-NULL *and*
1878 * - p->prev_ns->n_fsnotify_marks is non-NULL
1879 *
1880 * This will preclude queuing the mount if this is a cleanup
1881 * after a failed copy_tree() or destruction of an anonymous
1882 * namespace, etc.
1883 */
1884 mnt_notify_add(p);
1885 }
1886 }
1887
1888 static void shrink_submounts(struct mount *mnt);
1889
do_umount_root(struct super_block * sb)1890 static int do_umount_root(struct super_block *sb)
1891 {
1892 int ret = 0;
1893
1894 down_write(&sb->s_umount);
1895 if (!sb_rdonly(sb)) {
1896 struct fs_context *fc;
1897
1898 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1899 SB_RDONLY);
1900 if (IS_ERR(fc)) {
1901 ret = PTR_ERR(fc);
1902 } else {
1903 ret = parse_monolithic_mount_data(fc, NULL);
1904 if (!ret)
1905 ret = reconfigure_super(fc);
1906 put_fs_context(fc);
1907 }
1908 }
1909 up_write(&sb->s_umount);
1910 return ret;
1911 }
1912
do_umount(struct mount * mnt,int flags)1913 static int do_umount(struct mount *mnt, int flags)
1914 {
1915 struct super_block *sb = mnt->mnt.mnt_sb;
1916 int retval;
1917
1918 retval = security_sb_umount(&mnt->mnt, flags);
1919 if (retval)
1920 return retval;
1921
1922 /*
1923 * Allow userspace to request a mountpoint be expired rather than
1924 * unmounting unconditionally. Unmount only happens if:
1925 * (1) the mark is already set (the mark is cleared by mntput())
1926 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1927 */
1928 if (flags & MNT_EXPIRE) {
1929 if (&mnt->mnt == current->fs->root.mnt ||
1930 flags & (MNT_FORCE | MNT_DETACH))
1931 return -EINVAL;
1932
1933 /*
1934 * probably don't strictly need the lock here if we examined
1935 * all race cases, but it's a slowpath.
1936 */
1937 lock_mount_hash();
1938 if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) {
1939 unlock_mount_hash();
1940 return -EBUSY;
1941 }
1942 unlock_mount_hash();
1943
1944 if (!xchg(&mnt->mnt_expiry_mark, 1))
1945 return -EAGAIN;
1946 }
1947
1948 /*
1949 * If we may have to abort operations to get out of this
1950 * mount, and they will themselves hold resources we must
1951 * allow the fs to do things. In the Unix tradition of
1952 * 'Gee thats tricky lets do it in userspace' the umount_begin
1953 * might fail to complete on the first run through as other tasks
1954 * must return, and the like. Thats for the mount program to worry
1955 * about for the moment.
1956 */
1957
1958 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1959 sb->s_op->umount_begin(sb);
1960 }
1961
1962 /*
1963 * No sense to grab the lock for this test, but test itself looks
1964 * somewhat bogus. Suggestions for better replacement?
1965 * Ho-hum... In principle, we might treat that as umount + switch
1966 * to rootfs. GC would eventually take care of the old vfsmount.
1967 * Actually it makes sense, especially if rootfs would contain a
1968 * /reboot - static binary that would close all descriptors and
1969 * call reboot(9). Then init(8) could umount root and exec /reboot.
1970 */
1971 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1972 /*
1973 * Special case for "unmounting" root ...
1974 * we just try to remount it readonly.
1975 */
1976 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1977 return -EPERM;
1978 return do_umount_root(sb);
1979 }
1980
1981 namespace_lock();
1982 lock_mount_hash();
1983
1984 /* Repeat the earlier racy checks, now that we are holding the locks */
1985 retval = -EINVAL;
1986 if (!check_mnt(mnt))
1987 goto out;
1988
1989 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1990 goto out;
1991
1992 if (!mnt_has_parent(mnt)) /* not the absolute root */
1993 goto out;
1994
1995 event++;
1996 if (flags & MNT_DETACH) {
1997 umount_tree(mnt, UMOUNT_PROPAGATE);
1998 retval = 0;
1999 } else {
2000 smp_mb(); // paired with __legitimize_mnt()
2001 shrink_submounts(mnt);
2002 retval = -EBUSY;
2003 if (!propagate_mount_busy(mnt, 2)) {
2004 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2005 retval = 0;
2006 }
2007 }
2008 out:
2009 unlock_mount_hash();
2010 namespace_unlock();
2011 return retval;
2012 }
2013
2014 /*
2015 * __detach_mounts - lazily unmount all mounts on the specified dentry
2016 *
2017 * During unlink, rmdir, and d_drop it is possible to loose the path
2018 * to an existing mountpoint, and wind up leaking the mount.
2019 * detach_mounts allows lazily unmounting those mounts instead of
2020 * leaking them.
2021 *
2022 * The caller may hold dentry->d_inode->i_rwsem.
2023 */
__detach_mounts(struct dentry * dentry)2024 void __detach_mounts(struct dentry *dentry)
2025 {
2026 struct pinned_mountpoint mp = {};
2027 struct mount *mnt;
2028
2029 namespace_lock();
2030 lock_mount_hash();
2031 if (!lookup_mountpoint(dentry, &mp))
2032 goto out_unlock;
2033
2034 event++;
2035 while (mp.node.next) {
2036 mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list);
2037 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
2038 umount_mnt(mnt);
2039 hlist_add_head(&mnt->mnt_umount, &unmounted);
2040 }
2041 else umount_tree(mnt, UMOUNT_CONNECTED);
2042 }
2043 unpin_mountpoint(&mp);
2044 out_unlock:
2045 unlock_mount_hash();
2046 namespace_unlock();
2047 }
2048
2049 /*
2050 * Is the caller allowed to modify his namespace?
2051 */
may_mount(void)2052 bool may_mount(void)
2053 {
2054 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2055 }
2056
warn_mandlock(void)2057 static void warn_mandlock(void)
2058 {
2059 pr_warn_once("=======================================================\n"
2060 "WARNING: The mand mount option has been deprecated and\n"
2061 " and is ignored by this kernel. Remove the mand\n"
2062 " option from the mount to silence this warning.\n"
2063 "=======================================================\n");
2064 }
2065
can_umount(const struct path * path,int flags)2066 static int can_umount(const struct path *path, int flags)
2067 {
2068 struct mount *mnt = real_mount(path->mnt);
2069 struct super_block *sb = path->dentry->d_sb;
2070
2071 if (!may_mount())
2072 return -EPERM;
2073 if (!path_mounted(path))
2074 return -EINVAL;
2075 if (!check_mnt(mnt))
2076 return -EINVAL;
2077 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2078 return -EINVAL;
2079 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2080 return -EPERM;
2081 return 0;
2082 }
2083
2084 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)2085 int path_umount(struct path *path, int flags)
2086 {
2087 struct mount *mnt = real_mount(path->mnt);
2088 int ret;
2089
2090 ret = can_umount(path, flags);
2091 if (!ret)
2092 ret = do_umount(mnt, flags);
2093
2094 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2095 dput(path->dentry);
2096 mntput_no_expire(mnt);
2097 return ret;
2098 }
2099
ksys_umount(char __user * name,int flags)2100 static int ksys_umount(char __user *name, int flags)
2101 {
2102 int lookup_flags = LOOKUP_MOUNTPOINT;
2103 struct path path;
2104 int ret;
2105
2106 // basic validity checks done first
2107 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2108 return -EINVAL;
2109
2110 if (!(flags & UMOUNT_NOFOLLOW))
2111 lookup_flags |= LOOKUP_FOLLOW;
2112 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2113 if (ret)
2114 return ret;
2115 return path_umount(&path, flags);
2116 }
2117
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2118 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2119 {
2120 return ksys_umount(name, flags);
2121 }
2122
2123 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2124
2125 /*
2126 * The 2.0 compatible umount. No flags.
2127 */
SYSCALL_DEFINE1(oldumount,char __user *,name)2128 SYSCALL_DEFINE1(oldumount, char __user *, name)
2129 {
2130 return ksys_umount(name, 0);
2131 }
2132
2133 #endif
2134
is_mnt_ns_file(struct dentry * dentry)2135 static bool is_mnt_ns_file(struct dentry *dentry)
2136 {
2137 struct ns_common *ns;
2138
2139 /* Is this a proxy for a mount namespace? */
2140 if (dentry->d_op != &ns_dentry_operations)
2141 return false;
2142
2143 ns = d_inode(dentry)->i_private;
2144
2145 return ns->ops == &mntns_operations;
2146 }
2147
from_mnt_ns(struct mnt_namespace * mnt)2148 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2149 {
2150 return &mnt->ns;
2151 }
2152
get_sequential_mnt_ns(struct mnt_namespace * mntns,bool previous)2153 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2154 {
2155 guard(rcu)();
2156
2157 for (;;) {
2158 struct list_head *list;
2159
2160 if (previous)
2161 list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list));
2162 else
2163 list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list));
2164 if (list_is_head(list, &mnt_ns_list))
2165 return ERR_PTR(-ENOENT);
2166
2167 mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list);
2168
2169 /*
2170 * The last passive reference count is put with RCU
2171 * delay so accessing the mount namespace is not just
2172 * safe but all relevant members are still valid.
2173 */
2174 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2175 continue;
2176
2177 /*
2178 * We need an active reference count as we're persisting
2179 * the mount namespace and it might already be on its
2180 * deathbed.
2181 */
2182 if (!refcount_inc_not_zero(&mntns->ns.count))
2183 continue;
2184
2185 return mntns;
2186 }
2187 }
2188
mnt_ns_from_dentry(struct dentry * dentry)2189 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2190 {
2191 if (!is_mnt_ns_file(dentry))
2192 return NULL;
2193
2194 return to_mnt_ns(get_proc_ns(dentry->d_inode));
2195 }
2196
mnt_ns_loop(struct dentry * dentry)2197 static bool mnt_ns_loop(struct dentry *dentry)
2198 {
2199 /* Could bind mounting the mount namespace inode cause a
2200 * mount namespace loop?
2201 */
2202 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2203
2204 if (!mnt_ns)
2205 return false;
2206
2207 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2208 }
2209
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2210 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2211 int flag)
2212 {
2213 struct mount *res, *src_parent, *src_root_child, *src_mnt,
2214 *dst_parent, *dst_mnt;
2215
2216 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2217 return ERR_PTR(-EINVAL);
2218
2219 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2220 return ERR_PTR(-EINVAL);
2221
2222 res = dst_mnt = clone_mnt(src_root, dentry, flag);
2223 if (IS_ERR(dst_mnt))
2224 return dst_mnt;
2225
2226 src_parent = src_root;
2227
2228 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2229 if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2230 continue;
2231
2232 for (src_mnt = src_root_child; src_mnt;
2233 src_mnt = next_mnt(src_mnt, src_root_child)) {
2234 if (!(flag & CL_COPY_UNBINDABLE) &&
2235 IS_MNT_UNBINDABLE(src_mnt)) {
2236 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2237 /* Both unbindable and locked. */
2238 dst_mnt = ERR_PTR(-EPERM);
2239 goto out;
2240 } else {
2241 src_mnt = skip_mnt_tree(src_mnt);
2242 continue;
2243 }
2244 }
2245 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2246 is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2247 src_mnt = skip_mnt_tree(src_mnt);
2248 continue;
2249 }
2250 while (src_parent != src_mnt->mnt_parent) {
2251 src_parent = src_parent->mnt_parent;
2252 dst_mnt = dst_mnt->mnt_parent;
2253 }
2254
2255 src_parent = src_mnt;
2256 dst_parent = dst_mnt;
2257 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2258 if (IS_ERR(dst_mnt))
2259 goto out;
2260 lock_mount_hash();
2261 if (src_mnt->mnt.mnt_flags & MNT_LOCKED)
2262 dst_mnt->mnt.mnt_flags |= MNT_LOCKED;
2263 if (unlikely(flag & CL_EXPIRE)) {
2264 /* stick the duplicate mount on the same expiry
2265 * list as the original if that was on one */
2266 if (!list_empty(&src_mnt->mnt_expire))
2267 list_add(&dst_mnt->mnt_expire,
2268 &src_mnt->mnt_expire);
2269 }
2270 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp);
2271 unlock_mount_hash();
2272 }
2273 }
2274 return res;
2275
2276 out:
2277 if (res) {
2278 lock_mount_hash();
2279 umount_tree(res, UMOUNT_SYNC);
2280 unlock_mount_hash();
2281 }
2282 return dst_mnt;
2283 }
2284
extend_array(struct path ** res,struct path ** to_free,unsigned n,unsigned * count,unsigned new_count)2285 static inline bool extend_array(struct path **res, struct path **to_free,
2286 unsigned n, unsigned *count, unsigned new_count)
2287 {
2288 struct path *p;
2289
2290 if (likely(n < *count))
2291 return true;
2292 p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2293 if (p && *count)
2294 memcpy(p, *res, *count * sizeof(struct path));
2295 *count = new_count;
2296 kfree(*to_free);
2297 *to_free = *res = p;
2298 return p;
2299 }
2300
collect_paths(const struct path * path,struct path * prealloc,unsigned count)2301 struct path *collect_paths(const struct path *path,
2302 struct path *prealloc, unsigned count)
2303 {
2304 struct mount *root = real_mount(path->mnt);
2305 struct mount *child;
2306 struct path *res = prealloc, *to_free = NULL;
2307 unsigned n = 0;
2308
2309 guard(rwsem_read)(&namespace_sem);
2310
2311 if (!check_mnt(root))
2312 return ERR_PTR(-EINVAL);
2313 if (!extend_array(&res, &to_free, 0, &count, 32))
2314 return ERR_PTR(-ENOMEM);
2315 res[n++] = *path;
2316 list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2317 if (!is_subdir(child->mnt_mountpoint, path->dentry))
2318 continue;
2319 for (struct mount *m = child; m; m = next_mnt(m, child)) {
2320 if (!extend_array(&res, &to_free, n, &count, 2 * count))
2321 return ERR_PTR(-ENOMEM);
2322 res[n].mnt = &m->mnt;
2323 res[n].dentry = m->mnt.mnt_root;
2324 n++;
2325 }
2326 }
2327 if (!extend_array(&res, &to_free, n, &count, count + 1))
2328 return ERR_PTR(-ENOMEM);
2329 memset(res + n, 0, (count - n) * sizeof(struct path));
2330 for (struct path *p = res; p->mnt; p++)
2331 path_get(p);
2332 return res;
2333 }
2334
drop_collected_paths(struct path * paths,struct path * prealloc)2335 void drop_collected_paths(struct path *paths, struct path *prealloc)
2336 {
2337 for (struct path *p = paths; p->mnt; p++)
2338 path_put(p);
2339 if (paths != prealloc)
2340 kfree(paths);
2341 }
2342
2343 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2344
dissolve_on_fput(struct vfsmount * mnt)2345 void dissolve_on_fput(struct vfsmount *mnt)
2346 {
2347 struct mount *m = real_mount(mnt);
2348
2349 /*
2350 * m used to be the root of anon namespace; if it still is one,
2351 * we need to dissolve the mount tree and free that namespace.
2352 * Let's try to avoid taking namespace_sem if we can determine
2353 * that there's nothing to do without it - rcu_read_lock() is
2354 * enough to make anon_ns_root() memory-safe and once m has
2355 * left its namespace, it's no longer our concern, since it will
2356 * never become a root of anon ns again.
2357 */
2358
2359 scoped_guard(rcu) {
2360 if (!anon_ns_root(m))
2361 return;
2362 }
2363
2364 scoped_guard(namespace_lock, &namespace_sem) {
2365 if (!anon_ns_root(m))
2366 return;
2367
2368 emptied_ns = m->mnt_ns;
2369 lock_mount_hash();
2370 umount_tree(m, UMOUNT_CONNECTED);
2371 unlock_mount_hash();
2372 }
2373 }
2374
__has_locked_children(struct mount * mnt,struct dentry * dentry)2375 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2376 {
2377 struct mount *child;
2378
2379 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2380 if (!is_subdir(child->mnt_mountpoint, dentry))
2381 continue;
2382
2383 if (child->mnt.mnt_flags & MNT_LOCKED)
2384 return true;
2385 }
2386 return false;
2387 }
2388
has_locked_children(struct mount * mnt,struct dentry * dentry)2389 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2390 {
2391 bool res;
2392
2393 read_seqlock_excl(&mount_lock);
2394 res = __has_locked_children(mnt, dentry);
2395 read_sequnlock_excl(&mount_lock);
2396 return res;
2397 }
2398
2399 /*
2400 * Check that there aren't references to earlier/same mount namespaces in the
2401 * specified subtree. Such references can act as pins for mount namespaces
2402 * that aren't checked by the mount-cycle checking code, thereby allowing
2403 * cycles to be made.
2404 */
check_for_nsfs_mounts(struct mount * subtree)2405 static bool check_for_nsfs_mounts(struct mount *subtree)
2406 {
2407 struct mount *p;
2408 bool ret = false;
2409
2410 lock_mount_hash();
2411 for (p = subtree; p; p = next_mnt(p, subtree))
2412 if (mnt_ns_loop(p->mnt.mnt_root))
2413 goto out;
2414
2415 ret = true;
2416 out:
2417 unlock_mount_hash();
2418 return ret;
2419 }
2420
2421 /**
2422 * clone_private_mount - create a private clone of a path
2423 * @path: path to clone
2424 *
2425 * This creates a new vfsmount, which will be the clone of @path. The new mount
2426 * will not be attached anywhere in the namespace and will be private (i.e.
2427 * changes to the originating mount won't be propagated into this).
2428 *
2429 * This assumes caller has called or done the equivalent of may_mount().
2430 *
2431 * Release with mntput().
2432 */
clone_private_mount(const struct path * path)2433 struct vfsmount *clone_private_mount(const struct path *path)
2434 {
2435 struct mount *old_mnt = real_mount(path->mnt);
2436 struct mount *new_mnt;
2437
2438 guard(rwsem_read)(&namespace_sem);
2439
2440 if (IS_MNT_UNBINDABLE(old_mnt))
2441 return ERR_PTR(-EINVAL);
2442
2443 /*
2444 * Make sure the source mount is acceptable.
2445 * Anything mounted in our mount namespace is allowed.
2446 * Otherwise, it must be the root of an anonymous mount
2447 * namespace, and we need to make sure no namespace
2448 * loops get created.
2449 */
2450 if (!check_mnt(old_mnt)) {
2451 if (!anon_ns_root(old_mnt))
2452 return ERR_PTR(-EINVAL);
2453
2454 if (!check_for_nsfs_mounts(old_mnt))
2455 return ERR_PTR(-EINVAL);
2456 }
2457
2458 if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2459 return ERR_PTR(-EPERM);
2460
2461 if (__has_locked_children(old_mnt, path->dentry))
2462 return ERR_PTR(-EINVAL);
2463
2464 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2465 if (IS_ERR(new_mnt))
2466 return ERR_PTR(-EINVAL);
2467
2468 /* Longterm mount to be removed by kern_unmount*() */
2469 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2470 return &new_mnt->mnt;
2471 }
2472 EXPORT_SYMBOL_GPL(clone_private_mount);
2473
lock_mnt_tree(struct mount * mnt)2474 static void lock_mnt_tree(struct mount *mnt)
2475 {
2476 struct mount *p;
2477
2478 for (p = mnt; p; p = next_mnt(p, mnt)) {
2479 int flags = p->mnt.mnt_flags;
2480 /* Don't allow unprivileged users to change mount flags */
2481 flags |= MNT_LOCK_ATIME;
2482
2483 if (flags & MNT_READONLY)
2484 flags |= MNT_LOCK_READONLY;
2485
2486 if (flags & MNT_NODEV)
2487 flags |= MNT_LOCK_NODEV;
2488
2489 if (flags & MNT_NOSUID)
2490 flags |= MNT_LOCK_NOSUID;
2491
2492 if (flags & MNT_NOEXEC)
2493 flags |= MNT_LOCK_NOEXEC;
2494 /* Don't allow unprivileged users to reveal what is under a mount */
2495 if (list_empty(&p->mnt_expire) && p != mnt)
2496 flags |= MNT_LOCKED;
2497 p->mnt.mnt_flags = flags;
2498 }
2499 }
2500
cleanup_group_ids(struct mount * mnt,struct mount * end)2501 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2502 {
2503 struct mount *p;
2504
2505 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2506 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2507 mnt_release_group_id(p);
2508 }
2509 }
2510
invent_group_ids(struct mount * mnt,bool recurse)2511 static int invent_group_ids(struct mount *mnt, bool recurse)
2512 {
2513 struct mount *p;
2514
2515 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2516 if (!p->mnt_group_id) {
2517 int err = mnt_alloc_group_id(p);
2518 if (err) {
2519 cleanup_group_ids(mnt, p);
2520 return err;
2521 }
2522 }
2523 }
2524
2525 return 0;
2526 }
2527
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2528 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2529 {
2530 unsigned int max = READ_ONCE(sysctl_mount_max);
2531 unsigned int mounts = 0;
2532 struct mount *p;
2533
2534 if (ns->nr_mounts >= max)
2535 return -ENOSPC;
2536 max -= ns->nr_mounts;
2537 if (ns->pending_mounts >= max)
2538 return -ENOSPC;
2539 max -= ns->pending_mounts;
2540
2541 for (p = mnt; p; p = next_mnt(p, mnt))
2542 mounts++;
2543
2544 if (mounts > max)
2545 return -ENOSPC;
2546
2547 ns->pending_mounts += mounts;
2548 return 0;
2549 }
2550
2551 enum mnt_tree_flags_t {
2552 MNT_TREE_BENEATH = BIT(0),
2553 MNT_TREE_PROPAGATION = BIT(1),
2554 };
2555
2556 /**
2557 * attach_recursive_mnt - attach a source mount tree
2558 * @source_mnt: mount tree to be attached
2559 * @dest_mnt: mount that @source_mnt will be mounted on
2560 * @dest_mp: the mountpoint @source_mnt will be mounted at
2561 *
2562 * NOTE: in the table below explains the semantics when a source mount
2563 * of a given type is attached to a destination mount of a given type.
2564 * ---------------------------------------------------------------------------
2565 * | BIND MOUNT OPERATION |
2566 * |**************************************************************************
2567 * | source-->| shared | private | slave | unbindable |
2568 * | dest | | | | |
2569 * | | | | | | |
2570 * | v | | | | |
2571 * |**************************************************************************
2572 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2573 * | | | | | |
2574 * |non-shared| shared (+) | private | slave (*) | invalid |
2575 * ***************************************************************************
2576 * A bind operation clones the source mount and mounts the clone on the
2577 * destination mount.
2578 *
2579 * (++) the cloned mount is propagated to all the mounts in the propagation
2580 * tree of the destination mount and the cloned mount is added to
2581 * the peer group of the source mount.
2582 * (+) the cloned mount is created under the destination mount and is marked
2583 * as shared. The cloned mount is added to the peer group of the source
2584 * mount.
2585 * (+++) the mount is propagated to all the mounts in the propagation tree
2586 * of the destination mount and the cloned mount is made slave
2587 * of the same master as that of the source mount. The cloned mount
2588 * is marked as 'shared and slave'.
2589 * (*) the cloned mount is made a slave of the same master as that of the
2590 * source mount.
2591 *
2592 * ---------------------------------------------------------------------------
2593 * | MOVE MOUNT OPERATION |
2594 * |**************************************************************************
2595 * | source-->| shared | private | slave | unbindable |
2596 * | dest | | | | |
2597 * | | | | | | |
2598 * | v | | | | |
2599 * |**************************************************************************
2600 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2601 * | | | | | |
2602 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2603 * ***************************************************************************
2604 *
2605 * (+) the mount is moved to the destination. And is then propagated to
2606 * all the mounts in the propagation tree of the destination mount.
2607 * (+*) the mount is moved to the destination.
2608 * (+++) the mount is moved to the destination and is then propagated to
2609 * all the mounts belonging to the destination mount's propagation tree.
2610 * the mount is marked as 'shared and slave'.
2611 * (*) the mount continues to be a slave at the new location.
2612 *
2613 * if the source mount is a tree, the operations explained above is
2614 * applied to each mount in the tree.
2615 * Must be called without spinlocks held, since this function can sleep
2616 * in allocations.
2617 *
2618 * Context: The function expects namespace_lock() to be held.
2619 * Return: If @source_mnt was successfully attached 0 is returned.
2620 * Otherwise a negative error code is returned.
2621 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp)2622 static int attach_recursive_mnt(struct mount *source_mnt,
2623 struct mount *dest_mnt,
2624 struct mountpoint *dest_mp)
2625 {
2626 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2627 HLIST_HEAD(tree_list);
2628 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2629 struct pinned_mountpoint root = {};
2630 struct mountpoint *shorter = NULL;
2631 struct mount *child, *p;
2632 struct mount *top;
2633 struct hlist_node *n;
2634 int err = 0;
2635 bool moving = mnt_has_parent(source_mnt);
2636
2637 /*
2638 * Preallocate a mountpoint in case the new mounts need to be
2639 * mounted beneath mounts on the same mountpoint.
2640 */
2641 for (top = source_mnt; unlikely(top->overmount); top = top->overmount) {
2642 if (!shorter && is_mnt_ns_file(top->mnt.mnt_root))
2643 shorter = top->mnt_mp;
2644 }
2645 err = get_mountpoint(top->mnt.mnt_root, &root);
2646 if (err)
2647 return err;
2648
2649 /* Is there space to add these mounts to the mount namespace? */
2650 if (!moving) {
2651 err = count_mounts(ns, source_mnt);
2652 if (err)
2653 goto out;
2654 }
2655
2656 if (IS_MNT_SHARED(dest_mnt)) {
2657 err = invent_group_ids(source_mnt, true);
2658 if (err)
2659 goto out;
2660 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2661 }
2662 lock_mount_hash();
2663 if (err)
2664 goto out_cleanup_ids;
2665
2666 if (IS_MNT_SHARED(dest_mnt)) {
2667 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2668 set_mnt_shared(p);
2669 }
2670
2671 if (moving) {
2672 umount_mnt(source_mnt);
2673 mnt_notify_add(source_mnt);
2674 /* if the mount is moved, it should no longer be expired
2675 * automatically */
2676 list_del_init(&source_mnt->mnt_expire);
2677 } else {
2678 if (source_mnt->mnt_ns) {
2679 /* move from anon - the caller will destroy */
2680 emptied_ns = source_mnt->mnt_ns;
2681 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2682 move_from_ns(p);
2683 }
2684 }
2685
2686 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2687 /*
2688 * Now the original copy is in the same state as the secondaries -
2689 * its root attached to mountpoint, but not hashed and all mounts
2690 * in it are either in our namespace or in no namespace at all.
2691 * Add the original to the list of copies and deal with the
2692 * rest of work for all of them uniformly.
2693 */
2694 hlist_add_head(&source_mnt->mnt_hash, &tree_list);
2695
2696 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2697 struct mount *q;
2698 hlist_del_init(&child->mnt_hash);
2699 /* Notice when we are propagating across user namespaces */
2700 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2701 lock_mnt_tree(child);
2702 q = __lookup_mnt(&child->mnt_parent->mnt,
2703 child->mnt_mountpoint);
2704 commit_tree(child);
2705 if (q) {
2706 struct mountpoint *mp = root.mp;
2707 struct mount *r = child;
2708 while (unlikely(r->overmount))
2709 r = r->overmount;
2710 if (unlikely(shorter) && child != source_mnt)
2711 mp = shorter;
2712 mnt_change_mountpoint(r, mp, q);
2713 }
2714 }
2715 unpin_mountpoint(&root);
2716 unlock_mount_hash();
2717
2718 return 0;
2719
2720 out_cleanup_ids:
2721 while (!hlist_empty(&tree_list)) {
2722 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2723 child->mnt_parent->mnt_ns->pending_mounts = 0;
2724 umount_tree(child, UMOUNT_SYNC);
2725 }
2726 unlock_mount_hash();
2727 cleanup_group_ids(source_mnt, NULL);
2728 out:
2729 ns->pending_mounts = 0;
2730
2731 read_seqlock_excl(&mount_lock);
2732 unpin_mountpoint(&root);
2733 read_sequnlock_excl(&mount_lock);
2734
2735 return err;
2736 }
2737
2738 /**
2739 * do_lock_mount - lock mount and mountpoint
2740 * @path: target path
2741 * @beneath: whether the intention is to mount beneath @path
2742 *
2743 * Follow the mount stack on @path until the top mount @mnt is found. If
2744 * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2745 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2746 * until nothing is stacked on top of it anymore.
2747 *
2748 * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2749 * against concurrent removal of the new mountpoint from another mount
2750 * namespace.
2751 *
2752 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2753 * @mp on @mnt->mnt_parent must be acquired. This protects against a
2754 * concurrent unlink of @mp->mnt_dentry from another mount namespace
2755 * where @mnt doesn't have a child mount mounted @mp. A concurrent
2756 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2757 * on top of it for @beneath.
2758 *
2759 * In addition, @beneath needs to make sure that @mnt hasn't been
2760 * unmounted or moved from its current mountpoint in between dropping
2761 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2762 * being unmounted would be detected later by e.g., calling
2763 * check_mnt(mnt) in the function it's called from. For the @beneath
2764 * case however, it's useful to detect it directly in do_lock_mount().
2765 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2766 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2767 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2768 *
2769 * Return: Either the target mountpoint on the top mount or the top
2770 * mount's mountpoint.
2771 */
do_lock_mount(struct path * path,struct pinned_mountpoint * pinned,bool beneath)2772 static int do_lock_mount(struct path *path, struct pinned_mountpoint *pinned, bool beneath)
2773 {
2774 struct vfsmount *mnt = path->mnt;
2775 struct dentry *dentry;
2776 struct path under = {};
2777 int err = -ENOENT;
2778
2779 for (;;) {
2780 struct mount *m = real_mount(mnt);
2781
2782 if (beneath) {
2783 path_put(&under);
2784 read_seqlock_excl(&mount_lock);
2785 under.mnt = mntget(&m->mnt_parent->mnt);
2786 under.dentry = dget(m->mnt_mountpoint);
2787 read_sequnlock_excl(&mount_lock);
2788 dentry = under.dentry;
2789 } else {
2790 dentry = path->dentry;
2791 }
2792
2793 inode_lock(dentry->d_inode);
2794 namespace_lock();
2795
2796 if (unlikely(cant_mount(dentry) || !is_mounted(mnt)))
2797 break; // not to be mounted on
2798
2799 if (beneath && unlikely(m->mnt_mountpoint != dentry ||
2800 &m->mnt_parent->mnt != under.mnt)) {
2801 namespace_unlock();
2802 inode_unlock(dentry->d_inode);
2803 continue; // got moved
2804 }
2805
2806 mnt = lookup_mnt(path);
2807 if (unlikely(mnt)) {
2808 namespace_unlock();
2809 inode_unlock(dentry->d_inode);
2810 path_put(path);
2811 path->mnt = mnt;
2812 path->dentry = dget(mnt->mnt_root);
2813 continue; // got overmounted
2814 }
2815 err = get_mountpoint(dentry, pinned);
2816 if (err)
2817 break;
2818 if (beneath) {
2819 /*
2820 * @under duplicates the references that will stay
2821 * at least until namespace_unlock(), so the path_put()
2822 * below is safe (and OK to do under namespace_lock -
2823 * we are not dropping the final references here).
2824 */
2825 path_put(&under);
2826 }
2827 return 0;
2828 }
2829 namespace_unlock();
2830 inode_unlock(dentry->d_inode);
2831 if (beneath)
2832 path_put(&under);
2833 return err;
2834 }
2835
lock_mount(struct path * path,struct pinned_mountpoint * m)2836 static inline int lock_mount(struct path *path, struct pinned_mountpoint *m)
2837 {
2838 return do_lock_mount(path, m, false);
2839 }
2840
unlock_mount(struct pinned_mountpoint * m)2841 static void unlock_mount(struct pinned_mountpoint *m)
2842 {
2843 inode_unlock(m->mp->m_dentry->d_inode);
2844 read_seqlock_excl(&mount_lock);
2845 unpin_mountpoint(m);
2846 read_sequnlock_excl(&mount_lock);
2847 namespace_unlock();
2848 }
2849
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2850 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2851 {
2852 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2853 return -EINVAL;
2854
2855 if (d_is_dir(mp->m_dentry) !=
2856 d_is_dir(mnt->mnt.mnt_root))
2857 return -ENOTDIR;
2858
2859 return attach_recursive_mnt(mnt, p, mp);
2860 }
2861
may_change_propagation(const struct mount * m)2862 static int may_change_propagation(const struct mount *m)
2863 {
2864 struct mnt_namespace *ns = m->mnt_ns;
2865
2866 // it must be mounted in some namespace
2867 if (IS_ERR_OR_NULL(ns)) // is_mounted()
2868 return -EINVAL;
2869 // and the caller must be admin in userns of that namespace
2870 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
2871 return -EPERM;
2872 return 0;
2873 }
2874
2875 /*
2876 * Sanity check the flags to change_mnt_propagation.
2877 */
2878
flags_to_propagation_type(int ms_flags)2879 static int flags_to_propagation_type(int ms_flags)
2880 {
2881 int type = ms_flags & ~(MS_REC | MS_SILENT);
2882
2883 /* Fail if any non-propagation flags are set */
2884 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2885 return 0;
2886 /* Only one propagation flag should be set */
2887 if (!is_power_of_2(type))
2888 return 0;
2889 return type;
2890 }
2891
2892 /*
2893 * recursively change the type of the mountpoint.
2894 */
do_change_type(struct path * path,int ms_flags)2895 static int do_change_type(struct path *path, int ms_flags)
2896 {
2897 struct mount *m;
2898 struct mount *mnt = real_mount(path->mnt);
2899 int recurse = ms_flags & MS_REC;
2900 int type;
2901 int err = 0;
2902
2903 if (!path_mounted(path))
2904 return -EINVAL;
2905
2906 type = flags_to_propagation_type(ms_flags);
2907 if (!type)
2908 return -EINVAL;
2909
2910 namespace_lock();
2911 err = may_change_propagation(mnt);
2912 if (err)
2913 goto out_unlock;
2914
2915 if (type == MS_SHARED) {
2916 err = invent_group_ids(mnt, recurse);
2917 if (err)
2918 goto out_unlock;
2919 }
2920
2921 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2922 change_mnt_propagation(m, type);
2923
2924 out_unlock:
2925 namespace_unlock();
2926 return err;
2927 }
2928
2929 /* may_copy_tree() - check if a mount tree can be copied
2930 * @path: path to the mount tree to be copied
2931 *
2932 * This helper checks if the caller may copy the mount tree starting
2933 * from @path->mnt. The caller may copy the mount tree under the
2934 * following circumstances:
2935 *
2936 * (1) The caller is located in the mount namespace of the mount tree.
2937 * This also implies that the mount does not belong to an anonymous
2938 * mount namespace.
2939 * (2) The caller tries to copy an nfs mount referring to a mount
2940 * namespace, i.e., the caller is trying to copy a mount namespace
2941 * entry from nsfs.
2942 * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2943 * (4) The caller is trying to copy a mount tree that belongs to an
2944 * anonymous mount namespace.
2945 *
2946 * For that to be safe, this helper enforces that the origin mount
2947 * namespace the anonymous mount namespace was created from is the
2948 * same as the caller's mount namespace by comparing the sequence
2949 * numbers.
2950 *
2951 * This is not strictly necessary. The current semantics of the new
2952 * mount api enforce that the caller must be located in the same
2953 * mount namespace as the mount tree it interacts with. Using the
2954 * origin sequence number preserves these semantics even for
2955 * anonymous mount namespaces. However, one could envision extending
2956 * the api to directly operate across mount namespace if needed.
2957 *
2958 * The ownership of a non-anonymous mount namespace such as the
2959 * caller's cannot change.
2960 * => We know that the caller's mount namespace is stable.
2961 *
2962 * If the origin sequence number of the anonymous mount namespace is
2963 * the same as the sequence number of the caller's mount namespace.
2964 * => The owning namespaces are the same.
2965 *
2966 * ==> The earlier capability check on the owning namespace of the
2967 * caller's mount namespace ensures that the caller has the
2968 * ability to copy the mount tree.
2969 *
2970 * Returns true if the mount tree can be copied, false otherwise.
2971 */
may_copy_tree(struct path * path)2972 static inline bool may_copy_tree(struct path *path)
2973 {
2974 struct mount *mnt = real_mount(path->mnt);
2975 const struct dentry_operations *d_op;
2976
2977 if (check_mnt(mnt))
2978 return true;
2979
2980 d_op = path->dentry->d_op;
2981 if (d_op == &ns_dentry_operations)
2982 return true;
2983
2984 if (d_op == &pidfs_dentry_operations)
2985 return true;
2986
2987 if (!is_mounted(path->mnt))
2988 return false;
2989
2990 return check_anonymous_mnt(mnt);
2991 }
2992
2993
__do_loopback(struct path * old_path,int recurse)2994 static struct mount *__do_loopback(struct path *old_path, int recurse)
2995 {
2996 struct mount *old = real_mount(old_path->mnt);
2997
2998 if (IS_MNT_UNBINDABLE(old))
2999 return ERR_PTR(-EINVAL);
3000
3001 if (!may_copy_tree(old_path))
3002 return ERR_PTR(-EINVAL);
3003
3004 if (!recurse && __has_locked_children(old, old_path->dentry))
3005 return ERR_PTR(-EINVAL);
3006
3007 if (recurse)
3008 return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
3009 else
3010 return clone_mnt(old, old_path->dentry, 0);
3011 }
3012
3013 /*
3014 * do loopback mount.
3015 */
do_loopback(struct path * path,const char * old_name,int recurse)3016 static int do_loopback(struct path *path, const char *old_name,
3017 int recurse)
3018 {
3019 struct path old_path;
3020 struct mount *mnt = NULL, *parent;
3021 struct pinned_mountpoint mp = {};
3022 int err;
3023 if (!old_name || !*old_name)
3024 return -EINVAL;
3025 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
3026 if (err)
3027 return err;
3028
3029 err = -EINVAL;
3030 if (mnt_ns_loop(old_path.dentry))
3031 goto out;
3032
3033 err = lock_mount(path, &mp);
3034 if (err)
3035 goto out;
3036
3037 parent = real_mount(path->mnt);
3038 if (!check_mnt(parent))
3039 goto out2;
3040
3041 mnt = __do_loopback(&old_path, recurse);
3042 if (IS_ERR(mnt)) {
3043 err = PTR_ERR(mnt);
3044 goto out2;
3045 }
3046
3047 err = graft_tree(mnt, parent, mp.mp);
3048 if (err) {
3049 lock_mount_hash();
3050 umount_tree(mnt, UMOUNT_SYNC);
3051 unlock_mount_hash();
3052 }
3053 out2:
3054 unlock_mount(&mp);
3055 out:
3056 path_put(&old_path);
3057 return err;
3058 }
3059
open_detached_copy(struct path * path,bool recursive)3060 static struct file *open_detached_copy(struct path *path, bool recursive)
3061 {
3062 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3063 struct user_namespace *user_ns = mnt_ns->user_ns;
3064 struct mount *mnt, *p;
3065 struct file *file;
3066
3067 ns = alloc_mnt_ns(user_ns, true);
3068 if (IS_ERR(ns))
3069 return ERR_CAST(ns);
3070
3071 namespace_lock();
3072
3073 /*
3074 * Record the sequence number of the source mount namespace.
3075 * This needs to hold namespace_sem to ensure that the mount
3076 * doesn't get attached.
3077 */
3078 if (is_mounted(path->mnt)) {
3079 src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3080 if (is_anon_ns(src_mnt_ns))
3081 ns->seq_origin = src_mnt_ns->seq_origin;
3082 else
3083 ns->seq_origin = src_mnt_ns->seq;
3084 }
3085
3086 mnt = __do_loopback(path, recursive);
3087 if (IS_ERR(mnt)) {
3088 namespace_unlock();
3089 free_mnt_ns(ns);
3090 return ERR_CAST(mnt);
3091 }
3092
3093 lock_mount_hash();
3094 for (p = mnt; p; p = next_mnt(p, mnt)) {
3095 mnt_add_to_ns(ns, p);
3096 ns->nr_mounts++;
3097 }
3098 ns->root = mnt;
3099 mntget(&mnt->mnt);
3100 unlock_mount_hash();
3101 namespace_unlock();
3102
3103 mntput(path->mnt);
3104 path->mnt = &mnt->mnt;
3105 file = dentry_open(path, O_PATH, current_cred());
3106 if (IS_ERR(file))
3107 dissolve_on_fput(path->mnt);
3108 else
3109 file->f_mode |= FMODE_NEED_UNMOUNT;
3110 return file;
3111 }
3112
vfs_open_tree(int dfd,const char __user * filename,unsigned int flags)3113 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3114 {
3115 int ret;
3116 struct path path __free(path_put) = {};
3117 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3118 bool detached = flags & OPEN_TREE_CLONE;
3119
3120 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3121
3122 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3123 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3124 OPEN_TREE_CLOEXEC))
3125 return ERR_PTR(-EINVAL);
3126
3127 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3128 return ERR_PTR(-EINVAL);
3129
3130 if (flags & AT_NO_AUTOMOUNT)
3131 lookup_flags &= ~LOOKUP_AUTOMOUNT;
3132 if (flags & AT_SYMLINK_NOFOLLOW)
3133 lookup_flags &= ~LOOKUP_FOLLOW;
3134 if (flags & AT_EMPTY_PATH)
3135 lookup_flags |= LOOKUP_EMPTY;
3136
3137 if (detached && !may_mount())
3138 return ERR_PTR(-EPERM);
3139
3140 ret = user_path_at(dfd, filename, lookup_flags, &path);
3141 if (unlikely(ret))
3142 return ERR_PTR(ret);
3143
3144 if (detached)
3145 return open_detached_copy(&path, flags & AT_RECURSIVE);
3146
3147 return dentry_open(&path, O_PATH, current_cred());
3148 }
3149
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)3150 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3151 {
3152 int fd;
3153 struct file *file __free(fput) = NULL;
3154
3155 file = vfs_open_tree(dfd, filename, flags);
3156 if (IS_ERR(file))
3157 return PTR_ERR(file);
3158
3159 fd = get_unused_fd_flags(flags & O_CLOEXEC);
3160 if (fd < 0)
3161 return fd;
3162
3163 fd_install(fd, no_free_ptr(file));
3164 return fd;
3165 }
3166
3167 /*
3168 * Don't allow locked mount flags to be cleared.
3169 *
3170 * No locks need to be held here while testing the various MNT_LOCK
3171 * flags because those flags can never be cleared once they are set.
3172 */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)3173 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3174 {
3175 unsigned int fl = mnt->mnt.mnt_flags;
3176
3177 if ((fl & MNT_LOCK_READONLY) &&
3178 !(mnt_flags & MNT_READONLY))
3179 return false;
3180
3181 if ((fl & MNT_LOCK_NODEV) &&
3182 !(mnt_flags & MNT_NODEV))
3183 return false;
3184
3185 if ((fl & MNT_LOCK_NOSUID) &&
3186 !(mnt_flags & MNT_NOSUID))
3187 return false;
3188
3189 if ((fl & MNT_LOCK_NOEXEC) &&
3190 !(mnt_flags & MNT_NOEXEC))
3191 return false;
3192
3193 if ((fl & MNT_LOCK_ATIME) &&
3194 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3195 return false;
3196
3197 return true;
3198 }
3199
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)3200 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3201 {
3202 bool readonly_request = (mnt_flags & MNT_READONLY);
3203
3204 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3205 return 0;
3206
3207 if (readonly_request)
3208 return mnt_make_readonly(mnt);
3209
3210 mnt->mnt.mnt_flags &= ~MNT_READONLY;
3211 return 0;
3212 }
3213
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)3214 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3215 {
3216 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3217 mnt->mnt.mnt_flags = mnt_flags;
3218 touch_mnt_namespace(mnt->mnt_ns);
3219 }
3220
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)3221 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
3222 {
3223 struct super_block *sb = mnt->mnt_sb;
3224
3225 if (!__mnt_is_readonly(mnt) &&
3226 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3227 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3228 char *buf, *mntpath;
3229
3230 buf = (char *)__get_free_page(GFP_KERNEL);
3231 if (buf)
3232 mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3233 else
3234 mntpath = ERR_PTR(-ENOMEM);
3235 if (IS_ERR(mntpath))
3236 mntpath = "(unknown)";
3237
3238 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3239 sb->s_type->name,
3240 is_mounted(mnt) ? "remounted" : "mounted",
3241 mntpath, &sb->s_time_max,
3242 (unsigned long long)sb->s_time_max);
3243
3244 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3245 if (buf)
3246 free_page((unsigned long)buf);
3247 }
3248 }
3249
3250 /*
3251 * Handle reconfiguration of the mountpoint only without alteration of the
3252 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
3253 * to mount(2).
3254 */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)3255 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
3256 {
3257 struct super_block *sb = path->mnt->mnt_sb;
3258 struct mount *mnt = real_mount(path->mnt);
3259 int ret;
3260
3261 if (!check_mnt(mnt))
3262 return -EINVAL;
3263
3264 if (!path_mounted(path))
3265 return -EINVAL;
3266
3267 if (!can_change_locked_flags(mnt, mnt_flags))
3268 return -EPERM;
3269
3270 /*
3271 * We're only checking whether the superblock is read-only not
3272 * changing it, so only take down_read(&sb->s_umount).
3273 */
3274 down_read(&sb->s_umount);
3275 lock_mount_hash();
3276 ret = change_mount_ro_state(mnt, mnt_flags);
3277 if (ret == 0)
3278 set_mount_attributes(mnt, mnt_flags);
3279 unlock_mount_hash();
3280 up_read(&sb->s_umount);
3281
3282 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3283
3284 return ret;
3285 }
3286
3287 /*
3288 * change filesystem flags. dir should be a physical root of filesystem.
3289 * If you've mounted a non-root directory somewhere and want to do remount
3290 * on it - tough luck.
3291 */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)3292 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3293 int mnt_flags, void *data)
3294 {
3295 int err;
3296 struct super_block *sb = path->mnt->mnt_sb;
3297 struct mount *mnt = real_mount(path->mnt);
3298 struct fs_context *fc;
3299
3300 if (!check_mnt(mnt))
3301 return -EINVAL;
3302
3303 if (!path_mounted(path))
3304 return -EINVAL;
3305
3306 if (!can_change_locked_flags(mnt, mnt_flags))
3307 return -EPERM;
3308
3309 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3310 if (IS_ERR(fc))
3311 return PTR_ERR(fc);
3312
3313 /*
3314 * Indicate to the filesystem that the remount request is coming
3315 * from the legacy mount system call.
3316 */
3317 fc->oldapi = true;
3318
3319 err = parse_monolithic_mount_data(fc, data);
3320 if (!err) {
3321 down_write(&sb->s_umount);
3322 err = -EPERM;
3323 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3324 err = reconfigure_super(fc);
3325 if (!err) {
3326 lock_mount_hash();
3327 set_mount_attributes(mnt, mnt_flags);
3328 unlock_mount_hash();
3329 }
3330 }
3331 up_write(&sb->s_umount);
3332 }
3333
3334 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3335
3336 put_fs_context(fc);
3337 return err;
3338 }
3339
tree_contains_unbindable(struct mount * mnt)3340 static inline int tree_contains_unbindable(struct mount *mnt)
3341 {
3342 struct mount *p;
3343 for (p = mnt; p; p = next_mnt(p, mnt)) {
3344 if (IS_MNT_UNBINDABLE(p))
3345 return 1;
3346 }
3347 return 0;
3348 }
3349
do_set_group(struct path * from_path,struct path * to_path)3350 static int do_set_group(struct path *from_path, struct path *to_path)
3351 {
3352 struct mount *from, *to;
3353 int err;
3354
3355 from = real_mount(from_path->mnt);
3356 to = real_mount(to_path->mnt);
3357
3358 namespace_lock();
3359
3360 err = may_change_propagation(from);
3361 if (err)
3362 goto out;
3363 err = may_change_propagation(to);
3364 if (err)
3365 goto out;
3366
3367 err = -EINVAL;
3368 /* To and From paths should be mount roots */
3369 if (!path_mounted(from_path))
3370 goto out;
3371 if (!path_mounted(to_path))
3372 goto out;
3373
3374 /* Setting sharing groups is only allowed across same superblock */
3375 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3376 goto out;
3377
3378 /* From mount root should be wider than To mount root */
3379 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3380 goto out;
3381
3382 /* From mount should not have locked children in place of To's root */
3383 if (__has_locked_children(from, to->mnt.mnt_root))
3384 goto out;
3385
3386 /* Setting sharing groups is only allowed on private mounts */
3387 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3388 goto out;
3389
3390 /* From should not be private */
3391 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3392 goto out;
3393
3394 if (IS_MNT_SLAVE(from)) {
3395 hlist_add_behind(&to->mnt_slave, &from->mnt_slave);
3396 to->mnt_master = from->mnt_master;
3397 }
3398
3399 if (IS_MNT_SHARED(from)) {
3400 to->mnt_group_id = from->mnt_group_id;
3401 list_add(&to->mnt_share, &from->mnt_share);
3402 set_mnt_shared(to);
3403 }
3404
3405 err = 0;
3406 out:
3407 namespace_unlock();
3408 return err;
3409 }
3410
3411 /**
3412 * path_overmounted - check if path is overmounted
3413 * @path: path to check
3414 *
3415 * Check if path is overmounted, i.e., if there's a mount on top of
3416 * @path->mnt with @path->dentry as mountpoint.
3417 *
3418 * Context: namespace_sem must be held at least shared.
3419 * MUST NOT be called under lock_mount_hash() (there one should just
3420 * call __lookup_mnt() and check if it returns NULL).
3421 * Return: If path is overmounted true is returned, false if not.
3422 */
path_overmounted(const struct path * path)3423 static inline bool path_overmounted(const struct path *path)
3424 {
3425 unsigned seq = read_seqbegin(&mount_lock);
3426 bool no_child;
3427
3428 rcu_read_lock();
3429 no_child = !__lookup_mnt(path->mnt, path->dentry);
3430 rcu_read_unlock();
3431 if (need_seqretry(&mount_lock, seq)) {
3432 read_seqlock_excl(&mount_lock);
3433 no_child = !__lookup_mnt(path->mnt, path->dentry);
3434 read_sequnlock_excl(&mount_lock);
3435 }
3436 return unlikely(!no_child);
3437 }
3438
3439 /*
3440 * Check if there is a possibly empty chain of descent from p1 to p2.
3441 * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl).
3442 */
mount_is_ancestor(const struct mount * p1,const struct mount * p2)3443 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2)
3444 {
3445 while (p2 != p1 && mnt_has_parent(p2))
3446 p2 = p2->mnt_parent;
3447 return p2 == p1;
3448 }
3449
3450 /**
3451 * can_move_mount_beneath - check that we can mount beneath the top mount
3452 * @from: mount to mount beneath
3453 * @to: mount under which to mount
3454 * @mp: mountpoint of @to
3455 *
3456 * - Make sure that @to->dentry is actually the root of a mount under
3457 * which we can mount another mount.
3458 * - Make sure that nothing can be mounted beneath the caller's current
3459 * root or the rootfs of the namespace.
3460 * - Make sure that the caller can unmount the topmost mount ensuring
3461 * that the caller could reveal the underlying mountpoint.
3462 * - Ensure that nothing has been mounted on top of @from before we
3463 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3464 * - Prevent mounting beneath a mount if the propagation relationship
3465 * between the source mount, parent mount, and top mount would lead to
3466 * nonsensical mount trees.
3467 *
3468 * Context: This function expects namespace_lock() to be held.
3469 * Return: On success 0, and on error a negative error code is returned.
3470 */
can_move_mount_beneath(const struct path * from,const struct path * to,const struct mountpoint * mp)3471 static int can_move_mount_beneath(const struct path *from,
3472 const struct path *to,
3473 const struct mountpoint *mp)
3474 {
3475 struct mount *mnt_from = real_mount(from->mnt),
3476 *mnt_to = real_mount(to->mnt),
3477 *parent_mnt_to = mnt_to->mnt_parent;
3478
3479 if (!mnt_has_parent(mnt_to))
3480 return -EINVAL;
3481
3482 if (!path_mounted(to))
3483 return -EINVAL;
3484
3485 if (IS_MNT_LOCKED(mnt_to))
3486 return -EINVAL;
3487
3488 /* Avoid creating shadow mounts during mount propagation. */
3489 if (path_overmounted(from))
3490 return -EINVAL;
3491
3492 /*
3493 * Mounting beneath the rootfs only makes sense when the
3494 * semantics of pivot_root(".", ".") are used.
3495 */
3496 if (&mnt_to->mnt == current->fs->root.mnt)
3497 return -EINVAL;
3498 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3499 return -EINVAL;
3500
3501 if (mount_is_ancestor(mnt_to, mnt_from))
3502 return -EINVAL;
3503
3504 /*
3505 * If the parent mount propagates to the child mount this would
3506 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3507 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3508 * defeats the whole purpose of mounting beneath another mount.
3509 */
3510 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3511 return -EINVAL;
3512
3513 /*
3514 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3515 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3516 * Afterwards @mnt_from would be mounted on top of
3517 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3518 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3519 * already mounted on @mnt_from, @mnt_to would ultimately be
3520 * remounted on top of @c. Afterwards, @mnt_from would be
3521 * covered by a copy @c of @mnt_from and @c would be covered by
3522 * @mnt_from itself. This defeats the whole purpose of mounting
3523 * @mnt_from beneath @mnt_to.
3524 */
3525 if (check_mnt(mnt_from) &&
3526 propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3527 return -EINVAL;
3528
3529 return 0;
3530 }
3531
3532 /* may_use_mount() - check if a mount tree can be used
3533 * @mnt: vfsmount to be used
3534 *
3535 * This helper checks if the caller may use the mount tree starting
3536 * from @path->mnt. The caller may use the mount tree under the
3537 * following circumstances:
3538 *
3539 * (1) The caller is located in the mount namespace of the mount tree.
3540 * This also implies that the mount does not belong to an anonymous
3541 * mount namespace.
3542 * (2) The caller is trying to use a mount tree that belongs to an
3543 * anonymous mount namespace.
3544 *
3545 * For that to be safe, this helper enforces that the origin mount
3546 * namespace the anonymous mount namespace was created from is the
3547 * same as the caller's mount namespace by comparing the sequence
3548 * numbers.
3549 *
3550 * The ownership of a non-anonymous mount namespace such as the
3551 * caller's cannot change.
3552 * => We know that the caller's mount namespace is stable.
3553 *
3554 * If the origin sequence number of the anonymous mount namespace is
3555 * the same as the sequence number of the caller's mount namespace.
3556 * => The owning namespaces are the same.
3557 *
3558 * ==> The earlier capability check on the owning namespace of the
3559 * caller's mount namespace ensures that the caller has the
3560 * ability to use the mount tree.
3561 *
3562 * Returns true if the mount tree can be used, false otherwise.
3563 */
may_use_mount(struct mount * mnt)3564 static inline bool may_use_mount(struct mount *mnt)
3565 {
3566 if (check_mnt(mnt))
3567 return true;
3568
3569 /*
3570 * Make sure that noone unmounted the target path or somehow
3571 * managed to get their hands on something purely kernel
3572 * internal.
3573 */
3574 if (!is_mounted(&mnt->mnt))
3575 return false;
3576
3577 return check_anonymous_mnt(mnt);
3578 }
3579
do_move_mount(struct path * old_path,struct path * new_path,enum mnt_tree_flags_t flags)3580 static int do_move_mount(struct path *old_path,
3581 struct path *new_path, enum mnt_tree_flags_t flags)
3582 {
3583 struct mnt_namespace *ns;
3584 struct mount *p;
3585 struct mount *old;
3586 struct mount *parent;
3587 struct pinned_mountpoint mp;
3588 int err;
3589 bool beneath = flags & MNT_TREE_BENEATH;
3590
3591 err = do_lock_mount(new_path, &mp, beneath);
3592 if (err)
3593 return err;
3594
3595 old = real_mount(old_path->mnt);
3596 p = real_mount(new_path->mnt);
3597 parent = old->mnt_parent;
3598 ns = old->mnt_ns;
3599
3600 err = -EINVAL;
3601
3602 if (check_mnt(old)) {
3603 /* if the source is in our namespace... */
3604 /* ... it should be detachable from parent */
3605 if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3606 goto out;
3607 /* ... and the target should be in our namespace */
3608 if (!check_mnt(p))
3609 goto out;
3610 /* parent of the source should not be shared */
3611 if (IS_MNT_SHARED(parent))
3612 goto out;
3613 } else {
3614 /*
3615 * otherwise the source must be the root of some anon namespace.
3616 */
3617 if (!anon_ns_root(old))
3618 goto out;
3619 /*
3620 * Bail out early if the target is within the same namespace -
3621 * subsequent checks would've rejected that, but they lose
3622 * some corner cases if we check it early.
3623 */
3624 if (ns == p->mnt_ns)
3625 goto out;
3626 /*
3627 * Target should be either in our namespace or in an acceptable
3628 * anon namespace, sensu check_anonymous_mnt().
3629 */
3630 if (!may_use_mount(p))
3631 goto out;
3632 }
3633
3634 if (!path_mounted(old_path))
3635 goto out;
3636
3637 if (d_is_dir(new_path->dentry) !=
3638 d_is_dir(old_path->dentry))
3639 goto out;
3640
3641 if (beneath) {
3642 err = can_move_mount_beneath(old_path, new_path, mp.mp);
3643 if (err)
3644 goto out;
3645
3646 err = -EINVAL;
3647 p = p->mnt_parent;
3648 }
3649
3650 /*
3651 * Don't move a mount tree containing unbindable mounts to a destination
3652 * mount which is shared.
3653 */
3654 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3655 goto out;
3656 err = -ELOOP;
3657 if (!check_for_nsfs_mounts(old))
3658 goto out;
3659 if (mount_is_ancestor(old, p))
3660 goto out;
3661
3662 err = attach_recursive_mnt(old, p, mp.mp);
3663 out:
3664 unlock_mount(&mp);
3665 return err;
3666 }
3667
do_move_mount_old(struct path * path,const char * old_name)3668 static int do_move_mount_old(struct path *path, const char *old_name)
3669 {
3670 struct path old_path;
3671 int err;
3672
3673 if (!old_name || !*old_name)
3674 return -EINVAL;
3675
3676 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3677 if (err)
3678 return err;
3679
3680 err = do_move_mount(&old_path, path, 0);
3681 path_put(&old_path);
3682 return err;
3683 }
3684
3685 /*
3686 * add a mount into a namespace's mount tree
3687 */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,const struct path * path,int mnt_flags)3688 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3689 const struct path *path, int mnt_flags)
3690 {
3691 struct mount *parent = real_mount(path->mnt);
3692
3693 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3694
3695 if (unlikely(!check_mnt(parent))) {
3696 /* that's acceptable only for automounts done in private ns */
3697 if (!(mnt_flags & MNT_SHRINKABLE))
3698 return -EINVAL;
3699 /* ... and for those we'd better have mountpoint still alive */
3700 if (!parent->mnt_ns)
3701 return -EINVAL;
3702 }
3703
3704 /* Refuse the same filesystem on the same mount point */
3705 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3706 return -EBUSY;
3707
3708 if (d_is_symlink(newmnt->mnt.mnt_root))
3709 return -EINVAL;
3710
3711 newmnt->mnt.mnt_flags = mnt_flags;
3712 return graft_tree(newmnt, parent, mp);
3713 }
3714
3715 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3716
3717 /*
3718 * Create a new mount using a superblock configuration and request it
3719 * be added to the namespace tree.
3720 */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)3721 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3722 unsigned int mnt_flags)
3723 {
3724 struct vfsmount *mnt;
3725 struct pinned_mountpoint mp = {};
3726 struct super_block *sb = fc->root->d_sb;
3727 int error;
3728
3729 error = security_sb_kern_mount(sb);
3730 if (!error && mount_too_revealing(sb, &mnt_flags))
3731 error = -EPERM;
3732
3733 if (unlikely(error)) {
3734 fc_drop_locked(fc);
3735 return error;
3736 }
3737
3738 up_write(&sb->s_umount);
3739
3740 mnt = vfs_create_mount(fc);
3741 if (IS_ERR(mnt))
3742 return PTR_ERR(mnt);
3743
3744 mnt_warn_timestamp_expiry(mountpoint, mnt);
3745
3746 error = lock_mount(mountpoint, &mp);
3747 if (!error) {
3748 error = do_add_mount(real_mount(mnt), mp.mp,
3749 mountpoint, mnt_flags);
3750 unlock_mount(&mp);
3751 }
3752 if (error < 0)
3753 mntput(mnt);
3754 return error;
3755 }
3756
3757 /*
3758 * create a new mount for userspace and request it to be added into the
3759 * namespace's tree
3760 */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3761 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3762 int mnt_flags, const char *name, void *data)
3763 {
3764 struct file_system_type *type;
3765 struct fs_context *fc;
3766 const char *subtype = NULL;
3767 int err = 0;
3768
3769 if (!fstype)
3770 return -EINVAL;
3771
3772 type = get_fs_type(fstype);
3773 if (!type)
3774 return -ENODEV;
3775
3776 if (type->fs_flags & FS_HAS_SUBTYPE) {
3777 subtype = strchr(fstype, '.');
3778 if (subtype) {
3779 subtype++;
3780 if (!*subtype) {
3781 put_filesystem(type);
3782 return -EINVAL;
3783 }
3784 }
3785 }
3786
3787 fc = fs_context_for_mount(type, sb_flags);
3788 put_filesystem(type);
3789 if (IS_ERR(fc))
3790 return PTR_ERR(fc);
3791
3792 /*
3793 * Indicate to the filesystem that the mount request is coming
3794 * from the legacy mount system call.
3795 */
3796 fc->oldapi = true;
3797
3798 if (subtype)
3799 err = vfs_parse_fs_string(fc, "subtype",
3800 subtype, strlen(subtype));
3801 if (!err && name)
3802 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3803 if (!err)
3804 err = parse_monolithic_mount_data(fc, data);
3805 if (!err && !mount_capable(fc))
3806 err = -EPERM;
3807 if (!err)
3808 err = vfs_get_tree(fc);
3809 if (!err)
3810 err = do_new_mount_fc(fc, path, mnt_flags);
3811
3812 put_fs_context(fc);
3813 return err;
3814 }
3815
finish_automount(struct vfsmount * m,const struct path * path)3816 int finish_automount(struct vfsmount *m, const struct path *path)
3817 {
3818 struct dentry *dentry = path->dentry;
3819 struct pinned_mountpoint mp = {};
3820 struct mount *mnt;
3821 int err;
3822
3823 if (!m)
3824 return 0;
3825 if (IS_ERR(m))
3826 return PTR_ERR(m);
3827
3828 mnt = real_mount(m);
3829
3830 if (m->mnt_sb == path->mnt->mnt_sb &&
3831 m->mnt_root == dentry) {
3832 err = -ELOOP;
3833 goto discard;
3834 }
3835
3836 /*
3837 * we don't want to use lock_mount() - in this case finding something
3838 * that overmounts our mountpoint to be means "quitely drop what we've
3839 * got", not "try to mount it on top".
3840 */
3841 inode_lock(dentry->d_inode);
3842 namespace_lock();
3843 if (unlikely(cant_mount(dentry))) {
3844 err = -ENOENT;
3845 goto discard_locked;
3846 }
3847 if (path_overmounted(path)) {
3848 err = 0;
3849 goto discard_locked;
3850 }
3851 err = get_mountpoint(dentry, &mp);
3852 if (err)
3853 goto discard_locked;
3854
3855 err = do_add_mount(mnt, mp.mp, path,
3856 path->mnt->mnt_flags | MNT_SHRINKABLE);
3857 unlock_mount(&mp);
3858 if (unlikely(err))
3859 goto discard;
3860 return 0;
3861
3862 discard_locked:
3863 namespace_unlock();
3864 inode_unlock(dentry->d_inode);
3865 discard:
3866 mntput(m);
3867 return err;
3868 }
3869
3870 /**
3871 * mnt_set_expiry - Put a mount on an expiration list
3872 * @mnt: The mount to list.
3873 * @expiry_list: The list to add the mount to.
3874 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3875 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3876 {
3877 read_seqlock_excl(&mount_lock);
3878 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3879 read_sequnlock_excl(&mount_lock);
3880 }
3881 EXPORT_SYMBOL(mnt_set_expiry);
3882
3883 /*
3884 * process a list of expirable mountpoints with the intent of discarding any
3885 * mountpoints that aren't in use and haven't been touched since last we came
3886 * here
3887 */
mark_mounts_for_expiry(struct list_head * mounts)3888 void mark_mounts_for_expiry(struct list_head *mounts)
3889 {
3890 struct mount *mnt, *next;
3891 LIST_HEAD(graveyard);
3892
3893 if (list_empty(mounts))
3894 return;
3895
3896 namespace_lock();
3897 lock_mount_hash();
3898
3899 /* extract from the expiration list every vfsmount that matches the
3900 * following criteria:
3901 * - already mounted
3902 * - only referenced by its parent vfsmount
3903 * - still marked for expiry (marked on the last call here; marks are
3904 * cleared by mntput())
3905 */
3906 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3907 if (!is_mounted(&mnt->mnt))
3908 continue;
3909 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3910 propagate_mount_busy(mnt, 1))
3911 continue;
3912 list_move(&mnt->mnt_expire, &graveyard);
3913 }
3914 while (!list_empty(&graveyard)) {
3915 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3916 touch_mnt_namespace(mnt->mnt_ns);
3917 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3918 }
3919 unlock_mount_hash();
3920 namespace_unlock();
3921 }
3922
3923 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3924
3925 /*
3926 * Ripoff of 'select_parent()'
3927 *
3928 * search the list of submounts for a given mountpoint, and move any
3929 * shrinkable submounts to the 'graveyard' list.
3930 */
select_submounts(struct mount * parent,struct list_head * graveyard)3931 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3932 {
3933 struct mount *this_parent = parent;
3934 struct list_head *next;
3935 int found = 0;
3936
3937 repeat:
3938 next = this_parent->mnt_mounts.next;
3939 resume:
3940 while (next != &this_parent->mnt_mounts) {
3941 struct list_head *tmp = next;
3942 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3943
3944 next = tmp->next;
3945 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3946 continue;
3947 /*
3948 * Descend a level if the d_mounts list is non-empty.
3949 */
3950 if (!list_empty(&mnt->mnt_mounts)) {
3951 this_parent = mnt;
3952 goto repeat;
3953 }
3954
3955 if (!propagate_mount_busy(mnt, 1)) {
3956 list_move_tail(&mnt->mnt_expire, graveyard);
3957 found++;
3958 }
3959 }
3960 /*
3961 * All done at this level ... ascend and resume the search
3962 */
3963 if (this_parent != parent) {
3964 next = this_parent->mnt_child.next;
3965 this_parent = this_parent->mnt_parent;
3966 goto resume;
3967 }
3968 return found;
3969 }
3970
3971 /*
3972 * process a list of expirable mountpoints with the intent of discarding any
3973 * submounts of a specific parent mountpoint
3974 *
3975 * mount_lock must be held for write
3976 */
shrink_submounts(struct mount * mnt)3977 static void shrink_submounts(struct mount *mnt)
3978 {
3979 LIST_HEAD(graveyard);
3980 struct mount *m;
3981
3982 /* extract submounts of 'mountpoint' from the expiration list */
3983 while (select_submounts(mnt, &graveyard)) {
3984 while (!list_empty(&graveyard)) {
3985 m = list_first_entry(&graveyard, struct mount,
3986 mnt_expire);
3987 touch_mnt_namespace(m->mnt_ns);
3988 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3989 }
3990 }
3991 }
3992
copy_mount_options(const void __user * data)3993 static void *copy_mount_options(const void __user * data)
3994 {
3995 char *copy;
3996 unsigned left, offset;
3997
3998 if (!data)
3999 return NULL;
4000
4001 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
4002 if (!copy)
4003 return ERR_PTR(-ENOMEM);
4004
4005 left = copy_from_user(copy, data, PAGE_SIZE);
4006
4007 /*
4008 * Not all architectures have an exact copy_from_user(). Resort to
4009 * byte at a time.
4010 */
4011 offset = PAGE_SIZE - left;
4012 while (left) {
4013 char c;
4014 if (get_user(c, (const char __user *)data + offset))
4015 break;
4016 copy[offset] = c;
4017 left--;
4018 offset++;
4019 }
4020
4021 if (left == PAGE_SIZE) {
4022 kfree(copy);
4023 return ERR_PTR(-EFAULT);
4024 }
4025
4026 return copy;
4027 }
4028
copy_mount_string(const void __user * data)4029 static char *copy_mount_string(const void __user *data)
4030 {
4031 return data ? strndup_user(data, PATH_MAX) : NULL;
4032 }
4033
4034 /*
4035 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
4036 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
4037 *
4038 * data is a (void *) that can point to any structure up to
4039 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
4040 * information (or be NULL).
4041 *
4042 * Pre-0.97 versions of mount() didn't have a flags word.
4043 * When the flags word was introduced its top half was required
4044 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
4045 * Therefore, if this magic number is present, it carries no information
4046 * and must be discarded.
4047 */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)4048 int path_mount(const char *dev_name, struct path *path,
4049 const char *type_page, unsigned long flags, void *data_page)
4050 {
4051 unsigned int mnt_flags = 0, sb_flags;
4052 int ret;
4053
4054 /* Discard magic */
4055 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
4056 flags &= ~MS_MGC_MSK;
4057
4058 /* Basic sanity checks */
4059 if (data_page)
4060 ((char *)data_page)[PAGE_SIZE - 1] = 0;
4061
4062 if (flags & MS_NOUSER)
4063 return -EINVAL;
4064
4065 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
4066 if (ret)
4067 return ret;
4068 if (!may_mount())
4069 return -EPERM;
4070 if (flags & SB_MANDLOCK)
4071 warn_mandlock();
4072
4073 /* Default to relatime unless overriden */
4074 if (!(flags & MS_NOATIME))
4075 mnt_flags |= MNT_RELATIME;
4076
4077 /* Separate the per-mountpoint flags */
4078 if (flags & MS_NOSUID)
4079 mnt_flags |= MNT_NOSUID;
4080 if (flags & MS_NODEV)
4081 mnt_flags |= MNT_NODEV;
4082 if (flags & MS_NOEXEC)
4083 mnt_flags |= MNT_NOEXEC;
4084 if (flags & MS_NOATIME)
4085 mnt_flags |= MNT_NOATIME;
4086 if (flags & MS_NODIRATIME)
4087 mnt_flags |= MNT_NODIRATIME;
4088 if (flags & MS_STRICTATIME)
4089 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
4090 if (flags & MS_RDONLY)
4091 mnt_flags |= MNT_READONLY;
4092 if (flags & MS_NOSYMFOLLOW)
4093 mnt_flags |= MNT_NOSYMFOLLOW;
4094
4095 /* The default atime for remount is preservation */
4096 if ((flags & MS_REMOUNT) &&
4097 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4098 MS_STRICTATIME)) == 0)) {
4099 mnt_flags &= ~MNT_ATIME_MASK;
4100 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4101 }
4102
4103 sb_flags = flags & (SB_RDONLY |
4104 SB_SYNCHRONOUS |
4105 SB_MANDLOCK |
4106 SB_DIRSYNC |
4107 SB_SILENT |
4108 SB_POSIXACL |
4109 SB_LAZYTIME |
4110 SB_I_VERSION);
4111
4112 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4113 return do_reconfigure_mnt(path, mnt_flags);
4114 if (flags & MS_REMOUNT)
4115 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
4116 if (flags & MS_BIND)
4117 return do_loopback(path, dev_name, flags & MS_REC);
4118 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4119 return do_change_type(path, flags);
4120 if (flags & MS_MOVE)
4121 return do_move_mount_old(path, dev_name);
4122
4123 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4124 data_page);
4125 }
4126
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)4127 int do_mount(const char *dev_name, const char __user *dir_name,
4128 const char *type_page, unsigned long flags, void *data_page)
4129 {
4130 struct path path;
4131 int ret;
4132
4133 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4134 if (ret)
4135 return ret;
4136 ret = path_mount(dev_name, &path, type_page, flags, data_page);
4137 path_put(&path);
4138 return ret;
4139 }
4140
inc_mnt_namespaces(struct user_namespace * ns)4141 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4142 {
4143 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4144 }
4145
dec_mnt_namespaces(struct ucounts * ucounts)4146 static void dec_mnt_namespaces(struct ucounts *ucounts)
4147 {
4148 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4149 }
4150
free_mnt_ns(struct mnt_namespace * ns)4151 static void free_mnt_ns(struct mnt_namespace *ns)
4152 {
4153 if (!is_anon_ns(ns))
4154 ns_free_inum(&ns->ns);
4155 dec_mnt_namespaces(ns->ucounts);
4156 mnt_ns_tree_remove(ns);
4157 }
4158
4159 /*
4160 * Assign a sequence number so we can detect when we attempt to bind
4161 * mount a reference to an older mount namespace into the current
4162 * mount namespace, preventing reference counting loops. A 64bit
4163 * number incrementing at 10Ghz will take 12,427 years to wrap which
4164 * is effectively never, so we can ignore the possibility.
4165 */
4166 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
4167
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)4168 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4169 {
4170 struct mnt_namespace *new_ns;
4171 struct ucounts *ucounts;
4172 int ret;
4173
4174 ucounts = inc_mnt_namespaces(user_ns);
4175 if (!ucounts)
4176 return ERR_PTR(-ENOSPC);
4177
4178 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4179 if (!new_ns) {
4180 dec_mnt_namespaces(ucounts);
4181 return ERR_PTR(-ENOMEM);
4182 }
4183 if (!anon) {
4184 ret = ns_alloc_inum(&new_ns->ns);
4185 if (ret) {
4186 kfree(new_ns);
4187 dec_mnt_namespaces(ucounts);
4188 return ERR_PTR(ret);
4189 }
4190 }
4191 new_ns->ns.ops = &mntns_operations;
4192 if (!anon)
4193 new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
4194 refcount_set(&new_ns->ns.count, 1);
4195 refcount_set(&new_ns->passive, 1);
4196 new_ns->mounts = RB_ROOT;
4197 INIT_LIST_HEAD(&new_ns->mnt_ns_list);
4198 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
4199 init_waitqueue_head(&new_ns->poll);
4200 new_ns->user_ns = get_user_ns(user_ns);
4201 new_ns->ucounts = ucounts;
4202 return new_ns;
4203 }
4204
4205 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)4206 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
4207 struct user_namespace *user_ns, struct fs_struct *new_fs)
4208 {
4209 struct mnt_namespace *new_ns;
4210 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
4211 struct mount *p, *q;
4212 struct mount *old;
4213 struct mount *new;
4214 int copy_flags;
4215
4216 BUG_ON(!ns);
4217
4218 if (likely(!(flags & CLONE_NEWNS))) {
4219 get_mnt_ns(ns);
4220 return ns;
4221 }
4222
4223 old = ns->root;
4224
4225 new_ns = alloc_mnt_ns(user_ns, false);
4226 if (IS_ERR(new_ns))
4227 return new_ns;
4228
4229 namespace_lock();
4230 /* First pass: copy the tree topology */
4231 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4232 if (user_ns != ns->user_ns)
4233 copy_flags |= CL_SLAVE;
4234 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4235 if (IS_ERR(new)) {
4236 namespace_unlock();
4237 ns_free_inum(&new_ns->ns);
4238 dec_mnt_namespaces(new_ns->ucounts);
4239 mnt_ns_release(new_ns);
4240 return ERR_CAST(new);
4241 }
4242 if (user_ns != ns->user_ns) {
4243 lock_mount_hash();
4244 lock_mnt_tree(new);
4245 unlock_mount_hash();
4246 }
4247 new_ns->root = new;
4248
4249 /*
4250 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4251 * as belonging to new namespace. We have already acquired a private
4252 * fs_struct, so tsk->fs->lock is not needed.
4253 */
4254 p = old;
4255 q = new;
4256 while (p) {
4257 mnt_add_to_ns(new_ns, q);
4258 new_ns->nr_mounts++;
4259 if (new_fs) {
4260 if (&p->mnt == new_fs->root.mnt) {
4261 new_fs->root.mnt = mntget(&q->mnt);
4262 rootmnt = &p->mnt;
4263 }
4264 if (&p->mnt == new_fs->pwd.mnt) {
4265 new_fs->pwd.mnt = mntget(&q->mnt);
4266 pwdmnt = &p->mnt;
4267 }
4268 }
4269 p = next_mnt(p, old);
4270 q = next_mnt(q, new);
4271 if (!q)
4272 break;
4273 // an mntns binding we'd skipped?
4274 while (p->mnt.mnt_root != q->mnt.mnt_root)
4275 p = next_mnt(skip_mnt_tree(p), old);
4276 }
4277 namespace_unlock();
4278
4279 if (rootmnt)
4280 mntput(rootmnt);
4281 if (pwdmnt)
4282 mntput(pwdmnt);
4283
4284 mnt_ns_tree_add(new_ns);
4285 return new_ns;
4286 }
4287
mount_subtree(struct vfsmount * m,const char * name)4288 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4289 {
4290 struct mount *mnt = real_mount(m);
4291 struct mnt_namespace *ns;
4292 struct super_block *s;
4293 struct path path;
4294 int err;
4295
4296 ns = alloc_mnt_ns(&init_user_ns, true);
4297 if (IS_ERR(ns)) {
4298 mntput(m);
4299 return ERR_CAST(ns);
4300 }
4301 ns->root = mnt;
4302 ns->nr_mounts++;
4303 mnt_add_to_ns(ns, mnt);
4304
4305 err = vfs_path_lookup(m->mnt_root, m,
4306 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4307
4308 put_mnt_ns(ns);
4309
4310 if (err)
4311 return ERR_PTR(err);
4312
4313 /* trade a vfsmount reference for active sb one */
4314 s = path.mnt->mnt_sb;
4315 atomic_inc(&s->s_active);
4316 mntput(path.mnt);
4317 /* lock the sucker */
4318 down_write(&s->s_umount);
4319 /* ... and return the root of (sub)tree on it */
4320 return path.dentry;
4321 }
4322 EXPORT_SYMBOL(mount_subtree);
4323
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)4324 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4325 char __user *, type, unsigned long, flags, void __user *, data)
4326 {
4327 int ret;
4328 char *kernel_type;
4329 char *kernel_dev;
4330 void *options;
4331
4332 kernel_type = copy_mount_string(type);
4333 ret = PTR_ERR(kernel_type);
4334 if (IS_ERR(kernel_type))
4335 goto out_type;
4336
4337 kernel_dev = copy_mount_string(dev_name);
4338 ret = PTR_ERR(kernel_dev);
4339 if (IS_ERR(kernel_dev))
4340 goto out_dev;
4341
4342 options = copy_mount_options(data);
4343 ret = PTR_ERR(options);
4344 if (IS_ERR(options))
4345 goto out_data;
4346
4347 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4348
4349 kfree(options);
4350 out_data:
4351 kfree(kernel_dev);
4352 out_dev:
4353 kfree(kernel_type);
4354 out_type:
4355 return ret;
4356 }
4357
4358 #define FSMOUNT_VALID_FLAGS \
4359 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
4360 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
4361 MOUNT_ATTR_NOSYMFOLLOW)
4362
4363 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4364
4365 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4366 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4367
attr_flags_to_mnt_flags(u64 attr_flags)4368 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4369 {
4370 unsigned int mnt_flags = 0;
4371
4372 if (attr_flags & MOUNT_ATTR_RDONLY)
4373 mnt_flags |= MNT_READONLY;
4374 if (attr_flags & MOUNT_ATTR_NOSUID)
4375 mnt_flags |= MNT_NOSUID;
4376 if (attr_flags & MOUNT_ATTR_NODEV)
4377 mnt_flags |= MNT_NODEV;
4378 if (attr_flags & MOUNT_ATTR_NOEXEC)
4379 mnt_flags |= MNT_NOEXEC;
4380 if (attr_flags & MOUNT_ATTR_NODIRATIME)
4381 mnt_flags |= MNT_NODIRATIME;
4382 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4383 mnt_flags |= MNT_NOSYMFOLLOW;
4384
4385 return mnt_flags;
4386 }
4387
4388 /*
4389 * Create a kernel mount representation for a new, prepared superblock
4390 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4391 */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4392 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4393 unsigned int, attr_flags)
4394 {
4395 struct mnt_namespace *ns;
4396 struct fs_context *fc;
4397 struct file *file;
4398 struct path newmount;
4399 struct mount *mnt;
4400 unsigned int mnt_flags = 0;
4401 long ret;
4402
4403 if (!may_mount())
4404 return -EPERM;
4405
4406 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4407 return -EINVAL;
4408
4409 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4410 return -EINVAL;
4411
4412 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4413
4414 switch (attr_flags & MOUNT_ATTR__ATIME) {
4415 case MOUNT_ATTR_STRICTATIME:
4416 break;
4417 case MOUNT_ATTR_NOATIME:
4418 mnt_flags |= MNT_NOATIME;
4419 break;
4420 case MOUNT_ATTR_RELATIME:
4421 mnt_flags |= MNT_RELATIME;
4422 break;
4423 default:
4424 return -EINVAL;
4425 }
4426
4427 CLASS(fd, f)(fs_fd);
4428 if (fd_empty(f))
4429 return -EBADF;
4430
4431 if (fd_file(f)->f_op != &fscontext_fops)
4432 return -EINVAL;
4433
4434 fc = fd_file(f)->private_data;
4435
4436 ret = mutex_lock_interruptible(&fc->uapi_mutex);
4437 if (ret < 0)
4438 return ret;
4439
4440 /* There must be a valid superblock or we can't mount it */
4441 ret = -EINVAL;
4442 if (!fc->root)
4443 goto err_unlock;
4444
4445 ret = -EPERM;
4446 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4447 pr_warn("VFS: Mount too revealing\n");
4448 goto err_unlock;
4449 }
4450
4451 ret = -EBUSY;
4452 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4453 goto err_unlock;
4454
4455 if (fc->sb_flags & SB_MANDLOCK)
4456 warn_mandlock();
4457
4458 newmount.mnt = vfs_create_mount(fc);
4459 if (IS_ERR(newmount.mnt)) {
4460 ret = PTR_ERR(newmount.mnt);
4461 goto err_unlock;
4462 }
4463 newmount.dentry = dget(fc->root);
4464 newmount.mnt->mnt_flags = mnt_flags;
4465
4466 /* We've done the mount bit - now move the file context into more or
4467 * less the same state as if we'd done an fspick(). We don't want to
4468 * do any memory allocation or anything like that at this point as we
4469 * don't want to have to handle any errors incurred.
4470 */
4471 vfs_clean_context(fc);
4472
4473 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4474 if (IS_ERR(ns)) {
4475 ret = PTR_ERR(ns);
4476 goto err_path;
4477 }
4478 mnt = real_mount(newmount.mnt);
4479 ns->root = mnt;
4480 ns->nr_mounts = 1;
4481 mnt_add_to_ns(ns, mnt);
4482 mntget(newmount.mnt);
4483
4484 /* Attach to an apparent O_PATH fd with a note that we need to unmount
4485 * it, not just simply put it.
4486 */
4487 file = dentry_open(&newmount, O_PATH, fc->cred);
4488 if (IS_ERR(file)) {
4489 dissolve_on_fput(newmount.mnt);
4490 ret = PTR_ERR(file);
4491 goto err_path;
4492 }
4493 file->f_mode |= FMODE_NEED_UNMOUNT;
4494
4495 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4496 if (ret >= 0)
4497 fd_install(ret, file);
4498 else
4499 fput(file);
4500
4501 err_path:
4502 path_put(&newmount);
4503 err_unlock:
4504 mutex_unlock(&fc->uapi_mutex);
4505 return ret;
4506 }
4507
vfs_move_mount(struct path * from_path,struct path * to_path,enum mnt_tree_flags_t mflags)4508 static inline int vfs_move_mount(struct path *from_path, struct path *to_path,
4509 enum mnt_tree_flags_t mflags)
4510 {
4511 int ret;
4512
4513 ret = security_move_mount(from_path, to_path);
4514 if (ret)
4515 return ret;
4516
4517 if (mflags & MNT_TREE_PROPAGATION)
4518 return do_set_group(from_path, to_path);
4519
4520 return do_move_mount(from_path, to_path, mflags);
4521 }
4522
4523 /*
4524 * Move a mount from one place to another. In combination with
4525 * fsopen()/fsmount() this is used to install a new mount and in combination
4526 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4527 * a mount subtree.
4528 *
4529 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4530 */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4531 SYSCALL_DEFINE5(move_mount,
4532 int, from_dfd, const char __user *, from_pathname,
4533 int, to_dfd, const char __user *, to_pathname,
4534 unsigned int, flags)
4535 {
4536 struct path to_path __free(path_put) = {};
4537 struct path from_path __free(path_put) = {};
4538 struct filename *to_name __free(putname) = NULL;
4539 struct filename *from_name __free(putname) = NULL;
4540 unsigned int lflags, uflags;
4541 enum mnt_tree_flags_t mflags = 0;
4542 int ret = 0;
4543
4544 if (!may_mount())
4545 return -EPERM;
4546
4547 if (flags & ~MOVE_MOUNT__MASK)
4548 return -EINVAL;
4549
4550 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4551 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4552 return -EINVAL;
4553
4554 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION;
4555 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH;
4556
4557 uflags = 0;
4558 if (flags & MOVE_MOUNT_T_EMPTY_PATH)
4559 uflags = AT_EMPTY_PATH;
4560
4561 to_name = getname_maybe_null(to_pathname, uflags);
4562 if (IS_ERR(to_name))
4563 return PTR_ERR(to_name);
4564
4565 if (!to_name && to_dfd >= 0) {
4566 CLASS(fd_raw, f_to)(to_dfd);
4567 if (fd_empty(f_to))
4568 return -EBADF;
4569
4570 to_path = fd_file(f_to)->f_path;
4571 path_get(&to_path);
4572 } else {
4573 lflags = 0;
4574 if (flags & MOVE_MOUNT_T_SYMLINKS)
4575 lflags |= LOOKUP_FOLLOW;
4576 if (flags & MOVE_MOUNT_T_AUTOMOUNTS)
4577 lflags |= LOOKUP_AUTOMOUNT;
4578 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4579 if (ret)
4580 return ret;
4581 }
4582
4583 uflags = 0;
4584 if (flags & MOVE_MOUNT_F_EMPTY_PATH)
4585 uflags = AT_EMPTY_PATH;
4586
4587 from_name = getname_maybe_null(from_pathname, uflags);
4588 if (IS_ERR(from_name))
4589 return PTR_ERR(from_name);
4590
4591 if (!from_name && from_dfd >= 0) {
4592 CLASS(fd_raw, f_from)(from_dfd);
4593 if (fd_empty(f_from))
4594 return -EBADF;
4595
4596 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4597 }
4598
4599 lflags = 0;
4600 if (flags & MOVE_MOUNT_F_SYMLINKS)
4601 lflags |= LOOKUP_FOLLOW;
4602 if (flags & MOVE_MOUNT_F_AUTOMOUNTS)
4603 lflags |= LOOKUP_AUTOMOUNT;
4604 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4605 if (ret)
4606 return ret;
4607
4608 return vfs_move_mount(&from_path, &to_path, mflags);
4609 }
4610
4611 /*
4612 * Return true if path is reachable from root
4613 *
4614 * namespace_sem or mount_lock is held
4615 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4616 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4617 const struct path *root)
4618 {
4619 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4620 dentry = mnt->mnt_mountpoint;
4621 mnt = mnt->mnt_parent;
4622 }
4623 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4624 }
4625
path_is_under(const struct path * path1,const struct path * path2)4626 bool path_is_under(const struct path *path1, const struct path *path2)
4627 {
4628 bool res;
4629 read_seqlock_excl(&mount_lock);
4630 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4631 read_sequnlock_excl(&mount_lock);
4632 return res;
4633 }
4634 EXPORT_SYMBOL(path_is_under);
4635
4636 /*
4637 * pivot_root Semantics:
4638 * Moves the root file system of the current process to the directory put_old,
4639 * makes new_root as the new root file system of the current process, and sets
4640 * root/cwd of all processes which had them on the current root to new_root.
4641 *
4642 * Restrictions:
4643 * The new_root and put_old must be directories, and must not be on the
4644 * same file system as the current process root. The put_old must be
4645 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4646 * pointed to by put_old must yield the same directory as new_root. No other
4647 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4648 *
4649 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4650 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4651 * in this situation.
4652 *
4653 * Notes:
4654 * - we don't move root/cwd if they are not at the root (reason: if something
4655 * cared enough to change them, it's probably wrong to force them elsewhere)
4656 * - it's okay to pick a root that isn't the root of a file system, e.g.
4657 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4658 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4659 * first.
4660 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4661 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4662 const char __user *, put_old)
4663 {
4664 struct path new, old, root;
4665 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4666 struct pinned_mountpoint old_mp = {};
4667 int error;
4668
4669 if (!may_mount())
4670 return -EPERM;
4671
4672 error = user_path_at(AT_FDCWD, new_root,
4673 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4674 if (error)
4675 goto out0;
4676
4677 error = user_path_at(AT_FDCWD, put_old,
4678 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4679 if (error)
4680 goto out1;
4681
4682 error = security_sb_pivotroot(&old, &new);
4683 if (error)
4684 goto out2;
4685
4686 get_fs_root(current->fs, &root);
4687 error = lock_mount(&old, &old_mp);
4688 if (error)
4689 goto out3;
4690
4691 error = -EINVAL;
4692 new_mnt = real_mount(new.mnt);
4693 root_mnt = real_mount(root.mnt);
4694 old_mnt = real_mount(old.mnt);
4695 ex_parent = new_mnt->mnt_parent;
4696 root_parent = root_mnt->mnt_parent;
4697 if (IS_MNT_SHARED(old_mnt) ||
4698 IS_MNT_SHARED(ex_parent) ||
4699 IS_MNT_SHARED(root_parent))
4700 goto out4;
4701 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4702 goto out4;
4703 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4704 goto out4;
4705 error = -ENOENT;
4706 if (d_unlinked(new.dentry))
4707 goto out4;
4708 error = -EBUSY;
4709 if (new_mnt == root_mnt || old_mnt == root_mnt)
4710 goto out4; /* loop, on the same file system */
4711 error = -EINVAL;
4712 if (!path_mounted(&root))
4713 goto out4; /* not a mountpoint */
4714 if (!mnt_has_parent(root_mnt))
4715 goto out4; /* absolute root */
4716 if (!path_mounted(&new))
4717 goto out4; /* not a mountpoint */
4718 if (!mnt_has_parent(new_mnt))
4719 goto out4; /* absolute root */
4720 /* make sure we can reach put_old from new_root */
4721 if (!is_path_reachable(old_mnt, old.dentry, &new))
4722 goto out4;
4723 /* make certain new is below the root */
4724 if (!is_path_reachable(new_mnt, new.dentry, &root))
4725 goto out4;
4726 lock_mount_hash();
4727 umount_mnt(new_mnt);
4728 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4729 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4730 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4731 }
4732 /* mount new_root on / */
4733 attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp);
4734 umount_mnt(root_mnt);
4735 /* mount old root on put_old */
4736 attach_mnt(root_mnt, old_mnt, old_mp.mp);
4737 touch_mnt_namespace(current->nsproxy->mnt_ns);
4738 /* A moved mount should not expire automatically */
4739 list_del_init(&new_mnt->mnt_expire);
4740 unlock_mount_hash();
4741 mnt_notify_add(root_mnt);
4742 mnt_notify_add(new_mnt);
4743 chroot_fs_refs(&root, &new);
4744 error = 0;
4745 out4:
4746 unlock_mount(&old_mp);
4747 out3:
4748 path_put(&root);
4749 out2:
4750 path_put(&old);
4751 out1:
4752 path_put(&new);
4753 out0:
4754 return error;
4755 }
4756
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4757 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4758 {
4759 unsigned int flags = mnt->mnt.mnt_flags;
4760
4761 /* flags to clear */
4762 flags &= ~kattr->attr_clr;
4763 /* flags to raise */
4764 flags |= kattr->attr_set;
4765
4766 return flags;
4767 }
4768
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4769 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4770 {
4771 struct vfsmount *m = &mnt->mnt;
4772 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4773
4774 if (!kattr->mnt_idmap)
4775 return 0;
4776
4777 /*
4778 * Creating an idmapped mount with the filesystem wide idmapping
4779 * doesn't make sense so block that. We don't allow mushy semantics.
4780 */
4781 if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4782 return -EINVAL;
4783
4784 /*
4785 * We only allow an mount to change it's idmapping if it has
4786 * never been accessible to userspace.
4787 */
4788 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4789 return -EPERM;
4790
4791 /* The underlying filesystem doesn't support idmapped mounts yet. */
4792 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4793 return -EINVAL;
4794
4795 /* The filesystem has turned off idmapped mounts. */
4796 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4797 return -EINVAL;
4798
4799 /* We're not controlling the superblock. */
4800 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4801 return -EPERM;
4802
4803 /* Mount has already been visible in the filesystem hierarchy. */
4804 if (!is_anon_ns(mnt->mnt_ns))
4805 return -EINVAL;
4806
4807 return 0;
4808 }
4809
4810 /**
4811 * mnt_allow_writers() - check whether the attribute change allows writers
4812 * @kattr: the new mount attributes
4813 * @mnt: the mount to which @kattr will be applied
4814 *
4815 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4816 *
4817 * Return: true if writers need to be held, false if not
4818 */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4819 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4820 const struct mount *mnt)
4821 {
4822 return (!(kattr->attr_set & MNT_READONLY) ||
4823 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4824 !kattr->mnt_idmap;
4825 }
4826
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4827 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4828 {
4829 struct mount *m;
4830 int err;
4831
4832 for (m = mnt; m; m = next_mnt(m, mnt)) {
4833 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4834 err = -EPERM;
4835 break;
4836 }
4837
4838 err = can_idmap_mount(kattr, m);
4839 if (err)
4840 break;
4841
4842 if (!mnt_allow_writers(kattr, m)) {
4843 err = mnt_hold_writers(m);
4844 if (err)
4845 break;
4846 }
4847
4848 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4849 return 0;
4850 }
4851
4852 if (err) {
4853 struct mount *p;
4854
4855 /*
4856 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4857 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4858 * mounts and needs to take care to include the first mount.
4859 */
4860 for (p = mnt; p; p = next_mnt(p, mnt)) {
4861 /* If we had to hold writers unblock them. */
4862 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4863 mnt_unhold_writers(p);
4864
4865 /*
4866 * We're done once the first mount we changed got
4867 * MNT_WRITE_HOLD unset.
4868 */
4869 if (p == m)
4870 break;
4871 }
4872 }
4873 return err;
4874 }
4875
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4876 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4877 {
4878 struct mnt_idmap *old_idmap;
4879
4880 if (!kattr->mnt_idmap)
4881 return;
4882
4883 old_idmap = mnt_idmap(&mnt->mnt);
4884
4885 /* Pairs with smp_load_acquire() in mnt_idmap(). */
4886 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4887 mnt_idmap_put(old_idmap);
4888 }
4889
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4890 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4891 {
4892 struct mount *m;
4893
4894 for (m = mnt; m; m = next_mnt(m, mnt)) {
4895 unsigned int flags;
4896
4897 do_idmap_mount(kattr, m);
4898 flags = recalc_flags(kattr, m);
4899 WRITE_ONCE(m->mnt.mnt_flags, flags);
4900
4901 /* If we had to hold writers unblock them. */
4902 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4903 mnt_unhold_writers(m);
4904
4905 if (kattr->propagation)
4906 change_mnt_propagation(m, kattr->propagation);
4907 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4908 break;
4909 }
4910 touch_mnt_namespace(mnt->mnt_ns);
4911 }
4912
do_mount_setattr(struct path * path,struct mount_kattr * kattr)4913 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4914 {
4915 struct mount *mnt = real_mount(path->mnt);
4916 int err = 0;
4917
4918 if (!path_mounted(path))
4919 return -EINVAL;
4920
4921 if (kattr->mnt_userns) {
4922 struct mnt_idmap *mnt_idmap;
4923
4924 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4925 if (IS_ERR(mnt_idmap))
4926 return PTR_ERR(mnt_idmap);
4927 kattr->mnt_idmap = mnt_idmap;
4928 }
4929
4930 if (kattr->propagation) {
4931 /*
4932 * Only take namespace_lock() if we're actually changing
4933 * propagation.
4934 */
4935 namespace_lock();
4936 if (kattr->propagation == MS_SHARED) {
4937 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
4938 if (err) {
4939 namespace_unlock();
4940 return err;
4941 }
4942 }
4943 }
4944
4945 err = -EINVAL;
4946 lock_mount_hash();
4947
4948 if (!anon_ns_root(mnt) && !check_mnt(mnt))
4949 goto out;
4950
4951 /*
4952 * First, we get the mount tree in a shape where we can change mount
4953 * properties without failure. If we succeeded to do so we commit all
4954 * changes and if we failed we clean up.
4955 */
4956 err = mount_setattr_prepare(kattr, mnt);
4957 if (!err)
4958 mount_setattr_commit(kattr, mnt);
4959
4960 out:
4961 unlock_mount_hash();
4962
4963 if (kattr->propagation) {
4964 if (err)
4965 cleanup_group_ids(mnt, NULL);
4966 namespace_unlock();
4967 }
4968
4969 return err;
4970 }
4971
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)4972 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4973 struct mount_kattr *kattr)
4974 {
4975 struct ns_common *ns;
4976 struct user_namespace *mnt_userns;
4977
4978 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4979 return 0;
4980
4981 if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
4982 /*
4983 * We can only remove an idmapping if it's never been
4984 * exposed to userspace.
4985 */
4986 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
4987 return -EINVAL;
4988
4989 /*
4990 * Removal of idmappings is equivalent to setting
4991 * nop_mnt_idmap.
4992 */
4993 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
4994 kattr->mnt_idmap = &nop_mnt_idmap;
4995 return 0;
4996 }
4997 }
4998
4999 if (attr->userns_fd > INT_MAX)
5000 return -EINVAL;
5001
5002 CLASS(fd, f)(attr->userns_fd);
5003 if (fd_empty(f))
5004 return -EBADF;
5005
5006 if (!proc_ns_file(fd_file(f)))
5007 return -EINVAL;
5008
5009 ns = get_proc_ns(file_inode(fd_file(f)));
5010 if (ns->ops->type != CLONE_NEWUSER)
5011 return -EINVAL;
5012
5013 /*
5014 * The initial idmapping cannot be used to create an idmapped
5015 * mount. We use the initial idmapping as an indicator of a mount
5016 * that is not idmapped. It can simply be passed into helpers that
5017 * are aware of idmapped mounts as a convenient shortcut. A user
5018 * can just create a dedicated identity mapping to achieve the same
5019 * result.
5020 */
5021 mnt_userns = container_of(ns, struct user_namespace, ns);
5022 if (mnt_userns == &init_user_ns)
5023 return -EPERM;
5024
5025 /* We're not controlling the target namespace. */
5026 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
5027 return -EPERM;
5028
5029 kattr->mnt_userns = get_user_ns(mnt_userns);
5030 return 0;
5031 }
5032
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)5033 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
5034 struct mount_kattr *kattr)
5035 {
5036 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
5037 return -EINVAL;
5038 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
5039 return -EINVAL;
5040 kattr->propagation = attr->propagation;
5041
5042 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
5043 return -EINVAL;
5044
5045 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
5046 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
5047
5048 /*
5049 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
5050 * users wanting to transition to a different atime setting cannot
5051 * simply specify the atime setting in @attr_set, but must also
5052 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
5053 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
5054 * @attr_clr and that @attr_set can't have any atime bits set if
5055 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
5056 */
5057 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
5058 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
5059 return -EINVAL;
5060
5061 /*
5062 * Clear all previous time settings as they are mutually
5063 * exclusive.
5064 */
5065 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
5066 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
5067 case MOUNT_ATTR_RELATIME:
5068 kattr->attr_set |= MNT_RELATIME;
5069 break;
5070 case MOUNT_ATTR_NOATIME:
5071 kattr->attr_set |= MNT_NOATIME;
5072 break;
5073 case MOUNT_ATTR_STRICTATIME:
5074 break;
5075 default:
5076 return -EINVAL;
5077 }
5078 } else {
5079 if (attr->attr_set & MOUNT_ATTR__ATIME)
5080 return -EINVAL;
5081 }
5082
5083 return build_mount_idmapped(attr, usize, kattr);
5084 }
5085
finish_mount_kattr(struct mount_kattr * kattr)5086 static void finish_mount_kattr(struct mount_kattr *kattr)
5087 {
5088 if (kattr->mnt_userns) {
5089 put_user_ns(kattr->mnt_userns);
5090 kattr->mnt_userns = NULL;
5091 }
5092
5093 if (kattr->mnt_idmap)
5094 mnt_idmap_put(kattr->mnt_idmap);
5095 }
5096
wants_mount_setattr(struct mount_attr __user * uattr,size_t usize,struct mount_kattr * kattr)5097 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
5098 struct mount_kattr *kattr)
5099 {
5100 int ret;
5101 struct mount_attr attr;
5102
5103 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
5104
5105 if (unlikely(usize > PAGE_SIZE))
5106 return -E2BIG;
5107 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
5108 return -EINVAL;
5109
5110 if (!may_mount())
5111 return -EPERM;
5112
5113 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
5114 if (ret)
5115 return ret;
5116
5117 /* Don't bother walking through the mounts if this is a nop. */
5118 if (attr.attr_set == 0 &&
5119 attr.attr_clr == 0 &&
5120 attr.propagation == 0)
5121 return 0; /* Tell caller to not bother. */
5122
5123 ret = build_mount_kattr(&attr, usize, kattr);
5124 if (ret < 0)
5125 return ret;
5126
5127 return 1;
5128 }
5129
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)5130 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
5131 unsigned int, flags, struct mount_attr __user *, uattr,
5132 size_t, usize)
5133 {
5134 int err;
5135 struct path target;
5136 struct mount_kattr kattr;
5137 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
5138
5139 if (flags & ~(AT_EMPTY_PATH |
5140 AT_RECURSIVE |
5141 AT_SYMLINK_NOFOLLOW |
5142 AT_NO_AUTOMOUNT))
5143 return -EINVAL;
5144
5145 if (flags & AT_NO_AUTOMOUNT)
5146 lookup_flags &= ~LOOKUP_AUTOMOUNT;
5147 if (flags & AT_SYMLINK_NOFOLLOW)
5148 lookup_flags &= ~LOOKUP_FOLLOW;
5149 if (flags & AT_EMPTY_PATH)
5150 lookup_flags |= LOOKUP_EMPTY;
5151
5152 kattr = (struct mount_kattr) {
5153 .lookup_flags = lookup_flags,
5154 };
5155
5156 if (flags & AT_RECURSIVE)
5157 kattr.kflags |= MOUNT_KATTR_RECURSE;
5158
5159 err = wants_mount_setattr(uattr, usize, &kattr);
5160 if (err <= 0)
5161 return err;
5162
5163 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5164 if (!err) {
5165 err = do_mount_setattr(&target, &kattr);
5166 path_put(&target);
5167 }
5168 finish_mount_kattr(&kattr);
5169 return err;
5170 }
5171
SYSCALL_DEFINE5(open_tree_attr,int,dfd,const char __user *,filename,unsigned,flags,struct mount_attr __user *,uattr,size_t,usize)5172 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5173 unsigned, flags, struct mount_attr __user *, uattr,
5174 size_t, usize)
5175 {
5176 struct file __free(fput) *file = NULL;
5177 int fd;
5178
5179 if (!uattr && usize)
5180 return -EINVAL;
5181
5182 file = vfs_open_tree(dfd, filename, flags);
5183 if (IS_ERR(file))
5184 return PTR_ERR(file);
5185
5186 if (uattr) {
5187 int ret;
5188 struct mount_kattr kattr = {};
5189
5190 if (flags & OPEN_TREE_CLONE)
5191 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5192 if (flags & AT_RECURSIVE)
5193 kattr.kflags |= MOUNT_KATTR_RECURSE;
5194
5195 ret = wants_mount_setattr(uattr, usize, &kattr);
5196 if (ret > 0) {
5197 ret = do_mount_setattr(&file->f_path, &kattr);
5198 finish_mount_kattr(&kattr);
5199 }
5200 if (ret)
5201 return ret;
5202 }
5203
5204 fd = get_unused_fd_flags(flags & O_CLOEXEC);
5205 if (fd < 0)
5206 return fd;
5207
5208 fd_install(fd, no_free_ptr(file));
5209 return fd;
5210 }
5211
show_path(struct seq_file * m,struct dentry * root)5212 int show_path(struct seq_file *m, struct dentry *root)
5213 {
5214 if (root->d_sb->s_op->show_path)
5215 return root->d_sb->s_op->show_path(m, root);
5216
5217 seq_dentry(m, root, " \t\n\\");
5218 return 0;
5219 }
5220
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)5221 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5222 {
5223 struct mount *mnt = mnt_find_id_at(ns, id);
5224
5225 if (!mnt || mnt->mnt_id_unique != id)
5226 return NULL;
5227
5228 return &mnt->mnt;
5229 }
5230
5231 struct kstatmount {
5232 struct statmount __user *buf;
5233 size_t bufsize;
5234 struct vfsmount *mnt;
5235 struct mnt_idmap *idmap;
5236 u64 mask;
5237 struct path root;
5238 struct seq_file seq;
5239
5240 /* Must be last --ends in a flexible-array member. */
5241 struct statmount sm;
5242 };
5243
mnt_to_attr_flags(struct vfsmount * mnt)5244 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5245 {
5246 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5247 u64 attr_flags = 0;
5248
5249 if (mnt_flags & MNT_READONLY)
5250 attr_flags |= MOUNT_ATTR_RDONLY;
5251 if (mnt_flags & MNT_NOSUID)
5252 attr_flags |= MOUNT_ATTR_NOSUID;
5253 if (mnt_flags & MNT_NODEV)
5254 attr_flags |= MOUNT_ATTR_NODEV;
5255 if (mnt_flags & MNT_NOEXEC)
5256 attr_flags |= MOUNT_ATTR_NOEXEC;
5257 if (mnt_flags & MNT_NODIRATIME)
5258 attr_flags |= MOUNT_ATTR_NODIRATIME;
5259 if (mnt_flags & MNT_NOSYMFOLLOW)
5260 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5261
5262 if (mnt_flags & MNT_NOATIME)
5263 attr_flags |= MOUNT_ATTR_NOATIME;
5264 else if (mnt_flags & MNT_RELATIME)
5265 attr_flags |= MOUNT_ATTR_RELATIME;
5266 else
5267 attr_flags |= MOUNT_ATTR_STRICTATIME;
5268
5269 if (is_idmapped_mnt(mnt))
5270 attr_flags |= MOUNT_ATTR_IDMAP;
5271
5272 return attr_flags;
5273 }
5274
mnt_to_propagation_flags(struct mount * m)5275 static u64 mnt_to_propagation_flags(struct mount *m)
5276 {
5277 u64 propagation = 0;
5278
5279 if (IS_MNT_SHARED(m))
5280 propagation |= MS_SHARED;
5281 if (IS_MNT_SLAVE(m))
5282 propagation |= MS_SLAVE;
5283 if (IS_MNT_UNBINDABLE(m))
5284 propagation |= MS_UNBINDABLE;
5285 if (!propagation)
5286 propagation |= MS_PRIVATE;
5287
5288 return propagation;
5289 }
5290
statmount_sb_basic(struct kstatmount * s)5291 static void statmount_sb_basic(struct kstatmount *s)
5292 {
5293 struct super_block *sb = s->mnt->mnt_sb;
5294
5295 s->sm.mask |= STATMOUNT_SB_BASIC;
5296 s->sm.sb_dev_major = MAJOR(sb->s_dev);
5297 s->sm.sb_dev_minor = MINOR(sb->s_dev);
5298 s->sm.sb_magic = sb->s_magic;
5299 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5300 }
5301
statmount_mnt_basic(struct kstatmount * s)5302 static void statmount_mnt_basic(struct kstatmount *s)
5303 {
5304 struct mount *m = real_mount(s->mnt);
5305
5306 s->sm.mask |= STATMOUNT_MNT_BASIC;
5307 s->sm.mnt_id = m->mnt_id_unique;
5308 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5309 s->sm.mnt_id_old = m->mnt_id;
5310 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5311 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5312 s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5313 s->sm.mnt_peer_group = m->mnt_group_id;
5314 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5315 }
5316
statmount_propagate_from(struct kstatmount * s)5317 static void statmount_propagate_from(struct kstatmount *s)
5318 {
5319 struct mount *m = real_mount(s->mnt);
5320
5321 s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5322 if (IS_MNT_SLAVE(m))
5323 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root);
5324 }
5325
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)5326 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5327 {
5328 int ret;
5329 size_t start = seq->count;
5330
5331 ret = show_path(seq, s->mnt->mnt_root);
5332 if (ret)
5333 return ret;
5334
5335 if (unlikely(seq_has_overflowed(seq)))
5336 return -EAGAIN;
5337
5338 /*
5339 * Unescape the result. It would be better if supplied string was not
5340 * escaped in the first place, but that's a pretty invasive change.
5341 */
5342 seq->buf[seq->count] = '\0';
5343 seq->count = start;
5344 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5345 return 0;
5346 }
5347
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)5348 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5349 {
5350 struct vfsmount *mnt = s->mnt;
5351 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5352 int err;
5353
5354 err = seq_path_root(seq, &mnt_path, &s->root, "");
5355 return err == SEQ_SKIP ? 0 : err;
5356 }
5357
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)5358 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5359 {
5360 struct super_block *sb = s->mnt->mnt_sb;
5361
5362 seq_puts(seq, sb->s_type->name);
5363 return 0;
5364 }
5365
statmount_fs_subtype(struct kstatmount * s,struct seq_file * seq)5366 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5367 {
5368 struct super_block *sb = s->mnt->mnt_sb;
5369
5370 if (sb->s_subtype)
5371 seq_puts(seq, sb->s_subtype);
5372 }
5373
statmount_sb_source(struct kstatmount * s,struct seq_file * seq)5374 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5375 {
5376 struct super_block *sb = s->mnt->mnt_sb;
5377 struct mount *r = real_mount(s->mnt);
5378
5379 if (sb->s_op->show_devname) {
5380 size_t start = seq->count;
5381 int ret;
5382
5383 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5384 if (ret)
5385 return ret;
5386
5387 if (unlikely(seq_has_overflowed(seq)))
5388 return -EAGAIN;
5389
5390 /* Unescape the result */
5391 seq->buf[seq->count] = '\0';
5392 seq->count = start;
5393 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5394 } else {
5395 seq_puts(seq, r->mnt_devname);
5396 }
5397 return 0;
5398 }
5399
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)5400 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5401 {
5402 s->sm.mask |= STATMOUNT_MNT_NS_ID;
5403 s->sm.mnt_ns_id = ns->seq;
5404 }
5405
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)5406 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5407 {
5408 struct vfsmount *mnt = s->mnt;
5409 struct super_block *sb = mnt->mnt_sb;
5410 size_t start = seq->count;
5411 int err;
5412
5413 err = security_sb_show_options(seq, sb);
5414 if (err)
5415 return err;
5416
5417 if (sb->s_op->show_options) {
5418 err = sb->s_op->show_options(seq, mnt->mnt_root);
5419 if (err)
5420 return err;
5421 }
5422
5423 if (unlikely(seq_has_overflowed(seq)))
5424 return -EAGAIN;
5425
5426 if (seq->count == start)
5427 return 0;
5428
5429 /* skip leading comma */
5430 memmove(seq->buf + start, seq->buf + start + 1,
5431 seq->count - start - 1);
5432 seq->count--;
5433
5434 return 0;
5435 }
5436
statmount_opt_process(struct seq_file * seq,size_t start)5437 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5438 {
5439 char *buf_end, *opt_end, *src, *dst;
5440 int count = 0;
5441
5442 if (unlikely(seq_has_overflowed(seq)))
5443 return -EAGAIN;
5444
5445 buf_end = seq->buf + seq->count;
5446 dst = seq->buf + start;
5447 src = dst + 1; /* skip initial comma */
5448
5449 if (src >= buf_end) {
5450 seq->count = start;
5451 return 0;
5452 }
5453
5454 *buf_end = '\0';
5455 for (; src < buf_end; src = opt_end + 1) {
5456 opt_end = strchrnul(src, ',');
5457 *opt_end = '\0';
5458 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5459 if (WARN_ON_ONCE(++count == INT_MAX))
5460 return -EOVERFLOW;
5461 }
5462 seq->count = dst - 1 - seq->buf;
5463 return count;
5464 }
5465
statmount_opt_array(struct kstatmount * s,struct seq_file * seq)5466 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5467 {
5468 struct vfsmount *mnt = s->mnt;
5469 struct super_block *sb = mnt->mnt_sb;
5470 size_t start = seq->count;
5471 int err;
5472
5473 if (!sb->s_op->show_options)
5474 return 0;
5475
5476 err = sb->s_op->show_options(seq, mnt->mnt_root);
5477 if (err)
5478 return err;
5479
5480 err = statmount_opt_process(seq, start);
5481 if (err < 0)
5482 return err;
5483
5484 s->sm.opt_num = err;
5485 return 0;
5486 }
5487
statmount_opt_sec_array(struct kstatmount * s,struct seq_file * seq)5488 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5489 {
5490 struct vfsmount *mnt = s->mnt;
5491 struct super_block *sb = mnt->mnt_sb;
5492 size_t start = seq->count;
5493 int err;
5494
5495 err = security_sb_show_options(seq, sb);
5496 if (err)
5497 return err;
5498
5499 err = statmount_opt_process(seq, start);
5500 if (err < 0)
5501 return err;
5502
5503 s->sm.opt_sec_num = err;
5504 return 0;
5505 }
5506
statmount_mnt_uidmap(struct kstatmount * s,struct seq_file * seq)5507 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5508 {
5509 int ret;
5510
5511 ret = statmount_mnt_idmap(s->idmap, seq, true);
5512 if (ret < 0)
5513 return ret;
5514
5515 s->sm.mnt_uidmap_num = ret;
5516 /*
5517 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5518 * mappings. This allows userspace to distinguish between a
5519 * non-idmapped mount and an idmapped mount where none of the
5520 * individual mappings are valid in the caller's idmapping.
5521 */
5522 if (is_valid_mnt_idmap(s->idmap))
5523 s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5524 return 0;
5525 }
5526
statmount_mnt_gidmap(struct kstatmount * s,struct seq_file * seq)5527 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5528 {
5529 int ret;
5530
5531 ret = statmount_mnt_idmap(s->idmap, seq, false);
5532 if (ret < 0)
5533 return ret;
5534
5535 s->sm.mnt_gidmap_num = ret;
5536 /*
5537 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5538 * mappings. This allows userspace to distinguish between a
5539 * non-idmapped mount and an idmapped mount where none of the
5540 * individual mappings are valid in the caller's idmapping.
5541 */
5542 if (is_valid_mnt_idmap(s->idmap))
5543 s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5544 return 0;
5545 }
5546
statmount_string(struct kstatmount * s,u64 flag)5547 static int statmount_string(struct kstatmount *s, u64 flag)
5548 {
5549 int ret = 0;
5550 size_t kbufsize;
5551 struct seq_file *seq = &s->seq;
5552 struct statmount *sm = &s->sm;
5553 u32 start, *offp;
5554
5555 /* Reserve an empty string at the beginning for any unset offsets */
5556 if (!seq->count)
5557 seq_putc(seq, 0);
5558
5559 start = seq->count;
5560
5561 switch (flag) {
5562 case STATMOUNT_FS_TYPE:
5563 offp = &sm->fs_type;
5564 ret = statmount_fs_type(s, seq);
5565 break;
5566 case STATMOUNT_MNT_ROOT:
5567 offp = &sm->mnt_root;
5568 ret = statmount_mnt_root(s, seq);
5569 break;
5570 case STATMOUNT_MNT_POINT:
5571 offp = &sm->mnt_point;
5572 ret = statmount_mnt_point(s, seq);
5573 break;
5574 case STATMOUNT_MNT_OPTS:
5575 offp = &sm->mnt_opts;
5576 ret = statmount_mnt_opts(s, seq);
5577 break;
5578 case STATMOUNT_OPT_ARRAY:
5579 offp = &sm->opt_array;
5580 ret = statmount_opt_array(s, seq);
5581 break;
5582 case STATMOUNT_OPT_SEC_ARRAY:
5583 offp = &sm->opt_sec_array;
5584 ret = statmount_opt_sec_array(s, seq);
5585 break;
5586 case STATMOUNT_FS_SUBTYPE:
5587 offp = &sm->fs_subtype;
5588 statmount_fs_subtype(s, seq);
5589 break;
5590 case STATMOUNT_SB_SOURCE:
5591 offp = &sm->sb_source;
5592 ret = statmount_sb_source(s, seq);
5593 break;
5594 case STATMOUNT_MNT_UIDMAP:
5595 sm->mnt_uidmap = start;
5596 ret = statmount_mnt_uidmap(s, seq);
5597 break;
5598 case STATMOUNT_MNT_GIDMAP:
5599 sm->mnt_gidmap = start;
5600 ret = statmount_mnt_gidmap(s, seq);
5601 break;
5602 default:
5603 WARN_ON_ONCE(true);
5604 return -EINVAL;
5605 }
5606
5607 /*
5608 * If nothing was emitted, return to avoid setting the flag
5609 * and terminating the buffer.
5610 */
5611 if (seq->count == start)
5612 return ret;
5613 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5614 return -EOVERFLOW;
5615 if (kbufsize >= s->bufsize)
5616 return -EOVERFLOW;
5617
5618 /* signal a retry */
5619 if (unlikely(seq_has_overflowed(seq)))
5620 return -EAGAIN;
5621
5622 if (ret)
5623 return ret;
5624
5625 seq->buf[seq->count++] = '\0';
5626 sm->mask |= flag;
5627 *offp = start;
5628 return 0;
5629 }
5630
copy_statmount_to_user(struct kstatmount * s)5631 static int copy_statmount_to_user(struct kstatmount *s)
5632 {
5633 struct statmount *sm = &s->sm;
5634 struct seq_file *seq = &s->seq;
5635 char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5636 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5637
5638 if (seq->count && copy_to_user(str, seq->buf, seq->count))
5639 return -EFAULT;
5640
5641 /* Return the number of bytes copied to the buffer */
5642 sm->size = copysize + seq->count;
5643 if (copy_to_user(s->buf, sm, copysize))
5644 return -EFAULT;
5645
5646 return 0;
5647 }
5648
listmnt_next(struct mount * curr,bool reverse)5649 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5650 {
5651 struct rb_node *node;
5652
5653 if (reverse)
5654 node = rb_prev(&curr->mnt_node);
5655 else
5656 node = rb_next(&curr->mnt_node);
5657
5658 return node_to_mount(node);
5659 }
5660
grab_requested_root(struct mnt_namespace * ns,struct path * root)5661 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5662 {
5663 struct mount *first, *child;
5664
5665 rwsem_assert_held(&namespace_sem);
5666
5667 /* We're looking at our own ns, just use get_fs_root. */
5668 if (ns == current->nsproxy->mnt_ns) {
5669 get_fs_root(current->fs, root);
5670 return 0;
5671 }
5672
5673 /*
5674 * We have to find the first mount in our ns and use that, however it
5675 * may not exist, so handle that properly.
5676 */
5677 if (mnt_ns_empty(ns))
5678 return -ENOENT;
5679
5680 first = child = ns->root;
5681 for (;;) {
5682 child = listmnt_next(child, false);
5683 if (!child)
5684 return -ENOENT;
5685 if (child->mnt_parent == first)
5686 break;
5687 }
5688
5689 root->mnt = mntget(&child->mnt);
5690 root->dentry = dget(root->mnt->mnt_root);
5691 return 0;
5692 }
5693
5694 /* This must be updated whenever a new flag is added */
5695 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5696 STATMOUNT_MNT_BASIC | \
5697 STATMOUNT_PROPAGATE_FROM | \
5698 STATMOUNT_MNT_ROOT | \
5699 STATMOUNT_MNT_POINT | \
5700 STATMOUNT_FS_TYPE | \
5701 STATMOUNT_MNT_NS_ID | \
5702 STATMOUNT_MNT_OPTS | \
5703 STATMOUNT_FS_SUBTYPE | \
5704 STATMOUNT_SB_SOURCE | \
5705 STATMOUNT_OPT_ARRAY | \
5706 STATMOUNT_OPT_SEC_ARRAY | \
5707 STATMOUNT_SUPPORTED_MASK | \
5708 STATMOUNT_MNT_UIDMAP | \
5709 STATMOUNT_MNT_GIDMAP)
5710
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5711 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5712 struct mnt_namespace *ns)
5713 {
5714 struct path root __free(path_put) = {};
5715 struct mount *m;
5716 int err;
5717
5718 /* Has the namespace already been emptied? */
5719 if (mnt_ns_id && mnt_ns_empty(ns))
5720 return -ENOENT;
5721
5722 s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5723 if (!s->mnt)
5724 return -ENOENT;
5725
5726 err = grab_requested_root(ns, &root);
5727 if (err)
5728 return err;
5729
5730 /*
5731 * Don't trigger audit denials. We just want to determine what
5732 * mounts to show users.
5733 */
5734 m = real_mount(s->mnt);
5735 if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5736 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5737 return -EPERM;
5738
5739 err = security_sb_statfs(s->mnt->mnt_root);
5740 if (err)
5741 return err;
5742
5743 s->root = root;
5744
5745 /*
5746 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5747 * can change concurrently as we only hold the read-side of the
5748 * namespace semaphore and mount properties may change with only
5749 * the mount lock held.
5750 *
5751 * We could sample the mount lock sequence counter to detect
5752 * those changes and retry. But it's not worth it. Worst that
5753 * happens is that the mnt->mnt_idmap pointer is already changed
5754 * while mnt->mnt_flags isn't or vica versa. So what.
5755 *
5756 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5757 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5758 * torn read/write. That's all we care about right now.
5759 */
5760 s->idmap = mnt_idmap(s->mnt);
5761 if (s->mask & STATMOUNT_MNT_BASIC)
5762 statmount_mnt_basic(s);
5763
5764 if (s->mask & STATMOUNT_SB_BASIC)
5765 statmount_sb_basic(s);
5766
5767 if (s->mask & STATMOUNT_PROPAGATE_FROM)
5768 statmount_propagate_from(s);
5769
5770 if (s->mask & STATMOUNT_FS_TYPE)
5771 err = statmount_string(s, STATMOUNT_FS_TYPE);
5772
5773 if (!err && s->mask & STATMOUNT_MNT_ROOT)
5774 err = statmount_string(s, STATMOUNT_MNT_ROOT);
5775
5776 if (!err && s->mask & STATMOUNT_MNT_POINT)
5777 err = statmount_string(s, STATMOUNT_MNT_POINT);
5778
5779 if (!err && s->mask & STATMOUNT_MNT_OPTS)
5780 err = statmount_string(s, STATMOUNT_MNT_OPTS);
5781
5782 if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5783 err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5784
5785 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5786 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5787
5788 if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5789 err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5790
5791 if (!err && s->mask & STATMOUNT_SB_SOURCE)
5792 err = statmount_string(s, STATMOUNT_SB_SOURCE);
5793
5794 if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5795 err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5796
5797 if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5798 err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5799
5800 if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5801 statmount_mnt_ns_id(s, ns);
5802
5803 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5804 s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5805 s->sm.supported_mask = STATMOUNT_SUPPORTED;
5806 }
5807
5808 if (err)
5809 return err;
5810
5811 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5812 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5813
5814 return 0;
5815 }
5816
retry_statmount(const long ret,size_t * seq_size)5817 static inline bool retry_statmount(const long ret, size_t *seq_size)
5818 {
5819 if (likely(ret != -EAGAIN))
5820 return false;
5821 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5822 return false;
5823 if (unlikely(*seq_size > MAX_RW_COUNT))
5824 return false;
5825 return true;
5826 }
5827
5828 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5829 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5830 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5831 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5832 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5833
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5834 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5835 struct statmount __user *buf, size_t bufsize,
5836 size_t seq_size)
5837 {
5838 if (!access_ok(buf, bufsize))
5839 return -EFAULT;
5840
5841 memset(ks, 0, sizeof(*ks));
5842 ks->mask = kreq->param;
5843 ks->buf = buf;
5844 ks->bufsize = bufsize;
5845
5846 if (ks->mask & STATMOUNT_STRING_REQ) {
5847 if (bufsize == sizeof(ks->sm))
5848 return -EOVERFLOW;
5849
5850 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5851 if (!ks->seq.buf)
5852 return -ENOMEM;
5853
5854 ks->seq.size = seq_size;
5855 }
5856
5857 return 0;
5858 }
5859
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5860 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5861 struct mnt_id_req *kreq)
5862 {
5863 int ret;
5864 size_t usize;
5865
5866 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5867
5868 ret = get_user(usize, &req->size);
5869 if (ret)
5870 return -EFAULT;
5871 if (unlikely(usize > PAGE_SIZE))
5872 return -E2BIG;
5873 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5874 return -EINVAL;
5875 memset(kreq, 0, sizeof(*kreq));
5876 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5877 if (ret)
5878 return ret;
5879 if (kreq->spare != 0)
5880 return -EINVAL;
5881 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5882 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5883 return -EINVAL;
5884 return 0;
5885 }
5886
5887 /*
5888 * If the user requested a specific mount namespace id, look that up and return
5889 * that, or if not simply grab a passive reference on our mount namespace and
5890 * return that.
5891 */
grab_requested_mnt_ns(const struct mnt_id_req * kreq)5892 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5893 {
5894 struct mnt_namespace *mnt_ns;
5895
5896 if (kreq->mnt_ns_id && kreq->spare)
5897 return ERR_PTR(-EINVAL);
5898
5899 if (kreq->mnt_ns_id)
5900 return lookup_mnt_ns(kreq->mnt_ns_id);
5901
5902 if (kreq->spare) {
5903 struct ns_common *ns;
5904
5905 CLASS(fd, f)(kreq->spare);
5906 if (fd_empty(f))
5907 return ERR_PTR(-EBADF);
5908
5909 if (!proc_ns_file(fd_file(f)))
5910 return ERR_PTR(-EINVAL);
5911
5912 ns = get_proc_ns(file_inode(fd_file(f)));
5913 if (ns->ops->type != CLONE_NEWNS)
5914 return ERR_PTR(-EINVAL);
5915
5916 mnt_ns = to_mnt_ns(ns);
5917 } else {
5918 mnt_ns = current->nsproxy->mnt_ns;
5919 }
5920
5921 refcount_inc(&mnt_ns->passive);
5922 return mnt_ns;
5923 }
5924
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)5925 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5926 struct statmount __user *, buf, size_t, bufsize,
5927 unsigned int, flags)
5928 {
5929 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5930 struct kstatmount *ks __free(kfree) = NULL;
5931 struct mnt_id_req kreq;
5932 /* We currently support retrieval of 3 strings. */
5933 size_t seq_size = 3 * PATH_MAX;
5934 int ret;
5935
5936 if (flags)
5937 return -EINVAL;
5938
5939 ret = copy_mnt_id_req(req, &kreq);
5940 if (ret)
5941 return ret;
5942
5943 ns = grab_requested_mnt_ns(&kreq);
5944 if (!ns)
5945 return -ENOENT;
5946
5947 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5948 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5949 return -ENOENT;
5950
5951 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5952 if (!ks)
5953 return -ENOMEM;
5954
5955 retry:
5956 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5957 if (ret)
5958 return ret;
5959
5960 scoped_guard(rwsem_read, &namespace_sem)
5961 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5962
5963 if (!ret)
5964 ret = copy_statmount_to_user(ks);
5965 kvfree(ks->seq.buf);
5966 if (retry_statmount(ret, &seq_size))
5967 goto retry;
5968 return ret;
5969 }
5970
do_listmount(struct mnt_namespace * ns,u64 mnt_parent_id,u64 last_mnt_id,u64 * mnt_ids,size_t nr_mnt_ids,bool reverse)5971 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5972 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5973 bool reverse)
5974 {
5975 struct path root __free(path_put) = {};
5976 struct path orig;
5977 struct mount *r, *first;
5978 ssize_t ret;
5979
5980 rwsem_assert_held(&namespace_sem);
5981
5982 ret = grab_requested_root(ns, &root);
5983 if (ret)
5984 return ret;
5985
5986 if (mnt_parent_id == LSMT_ROOT) {
5987 orig = root;
5988 } else {
5989 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5990 if (!orig.mnt)
5991 return -ENOENT;
5992 orig.dentry = orig.mnt->mnt_root;
5993 }
5994
5995 /*
5996 * Don't trigger audit denials. We just want to determine what
5997 * mounts to show users.
5998 */
5999 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
6000 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6001 return -EPERM;
6002
6003 ret = security_sb_statfs(orig.dentry);
6004 if (ret)
6005 return ret;
6006
6007 if (!last_mnt_id) {
6008 if (reverse)
6009 first = node_to_mount(ns->mnt_last_node);
6010 else
6011 first = node_to_mount(ns->mnt_first_node);
6012 } else {
6013 if (reverse)
6014 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
6015 else
6016 first = mnt_find_id_at(ns, last_mnt_id + 1);
6017 }
6018
6019 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
6020 if (r->mnt_id_unique == mnt_parent_id)
6021 continue;
6022 if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
6023 continue;
6024 *mnt_ids = r->mnt_id_unique;
6025 mnt_ids++;
6026 nr_mnt_ids--;
6027 ret++;
6028 }
6029 return ret;
6030 }
6031
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)6032 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
6033 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
6034 {
6035 u64 *kmnt_ids __free(kvfree) = NULL;
6036 const size_t maxcount = 1000000;
6037 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
6038 struct mnt_id_req kreq;
6039 u64 last_mnt_id;
6040 ssize_t ret;
6041
6042 if (flags & ~LISTMOUNT_REVERSE)
6043 return -EINVAL;
6044
6045 /*
6046 * If the mount namespace really has more than 1 million mounts the
6047 * caller must iterate over the mount namespace (and reconsider their
6048 * system design...).
6049 */
6050 if (unlikely(nr_mnt_ids > maxcount))
6051 return -EOVERFLOW;
6052
6053 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
6054 return -EFAULT;
6055
6056 ret = copy_mnt_id_req(req, &kreq);
6057 if (ret)
6058 return ret;
6059
6060 last_mnt_id = kreq.param;
6061 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
6062 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
6063 return -EINVAL;
6064
6065 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
6066 GFP_KERNEL_ACCOUNT);
6067 if (!kmnt_ids)
6068 return -ENOMEM;
6069
6070 ns = grab_requested_mnt_ns(&kreq);
6071 if (!ns)
6072 return -ENOENT;
6073
6074 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
6075 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6076 return -ENOENT;
6077
6078 /*
6079 * We only need to guard against mount topology changes as
6080 * listmount() doesn't care about any mount properties.
6081 */
6082 scoped_guard(rwsem_read, &namespace_sem)
6083 ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
6084 nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
6085 if (ret <= 0)
6086 return ret;
6087
6088 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
6089 return -EFAULT;
6090
6091 return ret;
6092 }
6093
init_mount_tree(void)6094 static void __init init_mount_tree(void)
6095 {
6096 struct vfsmount *mnt;
6097 struct mount *m;
6098 struct mnt_namespace *ns;
6099 struct path root;
6100
6101 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
6102 if (IS_ERR(mnt))
6103 panic("Can't create rootfs");
6104
6105 ns = alloc_mnt_ns(&init_user_ns, true);
6106 if (IS_ERR(ns))
6107 panic("Can't allocate initial namespace");
6108 ns->seq = atomic64_inc_return(&mnt_ns_seq);
6109 ns->ns.inum = PROC_MNT_INIT_INO;
6110 m = real_mount(mnt);
6111 ns->root = m;
6112 ns->nr_mounts = 1;
6113 mnt_add_to_ns(ns, m);
6114 init_task.nsproxy->mnt_ns = ns;
6115 get_mnt_ns(ns);
6116
6117 root.mnt = mnt;
6118 root.dentry = mnt->mnt_root;
6119
6120 set_fs_pwd(current->fs, &root);
6121 set_fs_root(current->fs, &root);
6122
6123 mnt_ns_tree_add(ns);
6124 }
6125
mnt_init(void)6126 void __init mnt_init(void)
6127 {
6128 int err;
6129
6130 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6131 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6132
6133 mount_hashtable = alloc_large_system_hash("Mount-cache",
6134 sizeof(struct hlist_head),
6135 mhash_entries, 19,
6136 HASH_ZERO,
6137 &m_hash_shift, &m_hash_mask, 0, 0);
6138 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6139 sizeof(struct hlist_head),
6140 mphash_entries, 19,
6141 HASH_ZERO,
6142 &mp_hash_shift, &mp_hash_mask, 0, 0);
6143
6144 if (!mount_hashtable || !mountpoint_hashtable)
6145 panic("Failed to allocate mount hash table\n");
6146
6147 kernfs_init();
6148
6149 err = sysfs_init();
6150 if (err)
6151 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6152 __func__, err);
6153 fs_kobj = kobject_create_and_add("fs", NULL);
6154 if (!fs_kobj)
6155 printk(KERN_WARNING "%s: kobj create error\n", __func__);
6156 shmem_init();
6157 init_rootfs();
6158 init_mount_tree();
6159 }
6160
put_mnt_ns(struct mnt_namespace * ns)6161 void put_mnt_ns(struct mnt_namespace *ns)
6162 {
6163 if (!refcount_dec_and_test(&ns->ns.count))
6164 return;
6165 namespace_lock();
6166 emptied_ns = ns;
6167 lock_mount_hash();
6168 umount_tree(ns->root, 0);
6169 unlock_mount_hash();
6170 namespace_unlock();
6171 }
6172
kern_mount(struct file_system_type * type)6173 struct vfsmount *kern_mount(struct file_system_type *type)
6174 {
6175 struct vfsmount *mnt;
6176 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6177 if (!IS_ERR(mnt)) {
6178 /*
6179 * it is a longterm mount, don't release mnt until
6180 * we unmount before file sys is unregistered
6181 */
6182 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6183 }
6184 return mnt;
6185 }
6186 EXPORT_SYMBOL_GPL(kern_mount);
6187
kern_unmount(struct vfsmount * mnt)6188 void kern_unmount(struct vfsmount *mnt)
6189 {
6190 /* release long term mount so mount point can be released */
6191 if (!IS_ERR(mnt)) {
6192 mnt_make_shortterm(mnt);
6193 synchronize_rcu(); /* yecchhh... */
6194 mntput(mnt);
6195 }
6196 }
6197 EXPORT_SYMBOL(kern_unmount);
6198
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)6199 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6200 {
6201 unsigned int i;
6202
6203 for (i = 0; i < num; i++)
6204 mnt_make_shortterm(mnt[i]);
6205 synchronize_rcu_expedited();
6206 for (i = 0; i < num; i++)
6207 mntput(mnt[i]);
6208 }
6209 EXPORT_SYMBOL(kern_unmount_array);
6210
our_mnt(struct vfsmount * mnt)6211 bool our_mnt(struct vfsmount *mnt)
6212 {
6213 return check_mnt(real_mount(mnt));
6214 }
6215
current_chrooted(void)6216 bool current_chrooted(void)
6217 {
6218 /* Does the current process have a non-standard root */
6219 struct path ns_root;
6220 struct path fs_root;
6221 bool chrooted;
6222
6223 /* Find the namespace root */
6224 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
6225 ns_root.dentry = ns_root.mnt->mnt_root;
6226 path_get(&ns_root);
6227 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
6228 ;
6229
6230 get_fs_root(current->fs, &fs_root);
6231
6232 chrooted = !path_equal(&fs_root, &ns_root);
6233
6234 path_put(&fs_root);
6235 path_put(&ns_root);
6236
6237 return chrooted;
6238 }
6239
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)6240 static bool mnt_already_visible(struct mnt_namespace *ns,
6241 const struct super_block *sb,
6242 int *new_mnt_flags)
6243 {
6244 int new_flags = *new_mnt_flags;
6245 struct mount *mnt, *n;
6246 bool visible = false;
6247
6248 down_read(&namespace_sem);
6249 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6250 struct mount *child;
6251 int mnt_flags;
6252
6253 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6254 continue;
6255
6256 /* This mount is not fully visible if it's root directory
6257 * is not the root directory of the filesystem.
6258 */
6259 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6260 continue;
6261
6262 /* A local view of the mount flags */
6263 mnt_flags = mnt->mnt.mnt_flags;
6264
6265 /* Don't miss readonly hidden in the superblock flags */
6266 if (sb_rdonly(mnt->mnt.mnt_sb))
6267 mnt_flags |= MNT_LOCK_READONLY;
6268
6269 /* Verify the mount flags are equal to or more permissive
6270 * than the proposed new mount.
6271 */
6272 if ((mnt_flags & MNT_LOCK_READONLY) &&
6273 !(new_flags & MNT_READONLY))
6274 continue;
6275 if ((mnt_flags & MNT_LOCK_ATIME) &&
6276 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6277 continue;
6278
6279 /* This mount is not fully visible if there are any
6280 * locked child mounts that cover anything except for
6281 * empty directories.
6282 */
6283 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6284 struct inode *inode = child->mnt_mountpoint->d_inode;
6285 /* Only worry about locked mounts */
6286 if (!(child->mnt.mnt_flags & MNT_LOCKED))
6287 continue;
6288 /* Is the directory permanently empty? */
6289 if (!is_empty_dir_inode(inode))
6290 goto next;
6291 }
6292 /* Preserve the locked attributes */
6293 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6294 MNT_LOCK_ATIME);
6295 visible = true;
6296 goto found;
6297 next: ;
6298 }
6299 found:
6300 up_read(&namespace_sem);
6301 return visible;
6302 }
6303
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)6304 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6305 {
6306 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6307 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6308 unsigned long s_iflags;
6309
6310 if (ns->user_ns == &init_user_ns)
6311 return false;
6312
6313 /* Can this filesystem be too revealing? */
6314 s_iflags = sb->s_iflags;
6315 if (!(s_iflags & SB_I_USERNS_VISIBLE))
6316 return false;
6317
6318 if ((s_iflags & required_iflags) != required_iflags) {
6319 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6320 required_iflags);
6321 return true;
6322 }
6323
6324 return !mnt_already_visible(ns, sb, new_mnt_flags);
6325 }
6326
mnt_may_suid(struct vfsmount * mnt)6327 bool mnt_may_suid(struct vfsmount *mnt)
6328 {
6329 /*
6330 * Foreign mounts (accessed via fchdir or through /proc
6331 * symlinks) are always treated as if they are nosuid. This
6332 * prevents namespaces from trusting potentially unsafe
6333 * suid/sgid bits, file caps, or security labels that originate
6334 * in other namespaces.
6335 */
6336 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6337 current_in_userns(mnt->mnt_sb->s_user_ns);
6338 }
6339
mntns_get(struct task_struct * task)6340 static struct ns_common *mntns_get(struct task_struct *task)
6341 {
6342 struct ns_common *ns = NULL;
6343 struct nsproxy *nsproxy;
6344
6345 task_lock(task);
6346 nsproxy = task->nsproxy;
6347 if (nsproxy) {
6348 ns = &nsproxy->mnt_ns->ns;
6349 get_mnt_ns(to_mnt_ns(ns));
6350 }
6351 task_unlock(task);
6352
6353 return ns;
6354 }
6355
mntns_put(struct ns_common * ns)6356 static void mntns_put(struct ns_common *ns)
6357 {
6358 put_mnt_ns(to_mnt_ns(ns));
6359 }
6360
mntns_install(struct nsset * nsset,struct ns_common * ns)6361 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6362 {
6363 struct nsproxy *nsproxy = nsset->nsproxy;
6364 struct fs_struct *fs = nsset->fs;
6365 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6366 struct user_namespace *user_ns = nsset->cred->user_ns;
6367 struct path root;
6368 int err;
6369
6370 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6371 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6372 !ns_capable(user_ns, CAP_SYS_ADMIN))
6373 return -EPERM;
6374
6375 if (is_anon_ns(mnt_ns))
6376 return -EINVAL;
6377
6378 if (fs->users != 1)
6379 return -EINVAL;
6380
6381 get_mnt_ns(mnt_ns);
6382 old_mnt_ns = nsproxy->mnt_ns;
6383 nsproxy->mnt_ns = mnt_ns;
6384
6385 /* Find the root */
6386 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6387 "/", LOOKUP_DOWN, &root);
6388 if (err) {
6389 /* revert to old namespace */
6390 nsproxy->mnt_ns = old_mnt_ns;
6391 put_mnt_ns(mnt_ns);
6392 return err;
6393 }
6394
6395 put_mnt_ns(old_mnt_ns);
6396
6397 /* Update the pwd and root */
6398 set_fs_pwd(fs, &root);
6399 set_fs_root(fs, &root);
6400
6401 path_put(&root);
6402 return 0;
6403 }
6404
mntns_owner(struct ns_common * ns)6405 static struct user_namespace *mntns_owner(struct ns_common *ns)
6406 {
6407 return to_mnt_ns(ns)->user_ns;
6408 }
6409
6410 const struct proc_ns_operations mntns_operations = {
6411 .name = "mnt",
6412 .type = CLONE_NEWNS,
6413 .get = mntns_get,
6414 .put = mntns_put,
6415 .install = mntns_install,
6416 .owner = mntns_owner,
6417 };
6418
6419 #ifdef CONFIG_SYSCTL
6420 static const struct ctl_table fs_namespace_sysctls[] = {
6421 {
6422 .procname = "mount-max",
6423 .data = &sysctl_mount_max,
6424 .maxlen = sizeof(unsigned int),
6425 .mode = 0644,
6426 .proc_handler = proc_dointvec_minmax,
6427 .extra1 = SYSCTL_ONE,
6428 },
6429 };
6430
init_fs_namespace_sysctls(void)6431 static int __init init_fs_namespace_sysctls(void)
6432 {
6433 register_sysctl_init("fs", fs_namespace_sysctls);
6434 return 0;
6435 }
6436 fs_initcall(init_fs_namespace_sysctls);
6437
6438 #endif /* CONFIG_SYSCTL */
6439