1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24
25 #ifdef CONFIG_BTRFS_DEBUG
btrfs_should_fragment_free_space(const struct btrfs_block_group * block_group)26 int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group)
27 {
28 struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36
has_unwritten_metadata(struct btrfs_block_group * block_group)37 static inline bool has_unwritten_metadata(struct btrfs_block_group *block_group)
38 {
39 /* The meta_write_pointer is available only on the zoned setup. */
40 if (!btrfs_is_zoned(block_group->fs_info))
41 return false;
42
43 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
44 return false;
45
46 return block_group->start + block_group->alloc_offset >
47 block_group->meta_write_pointer;
48 }
49
50 /*
51 * Return target flags in extended format or 0 if restripe for this chunk_type
52 * is not in progress
53 *
54 * Should be called with balance_lock held
55 */
get_restripe_target(const struct btrfs_fs_info * fs_info,u64 flags)56 static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 const struct btrfs_balance_control *bctl = fs_info->balance_ctl;
59 u64 target = 0;
60
61 if (!bctl)
62 return 0;
63
64 if (flags & BTRFS_BLOCK_GROUP_DATA &&
65 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
66 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
67 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
68 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
69 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
70 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
71 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
72 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
73 }
74
75 return target;
76 }
77
78 /*
79 * @flags: available profiles in extended format (see ctree.h)
80 *
81 * Return reduced profile in chunk format. If profile changing is in progress
82 * (either running or paused) picks the target profile (if it's already
83 * available), otherwise falls back to plain reducing.
84 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)85 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
86 {
87 u64 num_devices = fs_info->fs_devices->rw_devices;
88 u64 target;
89 u64 raid_type;
90 u64 allowed = 0;
91
92 /*
93 * See if restripe for this chunk_type is in progress, if so try to
94 * reduce to the target profile
95 */
96 spin_lock(&fs_info->balance_lock);
97 target = get_restripe_target(fs_info, flags);
98 if (target) {
99 spin_unlock(&fs_info->balance_lock);
100 return extended_to_chunk(target);
101 }
102 spin_unlock(&fs_info->balance_lock);
103
104 /* First, mask out the RAID levels which aren't possible */
105 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
106 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
107 allowed |= btrfs_raid_array[raid_type].bg_flag;
108 }
109 allowed &= flags;
110
111 /* Select the highest-redundancy RAID level. */
112 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
113 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
114 else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
115 allowed = BTRFS_BLOCK_GROUP_RAID6;
116 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
117 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
118 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
119 allowed = BTRFS_BLOCK_GROUP_RAID5;
120 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
121 allowed = BTRFS_BLOCK_GROUP_RAID10;
122 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
123 allowed = BTRFS_BLOCK_GROUP_RAID1;
124 else if (allowed & BTRFS_BLOCK_GROUP_DUP)
125 allowed = BTRFS_BLOCK_GROUP_DUP;
126 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
127 allowed = BTRFS_BLOCK_GROUP_RAID0;
128
129 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
130
131 return extended_to_chunk(flags | allowed);
132 }
133
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)134 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
135 {
136 unsigned seq;
137 u64 flags;
138
139 do {
140 flags = orig_flags;
141 seq = read_seqbegin(&fs_info->profiles_lock);
142
143 if (flags & BTRFS_BLOCK_GROUP_DATA)
144 flags |= fs_info->avail_data_alloc_bits;
145 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
146 flags |= fs_info->avail_system_alloc_bits;
147 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
148 flags |= fs_info->avail_metadata_alloc_bits;
149 } while (read_seqretry(&fs_info->profiles_lock, seq));
150
151 return btrfs_reduce_alloc_profile(fs_info, flags);
152 }
153
btrfs_get_block_group(struct btrfs_block_group * cache)154 void btrfs_get_block_group(struct btrfs_block_group *cache)
155 {
156 refcount_inc(&cache->refs);
157 }
158
btrfs_put_block_group(struct btrfs_block_group * cache)159 void btrfs_put_block_group(struct btrfs_block_group *cache)
160 {
161 if (refcount_dec_and_test(&cache->refs)) {
162 WARN_ON(cache->pinned > 0);
163 /*
164 * If there was a failure to cleanup a log tree, very likely due
165 * to an IO failure on a writeback attempt of one or more of its
166 * extent buffers, we could not do proper (and cheap) unaccounting
167 * of their reserved space, so don't warn on reserved > 0 in that
168 * case.
169 */
170 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
171 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
172 WARN_ON(cache->reserved > 0);
173
174 /*
175 * A block_group shouldn't be on the discard_list anymore.
176 * Remove the block_group from the discard_list to prevent us
177 * from causing a panic due to NULL pointer dereference.
178 */
179 if (WARN_ON(!list_empty(&cache->discard_list)))
180 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
181 cache);
182
183 kfree(cache->free_space_ctl);
184 btrfs_free_chunk_map(cache->physical_map);
185 kfree(cache);
186 }
187 }
188
btrfs_bg_start_cmp(const struct rb_node * new,const struct rb_node * exist)189 static int btrfs_bg_start_cmp(const struct rb_node *new,
190 const struct rb_node *exist)
191 {
192 const struct btrfs_block_group *new_bg =
193 rb_entry(new, struct btrfs_block_group, cache_node);
194 const struct btrfs_block_group *exist_bg =
195 rb_entry(exist, struct btrfs_block_group, cache_node);
196
197 if (new_bg->start < exist_bg->start)
198 return -1;
199 if (new_bg->start > exist_bg->start)
200 return 1;
201 return 0;
202 }
203
204 /*
205 * This adds the block group to the fs_info rb tree for the block group cache
206 */
btrfs_add_block_group_cache(struct btrfs_block_group * block_group)207 static int btrfs_add_block_group_cache(struct btrfs_block_group *block_group)
208 {
209 struct btrfs_fs_info *fs_info = block_group->fs_info;
210 struct rb_node *exist;
211 int ret = 0;
212
213 ASSERT(block_group->length != 0);
214
215 write_lock(&fs_info->block_group_cache_lock);
216
217 exist = rb_find_add_cached(&block_group->cache_node,
218 &fs_info->block_group_cache_tree, btrfs_bg_start_cmp);
219 if (exist)
220 ret = -EEXIST;
221 write_unlock(&fs_info->block_group_cache_lock);
222
223 return ret;
224 }
225
226 /*
227 * This will return the block group at or after bytenr if contains is 0, else
228 * it will return the block group that contains the bytenr
229 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)230 static struct btrfs_block_group *block_group_cache_tree_search(
231 struct btrfs_fs_info *info, u64 bytenr, int contains)
232 {
233 struct btrfs_block_group *cache, *ret = NULL;
234 struct rb_node *n;
235 u64 end, start;
236
237 read_lock(&info->block_group_cache_lock);
238 n = info->block_group_cache_tree.rb_root.rb_node;
239
240 while (n) {
241 cache = rb_entry(n, struct btrfs_block_group, cache_node);
242 end = cache->start + cache->length - 1;
243 start = cache->start;
244
245 if (bytenr < start) {
246 if (!contains && (!ret || start < ret->start))
247 ret = cache;
248 n = n->rb_left;
249 } else if (bytenr > start) {
250 if (contains && bytenr <= end) {
251 ret = cache;
252 break;
253 }
254 n = n->rb_right;
255 } else {
256 ret = cache;
257 break;
258 }
259 }
260 if (ret)
261 btrfs_get_block_group(ret);
262 read_unlock(&info->block_group_cache_lock);
263
264 return ret;
265 }
266
267 /*
268 * Return the block group that starts at or after bytenr
269 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)270 struct btrfs_block_group *btrfs_lookup_first_block_group(
271 struct btrfs_fs_info *info, u64 bytenr)
272 {
273 return block_group_cache_tree_search(info, bytenr, 0);
274 }
275
276 /*
277 * Return the block group that contains the given bytenr
278 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)279 struct btrfs_block_group *btrfs_lookup_block_group(
280 struct btrfs_fs_info *info, u64 bytenr)
281 {
282 return block_group_cache_tree_search(info, bytenr, 1);
283 }
284
btrfs_next_block_group(struct btrfs_block_group * cache)285 struct btrfs_block_group *btrfs_next_block_group(
286 struct btrfs_block_group *cache)
287 {
288 struct btrfs_fs_info *fs_info = cache->fs_info;
289 struct rb_node *node;
290
291 read_lock(&fs_info->block_group_cache_lock);
292
293 /* If our block group was removed, we need a full search. */
294 if (RB_EMPTY_NODE(&cache->cache_node)) {
295 const u64 next_bytenr = cache->start + cache->length;
296
297 read_unlock(&fs_info->block_group_cache_lock);
298 btrfs_put_block_group(cache);
299 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
300 }
301 node = rb_next(&cache->cache_node);
302 btrfs_put_block_group(cache);
303 if (node) {
304 cache = rb_entry(node, struct btrfs_block_group, cache_node);
305 btrfs_get_block_group(cache);
306 } else
307 cache = NULL;
308 read_unlock(&fs_info->block_group_cache_lock);
309 return cache;
310 }
311
312 /*
313 * Check if we can do a NOCOW write for a given extent.
314 *
315 * @fs_info: The filesystem information object.
316 * @bytenr: Logical start address of the extent.
317 *
318 * Check if we can do a NOCOW write for the given extent, and increments the
319 * number of NOCOW writers in the block group that contains the extent, as long
320 * as the block group exists and it's currently not in read-only mode.
321 *
322 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
323 * is responsible for calling btrfs_dec_nocow_writers() later.
324 *
325 * Or NULL if we can not do a NOCOW write
326 */
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)327 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
328 u64 bytenr)
329 {
330 struct btrfs_block_group *bg;
331 bool can_nocow = true;
332
333 bg = btrfs_lookup_block_group(fs_info, bytenr);
334 if (!bg)
335 return NULL;
336
337 spin_lock(&bg->lock);
338 if (bg->ro)
339 can_nocow = false;
340 else
341 atomic_inc(&bg->nocow_writers);
342 spin_unlock(&bg->lock);
343
344 if (!can_nocow) {
345 btrfs_put_block_group(bg);
346 return NULL;
347 }
348
349 /* No put on block group, done by btrfs_dec_nocow_writers(). */
350 return bg;
351 }
352
353 /*
354 * Decrement the number of NOCOW writers in a block group.
355 *
356 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
357 * and on the block group returned by that call. Typically this is called after
358 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
359 * relocation.
360 *
361 * After this call, the caller should not use the block group anymore. It it wants
362 * to use it, then it should get a reference on it before calling this function.
363 */
btrfs_dec_nocow_writers(struct btrfs_block_group * bg)364 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
365 {
366 if (atomic_dec_and_test(&bg->nocow_writers))
367 wake_up_var(&bg->nocow_writers);
368
369 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
370 btrfs_put_block_group(bg);
371 }
372
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)373 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
374 {
375 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
376 }
377
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)378 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
379 const u64 start)
380 {
381 struct btrfs_block_group *bg;
382
383 bg = btrfs_lookup_block_group(fs_info, start);
384 ASSERT(bg);
385 if (atomic_dec_and_test(&bg->reservations))
386 wake_up_var(&bg->reservations);
387 btrfs_put_block_group(bg);
388 }
389
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)390 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
391 {
392 struct btrfs_space_info *space_info = bg->space_info;
393
394 ASSERT(bg->ro);
395
396 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
397 return;
398
399 /*
400 * Our block group is read only but before we set it to read only,
401 * some task might have had allocated an extent from it already, but it
402 * has not yet created a respective ordered extent (and added it to a
403 * root's list of ordered extents).
404 * Therefore wait for any task currently allocating extents, since the
405 * block group's reservations counter is incremented while a read lock
406 * on the groups' semaphore is held and decremented after releasing
407 * the read access on that semaphore and creating the ordered extent.
408 */
409 down_write(&space_info->groups_sem);
410 up_write(&space_info->groups_sem);
411
412 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
413 }
414
btrfs_get_caching_control(struct btrfs_block_group * cache)415 struct btrfs_caching_control *btrfs_get_caching_control(
416 struct btrfs_block_group *cache)
417 {
418 struct btrfs_caching_control *ctl;
419
420 spin_lock(&cache->lock);
421 if (!cache->caching_ctl) {
422 spin_unlock(&cache->lock);
423 return NULL;
424 }
425
426 ctl = cache->caching_ctl;
427 refcount_inc(&ctl->count);
428 spin_unlock(&cache->lock);
429 return ctl;
430 }
431
btrfs_put_caching_control(struct btrfs_caching_control * ctl)432 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
433 {
434 if (refcount_dec_and_test(&ctl->count))
435 kfree(ctl);
436 }
437
438 /*
439 * When we wait for progress in the block group caching, its because our
440 * allocation attempt failed at least once. So, we must sleep and let some
441 * progress happen before we try again.
442 *
443 * This function will sleep at least once waiting for new free space to show
444 * up, and then it will check the block group free space numbers for our min
445 * num_bytes. Another option is to have it go ahead and look in the rbtree for
446 * a free extent of a given size, but this is a good start.
447 *
448 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
449 * any of the information in this block group.
450 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)451 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
452 u64 num_bytes)
453 {
454 struct btrfs_caching_control *caching_ctl;
455 int progress;
456
457 caching_ctl = btrfs_get_caching_control(cache);
458 if (!caching_ctl)
459 return;
460
461 /*
462 * We've already failed to allocate from this block group, so even if
463 * there's enough space in the block group it isn't contiguous enough to
464 * allow for an allocation, so wait for at least the next wakeup tick,
465 * or for the thing to be done.
466 */
467 progress = atomic_read(&caching_ctl->progress);
468
469 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
470 (progress != atomic_read(&caching_ctl->progress) &&
471 (cache->free_space_ctl->free_space >= num_bytes)));
472
473 btrfs_put_caching_control(caching_ctl);
474 }
475
btrfs_caching_ctl_wait_done(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)476 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
477 struct btrfs_caching_control *caching_ctl)
478 {
479 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
480 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
481 }
482
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)483 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
484 {
485 struct btrfs_caching_control *caching_ctl;
486 int ret;
487
488 caching_ctl = btrfs_get_caching_control(cache);
489 if (!caching_ctl)
490 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
491 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
492 btrfs_put_caching_control(caching_ctl);
493 return ret;
494 }
495
496 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)497 static void fragment_free_space(struct btrfs_block_group *block_group)
498 {
499 struct btrfs_fs_info *fs_info = block_group->fs_info;
500 u64 start = block_group->start;
501 u64 len = block_group->length;
502 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
503 fs_info->nodesize : fs_info->sectorsize;
504 u64 step = chunk << 1;
505
506 while (len > chunk) {
507 btrfs_remove_free_space(block_group, start, chunk);
508 start += step;
509 if (len < step)
510 len = 0;
511 else
512 len -= step;
513 }
514 }
515 #endif
516
517 /*
518 * Add a free space range to the in memory free space cache of a block group.
519 * This checks if the range contains super block locations and any such
520 * locations are not added to the free space cache.
521 *
522 * @block_group: The target block group.
523 * @start: Start offset of the range.
524 * @end: End offset of the range (exclusive).
525 * @total_added_ret: Optional pointer to return the total amount of space
526 * added to the block group's free space cache.
527 *
528 * Returns 0 on success or < 0 on error.
529 */
btrfs_add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end,u64 * total_added_ret)530 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
531 u64 end, u64 *total_added_ret)
532 {
533 struct btrfs_fs_info *info = block_group->fs_info;
534 u64 extent_start, extent_end, size;
535 int ret;
536
537 if (total_added_ret)
538 *total_added_ret = 0;
539
540 while (start < end) {
541 if (!btrfs_find_first_extent_bit(&info->excluded_extents, start,
542 &extent_start, &extent_end,
543 EXTENT_DIRTY, NULL))
544 break;
545
546 if (extent_start <= start) {
547 start = extent_end + 1;
548 } else if (extent_start > start && extent_start < end) {
549 size = extent_start - start;
550 ret = btrfs_add_free_space_async_trimmed(block_group,
551 start, size);
552 if (ret)
553 return ret;
554 if (total_added_ret)
555 *total_added_ret += size;
556 start = extent_end + 1;
557 } else {
558 break;
559 }
560 }
561
562 if (start < end) {
563 size = end - start;
564 ret = btrfs_add_free_space_async_trimmed(block_group, start,
565 size);
566 if (ret)
567 return ret;
568 if (total_added_ret)
569 *total_added_ret += size;
570 }
571
572 return 0;
573 }
574
575 /*
576 * Get an arbitrary extent item index / max_index through the block group
577 *
578 * @block_group the block group to sample from
579 * @index: the integral step through the block group to grab from
580 * @max_index: the granularity of the sampling
581 * @key: return value parameter for the item we find
582 *
583 * Pre-conditions on indices:
584 * 0 <= index <= max_index
585 * 0 < max_index
586 *
587 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
588 * error code on error.
589 */
sample_block_group_extent_item(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group,int index,int max_index,struct btrfs_key * found_key)590 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
591 struct btrfs_block_group *block_group,
592 int index, int max_index,
593 struct btrfs_key *found_key)
594 {
595 struct btrfs_fs_info *fs_info = block_group->fs_info;
596 struct btrfs_root *extent_root;
597 u64 search_offset;
598 u64 search_end = block_group->start + block_group->length;
599 BTRFS_PATH_AUTO_FREE(path);
600 struct btrfs_key search_key;
601 int ret = 0;
602
603 ASSERT(index >= 0);
604 ASSERT(index <= max_index);
605 ASSERT(max_index > 0);
606 lockdep_assert_held(&caching_ctl->mutex);
607 lockdep_assert_held_read(&fs_info->commit_root_sem);
608
609 path = btrfs_alloc_path();
610 if (!path)
611 return -ENOMEM;
612
613 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
614 BTRFS_SUPER_INFO_OFFSET));
615
616 path->skip_locking = 1;
617 path->search_commit_root = 1;
618 path->reada = READA_FORWARD;
619
620 search_offset = index * div_u64(block_group->length, max_index);
621 search_key.objectid = block_group->start + search_offset;
622 search_key.type = BTRFS_EXTENT_ITEM_KEY;
623 search_key.offset = 0;
624
625 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
626 /* Success; sampled an extent item in the block group */
627 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
628 found_key->objectid >= block_group->start &&
629 found_key->objectid + found_key->offset <= search_end)
630 break;
631
632 /* We can't possibly find a valid extent item anymore */
633 if (found_key->objectid >= search_end) {
634 ret = 1;
635 break;
636 }
637 }
638
639 lockdep_assert_held(&caching_ctl->mutex);
640 lockdep_assert_held_read(&fs_info->commit_root_sem);
641 return ret;
642 }
643
644 /*
645 * Best effort attempt to compute a block group's size class while caching it.
646 *
647 * @block_group: the block group we are caching
648 *
649 * We cannot infer the size class while adding free space extents, because that
650 * logic doesn't care about contiguous file extents (it doesn't differentiate
651 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
652 * file extent items. Reading all of them is quite wasteful, because usually
653 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
654 * them at even steps through the block group and pick the smallest size class
655 * we see. Since size class is best effort, and not guaranteed in general,
656 * inaccuracy is acceptable.
657 *
658 * To be more explicit about why this algorithm makes sense:
659 *
660 * If we are caching in a block group from disk, then there are three major cases
661 * to consider:
662 * 1. the block group is well behaved and all extents in it are the same size
663 * class.
664 * 2. the block group is mostly one size class with rare exceptions for last
665 * ditch allocations
666 * 3. the block group was populated before size classes and can have a totally
667 * arbitrary mix of size classes.
668 *
669 * In case 1, looking at any extent in the block group will yield the correct
670 * result. For the mixed cases, taking the minimum size class seems like a good
671 * approximation, since gaps from frees will be usable to the size class. For
672 * 2., a small handful of file extents is likely to yield the right answer. For
673 * 3, we can either read every file extent, or admit that this is best effort
674 * anyway and try to stay fast.
675 *
676 * Returns: 0 on success, negative error code on error.
677 */
load_block_group_size_class(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group)678 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
679 struct btrfs_block_group *block_group)
680 {
681 struct btrfs_fs_info *fs_info = block_group->fs_info;
682 struct btrfs_key key;
683 int i;
684 u64 min_size = block_group->length;
685 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
686 int ret;
687
688 if (!btrfs_block_group_should_use_size_class(block_group))
689 return 0;
690
691 lockdep_assert_held(&caching_ctl->mutex);
692 lockdep_assert_held_read(&fs_info->commit_root_sem);
693 for (i = 0; i < 5; ++i) {
694 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
695 if (ret < 0)
696 goto out;
697 if (ret > 0)
698 continue;
699 min_size = min_t(u64, min_size, key.offset);
700 size_class = btrfs_calc_block_group_size_class(min_size);
701 }
702 if (size_class != BTRFS_BG_SZ_NONE) {
703 spin_lock(&block_group->lock);
704 block_group->size_class = size_class;
705 spin_unlock(&block_group->lock);
706 }
707 out:
708 return ret;
709 }
710
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)711 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
712 {
713 struct btrfs_block_group *block_group = caching_ctl->block_group;
714 struct btrfs_fs_info *fs_info = block_group->fs_info;
715 struct btrfs_root *extent_root;
716 BTRFS_PATH_AUTO_FREE(path);
717 struct extent_buffer *leaf;
718 struct btrfs_key key;
719 u64 total_found = 0;
720 u64 last = 0;
721 u32 nritems;
722 int ret;
723 bool wakeup = true;
724
725 path = btrfs_alloc_path();
726 if (!path)
727 return -ENOMEM;
728
729 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
730 extent_root = btrfs_extent_root(fs_info, last);
731
732 #ifdef CONFIG_BTRFS_DEBUG
733 /*
734 * If we're fragmenting we don't want to make anybody think we can
735 * allocate from this block group until we've had a chance to fragment
736 * the free space.
737 */
738 if (btrfs_should_fragment_free_space(block_group))
739 wakeup = false;
740 #endif
741 /*
742 * We don't want to deadlock with somebody trying to allocate a new
743 * extent for the extent root while also trying to search the extent
744 * root to add free space. So we skip locking and search the commit
745 * root, since its read-only
746 */
747 path->skip_locking = 1;
748 path->search_commit_root = 1;
749 path->reada = READA_FORWARD;
750
751 key.objectid = last;
752 key.type = BTRFS_EXTENT_ITEM_KEY;
753 key.offset = 0;
754
755 next:
756 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
757 if (ret < 0)
758 goto out;
759
760 leaf = path->nodes[0];
761 nritems = btrfs_header_nritems(leaf);
762
763 while (1) {
764 if (btrfs_fs_closing(fs_info) > 1) {
765 last = (u64)-1;
766 break;
767 }
768
769 if (path->slots[0] < nritems) {
770 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
771 } else {
772 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
773 if (ret)
774 break;
775
776 if (need_resched() ||
777 rwsem_is_contended(&fs_info->commit_root_sem)) {
778 btrfs_release_path(path);
779 up_read(&fs_info->commit_root_sem);
780 mutex_unlock(&caching_ctl->mutex);
781 cond_resched();
782 mutex_lock(&caching_ctl->mutex);
783 down_read(&fs_info->commit_root_sem);
784 goto next;
785 }
786
787 ret = btrfs_next_leaf(extent_root, path);
788 if (ret < 0)
789 goto out;
790 if (ret)
791 break;
792 leaf = path->nodes[0];
793 nritems = btrfs_header_nritems(leaf);
794 continue;
795 }
796
797 if (key.objectid < last) {
798 key.objectid = last;
799 key.type = BTRFS_EXTENT_ITEM_KEY;
800 key.offset = 0;
801 btrfs_release_path(path);
802 goto next;
803 }
804
805 if (key.objectid < block_group->start) {
806 path->slots[0]++;
807 continue;
808 }
809
810 if (key.objectid >= block_group->start + block_group->length)
811 break;
812
813 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
814 key.type == BTRFS_METADATA_ITEM_KEY) {
815 u64 space_added;
816
817 ret = btrfs_add_new_free_space(block_group, last,
818 key.objectid, &space_added);
819 if (ret)
820 goto out;
821 total_found += space_added;
822 if (key.type == BTRFS_METADATA_ITEM_KEY)
823 last = key.objectid +
824 fs_info->nodesize;
825 else
826 last = key.objectid + key.offset;
827
828 if (total_found > CACHING_CTL_WAKE_UP) {
829 total_found = 0;
830 if (wakeup) {
831 atomic_inc(&caching_ctl->progress);
832 wake_up(&caching_ctl->wait);
833 }
834 }
835 }
836 path->slots[0]++;
837 }
838
839 ret = btrfs_add_new_free_space(block_group, last,
840 block_group->start + block_group->length,
841 NULL);
842 out:
843 return ret;
844 }
845
btrfs_free_excluded_extents(const struct btrfs_block_group * bg)846 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
847 {
848 btrfs_clear_extent_bit(&bg->fs_info->excluded_extents, bg->start,
849 bg->start + bg->length - 1, EXTENT_DIRTY, NULL);
850 }
851
caching_thread(struct btrfs_work * work)852 static noinline void caching_thread(struct btrfs_work *work)
853 {
854 struct btrfs_block_group *block_group;
855 struct btrfs_fs_info *fs_info;
856 struct btrfs_caching_control *caching_ctl;
857 int ret;
858
859 caching_ctl = container_of(work, struct btrfs_caching_control, work);
860 block_group = caching_ctl->block_group;
861 fs_info = block_group->fs_info;
862
863 mutex_lock(&caching_ctl->mutex);
864 down_read(&fs_info->commit_root_sem);
865
866 load_block_group_size_class(caching_ctl, block_group);
867 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
868 ret = load_free_space_cache(block_group);
869 if (ret == 1) {
870 ret = 0;
871 goto done;
872 }
873
874 /*
875 * We failed to load the space cache, set ourselves to
876 * CACHE_STARTED and carry on.
877 */
878 spin_lock(&block_group->lock);
879 block_group->cached = BTRFS_CACHE_STARTED;
880 spin_unlock(&block_group->lock);
881 wake_up(&caching_ctl->wait);
882 }
883
884 /*
885 * If we are in the transaction that populated the free space tree we
886 * can't actually cache from the free space tree as our commit root and
887 * real root are the same, so we could change the contents of the blocks
888 * while caching. Instead do the slow caching in this case, and after
889 * the transaction has committed we will be safe.
890 */
891 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
892 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
893 ret = btrfs_load_free_space_tree(caching_ctl);
894 else
895 ret = load_extent_tree_free(caching_ctl);
896 done:
897 spin_lock(&block_group->lock);
898 block_group->caching_ctl = NULL;
899 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
900 spin_unlock(&block_group->lock);
901
902 #ifdef CONFIG_BTRFS_DEBUG
903 if (btrfs_should_fragment_free_space(block_group)) {
904 u64 bytes_used;
905
906 spin_lock(&block_group->space_info->lock);
907 spin_lock(&block_group->lock);
908 bytes_used = block_group->length - block_group->used;
909 block_group->space_info->bytes_used += bytes_used >> 1;
910 spin_unlock(&block_group->lock);
911 spin_unlock(&block_group->space_info->lock);
912 fragment_free_space(block_group);
913 }
914 #endif
915
916 up_read(&fs_info->commit_root_sem);
917 btrfs_free_excluded_extents(block_group);
918 mutex_unlock(&caching_ctl->mutex);
919
920 wake_up(&caching_ctl->wait);
921
922 btrfs_put_caching_control(caching_ctl);
923 btrfs_put_block_group(block_group);
924 }
925
btrfs_cache_block_group(struct btrfs_block_group * cache,bool wait)926 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
927 {
928 struct btrfs_fs_info *fs_info = cache->fs_info;
929 struct btrfs_caching_control *caching_ctl = NULL;
930 int ret = 0;
931
932 /* Allocator for zoned filesystems does not use the cache at all */
933 if (btrfs_is_zoned(fs_info))
934 return 0;
935
936 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
937 if (!caching_ctl)
938 return -ENOMEM;
939
940 INIT_LIST_HEAD(&caching_ctl->list);
941 mutex_init(&caching_ctl->mutex);
942 init_waitqueue_head(&caching_ctl->wait);
943 caching_ctl->block_group = cache;
944 refcount_set(&caching_ctl->count, 2);
945 atomic_set(&caching_ctl->progress, 0);
946 btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
947
948 spin_lock(&cache->lock);
949 if (cache->cached != BTRFS_CACHE_NO) {
950 kfree(caching_ctl);
951
952 caching_ctl = cache->caching_ctl;
953 if (caching_ctl)
954 refcount_inc(&caching_ctl->count);
955 spin_unlock(&cache->lock);
956 goto out;
957 }
958 WARN_ON(cache->caching_ctl);
959 cache->caching_ctl = caching_ctl;
960 cache->cached = BTRFS_CACHE_STARTED;
961 spin_unlock(&cache->lock);
962
963 write_lock(&fs_info->block_group_cache_lock);
964 refcount_inc(&caching_ctl->count);
965 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
966 write_unlock(&fs_info->block_group_cache_lock);
967
968 btrfs_get_block_group(cache);
969
970 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
971 out:
972 if (wait && caching_ctl)
973 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
974 if (caching_ctl)
975 btrfs_put_caching_control(caching_ctl);
976
977 return ret;
978 }
979
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)980 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
981 {
982 u64 extra_flags = chunk_to_extended(flags) &
983 BTRFS_EXTENDED_PROFILE_MASK;
984
985 write_seqlock(&fs_info->profiles_lock);
986 if (flags & BTRFS_BLOCK_GROUP_DATA)
987 fs_info->avail_data_alloc_bits &= ~extra_flags;
988 if (flags & BTRFS_BLOCK_GROUP_METADATA)
989 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
990 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
991 fs_info->avail_system_alloc_bits &= ~extra_flags;
992 write_sequnlock(&fs_info->profiles_lock);
993 }
994
995 /*
996 * Clear incompat bits for the following feature(s):
997 *
998 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
999 * in the whole filesystem
1000 *
1001 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
1002 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)1003 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
1004 {
1005 bool found_raid56 = false;
1006 bool found_raid1c34 = false;
1007
1008 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1009 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1010 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1011 struct list_head *head = &fs_info->space_info;
1012 struct btrfs_space_info *sinfo;
1013
1014 list_for_each_entry_rcu(sinfo, head, list) {
1015 down_read(&sinfo->groups_sem);
1016 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1017 found_raid56 = true;
1018 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1019 found_raid56 = true;
1020 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1021 found_raid1c34 = true;
1022 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1023 found_raid1c34 = true;
1024 up_read(&sinfo->groups_sem);
1025 }
1026 if (!found_raid56)
1027 btrfs_clear_fs_incompat(fs_info, RAID56);
1028 if (!found_raid1c34)
1029 btrfs_clear_fs_incompat(fs_info, RAID1C34);
1030 }
1031 }
1032
btrfs_block_group_root(struct btrfs_fs_info * fs_info)1033 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1034 {
1035 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1036 return fs_info->block_group_root;
1037 return btrfs_extent_root(fs_info, 0);
1038 }
1039
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)1040 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1041 struct btrfs_path *path,
1042 struct btrfs_block_group *block_group)
1043 {
1044 struct btrfs_fs_info *fs_info = trans->fs_info;
1045 struct btrfs_root *root;
1046 struct btrfs_key key;
1047 int ret;
1048
1049 root = btrfs_block_group_root(fs_info);
1050 key.objectid = block_group->start;
1051 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1052 key.offset = block_group->length;
1053
1054 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1055 if (ret > 0)
1056 ret = -ENOENT;
1057 if (ret < 0)
1058 return ret;
1059
1060 ret = btrfs_del_item(trans, root, path);
1061 return ret;
1062 }
1063
btrfs_remove_block_group(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map)1064 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1065 struct btrfs_chunk_map *map)
1066 {
1067 struct btrfs_fs_info *fs_info = trans->fs_info;
1068 struct btrfs_path *path;
1069 struct btrfs_block_group *block_group;
1070 struct btrfs_free_cluster *cluster;
1071 struct inode *inode;
1072 struct kobject *kobj = NULL;
1073 int ret;
1074 int index;
1075 int factor;
1076 struct btrfs_caching_control *caching_ctl = NULL;
1077 bool remove_map;
1078 bool remove_rsv = false;
1079
1080 block_group = btrfs_lookup_block_group(fs_info, map->start);
1081 if (!block_group)
1082 return -ENOENT;
1083
1084 BUG_ON(!block_group->ro);
1085
1086 trace_btrfs_remove_block_group(block_group);
1087 /*
1088 * Free the reserved super bytes from this block group before
1089 * remove it.
1090 */
1091 btrfs_free_excluded_extents(block_group);
1092 btrfs_free_ref_tree_range(fs_info, block_group->start,
1093 block_group->length);
1094
1095 index = btrfs_bg_flags_to_raid_index(block_group->flags);
1096 factor = btrfs_bg_type_to_factor(block_group->flags);
1097
1098 /* make sure this block group isn't part of an allocation cluster */
1099 cluster = &fs_info->data_alloc_cluster;
1100 spin_lock(&cluster->refill_lock);
1101 btrfs_return_cluster_to_free_space(block_group, cluster);
1102 spin_unlock(&cluster->refill_lock);
1103
1104 /*
1105 * make sure this block group isn't part of a metadata
1106 * allocation cluster
1107 */
1108 cluster = &fs_info->meta_alloc_cluster;
1109 spin_lock(&cluster->refill_lock);
1110 btrfs_return_cluster_to_free_space(block_group, cluster);
1111 spin_unlock(&cluster->refill_lock);
1112
1113 btrfs_clear_treelog_bg(block_group);
1114 btrfs_clear_data_reloc_bg(block_group);
1115
1116 path = btrfs_alloc_path();
1117 if (!path) {
1118 ret = -ENOMEM;
1119 goto out;
1120 }
1121
1122 /*
1123 * get the inode first so any iput calls done for the io_list
1124 * aren't the final iput (no unlinks allowed now)
1125 */
1126 inode = lookup_free_space_inode(block_group, path);
1127
1128 mutex_lock(&trans->transaction->cache_write_mutex);
1129 /*
1130 * Make sure our free space cache IO is done before removing the
1131 * free space inode
1132 */
1133 spin_lock(&trans->transaction->dirty_bgs_lock);
1134 if (!list_empty(&block_group->io_list)) {
1135 list_del_init(&block_group->io_list);
1136
1137 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1138
1139 spin_unlock(&trans->transaction->dirty_bgs_lock);
1140 btrfs_wait_cache_io(trans, block_group, path);
1141 btrfs_put_block_group(block_group);
1142 spin_lock(&trans->transaction->dirty_bgs_lock);
1143 }
1144
1145 if (!list_empty(&block_group->dirty_list)) {
1146 list_del_init(&block_group->dirty_list);
1147 remove_rsv = true;
1148 btrfs_put_block_group(block_group);
1149 }
1150 spin_unlock(&trans->transaction->dirty_bgs_lock);
1151 mutex_unlock(&trans->transaction->cache_write_mutex);
1152
1153 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1154 if (ret)
1155 goto out;
1156
1157 write_lock(&fs_info->block_group_cache_lock);
1158 rb_erase_cached(&block_group->cache_node,
1159 &fs_info->block_group_cache_tree);
1160 RB_CLEAR_NODE(&block_group->cache_node);
1161
1162 /* Once for the block groups rbtree */
1163 btrfs_put_block_group(block_group);
1164
1165 write_unlock(&fs_info->block_group_cache_lock);
1166
1167 down_write(&block_group->space_info->groups_sem);
1168 /*
1169 * we must use list_del_init so people can check to see if they
1170 * are still on the list after taking the semaphore
1171 */
1172 list_del_init(&block_group->list);
1173 if (list_empty(&block_group->space_info->block_groups[index])) {
1174 kobj = block_group->space_info->block_group_kobjs[index];
1175 block_group->space_info->block_group_kobjs[index] = NULL;
1176 clear_avail_alloc_bits(fs_info, block_group->flags);
1177 }
1178 up_write(&block_group->space_info->groups_sem);
1179 clear_incompat_bg_bits(fs_info, block_group->flags);
1180 if (kobj) {
1181 kobject_del(kobj);
1182 kobject_put(kobj);
1183 }
1184
1185 if (block_group->cached == BTRFS_CACHE_STARTED)
1186 btrfs_wait_block_group_cache_done(block_group);
1187
1188 write_lock(&fs_info->block_group_cache_lock);
1189 caching_ctl = btrfs_get_caching_control(block_group);
1190 if (!caching_ctl) {
1191 struct btrfs_caching_control *ctl;
1192
1193 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1194 if (ctl->block_group == block_group) {
1195 caching_ctl = ctl;
1196 refcount_inc(&caching_ctl->count);
1197 break;
1198 }
1199 }
1200 }
1201 if (caching_ctl)
1202 list_del_init(&caching_ctl->list);
1203 write_unlock(&fs_info->block_group_cache_lock);
1204
1205 if (caching_ctl) {
1206 /* Once for the caching bgs list and once for us. */
1207 btrfs_put_caching_control(caching_ctl);
1208 btrfs_put_caching_control(caching_ctl);
1209 }
1210
1211 spin_lock(&trans->transaction->dirty_bgs_lock);
1212 WARN_ON(!list_empty(&block_group->dirty_list));
1213 WARN_ON(!list_empty(&block_group->io_list));
1214 spin_unlock(&trans->transaction->dirty_bgs_lock);
1215
1216 btrfs_remove_free_space_cache(block_group);
1217
1218 spin_lock(&block_group->space_info->lock);
1219 list_del_init(&block_group->ro_list);
1220
1221 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1222 WARN_ON(block_group->space_info->total_bytes
1223 < block_group->length);
1224 WARN_ON(block_group->space_info->bytes_readonly
1225 < block_group->length - block_group->zone_unusable);
1226 WARN_ON(block_group->space_info->bytes_zone_unusable
1227 < block_group->zone_unusable);
1228 WARN_ON(block_group->space_info->disk_total
1229 < block_group->length * factor);
1230 }
1231 block_group->space_info->total_bytes -= block_group->length;
1232 block_group->space_info->bytes_readonly -=
1233 (block_group->length - block_group->zone_unusable);
1234 btrfs_space_info_update_bytes_zone_unusable(block_group->space_info,
1235 -block_group->zone_unusable);
1236 block_group->space_info->disk_total -= block_group->length * factor;
1237
1238 spin_unlock(&block_group->space_info->lock);
1239
1240 /*
1241 * Remove the free space for the block group from the free space tree
1242 * and the block group's item from the extent tree before marking the
1243 * block group as removed. This is to prevent races with tasks that
1244 * freeze and unfreeze a block group, this task and another task
1245 * allocating a new block group - the unfreeze task ends up removing
1246 * the block group's extent map before the task calling this function
1247 * deletes the block group item from the extent tree, allowing for
1248 * another task to attempt to create another block group with the same
1249 * item key (and failing with -EEXIST and a transaction abort).
1250 */
1251 ret = btrfs_remove_block_group_free_space(trans, block_group);
1252 if (ret)
1253 goto out;
1254
1255 ret = remove_block_group_item(trans, path, block_group);
1256 if (ret < 0)
1257 goto out;
1258
1259 spin_lock(&block_group->lock);
1260 /*
1261 * Hitting this WARN means we removed a block group with an unwritten
1262 * region. It will cause "unable to find chunk map for logical" errors.
1263 */
1264 if (WARN_ON(has_unwritten_metadata(block_group)))
1265 btrfs_warn(fs_info,
1266 "block group %llu is removed before metadata write out",
1267 block_group->start);
1268
1269 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1270
1271 /*
1272 * At this point trimming or scrub can't start on this block group,
1273 * because we removed the block group from the rbtree
1274 * fs_info->block_group_cache_tree so no one can't find it anymore and
1275 * even if someone already got this block group before we removed it
1276 * from the rbtree, they have already incremented block_group->frozen -
1277 * if they didn't, for the trimming case they won't find any free space
1278 * entries because we already removed them all when we called
1279 * btrfs_remove_free_space_cache().
1280 *
1281 * And we must not remove the chunk map from the fs_info->mapping_tree
1282 * to prevent the same logical address range and physical device space
1283 * ranges from being reused for a new block group. This is needed to
1284 * avoid races with trimming and scrub.
1285 *
1286 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1287 * completely transactionless, so while it is trimming a range the
1288 * currently running transaction might finish and a new one start,
1289 * allowing for new block groups to be created that can reuse the same
1290 * physical device locations unless we take this special care.
1291 *
1292 * There may also be an implicit trim operation if the file system
1293 * is mounted with -odiscard. The same protections must remain
1294 * in place until the extents have been discarded completely when
1295 * the transaction commit has completed.
1296 */
1297 remove_map = (atomic_read(&block_group->frozen) == 0);
1298 spin_unlock(&block_group->lock);
1299
1300 if (remove_map)
1301 btrfs_remove_chunk_map(fs_info, map);
1302
1303 out:
1304 /* Once for the lookup reference */
1305 btrfs_put_block_group(block_group);
1306 if (remove_rsv)
1307 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
1308 btrfs_free_path(path);
1309 return ret;
1310 }
1311
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1312 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1313 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1314 {
1315 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1316 struct btrfs_chunk_map *map;
1317 unsigned int num_items;
1318
1319 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1320 ASSERT(map != NULL);
1321 ASSERT(map->start == chunk_offset);
1322
1323 /*
1324 * We need to reserve 3 + N units from the metadata space info in order
1325 * to remove a block group (done at btrfs_remove_chunk() and at
1326 * btrfs_remove_block_group()), which are used for:
1327 *
1328 * 1 unit for adding the free space inode's orphan (located in the tree
1329 * of tree roots).
1330 * 1 unit for deleting the block group item (located in the extent
1331 * tree).
1332 * 1 unit for deleting the free space item (located in tree of tree
1333 * roots).
1334 * N units for deleting N device extent items corresponding to each
1335 * stripe (located in the device tree).
1336 *
1337 * In order to remove a block group we also need to reserve units in the
1338 * system space info in order to update the chunk tree (update one or
1339 * more device items and remove one chunk item), but this is done at
1340 * btrfs_remove_chunk() through a call to check_system_chunk().
1341 */
1342 num_items = 3 + map->num_stripes;
1343 btrfs_free_chunk_map(map);
1344
1345 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1346 }
1347
1348 /*
1349 * Mark block group @cache read-only, so later write won't happen to block
1350 * group @cache.
1351 *
1352 * If @force is not set, this function will only mark the block group readonly
1353 * if we have enough free space (1M) in other metadata/system block groups.
1354 * If @force is not set, this function will mark the block group readonly
1355 * without checking free space.
1356 *
1357 * NOTE: This function doesn't care if other block groups can contain all the
1358 * data in this block group. That check should be done by relocation routine,
1359 * not this function.
1360 */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1361 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1362 {
1363 struct btrfs_space_info *sinfo = cache->space_info;
1364 u64 num_bytes;
1365 int ret = -ENOSPC;
1366
1367 spin_lock(&sinfo->lock);
1368 spin_lock(&cache->lock);
1369
1370 if (cache->swap_extents) {
1371 ret = -ETXTBSY;
1372 goto out;
1373 }
1374
1375 if (cache->ro) {
1376 cache->ro++;
1377 ret = 0;
1378 goto out;
1379 }
1380
1381 num_bytes = cache->length - cache->reserved - cache->pinned -
1382 cache->bytes_super - cache->zone_unusable - cache->used;
1383
1384 /*
1385 * Data never overcommits, even in mixed mode, so do just the straight
1386 * check of left over space in how much we have allocated.
1387 */
1388 if (force) {
1389 ret = 0;
1390 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1391 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1392
1393 /*
1394 * Here we make sure if we mark this bg RO, we still have enough
1395 * free space as buffer.
1396 */
1397 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1398 ret = 0;
1399 } else {
1400 /*
1401 * We overcommit metadata, so we need to do the
1402 * btrfs_can_overcommit check here, and we need to pass in
1403 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1404 * leeway to allow us to mark this block group as read only.
1405 */
1406 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1407 BTRFS_RESERVE_NO_FLUSH))
1408 ret = 0;
1409 }
1410
1411 if (!ret) {
1412 sinfo->bytes_readonly += num_bytes;
1413 if (btrfs_is_zoned(cache->fs_info)) {
1414 /* Migrate zone_unusable bytes to readonly */
1415 sinfo->bytes_readonly += cache->zone_unusable;
1416 btrfs_space_info_update_bytes_zone_unusable(sinfo, -cache->zone_unusable);
1417 cache->zone_unusable = 0;
1418 }
1419 cache->ro++;
1420 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1421 }
1422 out:
1423 spin_unlock(&cache->lock);
1424 spin_unlock(&sinfo->lock);
1425 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1426 btrfs_info(cache->fs_info,
1427 "unable to make block group %llu ro", cache->start);
1428 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, false);
1429 }
1430 return ret;
1431 }
1432
clean_pinned_extents(struct btrfs_trans_handle * trans,const struct btrfs_block_group * bg)1433 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1434 const struct btrfs_block_group *bg)
1435 {
1436 struct btrfs_fs_info *fs_info = trans->fs_info;
1437 struct btrfs_transaction *prev_trans = NULL;
1438 const u64 start = bg->start;
1439 const u64 end = start + bg->length - 1;
1440 int ret;
1441
1442 spin_lock(&fs_info->trans_lock);
1443 if (!list_is_first(&trans->transaction->list, &fs_info->trans_list)) {
1444 prev_trans = list_prev_entry(trans->transaction, list);
1445 refcount_inc(&prev_trans->use_count);
1446 }
1447 spin_unlock(&fs_info->trans_lock);
1448
1449 /*
1450 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1451 * btrfs_finish_extent_commit(). If we are at transaction N, another
1452 * task might be running finish_extent_commit() for the previous
1453 * transaction N - 1, and have seen a range belonging to the block
1454 * group in pinned_extents before we were able to clear the whole block
1455 * group range from pinned_extents. This means that task can lookup for
1456 * the block group after we unpinned it from pinned_extents and removed
1457 * it, leading to an error at unpin_extent_range().
1458 */
1459 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1460 if (prev_trans) {
1461 ret = btrfs_clear_extent_bit(&prev_trans->pinned_extents, start, end,
1462 EXTENT_DIRTY, NULL);
1463 if (ret)
1464 goto out;
1465 }
1466
1467 ret = btrfs_clear_extent_bit(&trans->transaction->pinned_extents, start, end,
1468 EXTENT_DIRTY, NULL);
1469 out:
1470 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1471 if (prev_trans)
1472 btrfs_put_transaction(prev_trans);
1473
1474 return ret == 0;
1475 }
1476
1477 /*
1478 * Link the block_group to a list via bg_list.
1479 *
1480 * @bg: The block_group to link to the list.
1481 * @list: The list to link it to.
1482 *
1483 * Use this rather than list_add_tail() directly to ensure proper respect
1484 * to locking and refcounting.
1485 *
1486 * Returns: true if the bg was linked with a refcount bump and false otherwise.
1487 */
btrfs_link_bg_list(struct btrfs_block_group * bg,struct list_head * list)1488 static bool btrfs_link_bg_list(struct btrfs_block_group *bg, struct list_head *list)
1489 {
1490 struct btrfs_fs_info *fs_info = bg->fs_info;
1491 bool added = false;
1492
1493 spin_lock(&fs_info->unused_bgs_lock);
1494 if (list_empty(&bg->bg_list)) {
1495 btrfs_get_block_group(bg);
1496 list_add_tail(&bg->bg_list, list);
1497 added = true;
1498 }
1499 spin_unlock(&fs_info->unused_bgs_lock);
1500 return added;
1501 }
1502
1503 /*
1504 * Process the unused_bgs list and remove any that don't have any allocated
1505 * space inside of them.
1506 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1507 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1508 {
1509 LIST_HEAD(retry_list);
1510 struct btrfs_block_group *block_group;
1511 struct btrfs_space_info *space_info;
1512 struct btrfs_trans_handle *trans;
1513 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1514 int ret = 0;
1515
1516 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1517 return;
1518
1519 if (btrfs_fs_closing(fs_info))
1520 return;
1521
1522 /*
1523 * Long running balances can keep us blocked here for eternity, so
1524 * simply skip deletion if we're unable to get the mutex.
1525 */
1526 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1527 return;
1528
1529 spin_lock(&fs_info->unused_bgs_lock);
1530 while (!list_empty(&fs_info->unused_bgs)) {
1531 u64 used;
1532 int trimming;
1533
1534 block_group = list_first_entry(&fs_info->unused_bgs,
1535 struct btrfs_block_group,
1536 bg_list);
1537 list_del_init(&block_group->bg_list);
1538
1539 space_info = block_group->space_info;
1540
1541 if (ret || btrfs_mixed_space_info(space_info)) {
1542 btrfs_put_block_group(block_group);
1543 continue;
1544 }
1545 spin_unlock(&fs_info->unused_bgs_lock);
1546
1547 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1548
1549 /* Don't want to race with allocators so take the groups_sem */
1550 down_write(&space_info->groups_sem);
1551
1552 /*
1553 * Async discard moves the final block group discard to be prior
1554 * to the unused_bgs code path. Therefore, if it's not fully
1555 * trimmed, punt it back to the async discard lists.
1556 */
1557 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1558 !btrfs_is_free_space_trimmed(block_group)) {
1559 trace_btrfs_skip_unused_block_group(block_group);
1560 up_write(&space_info->groups_sem);
1561 /* Requeue if we failed because of async discard */
1562 btrfs_discard_queue_work(&fs_info->discard_ctl,
1563 block_group);
1564 goto next;
1565 }
1566
1567 spin_lock(&space_info->lock);
1568 spin_lock(&block_group->lock);
1569 if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1570 list_is_singular(&block_group->list)) {
1571 /*
1572 * We want to bail if we made new allocations or have
1573 * outstanding allocations in this block group. We do
1574 * the ro check in case balance is currently acting on
1575 * this block group.
1576 *
1577 * Also bail out if this is the only block group for its
1578 * type, because otherwise we would lose profile
1579 * information from fs_info->avail_*_alloc_bits and the
1580 * next block group of this type would be created with a
1581 * "single" profile (even if we're in a raid fs) because
1582 * fs_info->avail_*_alloc_bits would be 0.
1583 */
1584 trace_btrfs_skip_unused_block_group(block_group);
1585 spin_unlock(&block_group->lock);
1586 spin_unlock(&space_info->lock);
1587 up_write(&space_info->groups_sem);
1588 goto next;
1589 }
1590
1591 /*
1592 * The block group may be unused but there may be space reserved
1593 * accounting with the existence of that block group, that is,
1594 * space_info->bytes_may_use was incremented by a task but no
1595 * space was yet allocated from the block group by the task.
1596 * That space may or may not be allocated, as we are generally
1597 * pessimistic about space reservation for metadata as well as
1598 * for data when using compression (as we reserve space based on
1599 * the worst case, when data can't be compressed, and before
1600 * actually attempting compression, before starting writeback).
1601 *
1602 * So check if the total space of the space_info minus the size
1603 * of this block group is less than the used space of the
1604 * space_info - if that's the case, then it means we have tasks
1605 * that might be relying on the block group in order to allocate
1606 * extents, and add back the block group to the unused list when
1607 * we finish, so that we retry later in case no tasks ended up
1608 * needing to allocate extents from the block group.
1609 */
1610 used = btrfs_space_info_used(space_info, true);
1611 if ((space_info->total_bytes - block_group->length < used &&
1612 block_group->zone_unusable < block_group->length) ||
1613 has_unwritten_metadata(block_group)) {
1614 /*
1615 * Add a reference for the list, compensate for the ref
1616 * drop under the "next" label for the
1617 * fs_info->unused_bgs list.
1618 */
1619 btrfs_link_bg_list(block_group, &retry_list);
1620
1621 trace_btrfs_skip_unused_block_group(block_group);
1622 spin_unlock(&block_group->lock);
1623 spin_unlock(&space_info->lock);
1624 up_write(&space_info->groups_sem);
1625 goto next;
1626 }
1627
1628 spin_unlock(&block_group->lock);
1629 spin_unlock(&space_info->lock);
1630
1631 /* We don't want to force the issue, only flip if it's ok. */
1632 ret = inc_block_group_ro(block_group, 0);
1633 up_write(&space_info->groups_sem);
1634 if (ret < 0) {
1635 ret = 0;
1636 goto next;
1637 }
1638
1639 ret = btrfs_zone_finish(block_group);
1640 if (ret < 0) {
1641 btrfs_dec_block_group_ro(block_group);
1642 if (ret == -EAGAIN) {
1643 btrfs_link_bg_list(block_group, &retry_list);
1644 ret = 0;
1645 }
1646 goto next;
1647 }
1648
1649 /*
1650 * Want to do this before we do anything else so we can recover
1651 * properly if we fail to join the transaction.
1652 */
1653 trans = btrfs_start_trans_remove_block_group(fs_info,
1654 block_group->start);
1655 if (IS_ERR(trans)) {
1656 btrfs_dec_block_group_ro(block_group);
1657 ret = PTR_ERR(trans);
1658 goto next;
1659 }
1660
1661 /*
1662 * We could have pending pinned extents for this block group,
1663 * just delete them, we don't care about them anymore.
1664 */
1665 if (!clean_pinned_extents(trans, block_group)) {
1666 btrfs_dec_block_group_ro(block_group);
1667 goto end_trans;
1668 }
1669
1670 /*
1671 * At this point, the block_group is read only and should fail
1672 * new allocations. However, btrfs_finish_extent_commit() can
1673 * cause this block_group to be placed back on the discard
1674 * lists because now the block_group isn't fully discarded.
1675 * Bail here and try again later after discarding everything.
1676 */
1677 spin_lock(&fs_info->discard_ctl.lock);
1678 if (!list_empty(&block_group->discard_list)) {
1679 spin_unlock(&fs_info->discard_ctl.lock);
1680 btrfs_dec_block_group_ro(block_group);
1681 btrfs_discard_queue_work(&fs_info->discard_ctl,
1682 block_group);
1683 goto end_trans;
1684 }
1685 spin_unlock(&fs_info->discard_ctl.lock);
1686
1687 /* Reset pinned so btrfs_put_block_group doesn't complain */
1688 spin_lock(&space_info->lock);
1689 spin_lock(&block_group->lock);
1690
1691 btrfs_space_info_update_bytes_pinned(space_info, -block_group->pinned);
1692 space_info->bytes_readonly += block_group->pinned;
1693 block_group->pinned = 0;
1694
1695 spin_unlock(&block_group->lock);
1696 spin_unlock(&space_info->lock);
1697
1698 /*
1699 * The normal path here is an unused block group is passed here,
1700 * then trimming is handled in the transaction commit path.
1701 * Async discard interposes before this to do the trimming
1702 * before coming down the unused block group path as trimming
1703 * will no longer be done later in the transaction commit path.
1704 */
1705 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1706 goto flip_async;
1707
1708 /*
1709 * DISCARD can flip during remount. On zoned filesystems, we
1710 * need to reset sequential-required zones.
1711 */
1712 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1713 btrfs_is_zoned(fs_info);
1714
1715 /* Implicit trim during transaction commit. */
1716 if (trimming)
1717 btrfs_freeze_block_group(block_group);
1718
1719 /*
1720 * Btrfs_remove_chunk will abort the transaction if things go
1721 * horribly wrong.
1722 */
1723 ret = btrfs_remove_chunk(trans, block_group->start);
1724
1725 if (ret) {
1726 if (trimming)
1727 btrfs_unfreeze_block_group(block_group);
1728 goto end_trans;
1729 }
1730
1731 /*
1732 * If we're not mounted with -odiscard, we can just forget
1733 * about this block group. Otherwise we'll need to wait
1734 * until transaction commit to do the actual discard.
1735 */
1736 if (trimming) {
1737 spin_lock(&fs_info->unused_bgs_lock);
1738 /*
1739 * A concurrent scrub might have added us to the list
1740 * fs_info->unused_bgs, so use a list_move operation
1741 * to add the block group to the deleted_bgs list.
1742 */
1743 list_move(&block_group->bg_list,
1744 &trans->transaction->deleted_bgs);
1745 spin_unlock(&fs_info->unused_bgs_lock);
1746 btrfs_get_block_group(block_group);
1747 }
1748 end_trans:
1749 btrfs_end_transaction(trans);
1750 next:
1751 btrfs_put_block_group(block_group);
1752 spin_lock(&fs_info->unused_bgs_lock);
1753 }
1754 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1755 spin_unlock(&fs_info->unused_bgs_lock);
1756 mutex_unlock(&fs_info->reclaim_bgs_lock);
1757 return;
1758
1759 flip_async:
1760 btrfs_end_transaction(trans);
1761 spin_lock(&fs_info->unused_bgs_lock);
1762 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1763 spin_unlock(&fs_info->unused_bgs_lock);
1764 mutex_unlock(&fs_info->reclaim_bgs_lock);
1765 btrfs_put_block_group(block_group);
1766 btrfs_discard_punt_unused_bgs_list(fs_info);
1767 }
1768
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1769 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1770 {
1771 struct btrfs_fs_info *fs_info = bg->fs_info;
1772
1773 spin_lock(&fs_info->unused_bgs_lock);
1774 if (list_empty(&bg->bg_list)) {
1775 btrfs_get_block_group(bg);
1776 trace_btrfs_add_unused_block_group(bg);
1777 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1778 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1779 /* Pull out the block group from the reclaim_bgs list. */
1780 trace_btrfs_add_unused_block_group(bg);
1781 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1782 }
1783 spin_unlock(&fs_info->unused_bgs_lock);
1784 }
1785
1786 /*
1787 * We want block groups with a low number of used bytes to be in the beginning
1788 * of the list, so they will get reclaimed first.
1789 */
reclaim_bgs_cmp(void * unused,const struct list_head * a,const struct list_head * b)1790 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1791 const struct list_head *b)
1792 {
1793 const struct btrfs_block_group *bg1, *bg2;
1794
1795 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1796 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1797
1798 return bg1->used > bg2->used;
1799 }
1800
btrfs_should_reclaim(const struct btrfs_fs_info * fs_info)1801 static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info)
1802 {
1803 if (btrfs_is_zoned(fs_info))
1804 return btrfs_zoned_should_reclaim(fs_info);
1805 return true;
1806 }
1807
should_reclaim_block_group(const struct btrfs_block_group * bg,u64 bytes_freed)1808 static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed)
1809 {
1810 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info);
1811 u64 thresh_bytes = mult_perc(bg->length, thresh_pct);
1812 const u64 new_val = bg->used;
1813 const u64 old_val = new_val + bytes_freed;
1814
1815 if (thresh_bytes == 0)
1816 return false;
1817
1818 /*
1819 * If we were below the threshold before don't reclaim, we are likely a
1820 * brand new block group and we don't want to relocate new block groups.
1821 */
1822 if (old_val < thresh_bytes)
1823 return false;
1824 if (new_val >= thresh_bytes)
1825 return false;
1826 return true;
1827 }
1828
btrfs_reclaim_bgs_work(struct work_struct * work)1829 void btrfs_reclaim_bgs_work(struct work_struct *work)
1830 {
1831 struct btrfs_fs_info *fs_info =
1832 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1833 struct btrfs_block_group *bg;
1834 struct btrfs_space_info *space_info;
1835 LIST_HEAD(retry_list);
1836
1837 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1838 return;
1839
1840 if (btrfs_fs_closing(fs_info))
1841 return;
1842
1843 if (!btrfs_should_reclaim(fs_info))
1844 return;
1845
1846 sb_start_write(fs_info->sb);
1847
1848 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1849 sb_end_write(fs_info->sb);
1850 return;
1851 }
1852
1853 /*
1854 * Long running balances can keep us blocked here for eternity, so
1855 * simply skip reclaim if we're unable to get the mutex.
1856 */
1857 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1858 btrfs_exclop_finish(fs_info);
1859 sb_end_write(fs_info->sb);
1860 return;
1861 }
1862
1863 spin_lock(&fs_info->unused_bgs_lock);
1864 /*
1865 * Sort happens under lock because we can't simply splice it and sort.
1866 * The block groups might still be in use and reachable via bg_list,
1867 * and their presence in the reclaim_bgs list must be preserved.
1868 */
1869 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1870 while (!list_empty(&fs_info->reclaim_bgs)) {
1871 u64 used;
1872 u64 reserved;
1873 int ret = 0;
1874
1875 bg = list_first_entry(&fs_info->reclaim_bgs,
1876 struct btrfs_block_group,
1877 bg_list);
1878 list_del_init(&bg->bg_list);
1879
1880 space_info = bg->space_info;
1881 spin_unlock(&fs_info->unused_bgs_lock);
1882
1883 /* Don't race with allocators so take the groups_sem */
1884 down_write(&space_info->groups_sem);
1885
1886 spin_lock(&space_info->lock);
1887 spin_lock(&bg->lock);
1888 if (bg->reserved || bg->pinned || bg->ro) {
1889 /*
1890 * We want to bail if we made new allocations or have
1891 * outstanding allocations in this block group. We do
1892 * the ro check in case balance is currently acting on
1893 * this block group.
1894 */
1895 spin_unlock(&bg->lock);
1896 spin_unlock(&space_info->lock);
1897 up_write(&space_info->groups_sem);
1898 goto next;
1899 }
1900 if (bg->used == 0) {
1901 /*
1902 * It is possible that we trigger relocation on a block
1903 * group as its extents are deleted and it first goes
1904 * below the threshold, then shortly after goes empty.
1905 *
1906 * In this case, relocating it does delete it, but has
1907 * some overhead in relocation specific metadata, looking
1908 * for the non-existent extents and running some extra
1909 * transactions, which we can avoid by using one of the
1910 * other mechanisms for dealing with empty block groups.
1911 */
1912 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1913 btrfs_mark_bg_unused(bg);
1914 spin_unlock(&bg->lock);
1915 spin_unlock(&space_info->lock);
1916 up_write(&space_info->groups_sem);
1917 goto next;
1918
1919 }
1920 /*
1921 * The block group might no longer meet the reclaim condition by
1922 * the time we get around to reclaiming it, so to avoid
1923 * reclaiming overly full block_groups, skip reclaiming them.
1924 *
1925 * Since the decision making process also depends on the amount
1926 * being freed, pass in a fake giant value to skip that extra
1927 * check, which is more meaningful when adding to the list in
1928 * the first place.
1929 */
1930 if (!should_reclaim_block_group(bg, bg->length)) {
1931 spin_unlock(&bg->lock);
1932 spin_unlock(&space_info->lock);
1933 up_write(&space_info->groups_sem);
1934 goto next;
1935 }
1936
1937 spin_unlock(&bg->lock);
1938 spin_unlock(&space_info->lock);
1939
1940 /*
1941 * Get out fast, in case we're read-only or unmounting the
1942 * filesystem. It is OK to drop block groups from the list even
1943 * for the read-only case. As we did sb_start_write(),
1944 * "mount -o remount,ro" won't happen and read-only filesystem
1945 * means it is forced read-only due to a fatal error. So, it
1946 * never gets back to read-write to let us reclaim again.
1947 */
1948 if (btrfs_need_cleaner_sleep(fs_info)) {
1949 up_write(&space_info->groups_sem);
1950 goto next;
1951 }
1952
1953 ret = inc_block_group_ro(bg, 0);
1954 up_write(&space_info->groups_sem);
1955 if (ret < 0)
1956 goto next;
1957
1958 /*
1959 * The amount of bytes reclaimed corresponds to the sum of the
1960 * "used" and "reserved" counters. We have set the block group
1961 * to RO above, which prevents reservations from happening but
1962 * we may have existing reservations for which allocation has
1963 * not yet been done - btrfs_update_block_group() was not yet
1964 * called, which is where we will transfer a reserved extent's
1965 * size from the "reserved" counter to the "used" counter - this
1966 * happens when running delayed references. When we relocate the
1967 * chunk below, relocation first flushes dellaloc, waits for
1968 * ordered extent completion (which is where we create delayed
1969 * references for data extents) and commits the current
1970 * transaction (which runs delayed references), and only after
1971 * it does the actual work to move extents out of the block
1972 * group. So the reported amount of reclaimed bytes is
1973 * effectively the sum of the 'used' and 'reserved' counters.
1974 */
1975 spin_lock(&bg->lock);
1976 used = bg->used;
1977 reserved = bg->reserved;
1978 spin_unlock(&bg->lock);
1979
1980 trace_btrfs_reclaim_block_group(bg);
1981 ret = btrfs_relocate_chunk(fs_info, bg->start, false);
1982 if (ret) {
1983 btrfs_dec_block_group_ro(bg);
1984 btrfs_err(fs_info, "error relocating chunk %llu",
1985 bg->start);
1986 used = 0;
1987 reserved = 0;
1988 spin_lock(&space_info->lock);
1989 space_info->reclaim_errors++;
1990 if (READ_ONCE(space_info->periodic_reclaim))
1991 space_info->periodic_reclaim_ready = false;
1992 spin_unlock(&space_info->lock);
1993 }
1994 spin_lock(&space_info->lock);
1995 space_info->reclaim_count++;
1996 space_info->reclaim_bytes += used;
1997 space_info->reclaim_bytes += reserved;
1998 spin_unlock(&space_info->lock);
1999
2000 next:
2001 if (ret && !READ_ONCE(space_info->periodic_reclaim))
2002 btrfs_link_bg_list(bg, &retry_list);
2003 btrfs_put_block_group(bg);
2004
2005 mutex_unlock(&fs_info->reclaim_bgs_lock);
2006 /*
2007 * Reclaiming all the block groups in the list can take really
2008 * long. Prioritize cleaning up unused block groups.
2009 */
2010 btrfs_delete_unused_bgs(fs_info);
2011 /*
2012 * If we are interrupted by a balance, we can just bail out. The
2013 * cleaner thread restart again if necessary.
2014 */
2015 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
2016 goto end;
2017 spin_lock(&fs_info->unused_bgs_lock);
2018 }
2019 spin_unlock(&fs_info->unused_bgs_lock);
2020 mutex_unlock(&fs_info->reclaim_bgs_lock);
2021 end:
2022 spin_lock(&fs_info->unused_bgs_lock);
2023 list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
2024 spin_unlock(&fs_info->unused_bgs_lock);
2025 btrfs_exclop_finish(fs_info);
2026 sb_end_write(fs_info->sb);
2027 }
2028
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)2029 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
2030 {
2031 btrfs_reclaim_sweep(fs_info);
2032 spin_lock(&fs_info->unused_bgs_lock);
2033 if (!list_empty(&fs_info->reclaim_bgs))
2034 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
2035 spin_unlock(&fs_info->unused_bgs_lock);
2036 }
2037
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)2038 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
2039 {
2040 struct btrfs_fs_info *fs_info = bg->fs_info;
2041
2042 if (btrfs_link_bg_list(bg, &fs_info->reclaim_bgs))
2043 trace_btrfs_add_reclaim_block_group(bg);
2044 }
2045
read_bg_from_eb(struct btrfs_fs_info * fs_info,const struct btrfs_key * key,const struct btrfs_path * path)2046 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key,
2047 const struct btrfs_path *path)
2048 {
2049 struct btrfs_chunk_map *map;
2050 struct btrfs_block_group_item bg;
2051 struct extent_buffer *leaf;
2052 int slot;
2053 u64 flags;
2054 int ret = 0;
2055
2056 slot = path->slots[0];
2057 leaf = path->nodes[0];
2058
2059 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
2060 if (!map) {
2061 btrfs_err(fs_info,
2062 "logical %llu len %llu found bg but no related chunk",
2063 key->objectid, key->offset);
2064 return -ENOENT;
2065 }
2066
2067 if (map->start != key->objectid || map->chunk_len != key->offset) {
2068 btrfs_err(fs_info,
2069 "block group %llu len %llu mismatch with chunk %llu len %llu",
2070 key->objectid, key->offset, map->start, map->chunk_len);
2071 ret = -EUCLEAN;
2072 goto out_free_map;
2073 }
2074
2075 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2076 sizeof(bg));
2077 flags = btrfs_stack_block_group_flags(&bg) &
2078 BTRFS_BLOCK_GROUP_TYPE_MASK;
2079
2080 if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2081 btrfs_err(fs_info,
2082 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2083 key->objectid, key->offset, flags,
2084 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
2085 ret = -EUCLEAN;
2086 }
2087
2088 out_free_map:
2089 btrfs_free_chunk_map(map);
2090 return ret;
2091 }
2092
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * key)2093 static int find_first_block_group(struct btrfs_fs_info *fs_info,
2094 struct btrfs_path *path,
2095 const struct btrfs_key *key)
2096 {
2097 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2098 int ret;
2099 struct btrfs_key found_key;
2100
2101 btrfs_for_each_slot(root, key, &found_key, path, ret) {
2102 if (found_key.objectid >= key->objectid &&
2103 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2104 return read_bg_from_eb(fs_info, &found_key, path);
2105 }
2106 }
2107 return ret;
2108 }
2109
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)2110 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2111 {
2112 u64 extra_flags = chunk_to_extended(flags) &
2113 BTRFS_EXTENDED_PROFILE_MASK;
2114
2115 write_seqlock(&fs_info->profiles_lock);
2116 if (flags & BTRFS_BLOCK_GROUP_DATA)
2117 fs_info->avail_data_alloc_bits |= extra_flags;
2118 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2119 fs_info->avail_metadata_alloc_bits |= extra_flags;
2120 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2121 fs_info->avail_system_alloc_bits |= extra_flags;
2122 write_sequnlock(&fs_info->profiles_lock);
2123 }
2124
2125 /*
2126 * Map a physical disk address to a list of logical addresses.
2127 *
2128 * @fs_info: the filesystem
2129 * @chunk_start: logical address of block group
2130 * @physical: physical address to map to logical addresses
2131 * @logical: return array of logical addresses which map to @physical
2132 * @naddrs: length of @logical
2133 * @stripe_len: size of IO stripe for the given block group
2134 *
2135 * Maps a particular @physical disk address to a list of @logical addresses.
2136 * Used primarily to exclude those portions of a block group that contain super
2137 * block copies.
2138 */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)2139 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2140 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2141 {
2142 struct btrfs_chunk_map *map;
2143 u64 *buf;
2144 u64 bytenr;
2145 u64 data_stripe_length;
2146 u64 io_stripe_size;
2147 int i, nr = 0;
2148 int ret = 0;
2149
2150 map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2151 if (IS_ERR(map))
2152 return -EIO;
2153
2154 data_stripe_length = map->stripe_size;
2155 io_stripe_size = BTRFS_STRIPE_LEN;
2156 chunk_start = map->start;
2157
2158 /* For RAID5/6 adjust to a full IO stripe length */
2159 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2160 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2161
2162 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2163 if (!buf) {
2164 ret = -ENOMEM;
2165 goto out;
2166 }
2167
2168 for (i = 0; i < map->num_stripes; i++) {
2169 bool already_inserted = false;
2170 u32 stripe_nr;
2171 u32 offset;
2172 int j;
2173
2174 if (!in_range(physical, map->stripes[i].physical,
2175 data_stripe_length))
2176 continue;
2177
2178 stripe_nr = (physical - map->stripes[i].physical) >>
2179 BTRFS_STRIPE_LEN_SHIFT;
2180 offset = (physical - map->stripes[i].physical) &
2181 BTRFS_STRIPE_LEN_MASK;
2182
2183 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2184 BTRFS_BLOCK_GROUP_RAID10))
2185 stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2186 map->sub_stripes);
2187 /*
2188 * The remaining case would be for RAID56, multiply by
2189 * nr_data_stripes(). Alternatively, just use rmap_len below
2190 * instead of map->stripe_len
2191 */
2192 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2193
2194 /* Ensure we don't add duplicate addresses */
2195 for (j = 0; j < nr; j++) {
2196 if (buf[j] == bytenr) {
2197 already_inserted = true;
2198 break;
2199 }
2200 }
2201
2202 if (!already_inserted)
2203 buf[nr++] = bytenr;
2204 }
2205
2206 *logical = buf;
2207 *naddrs = nr;
2208 *stripe_len = io_stripe_size;
2209 out:
2210 btrfs_free_chunk_map(map);
2211 return ret;
2212 }
2213
exclude_super_stripes(struct btrfs_block_group * cache)2214 static int exclude_super_stripes(struct btrfs_block_group *cache)
2215 {
2216 struct btrfs_fs_info *fs_info = cache->fs_info;
2217 const bool zoned = btrfs_is_zoned(fs_info);
2218 u64 bytenr;
2219 u64 *logical;
2220 int stripe_len;
2221 int i, nr, ret;
2222
2223 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2224 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2225 cache->bytes_super += stripe_len;
2226 ret = btrfs_set_extent_bit(&fs_info->excluded_extents, cache->start,
2227 cache->start + stripe_len - 1,
2228 EXTENT_DIRTY, NULL);
2229 if (ret)
2230 return ret;
2231 }
2232
2233 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2234 bytenr = btrfs_sb_offset(i);
2235 ret = btrfs_rmap_block(fs_info, cache->start,
2236 bytenr, &logical, &nr, &stripe_len);
2237 if (ret)
2238 return ret;
2239
2240 /* Shouldn't have super stripes in sequential zones */
2241 if (zoned && nr) {
2242 kfree(logical);
2243 btrfs_err(fs_info,
2244 "zoned: block group %llu must not contain super block",
2245 cache->start);
2246 return -EUCLEAN;
2247 }
2248
2249 while (nr--) {
2250 u64 len = min_t(u64, stripe_len,
2251 cache->start + cache->length - logical[nr]);
2252
2253 cache->bytes_super += len;
2254 ret = btrfs_set_extent_bit(&fs_info->excluded_extents,
2255 logical[nr], logical[nr] + len - 1,
2256 EXTENT_DIRTY, NULL);
2257 if (ret) {
2258 kfree(logical);
2259 return ret;
2260 }
2261 }
2262
2263 kfree(logical);
2264 }
2265 return 0;
2266 }
2267
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)2268 static struct btrfs_block_group *btrfs_create_block_group_cache(
2269 struct btrfs_fs_info *fs_info, u64 start)
2270 {
2271 struct btrfs_block_group *cache;
2272
2273 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2274 if (!cache)
2275 return NULL;
2276
2277 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2278 GFP_NOFS);
2279 if (!cache->free_space_ctl) {
2280 kfree(cache);
2281 return NULL;
2282 }
2283
2284 cache->start = start;
2285
2286 cache->fs_info = fs_info;
2287 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2288
2289 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2290
2291 refcount_set(&cache->refs, 1);
2292 spin_lock_init(&cache->lock);
2293 init_rwsem(&cache->data_rwsem);
2294 INIT_LIST_HEAD(&cache->list);
2295 INIT_LIST_HEAD(&cache->cluster_list);
2296 INIT_LIST_HEAD(&cache->bg_list);
2297 INIT_LIST_HEAD(&cache->ro_list);
2298 INIT_LIST_HEAD(&cache->discard_list);
2299 INIT_LIST_HEAD(&cache->dirty_list);
2300 INIT_LIST_HEAD(&cache->io_list);
2301 INIT_LIST_HEAD(&cache->active_bg_list);
2302 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2303 atomic_set(&cache->frozen, 0);
2304 mutex_init(&cache->free_space_lock);
2305
2306 return cache;
2307 }
2308
2309 /*
2310 * Iterate all chunks and verify that each of them has the corresponding block
2311 * group
2312 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)2313 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2314 {
2315 u64 start = 0;
2316 int ret = 0;
2317
2318 while (1) {
2319 struct btrfs_chunk_map *map;
2320 struct btrfs_block_group *bg;
2321
2322 /*
2323 * btrfs_find_chunk_map() will return the first chunk map
2324 * intersecting the range, so setting @length to 1 is enough to
2325 * get the first chunk.
2326 */
2327 map = btrfs_find_chunk_map(fs_info, start, 1);
2328 if (!map)
2329 break;
2330
2331 bg = btrfs_lookup_block_group(fs_info, map->start);
2332 if (!bg) {
2333 btrfs_err(fs_info,
2334 "chunk start=%llu len=%llu doesn't have corresponding block group",
2335 map->start, map->chunk_len);
2336 ret = -EUCLEAN;
2337 btrfs_free_chunk_map(map);
2338 break;
2339 }
2340 if (bg->start != map->start || bg->length != map->chunk_len ||
2341 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2342 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2343 btrfs_err(fs_info,
2344 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2345 map->start, map->chunk_len,
2346 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2347 bg->start, bg->length,
2348 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2349 ret = -EUCLEAN;
2350 btrfs_free_chunk_map(map);
2351 btrfs_put_block_group(bg);
2352 break;
2353 }
2354 start = map->start + map->chunk_len;
2355 btrfs_free_chunk_map(map);
2356 btrfs_put_block_group(bg);
2357 }
2358 return ret;
2359 }
2360
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)2361 static int read_one_block_group(struct btrfs_fs_info *info,
2362 struct btrfs_block_group_item *bgi,
2363 const struct btrfs_key *key,
2364 int need_clear)
2365 {
2366 struct btrfs_block_group *cache;
2367 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2368 int ret;
2369
2370 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2371
2372 cache = btrfs_create_block_group_cache(info, key->objectid);
2373 if (!cache)
2374 return -ENOMEM;
2375
2376 cache->length = key->offset;
2377 cache->used = btrfs_stack_block_group_used(bgi);
2378 cache->commit_used = cache->used;
2379 cache->flags = btrfs_stack_block_group_flags(bgi);
2380 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2381 cache->space_info = btrfs_find_space_info(info, cache->flags);
2382
2383 btrfs_set_free_space_tree_thresholds(cache);
2384
2385 if (need_clear) {
2386 /*
2387 * When we mount with old space cache, we need to
2388 * set BTRFS_DC_CLEAR and set dirty flag.
2389 *
2390 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2391 * truncate the old free space cache inode and
2392 * setup a new one.
2393 * b) Setting 'dirty flag' makes sure that we flush
2394 * the new space cache info onto disk.
2395 */
2396 if (btrfs_test_opt(info, SPACE_CACHE))
2397 cache->disk_cache_state = BTRFS_DC_CLEAR;
2398 }
2399 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2400 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2401 btrfs_err(info,
2402 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2403 cache->start);
2404 ret = -EINVAL;
2405 goto error;
2406 }
2407
2408 ret = btrfs_load_block_group_zone_info(cache, false);
2409 if (ret) {
2410 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2411 cache->start);
2412 goto error;
2413 }
2414
2415 /*
2416 * We need to exclude the super stripes now so that the space info has
2417 * super bytes accounted for, otherwise we'll think we have more space
2418 * than we actually do.
2419 */
2420 ret = exclude_super_stripes(cache);
2421 if (ret) {
2422 /* We may have excluded something, so call this just in case. */
2423 btrfs_free_excluded_extents(cache);
2424 goto error;
2425 }
2426
2427 /*
2428 * For zoned filesystem, space after the allocation offset is the only
2429 * free space for a block group. So, we don't need any caching work.
2430 * btrfs_calc_zone_unusable() will set the amount of free space and
2431 * zone_unusable space.
2432 *
2433 * For regular filesystem, check for two cases, either we are full, and
2434 * therefore don't need to bother with the caching work since we won't
2435 * find any space, or we are empty, and we can just add all the space
2436 * in and be done with it. This saves us _a_lot_ of time, particularly
2437 * in the full case.
2438 */
2439 if (btrfs_is_zoned(info)) {
2440 btrfs_calc_zone_unusable(cache);
2441 /* Should not have any excluded extents. Just in case, though. */
2442 btrfs_free_excluded_extents(cache);
2443 } else if (cache->length == cache->used) {
2444 cache->cached = BTRFS_CACHE_FINISHED;
2445 btrfs_free_excluded_extents(cache);
2446 } else if (cache->used == 0) {
2447 cache->cached = BTRFS_CACHE_FINISHED;
2448 ret = btrfs_add_new_free_space(cache, cache->start,
2449 cache->start + cache->length, NULL);
2450 btrfs_free_excluded_extents(cache);
2451 if (ret)
2452 goto error;
2453 }
2454
2455 ret = btrfs_add_block_group_cache(cache);
2456 if (ret) {
2457 btrfs_remove_free_space_cache(cache);
2458 goto error;
2459 }
2460
2461 trace_btrfs_add_block_group(info, cache, 0);
2462 btrfs_add_bg_to_space_info(info, cache);
2463
2464 set_avail_alloc_bits(info, cache->flags);
2465 if (btrfs_chunk_writeable(info, cache->start)) {
2466 if (cache->used == 0) {
2467 ASSERT(list_empty(&cache->bg_list));
2468 if (btrfs_test_opt(info, DISCARD_ASYNC))
2469 btrfs_discard_queue_work(&info->discard_ctl, cache);
2470 else
2471 btrfs_mark_bg_unused(cache);
2472 }
2473 } else {
2474 inc_block_group_ro(cache, 1);
2475 }
2476
2477 return 0;
2478 error:
2479 btrfs_put_block_group(cache);
2480 return ret;
2481 }
2482
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2483 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2484 {
2485 struct rb_node *node;
2486 int ret = 0;
2487
2488 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2489 struct btrfs_chunk_map *map;
2490 struct btrfs_block_group *bg;
2491
2492 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2493 bg = btrfs_create_block_group_cache(fs_info, map->start);
2494 if (!bg) {
2495 ret = -ENOMEM;
2496 break;
2497 }
2498
2499 /* Fill dummy cache as FULL */
2500 bg->length = map->chunk_len;
2501 bg->flags = map->type;
2502 bg->cached = BTRFS_CACHE_FINISHED;
2503 bg->used = map->chunk_len;
2504 bg->flags = map->type;
2505 bg->space_info = btrfs_find_space_info(fs_info, bg->flags);
2506 ret = btrfs_add_block_group_cache(bg);
2507 /*
2508 * We may have some valid block group cache added already, in
2509 * that case we skip to the next one.
2510 */
2511 if (ret == -EEXIST) {
2512 ret = 0;
2513 btrfs_put_block_group(bg);
2514 continue;
2515 }
2516
2517 if (ret) {
2518 btrfs_remove_free_space_cache(bg);
2519 btrfs_put_block_group(bg);
2520 break;
2521 }
2522
2523 btrfs_add_bg_to_space_info(fs_info, bg);
2524
2525 set_avail_alloc_bits(fs_info, bg->flags);
2526 }
2527 if (!ret)
2528 btrfs_init_global_block_rsv(fs_info);
2529 return ret;
2530 }
2531
btrfs_read_block_groups(struct btrfs_fs_info * info)2532 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2533 {
2534 struct btrfs_root *root = btrfs_block_group_root(info);
2535 struct btrfs_path *path;
2536 int ret;
2537 struct btrfs_block_group *cache;
2538 struct btrfs_space_info *space_info;
2539 struct btrfs_key key;
2540 int need_clear = 0;
2541 u64 cache_gen;
2542
2543 /*
2544 * Either no extent root (with ibadroots rescue option) or we have
2545 * unsupported RO options. The fs can never be mounted read-write, so no
2546 * need to waste time searching block group items.
2547 *
2548 * This also allows new extent tree related changes to be RO compat,
2549 * no need for a full incompat flag.
2550 */
2551 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2552 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2553 return fill_dummy_bgs(info);
2554
2555 key.objectid = 0;
2556 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2557 key.offset = 0;
2558 path = btrfs_alloc_path();
2559 if (!path)
2560 return -ENOMEM;
2561
2562 cache_gen = btrfs_super_cache_generation(info->super_copy);
2563 if (btrfs_test_opt(info, SPACE_CACHE) &&
2564 btrfs_super_generation(info->super_copy) != cache_gen)
2565 need_clear = 1;
2566 if (btrfs_test_opt(info, CLEAR_CACHE))
2567 need_clear = 1;
2568
2569 while (1) {
2570 struct btrfs_block_group_item bgi;
2571 struct extent_buffer *leaf;
2572 int slot;
2573
2574 ret = find_first_block_group(info, path, &key);
2575 if (ret > 0)
2576 break;
2577 if (ret != 0)
2578 goto error;
2579
2580 leaf = path->nodes[0];
2581 slot = path->slots[0];
2582
2583 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2584 sizeof(bgi));
2585
2586 btrfs_item_key_to_cpu(leaf, &key, slot);
2587 btrfs_release_path(path);
2588 ret = read_one_block_group(info, &bgi, &key, need_clear);
2589 if (ret < 0)
2590 goto error;
2591 key.objectid += key.offset;
2592 key.offset = 0;
2593 }
2594 btrfs_release_path(path);
2595
2596 list_for_each_entry(space_info, &info->space_info, list) {
2597 int i;
2598
2599 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2600 if (list_empty(&space_info->block_groups[i]))
2601 continue;
2602 cache = list_first_entry(&space_info->block_groups[i],
2603 struct btrfs_block_group,
2604 list);
2605 btrfs_sysfs_add_block_group_type(cache);
2606 }
2607
2608 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2609 (BTRFS_BLOCK_GROUP_RAID10 |
2610 BTRFS_BLOCK_GROUP_RAID1_MASK |
2611 BTRFS_BLOCK_GROUP_RAID56_MASK |
2612 BTRFS_BLOCK_GROUP_DUP)))
2613 continue;
2614 /*
2615 * Avoid allocating from un-mirrored block group if there are
2616 * mirrored block groups.
2617 */
2618 list_for_each_entry(cache,
2619 &space_info->block_groups[BTRFS_RAID_RAID0],
2620 list)
2621 inc_block_group_ro(cache, 1);
2622 list_for_each_entry(cache,
2623 &space_info->block_groups[BTRFS_RAID_SINGLE],
2624 list)
2625 inc_block_group_ro(cache, 1);
2626 }
2627
2628 btrfs_init_global_block_rsv(info);
2629 ret = check_chunk_block_group_mappings(info);
2630 error:
2631 btrfs_free_path(path);
2632 /*
2633 * We've hit some error while reading the extent tree, and have
2634 * rescue=ibadroots mount option.
2635 * Try to fill the tree using dummy block groups so that the user can
2636 * continue to mount and grab their data.
2637 */
2638 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2639 ret = fill_dummy_bgs(info);
2640 return ret;
2641 }
2642
2643 /*
2644 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2645 * allocation.
2646 *
2647 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2648 * phases.
2649 */
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2650 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2651 struct btrfs_block_group *block_group)
2652 {
2653 struct btrfs_fs_info *fs_info = trans->fs_info;
2654 struct btrfs_block_group_item bgi;
2655 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2656 struct btrfs_key key;
2657 u64 old_commit_used;
2658 int ret;
2659
2660 spin_lock(&block_group->lock);
2661 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2662 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2663 block_group->global_root_id);
2664 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2665 old_commit_used = block_group->commit_used;
2666 block_group->commit_used = block_group->used;
2667 key.objectid = block_group->start;
2668 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2669 key.offset = block_group->length;
2670 spin_unlock(&block_group->lock);
2671
2672 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2673 if (ret < 0) {
2674 spin_lock(&block_group->lock);
2675 block_group->commit_used = old_commit_used;
2676 spin_unlock(&block_group->lock);
2677 }
2678
2679 return ret;
2680 }
2681
insert_dev_extent(struct btrfs_trans_handle * trans,const struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)2682 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2683 const struct btrfs_device *device, u64 chunk_offset,
2684 u64 start, u64 num_bytes)
2685 {
2686 struct btrfs_fs_info *fs_info = device->fs_info;
2687 struct btrfs_root *root = fs_info->dev_root;
2688 BTRFS_PATH_AUTO_FREE(path);
2689 struct btrfs_dev_extent *extent;
2690 struct extent_buffer *leaf;
2691 struct btrfs_key key;
2692 int ret;
2693
2694 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2695 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2696 path = btrfs_alloc_path();
2697 if (!path)
2698 return -ENOMEM;
2699
2700 key.objectid = device->devid;
2701 key.type = BTRFS_DEV_EXTENT_KEY;
2702 key.offset = start;
2703 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2704 if (ret)
2705 return ret;
2706
2707 leaf = path->nodes[0];
2708 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2709 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2710 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2711 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2712 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2713 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2714
2715 return ret;
2716 }
2717
2718 /*
2719 * This function belongs to phase 2.
2720 *
2721 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2722 * phases.
2723 */
insert_dev_extents(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)2724 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2725 u64 chunk_offset, u64 chunk_size)
2726 {
2727 struct btrfs_fs_info *fs_info = trans->fs_info;
2728 struct btrfs_device *device;
2729 struct btrfs_chunk_map *map;
2730 u64 dev_offset;
2731 int i;
2732 int ret = 0;
2733
2734 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2735 if (IS_ERR(map))
2736 return PTR_ERR(map);
2737
2738 /*
2739 * Take the device list mutex to prevent races with the final phase of
2740 * a device replace operation that replaces the device object associated
2741 * with the map's stripes, because the device object's id can change
2742 * at any time during that final phase of the device replace operation
2743 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2744 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2745 * resulting in persisting a device extent item with such ID.
2746 */
2747 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2748 for (i = 0; i < map->num_stripes; i++) {
2749 device = map->stripes[i].dev;
2750 dev_offset = map->stripes[i].physical;
2751
2752 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2753 map->stripe_size);
2754 if (ret)
2755 break;
2756 }
2757 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2758
2759 btrfs_free_chunk_map(map);
2760 return ret;
2761 }
2762
2763 /*
2764 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2765 * chunk allocation.
2766 *
2767 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2768 * phases.
2769 */
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2770 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2771 {
2772 struct btrfs_fs_info *fs_info = trans->fs_info;
2773 struct btrfs_block_group *block_group;
2774 int ret = 0;
2775
2776 while (!list_empty(&trans->new_bgs)) {
2777 int index;
2778
2779 block_group = list_first_entry(&trans->new_bgs,
2780 struct btrfs_block_group,
2781 bg_list);
2782 if (ret)
2783 goto next;
2784
2785 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2786
2787 ret = insert_block_group_item(trans, block_group);
2788 if (ret)
2789 btrfs_abort_transaction(trans, ret);
2790 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2791 &block_group->runtime_flags)) {
2792 mutex_lock(&fs_info->chunk_mutex);
2793 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2794 mutex_unlock(&fs_info->chunk_mutex);
2795 if (ret)
2796 btrfs_abort_transaction(trans, ret);
2797 }
2798 ret = insert_dev_extents(trans, block_group->start,
2799 block_group->length);
2800 if (ret)
2801 btrfs_abort_transaction(trans, ret);
2802 btrfs_add_block_group_free_space(trans, block_group);
2803
2804 /*
2805 * If we restriped during balance, we may have added a new raid
2806 * type, so now add the sysfs entries when it is safe to do so.
2807 * We don't have to worry about locking here as it's handled in
2808 * btrfs_sysfs_add_block_group_type.
2809 */
2810 if (block_group->space_info->block_group_kobjs[index] == NULL)
2811 btrfs_sysfs_add_block_group_type(block_group);
2812
2813 /* Already aborted the transaction if it failed. */
2814 next:
2815 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2816
2817 spin_lock(&fs_info->unused_bgs_lock);
2818 list_del_init(&block_group->bg_list);
2819 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2820 btrfs_put_block_group(block_group);
2821 spin_unlock(&fs_info->unused_bgs_lock);
2822
2823 /*
2824 * If the block group is still unused, add it to the list of
2825 * unused block groups. The block group may have been created in
2826 * order to satisfy a space reservation, in which case the
2827 * extent allocation only happens later. But often we don't
2828 * actually need to allocate space that we previously reserved,
2829 * so the block group may become unused for a long time. For
2830 * example for metadata we generally reserve space for a worst
2831 * possible scenario, but then don't end up allocating all that
2832 * space or none at all (due to no need to COW, extent buffers
2833 * were already COWed in the current transaction and still
2834 * unwritten, tree heights lower than the maximum possible
2835 * height, etc). For data we generally reserve the axact amount
2836 * of space we are going to allocate later, the exception is
2837 * when using compression, as we must reserve space based on the
2838 * uncompressed data size, because the compression is only done
2839 * when writeback triggered and we don't know how much space we
2840 * are actually going to need, so we reserve the uncompressed
2841 * size because the data may be incompressible in the worst case.
2842 */
2843 if (ret == 0) {
2844 bool used;
2845
2846 spin_lock(&block_group->lock);
2847 used = btrfs_is_block_group_used(block_group);
2848 spin_unlock(&block_group->lock);
2849
2850 if (!used)
2851 btrfs_mark_bg_unused(block_group);
2852 }
2853 }
2854 btrfs_trans_release_chunk_metadata(trans);
2855 }
2856
2857 /*
2858 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2859 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2860 */
calculate_global_root_id(const struct btrfs_fs_info * fs_info,u64 offset)2861 static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset)
2862 {
2863 u64 div = SZ_1G;
2864 u64 index;
2865
2866 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2867 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2868
2869 /* If we have a smaller fs index based on 128MiB. */
2870 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2871 div = SZ_128M;
2872
2873 offset = div64_u64(offset, div);
2874 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2875 return index;
2876 }
2877
btrfs_make_block_group(struct btrfs_trans_handle * trans,struct btrfs_space_info * space_info,u64 type,u64 chunk_offset,u64 size)2878 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2879 struct btrfs_space_info *space_info,
2880 u64 type, u64 chunk_offset, u64 size)
2881 {
2882 struct btrfs_fs_info *fs_info = trans->fs_info;
2883 struct btrfs_block_group *cache;
2884 int ret;
2885
2886 btrfs_set_log_full_commit(trans);
2887
2888 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2889 if (!cache)
2890 return ERR_PTR(-ENOMEM);
2891
2892 /*
2893 * Mark it as new before adding it to the rbtree of block groups or any
2894 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2895 * before the new flag is set.
2896 */
2897 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2898
2899 cache->length = size;
2900 btrfs_set_free_space_tree_thresholds(cache);
2901 cache->flags = type;
2902 cache->cached = BTRFS_CACHE_FINISHED;
2903 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2904
2905 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2906 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2907
2908 ret = btrfs_load_block_group_zone_info(cache, true);
2909 if (ret) {
2910 btrfs_put_block_group(cache);
2911 return ERR_PTR(ret);
2912 }
2913
2914 ret = exclude_super_stripes(cache);
2915 if (ret) {
2916 /* We may have excluded something, so call this just in case */
2917 btrfs_free_excluded_extents(cache);
2918 btrfs_put_block_group(cache);
2919 return ERR_PTR(ret);
2920 }
2921
2922 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2923 btrfs_free_excluded_extents(cache);
2924 if (ret) {
2925 btrfs_put_block_group(cache);
2926 return ERR_PTR(ret);
2927 }
2928
2929 /*
2930 * Ensure the corresponding space_info object is created and
2931 * assigned to our block group. We want our bg to be added to the rbtree
2932 * with its ->space_info set.
2933 */
2934 cache->space_info = space_info;
2935 ASSERT(cache->space_info);
2936
2937 ret = btrfs_add_block_group_cache(cache);
2938 if (ret) {
2939 btrfs_remove_free_space_cache(cache);
2940 btrfs_put_block_group(cache);
2941 return ERR_PTR(ret);
2942 }
2943
2944 /*
2945 * Now that our block group has its ->space_info set and is inserted in
2946 * the rbtree, update the space info's counters.
2947 */
2948 trace_btrfs_add_block_group(fs_info, cache, 1);
2949 btrfs_add_bg_to_space_info(fs_info, cache);
2950 btrfs_update_global_block_rsv(fs_info);
2951
2952 #ifdef CONFIG_BTRFS_DEBUG
2953 if (btrfs_should_fragment_free_space(cache)) {
2954 cache->space_info->bytes_used += size >> 1;
2955 fragment_free_space(cache);
2956 }
2957 #endif
2958
2959 btrfs_link_bg_list(cache, &trans->new_bgs);
2960 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
2961
2962 set_avail_alloc_bits(fs_info, type);
2963 return cache;
2964 }
2965
2966 /*
2967 * Mark one block group RO, can be called several times for the same block
2968 * group.
2969 *
2970 * @cache: the destination block group
2971 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2972 * ensure we still have some free space after marking this
2973 * block group RO.
2974 */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2975 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2976 bool do_chunk_alloc)
2977 {
2978 struct btrfs_fs_info *fs_info = cache->fs_info;
2979 struct btrfs_space_info *space_info = cache->space_info;
2980 struct btrfs_trans_handle *trans;
2981 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2982 u64 alloc_flags;
2983 int ret;
2984 bool dirty_bg_running;
2985
2986 /*
2987 * This can only happen when we are doing read-only scrub on read-only
2988 * mount.
2989 * In that case we should not start a new transaction on read-only fs.
2990 * Thus here we skip all chunk allocations.
2991 */
2992 if (sb_rdonly(fs_info->sb)) {
2993 mutex_lock(&fs_info->ro_block_group_mutex);
2994 ret = inc_block_group_ro(cache, 0);
2995 mutex_unlock(&fs_info->ro_block_group_mutex);
2996 return ret;
2997 }
2998
2999 do {
3000 trans = btrfs_join_transaction(root);
3001 if (IS_ERR(trans))
3002 return PTR_ERR(trans);
3003
3004 dirty_bg_running = false;
3005
3006 /*
3007 * We're not allowed to set block groups readonly after the dirty
3008 * block group cache has started writing. If it already started,
3009 * back off and let this transaction commit.
3010 */
3011 mutex_lock(&fs_info->ro_block_group_mutex);
3012 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
3013 u64 transid = trans->transid;
3014
3015 mutex_unlock(&fs_info->ro_block_group_mutex);
3016 btrfs_end_transaction(trans);
3017
3018 ret = btrfs_wait_for_commit(fs_info, transid);
3019 if (ret)
3020 return ret;
3021 dirty_bg_running = true;
3022 }
3023 } while (dirty_bg_running);
3024
3025 if (do_chunk_alloc) {
3026 /*
3027 * If we are changing raid levels, try to allocate a
3028 * corresponding block group with the new raid level.
3029 */
3030 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3031 if (alloc_flags != cache->flags) {
3032 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags,
3033 CHUNK_ALLOC_FORCE);
3034 /*
3035 * ENOSPC is allowed here, we may have enough space
3036 * already allocated at the new raid level to carry on
3037 */
3038 if (ret == -ENOSPC)
3039 ret = 0;
3040 if (ret < 0)
3041 goto out;
3042 }
3043 }
3044
3045 ret = inc_block_group_ro(cache, 0);
3046 if (!ret)
3047 goto out;
3048 if (ret == -ETXTBSY)
3049 goto unlock_out;
3050
3051 /*
3052 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system
3053 * chunk allocation storm to exhaust the system chunk array. Otherwise
3054 * we still want to try our best to mark the block group read-only.
3055 */
3056 if (!do_chunk_alloc && ret == -ENOSPC &&
3057 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
3058 goto unlock_out;
3059
3060 alloc_flags = btrfs_get_alloc_profile(fs_info, space_info->flags);
3061 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE);
3062 if (ret < 0)
3063 goto out;
3064 /*
3065 * We have allocated a new chunk. We also need to activate that chunk to
3066 * grant metadata tickets for zoned filesystem.
3067 */
3068 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
3069 if (ret < 0)
3070 goto out;
3071
3072 ret = inc_block_group_ro(cache, 0);
3073 if (ret == -ETXTBSY)
3074 goto unlock_out;
3075 out:
3076 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
3077 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3078 mutex_lock(&fs_info->chunk_mutex);
3079 check_system_chunk(trans, alloc_flags);
3080 mutex_unlock(&fs_info->chunk_mutex);
3081 }
3082 unlock_out:
3083 mutex_unlock(&fs_info->ro_block_group_mutex);
3084
3085 btrfs_end_transaction(trans);
3086 return ret;
3087 }
3088
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)3089 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3090 {
3091 struct btrfs_space_info *sinfo = cache->space_info;
3092 u64 num_bytes;
3093
3094 BUG_ON(!cache->ro);
3095
3096 spin_lock(&sinfo->lock);
3097 spin_lock(&cache->lock);
3098 if (!--cache->ro) {
3099 if (btrfs_is_zoned(cache->fs_info)) {
3100 /* Migrate zone_unusable bytes back */
3101 cache->zone_unusable =
3102 (cache->alloc_offset - cache->used - cache->pinned -
3103 cache->reserved) +
3104 (cache->length - cache->zone_capacity);
3105 btrfs_space_info_update_bytes_zone_unusable(sinfo, cache->zone_unusable);
3106 sinfo->bytes_readonly -= cache->zone_unusable;
3107 }
3108 num_bytes = cache->length - cache->reserved -
3109 cache->pinned - cache->bytes_super -
3110 cache->zone_unusable - cache->used;
3111 sinfo->bytes_readonly -= num_bytes;
3112 list_del_init(&cache->ro_list);
3113 }
3114 spin_unlock(&cache->lock);
3115 spin_unlock(&sinfo->lock);
3116 }
3117
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)3118 static int update_block_group_item(struct btrfs_trans_handle *trans,
3119 struct btrfs_path *path,
3120 struct btrfs_block_group *cache)
3121 {
3122 struct btrfs_fs_info *fs_info = trans->fs_info;
3123 int ret;
3124 struct btrfs_root *root = btrfs_block_group_root(fs_info);
3125 unsigned long bi;
3126 struct extent_buffer *leaf;
3127 struct btrfs_block_group_item bgi;
3128 struct btrfs_key key;
3129 u64 old_commit_used;
3130 u64 used;
3131
3132 /*
3133 * Block group items update can be triggered out of commit transaction
3134 * critical section, thus we need a consistent view of used bytes.
3135 * We cannot use cache->used directly outside of the spin lock, as it
3136 * may be changed.
3137 */
3138 spin_lock(&cache->lock);
3139 old_commit_used = cache->commit_used;
3140 used = cache->used;
3141 /* No change in used bytes, can safely skip it. */
3142 if (cache->commit_used == used) {
3143 spin_unlock(&cache->lock);
3144 return 0;
3145 }
3146 cache->commit_used = used;
3147 spin_unlock(&cache->lock);
3148
3149 key.objectid = cache->start;
3150 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3151 key.offset = cache->length;
3152
3153 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3154 if (ret) {
3155 if (ret > 0)
3156 ret = -ENOENT;
3157 goto fail;
3158 }
3159
3160 leaf = path->nodes[0];
3161 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3162 btrfs_set_stack_block_group_used(&bgi, used);
3163 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3164 cache->global_root_id);
3165 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3166 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3167 fail:
3168 btrfs_release_path(path);
3169 /*
3170 * We didn't update the block group item, need to revert commit_used
3171 * unless the block group item didn't exist yet - this is to prevent a
3172 * race with a concurrent insertion of the block group item, with
3173 * insert_block_group_item(), that happened just after we attempted to
3174 * update. In that case we would reset commit_used to 0 just after the
3175 * insertion set it to a value greater than 0 - if the block group later
3176 * becomes with 0 used bytes, we would incorrectly skip its update.
3177 */
3178 if (ret < 0 && ret != -ENOENT) {
3179 spin_lock(&cache->lock);
3180 cache->commit_used = old_commit_used;
3181 spin_unlock(&cache->lock);
3182 }
3183 return ret;
3184
3185 }
3186
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3187 static int cache_save_setup(struct btrfs_block_group *block_group,
3188 struct btrfs_trans_handle *trans,
3189 struct btrfs_path *path)
3190 {
3191 struct btrfs_fs_info *fs_info = block_group->fs_info;
3192 struct inode *inode = NULL;
3193 struct extent_changeset *data_reserved = NULL;
3194 u64 alloc_hint = 0;
3195 int dcs = BTRFS_DC_ERROR;
3196 u64 cache_size = 0;
3197 int retries = 0;
3198 int ret = 0;
3199
3200 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3201 return 0;
3202
3203 /*
3204 * If this block group is smaller than 100 megs don't bother caching the
3205 * block group.
3206 */
3207 if (block_group->length < (100 * SZ_1M)) {
3208 spin_lock(&block_group->lock);
3209 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3210 spin_unlock(&block_group->lock);
3211 return 0;
3212 }
3213
3214 if (TRANS_ABORTED(trans))
3215 return 0;
3216 again:
3217 inode = lookup_free_space_inode(block_group, path);
3218 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3219 ret = PTR_ERR(inode);
3220 btrfs_release_path(path);
3221 goto out;
3222 }
3223
3224 if (IS_ERR(inode)) {
3225 BUG_ON(retries);
3226 retries++;
3227
3228 if (block_group->ro)
3229 goto out_free;
3230
3231 ret = create_free_space_inode(trans, block_group, path);
3232 if (ret)
3233 goto out_free;
3234 goto again;
3235 }
3236
3237 /*
3238 * We want to set the generation to 0, that way if anything goes wrong
3239 * from here on out we know not to trust this cache when we load up next
3240 * time.
3241 */
3242 BTRFS_I(inode)->generation = 0;
3243 ret = btrfs_update_inode(trans, BTRFS_I(inode));
3244 if (ret) {
3245 /*
3246 * So theoretically we could recover from this, simply set the
3247 * super cache generation to 0 so we know to invalidate the
3248 * cache, but then we'd have to keep track of the block groups
3249 * that fail this way so we know we _have_ to reset this cache
3250 * before the next commit or risk reading stale cache. So to
3251 * limit our exposure to horrible edge cases lets just abort the
3252 * transaction, this only happens in really bad situations
3253 * anyway.
3254 */
3255 btrfs_abort_transaction(trans, ret);
3256 goto out_put;
3257 }
3258 WARN_ON(ret);
3259
3260 /* We've already setup this transaction, go ahead and exit */
3261 if (block_group->cache_generation == trans->transid &&
3262 i_size_read(inode)) {
3263 dcs = BTRFS_DC_SETUP;
3264 goto out_put;
3265 }
3266
3267 if (i_size_read(inode) > 0) {
3268 ret = btrfs_check_trunc_cache_free_space(fs_info,
3269 &fs_info->global_block_rsv);
3270 if (ret)
3271 goto out_put;
3272
3273 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3274 if (ret)
3275 goto out_put;
3276 }
3277
3278 spin_lock(&block_group->lock);
3279 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3280 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3281 /*
3282 * don't bother trying to write stuff out _if_
3283 * a) we're not cached,
3284 * b) we're with nospace_cache mount option,
3285 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3286 */
3287 dcs = BTRFS_DC_WRITTEN;
3288 spin_unlock(&block_group->lock);
3289 goto out_put;
3290 }
3291 spin_unlock(&block_group->lock);
3292
3293 /*
3294 * We hit an ENOSPC when setting up the cache in this transaction, just
3295 * skip doing the setup, we've already cleared the cache so we're safe.
3296 */
3297 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3298 ret = -ENOSPC;
3299 goto out_put;
3300 }
3301
3302 /*
3303 * Try to preallocate enough space based on how big the block group is.
3304 * Keep in mind this has to include any pinned space which could end up
3305 * taking up quite a bit since it's not folded into the other space
3306 * cache.
3307 */
3308 cache_size = div_u64(block_group->length, SZ_256M);
3309 if (!cache_size)
3310 cache_size = 1;
3311
3312 cache_size *= 16;
3313 cache_size *= fs_info->sectorsize;
3314
3315 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3316 cache_size, false);
3317 if (ret)
3318 goto out_put;
3319
3320 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3321 cache_size, cache_size,
3322 &alloc_hint);
3323 /*
3324 * Our cache requires contiguous chunks so that we don't modify a bunch
3325 * of metadata or split extents when writing the cache out, which means
3326 * we can enospc if we are heavily fragmented in addition to just normal
3327 * out of space conditions. So if we hit this just skip setting up any
3328 * other block groups for this transaction, maybe we'll unpin enough
3329 * space the next time around.
3330 */
3331 if (!ret)
3332 dcs = BTRFS_DC_SETUP;
3333 else if (ret == -ENOSPC)
3334 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3335
3336 out_put:
3337 iput(inode);
3338 out_free:
3339 btrfs_release_path(path);
3340 out:
3341 spin_lock(&block_group->lock);
3342 if (!ret && dcs == BTRFS_DC_SETUP)
3343 block_group->cache_generation = trans->transid;
3344 block_group->disk_cache_state = dcs;
3345 spin_unlock(&block_group->lock);
3346
3347 extent_changeset_free(data_reserved);
3348 return ret;
3349 }
3350
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)3351 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3352 {
3353 struct btrfs_fs_info *fs_info = trans->fs_info;
3354 struct btrfs_block_group *cache, *tmp;
3355 struct btrfs_transaction *cur_trans = trans->transaction;
3356 BTRFS_PATH_AUTO_FREE(path);
3357
3358 if (list_empty(&cur_trans->dirty_bgs) ||
3359 !btrfs_test_opt(fs_info, SPACE_CACHE))
3360 return 0;
3361
3362 path = btrfs_alloc_path();
3363 if (!path)
3364 return -ENOMEM;
3365
3366 /* Could add new block groups, use _safe just in case */
3367 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3368 dirty_list) {
3369 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3370 cache_save_setup(cache, trans, path);
3371 }
3372
3373 return 0;
3374 }
3375
3376 /*
3377 * Transaction commit does final block group cache writeback during a critical
3378 * section where nothing is allowed to change the FS. This is required in
3379 * order for the cache to actually match the block group, but can introduce a
3380 * lot of latency into the commit.
3381 *
3382 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3383 * There's a chance we'll have to redo some of it if the block group changes
3384 * again during the commit, but it greatly reduces the commit latency by
3385 * getting rid of the easy block groups while we're still allowing others to
3386 * join the commit.
3387 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3388 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3389 {
3390 struct btrfs_fs_info *fs_info = trans->fs_info;
3391 struct btrfs_block_group *cache;
3392 struct btrfs_transaction *cur_trans = trans->transaction;
3393 int ret = 0;
3394 int should_put;
3395 BTRFS_PATH_AUTO_FREE(path);
3396 LIST_HEAD(dirty);
3397 struct list_head *io = &cur_trans->io_bgs;
3398 int loops = 0;
3399
3400 spin_lock(&cur_trans->dirty_bgs_lock);
3401 if (list_empty(&cur_trans->dirty_bgs)) {
3402 spin_unlock(&cur_trans->dirty_bgs_lock);
3403 return 0;
3404 }
3405 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3406 spin_unlock(&cur_trans->dirty_bgs_lock);
3407
3408 again:
3409 /* Make sure all the block groups on our dirty list actually exist */
3410 btrfs_create_pending_block_groups(trans);
3411
3412 if (!path) {
3413 path = btrfs_alloc_path();
3414 if (!path) {
3415 ret = -ENOMEM;
3416 goto out;
3417 }
3418 }
3419
3420 /*
3421 * cache_write_mutex is here only to save us from balance or automatic
3422 * removal of empty block groups deleting this block group while we are
3423 * writing out the cache
3424 */
3425 mutex_lock(&trans->transaction->cache_write_mutex);
3426 while (!list_empty(&dirty)) {
3427 bool drop_reserve = true;
3428
3429 cache = list_first_entry(&dirty, struct btrfs_block_group,
3430 dirty_list);
3431 /*
3432 * This can happen if something re-dirties a block group that
3433 * is already under IO. Just wait for it to finish and then do
3434 * it all again
3435 */
3436 if (!list_empty(&cache->io_list)) {
3437 list_del_init(&cache->io_list);
3438 btrfs_wait_cache_io(trans, cache, path);
3439 btrfs_put_block_group(cache);
3440 }
3441
3442
3443 /*
3444 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3445 * it should update the cache_state. Don't delete until after
3446 * we wait.
3447 *
3448 * Since we're not running in the commit critical section
3449 * we need the dirty_bgs_lock to protect from update_block_group
3450 */
3451 spin_lock(&cur_trans->dirty_bgs_lock);
3452 list_del_init(&cache->dirty_list);
3453 spin_unlock(&cur_trans->dirty_bgs_lock);
3454
3455 should_put = 1;
3456
3457 cache_save_setup(cache, trans, path);
3458
3459 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3460 cache->io_ctl.inode = NULL;
3461 ret = btrfs_write_out_cache(trans, cache, path);
3462 if (ret == 0 && cache->io_ctl.inode) {
3463 should_put = 0;
3464
3465 /*
3466 * The cache_write_mutex is protecting the
3467 * io_list, also refer to the definition of
3468 * btrfs_transaction::io_bgs for more details
3469 */
3470 list_add_tail(&cache->io_list, io);
3471 } else {
3472 /*
3473 * If we failed to write the cache, the
3474 * generation will be bad and life goes on
3475 */
3476 ret = 0;
3477 }
3478 }
3479 if (!ret) {
3480 ret = update_block_group_item(trans, path, cache);
3481 /*
3482 * Our block group might still be attached to the list
3483 * of new block groups in the transaction handle of some
3484 * other task (struct btrfs_trans_handle->new_bgs). This
3485 * means its block group item isn't yet in the extent
3486 * tree. If this happens ignore the error, as we will
3487 * try again later in the critical section of the
3488 * transaction commit.
3489 */
3490 if (ret == -ENOENT) {
3491 ret = 0;
3492 spin_lock(&cur_trans->dirty_bgs_lock);
3493 if (list_empty(&cache->dirty_list)) {
3494 list_add_tail(&cache->dirty_list,
3495 &cur_trans->dirty_bgs);
3496 btrfs_get_block_group(cache);
3497 drop_reserve = false;
3498 }
3499 spin_unlock(&cur_trans->dirty_bgs_lock);
3500 } else if (ret) {
3501 btrfs_abort_transaction(trans, ret);
3502 }
3503 }
3504
3505 /* If it's not on the io list, we need to put the block group */
3506 if (should_put)
3507 btrfs_put_block_group(cache);
3508 if (drop_reserve)
3509 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3510 /*
3511 * Avoid blocking other tasks for too long. It might even save
3512 * us from writing caches for block groups that are going to be
3513 * removed.
3514 */
3515 mutex_unlock(&trans->transaction->cache_write_mutex);
3516 if (ret)
3517 goto out;
3518 mutex_lock(&trans->transaction->cache_write_mutex);
3519 }
3520 mutex_unlock(&trans->transaction->cache_write_mutex);
3521
3522 /*
3523 * Go through delayed refs for all the stuff we've just kicked off
3524 * and then loop back (just once)
3525 */
3526 if (!ret)
3527 ret = btrfs_run_delayed_refs(trans, 0);
3528 if (!ret && loops == 0) {
3529 loops++;
3530 spin_lock(&cur_trans->dirty_bgs_lock);
3531 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3532 /*
3533 * dirty_bgs_lock protects us from concurrent block group
3534 * deletes too (not just cache_write_mutex).
3535 */
3536 if (!list_empty(&dirty)) {
3537 spin_unlock(&cur_trans->dirty_bgs_lock);
3538 goto again;
3539 }
3540 spin_unlock(&cur_trans->dirty_bgs_lock);
3541 }
3542 out:
3543 if (ret < 0) {
3544 spin_lock(&cur_trans->dirty_bgs_lock);
3545 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3546 spin_unlock(&cur_trans->dirty_bgs_lock);
3547 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3548 }
3549
3550 return ret;
3551 }
3552
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)3553 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3554 {
3555 struct btrfs_fs_info *fs_info = trans->fs_info;
3556 struct btrfs_block_group *cache;
3557 struct btrfs_transaction *cur_trans = trans->transaction;
3558 int ret = 0;
3559 int should_put;
3560 BTRFS_PATH_AUTO_FREE(path);
3561 struct list_head *io = &cur_trans->io_bgs;
3562
3563 path = btrfs_alloc_path();
3564 if (!path)
3565 return -ENOMEM;
3566
3567 /*
3568 * Even though we are in the critical section of the transaction commit,
3569 * we can still have concurrent tasks adding elements to this
3570 * transaction's list of dirty block groups. These tasks correspond to
3571 * endio free space workers started when writeback finishes for a
3572 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3573 * allocate new block groups as a result of COWing nodes of the root
3574 * tree when updating the free space inode. The writeback for the space
3575 * caches is triggered by an earlier call to
3576 * btrfs_start_dirty_block_groups() and iterations of the following
3577 * loop.
3578 * Also we want to do the cache_save_setup first and then run the
3579 * delayed refs to make sure we have the best chance at doing this all
3580 * in one shot.
3581 */
3582 spin_lock(&cur_trans->dirty_bgs_lock);
3583 while (!list_empty(&cur_trans->dirty_bgs)) {
3584 cache = list_first_entry(&cur_trans->dirty_bgs,
3585 struct btrfs_block_group,
3586 dirty_list);
3587
3588 /*
3589 * This can happen if cache_save_setup re-dirties a block group
3590 * that is already under IO. Just wait for it to finish and
3591 * then do it all again
3592 */
3593 if (!list_empty(&cache->io_list)) {
3594 spin_unlock(&cur_trans->dirty_bgs_lock);
3595 list_del_init(&cache->io_list);
3596 btrfs_wait_cache_io(trans, cache, path);
3597 btrfs_put_block_group(cache);
3598 spin_lock(&cur_trans->dirty_bgs_lock);
3599 }
3600
3601 /*
3602 * Don't remove from the dirty list until after we've waited on
3603 * any pending IO
3604 */
3605 list_del_init(&cache->dirty_list);
3606 spin_unlock(&cur_trans->dirty_bgs_lock);
3607 should_put = 1;
3608
3609 cache_save_setup(cache, trans, path);
3610
3611 if (!ret)
3612 ret = btrfs_run_delayed_refs(trans, U64_MAX);
3613
3614 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3615 cache->io_ctl.inode = NULL;
3616 ret = btrfs_write_out_cache(trans, cache, path);
3617 if (ret == 0 && cache->io_ctl.inode) {
3618 should_put = 0;
3619 list_add_tail(&cache->io_list, io);
3620 } else {
3621 /*
3622 * If we failed to write the cache, the
3623 * generation will be bad and life goes on
3624 */
3625 ret = 0;
3626 }
3627 }
3628 if (!ret) {
3629 ret = update_block_group_item(trans, path, cache);
3630 /*
3631 * One of the free space endio workers might have
3632 * created a new block group while updating a free space
3633 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3634 * and hasn't released its transaction handle yet, in
3635 * which case the new block group is still attached to
3636 * its transaction handle and its creation has not
3637 * finished yet (no block group item in the extent tree
3638 * yet, etc). If this is the case, wait for all free
3639 * space endio workers to finish and retry. This is a
3640 * very rare case so no need for a more efficient and
3641 * complex approach.
3642 */
3643 if (ret == -ENOENT) {
3644 wait_event(cur_trans->writer_wait,
3645 atomic_read(&cur_trans->num_writers) == 1);
3646 ret = update_block_group_item(trans, path, cache);
3647 if (ret)
3648 btrfs_abort_transaction(trans, ret);
3649 } else if (ret) {
3650 btrfs_abort_transaction(trans, ret);
3651 }
3652 }
3653
3654 /* If its not on the io list, we need to put the block group */
3655 if (should_put)
3656 btrfs_put_block_group(cache);
3657 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3658 spin_lock(&cur_trans->dirty_bgs_lock);
3659 }
3660 spin_unlock(&cur_trans->dirty_bgs_lock);
3661
3662 /*
3663 * Refer to the definition of io_bgs member for details why it's safe
3664 * to use it without any locking
3665 */
3666 while (!list_empty(io)) {
3667 cache = list_first_entry(io, struct btrfs_block_group,
3668 io_list);
3669 list_del_init(&cache->io_list);
3670 btrfs_wait_cache_io(trans, cache, path);
3671 btrfs_put_block_group(cache);
3672 }
3673
3674 return ret;
3675 }
3676
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool alloc)3677 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3678 u64 bytenr, u64 num_bytes, bool alloc)
3679 {
3680 struct btrfs_fs_info *info = trans->fs_info;
3681 struct btrfs_space_info *space_info;
3682 struct btrfs_block_group *cache;
3683 u64 old_val;
3684 bool reclaim = false;
3685 bool bg_already_dirty = true;
3686 int factor;
3687
3688 /* Block accounting for super block */
3689 spin_lock(&info->delalloc_root_lock);
3690 old_val = btrfs_super_bytes_used(info->super_copy);
3691 if (alloc)
3692 old_val += num_bytes;
3693 else
3694 old_val -= num_bytes;
3695 btrfs_set_super_bytes_used(info->super_copy, old_val);
3696 spin_unlock(&info->delalloc_root_lock);
3697
3698 cache = btrfs_lookup_block_group(info, bytenr);
3699 if (!cache)
3700 return -ENOENT;
3701
3702 /* An extent can not span multiple block groups. */
3703 ASSERT(bytenr + num_bytes <= cache->start + cache->length);
3704
3705 space_info = cache->space_info;
3706 factor = btrfs_bg_type_to_factor(cache->flags);
3707
3708 /*
3709 * If this block group has free space cache written out, we need to make
3710 * sure to load it if we are removing space. This is because we need
3711 * the unpinning stage to actually add the space back to the block group,
3712 * otherwise we will leak space.
3713 */
3714 if (!alloc && !btrfs_block_group_done(cache))
3715 btrfs_cache_block_group(cache, true);
3716
3717 spin_lock(&space_info->lock);
3718 spin_lock(&cache->lock);
3719
3720 if (btrfs_test_opt(info, SPACE_CACHE) &&
3721 cache->disk_cache_state < BTRFS_DC_CLEAR)
3722 cache->disk_cache_state = BTRFS_DC_CLEAR;
3723
3724 old_val = cache->used;
3725 if (alloc) {
3726 old_val += num_bytes;
3727 cache->used = old_val;
3728 cache->reserved -= num_bytes;
3729 cache->reclaim_mark = 0;
3730 space_info->bytes_reserved -= num_bytes;
3731 space_info->bytes_used += num_bytes;
3732 space_info->disk_used += num_bytes * factor;
3733 if (READ_ONCE(space_info->periodic_reclaim))
3734 btrfs_space_info_update_reclaimable(space_info, -num_bytes);
3735 spin_unlock(&cache->lock);
3736 spin_unlock(&space_info->lock);
3737 } else {
3738 old_val -= num_bytes;
3739 cache->used = old_val;
3740 cache->pinned += num_bytes;
3741 btrfs_space_info_update_bytes_pinned(space_info, num_bytes);
3742 space_info->bytes_used -= num_bytes;
3743 space_info->disk_used -= num_bytes * factor;
3744 if (READ_ONCE(space_info->periodic_reclaim))
3745 btrfs_space_info_update_reclaimable(space_info, num_bytes);
3746 else
3747 reclaim = should_reclaim_block_group(cache, num_bytes);
3748
3749 spin_unlock(&cache->lock);
3750 spin_unlock(&space_info->lock);
3751
3752 btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3753 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3754 }
3755
3756 spin_lock(&trans->transaction->dirty_bgs_lock);
3757 if (list_empty(&cache->dirty_list)) {
3758 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
3759 bg_already_dirty = false;
3760 btrfs_get_block_group(cache);
3761 }
3762 spin_unlock(&trans->transaction->dirty_bgs_lock);
3763
3764 /*
3765 * No longer have used bytes in this block group, queue it for deletion.
3766 * We do this after adding the block group to the dirty list to avoid
3767 * races between cleaner kthread and space cache writeout.
3768 */
3769 if (!alloc && old_val == 0) {
3770 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3771 btrfs_mark_bg_unused(cache);
3772 } else if (!alloc && reclaim) {
3773 btrfs_mark_bg_to_reclaim(cache);
3774 }
3775
3776 btrfs_put_block_group(cache);
3777
3778 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3779 if (!bg_already_dirty)
3780 btrfs_inc_delayed_refs_rsv_bg_updates(info);
3781
3782 return 0;
3783 }
3784
3785 /*
3786 * Update the block_group and space info counters.
3787 *
3788 * @cache: The cache we are manipulating
3789 * @ram_bytes: The number of bytes of file content, and will be same to
3790 * @num_bytes except for the compress path.
3791 * @num_bytes: The number of bytes in question
3792 * @delalloc: The blocks are allocated for the delalloc write
3793 *
3794 * This is called by the allocator when it reserves space. If this is a
3795 * reservation and the block group has become read only we cannot make the
3796 * reservation and return -EAGAIN, otherwise this function always succeeds.
3797 */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc,bool force_wrong_size_class)3798 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3799 u64 ram_bytes, u64 num_bytes, int delalloc,
3800 bool force_wrong_size_class)
3801 {
3802 struct btrfs_space_info *space_info = cache->space_info;
3803 enum btrfs_block_group_size_class size_class;
3804 int ret = 0;
3805
3806 spin_lock(&space_info->lock);
3807 spin_lock(&cache->lock);
3808 if (cache->ro) {
3809 ret = -EAGAIN;
3810 goto out;
3811 }
3812
3813 if (btrfs_block_group_should_use_size_class(cache)) {
3814 size_class = btrfs_calc_block_group_size_class(num_bytes);
3815 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3816 if (ret)
3817 goto out;
3818 }
3819 cache->reserved += num_bytes;
3820 space_info->bytes_reserved += num_bytes;
3821 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3822 space_info->flags, num_bytes, 1);
3823 btrfs_space_info_update_bytes_may_use(space_info, -ram_bytes);
3824 if (delalloc)
3825 cache->delalloc_bytes += num_bytes;
3826
3827 /*
3828 * Compression can use less space than we reserved, so wake tickets if
3829 * that happens.
3830 */
3831 if (num_bytes < ram_bytes)
3832 btrfs_try_granting_tickets(cache->fs_info, space_info);
3833 out:
3834 spin_unlock(&cache->lock);
3835 spin_unlock(&space_info->lock);
3836 return ret;
3837 }
3838
3839 /*
3840 * Update the block_group and space info counters.
3841 *
3842 * @cache: The cache we are manipulating.
3843 * @num_bytes: The number of bytes in question.
3844 * @is_delalloc: Whether the blocks are allocated for a delalloc write.
3845 *
3846 * This is called by somebody who is freeing space that was never actually used
3847 * on disk. For example if you reserve some space for a new leaf in transaction
3848 * A and before transaction A commits you free that leaf, you call this with
3849 * reserve set to 0 in order to clear the reservation.
3850 */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,bool is_delalloc)3851 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, u64 num_bytes,
3852 bool is_delalloc)
3853 {
3854 struct btrfs_space_info *space_info = cache->space_info;
3855
3856 spin_lock(&space_info->lock);
3857 spin_lock(&cache->lock);
3858 if (cache->ro)
3859 space_info->bytes_readonly += num_bytes;
3860 else if (btrfs_is_zoned(cache->fs_info))
3861 space_info->bytes_zone_unusable += num_bytes;
3862 cache->reserved -= num_bytes;
3863 space_info->bytes_reserved -= num_bytes;
3864 space_info->max_extent_size = 0;
3865
3866 if (is_delalloc)
3867 cache->delalloc_bytes -= num_bytes;
3868 spin_unlock(&cache->lock);
3869
3870 btrfs_try_granting_tickets(cache->fs_info, space_info);
3871 spin_unlock(&space_info->lock);
3872 }
3873
force_metadata_allocation(struct btrfs_fs_info * info)3874 static void force_metadata_allocation(struct btrfs_fs_info *info)
3875 {
3876 struct list_head *head = &info->space_info;
3877 struct btrfs_space_info *found;
3878
3879 list_for_each_entry(found, head, list) {
3880 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3881 found->force_alloc = CHUNK_ALLOC_FORCE;
3882 }
3883 }
3884
should_alloc_chunk(const struct btrfs_fs_info * fs_info,const struct btrfs_space_info * sinfo,int force)3885 static bool should_alloc_chunk(const struct btrfs_fs_info *fs_info,
3886 const struct btrfs_space_info *sinfo, int force)
3887 {
3888 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3889 u64 thresh;
3890
3891 if (force == CHUNK_ALLOC_FORCE)
3892 return true;
3893
3894 /*
3895 * in limited mode, we want to have some free space up to
3896 * about 1% of the FS size.
3897 */
3898 if (force == CHUNK_ALLOC_LIMITED) {
3899 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3900 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3901
3902 if (sinfo->total_bytes - bytes_used < thresh)
3903 return true;
3904 }
3905
3906 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3907 return false;
3908 return true;
3909 }
3910
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3911 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3912 {
3913 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3914 struct btrfs_space_info *space_info;
3915
3916 space_info = btrfs_find_space_info(trans->fs_info, type);
3917 if (!space_info) {
3918 DEBUG_WARN();
3919 return -EINVAL;
3920 }
3921
3922 return btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE);
3923 }
3924
do_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_space_info * space_info,u64 flags)3925 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans,
3926 struct btrfs_space_info *space_info,
3927 u64 flags)
3928 {
3929 struct btrfs_block_group *bg;
3930 int ret;
3931
3932 /*
3933 * Check if we have enough space in the system space info because we
3934 * will need to update device items in the chunk btree and insert a new
3935 * chunk item in the chunk btree as well. This will allocate a new
3936 * system block group if needed.
3937 */
3938 check_system_chunk(trans, flags);
3939
3940 bg = btrfs_create_chunk(trans, space_info, flags);
3941 if (IS_ERR(bg)) {
3942 ret = PTR_ERR(bg);
3943 goto out;
3944 }
3945
3946 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3947 /*
3948 * Normally we are not expected to fail with -ENOSPC here, since we have
3949 * previously reserved space in the system space_info and allocated one
3950 * new system chunk if necessary. However there are three exceptions:
3951 *
3952 * 1) We may have enough free space in the system space_info but all the
3953 * existing system block groups have a profile which can not be used
3954 * for extent allocation.
3955 *
3956 * This happens when mounting in degraded mode. For example we have a
3957 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3958 * using the other device in degraded mode. If we then allocate a chunk,
3959 * we may have enough free space in the existing system space_info, but
3960 * none of the block groups can be used for extent allocation since they
3961 * have a RAID1 profile, and because we are in degraded mode with a
3962 * single device, we are forced to allocate a new system chunk with a
3963 * SINGLE profile. Making check_system_chunk() iterate over all system
3964 * block groups and check if they have a usable profile and enough space
3965 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3966 * try again after forcing allocation of a new system chunk. Like this
3967 * we avoid paying the cost of that search in normal circumstances, when
3968 * we were not mounted in degraded mode;
3969 *
3970 * 2) We had enough free space info the system space_info, and one suitable
3971 * block group to allocate from when we called check_system_chunk()
3972 * above. However right after we called it, the only system block group
3973 * with enough free space got turned into RO mode by a running scrub,
3974 * and in this case we have to allocate a new one and retry. We only
3975 * need do this allocate and retry once, since we have a transaction
3976 * handle and scrub uses the commit root to search for block groups;
3977 *
3978 * 3) We had one system block group with enough free space when we called
3979 * check_system_chunk(), but after that, right before we tried to
3980 * allocate the last extent buffer we needed, a discard operation came
3981 * in and it temporarily removed the last free space entry from the
3982 * block group (discard removes a free space entry, discards it, and
3983 * then adds back the entry to the block group cache).
3984 */
3985 if (ret == -ENOSPC) {
3986 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3987 struct btrfs_block_group *sys_bg;
3988 struct btrfs_space_info *sys_space_info;
3989
3990 sys_space_info = btrfs_find_space_info(trans->fs_info, sys_flags);
3991 if (!sys_space_info) {
3992 ret = -EINVAL;
3993 btrfs_abort_transaction(trans, ret);
3994 goto out;
3995 }
3996
3997 sys_bg = btrfs_create_chunk(trans, sys_space_info, sys_flags);
3998 if (IS_ERR(sys_bg)) {
3999 ret = PTR_ERR(sys_bg);
4000 btrfs_abort_transaction(trans, ret);
4001 goto out;
4002 }
4003
4004 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
4005 if (ret) {
4006 btrfs_abort_transaction(trans, ret);
4007 goto out;
4008 }
4009
4010 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
4011 if (ret) {
4012 btrfs_abort_transaction(trans, ret);
4013 goto out;
4014 }
4015 } else if (ret) {
4016 btrfs_abort_transaction(trans, ret);
4017 goto out;
4018 }
4019 out:
4020 btrfs_trans_release_chunk_metadata(trans);
4021
4022 if (ret)
4023 return ERR_PTR(ret);
4024
4025 btrfs_get_block_group(bg);
4026 return bg;
4027 }
4028
4029 /*
4030 * Chunk allocation is done in 2 phases:
4031 *
4032 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
4033 * the chunk, the chunk mapping, create its block group and add the items
4034 * that belong in the chunk btree to it - more specifically, we need to
4035 * update device items in the chunk btree and add a new chunk item to it.
4036 *
4037 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
4038 * group item to the extent btree and the device extent items to the devices
4039 * btree.
4040 *
4041 * This is done to prevent deadlocks. For example when COWing a node from the
4042 * extent btree we are holding a write lock on the node's parent and if we
4043 * trigger chunk allocation and attempted to insert the new block group item
4044 * in the extent btree right way, we could deadlock because the path for the
4045 * insertion can include that parent node. At first glance it seems impossible
4046 * to trigger chunk allocation after starting a transaction since tasks should
4047 * reserve enough transaction units (metadata space), however while that is true
4048 * most of the time, chunk allocation may still be triggered for several reasons:
4049 *
4050 * 1) When reserving metadata, we check if there is enough free space in the
4051 * metadata space_info and therefore don't trigger allocation of a new chunk.
4052 * However later when the task actually tries to COW an extent buffer from
4053 * the extent btree or from the device btree for example, it is forced to
4054 * allocate a new block group (chunk) because the only one that had enough
4055 * free space was just turned to RO mode by a running scrub for example (or
4056 * device replace, block group reclaim thread, etc), so we can not use it
4057 * for allocating an extent and end up being forced to allocate a new one;
4058 *
4059 * 2) Because we only check that the metadata space_info has enough free bytes,
4060 * we end up not allocating a new metadata chunk in that case. However if
4061 * the filesystem was mounted in degraded mode, none of the existing block
4062 * groups might be suitable for extent allocation due to their incompatible
4063 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
4064 * use a RAID1 profile, in degraded mode using a single device). In this case
4065 * when the task attempts to COW some extent buffer of the extent btree for
4066 * example, it will trigger allocation of a new metadata block group with a
4067 * suitable profile (SINGLE profile in the example of the degraded mount of
4068 * the RAID1 filesystem);
4069 *
4070 * 3) The task has reserved enough transaction units / metadata space, but when
4071 * it attempts to COW an extent buffer from the extent or device btree for
4072 * example, it does not find any free extent in any metadata block group,
4073 * therefore forced to try to allocate a new metadata block group.
4074 * This is because some other task allocated all available extents in the
4075 * meanwhile - this typically happens with tasks that don't reserve space
4076 * properly, either intentionally or as a bug. One example where this is
4077 * done intentionally is fsync, as it does not reserve any transaction units
4078 * and ends up allocating a variable number of metadata extents for log
4079 * tree extent buffers;
4080 *
4081 * 4) The task has reserved enough transaction units / metadata space, but right
4082 * before it tries to allocate the last extent buffer it needs, a discard
4083 * operation comes in and, temporarily, removes the last free space entry from
4084 * the only metadata block group that had free space (discard starts by
4085 * removing a free space entry from a block group, then does the discard
4086 * operation and, once it's done, it adds back the free space entry to the
4087 * block group).
4088 *
4089 * We also need this 2 phases setup when adding a device to a filesystem with
4090 * a seed device - we must create new metadata and system chunks without adding
4091 * any of the block group items to the chunk, extent and device btrees. If we
4092 * did not do it this way, we would get ENOSPC when attempting to update those
4093 * btrees, since all the chunks from the seed device are read-only.
4094 *
4095 * Phase 1 does the updates and insertions to the chunk btree because if we had
4096 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
4097 * parallel, we risk having too many system chunks allocated by many tasks if
4098 * many tasks reach phase 1 without the previous ones completing phase 2. In the
4099 * extreme case this leads to exhaustion of the system chunk array in the
4100 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
4101 * and with RAID filesystems (so we have more device items in the chunk btree).
4102 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4103 * the system chunk array due to concurrent allocations") provides more details.
4104 *
4105 * Allocation of system chunks does not happen through this function. A task that
4106 * needs to update the chunk btree (the only btree that uses system chunks), must
4107 * preallocate chunk space by calling either check_system_chunk() or
4108 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4109 * metadata chunk or when removing a chunk, while the later is used before doing
4110 * a modification to the chunk btree - use cases for the later are adding,
4111 * removing and resizing a device as well as relocation of a system chunk.
4112 * See the comment below for more details.
4113 *
4114 * The reservation of system space, done through check_system_chunk(), as well
4115 * as all the updates and insertions into the chunk btree must be done while
4116 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4117 * an extent buffer from the chunks btree we never trigger allocation of a new
4118 * system chunk, which would result in a deadlock (trying to lock twice an
4119 * extent buffer of the chunk btree, first time before triggering the chunk
4120 * allocation and the second time during chunk allocation while attempting to
4121 * update the chunks btree). The system chunk array is also updated while holding
4122 * that mutex. The same logic applies to removing chunks - we must reserve system
4123 * space, update the chunk btree and the system chunk array in the superblock
4124 * while holding fs_info->chunk_mutex.
4125 *
4126 * This function, btrfs_chunk_alloc(), belongs to phase 1.
4127 *
4128 * @space_info: specify which space_info the new chunk should belong to.
4129 *
4130 * If @force is CHUNK_ALLOC_FORCE:
4131 * - return 1 if it successfully allocates a chunk,
4132 * - return errors including -ENOSPC otherwise.
4133 * If @force is NOT CHUNK_ALLOC_FORCE:
4134 * - return 0 if it doesn't need to allocate a new chunk,
4135 * - return 1 if it successfully allocates a chunk,
4136 * - return errors including -ENOSPC otherwise.
4137 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_space_info * space_info,u64 flags,enum btrfs_chunk_alloc_enum force)4138 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans,
4139 struct btrfs_space_info *space_info, u64 flags,
4140 enum btrfs_chunk_alloc_enum force)
4141 {
4142 struct btrfs_fs_info *fs_info = trans->fs_info;
4143 struct btrfs_block_group *ret_bg;
4144 bool wait_for_alloc = false;
4145 bool should_alloc = false;
4146 bool from_extent_allocation = false;
4147 int ret = 0;
4148
4149 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4150 from_extent_allocation = true;
4151 force = CHUNK_ALLOC_FORCE;
4152 }
4153
4154 /* Don't re-enter if we're already allocating a chunk */
4155 if (trans->allocating_chunk)
4156 return -ENOSPC;
4157 /*
4158 * Allocation of system chunks can not happen through this path, as we
4159 * could end up in a deadlock if we are allocating a data or metadata
4160 * chunk and there is another task modifying the chunk btree.
4161 *
4162 * This is because while we are holding the chunk mutex, we will attempt
4163 * to add the new chunk item to the chunk btree or update an existing
4164 * device item in the chunk btree, while the other task that is modifying
4165 * the chunk btree is attempting to COW an extent buffer while holding a
4166 * lock on it and on its parent - if the COW operation triggers a system
4167 * chunk allocation, then we can deadlock because we are holding the
4168 * chunk mutex and we may need to access that extent buffer or its parent
4169 * in order to add the chunk item or update a device item.
4170 *
4171 * Tasks that want to modify the chunk tree should reserve system space
4172 * before updating the chunk btree, by calling either
4173 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4174 * It's possible that after a task reserves the space, it still ends up
4175 * here - this happens in the cases described above at do_chunk_alloc().
4176 * The task will have to either retry or fail.
4177 */
4178 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4179 return -ENOSPC;
4180
4181 do {
4182 spin_lock(&space_info->lock);
4183 if (force < space_info->force_alloc)
4184 force = space_info->force_alloc;
4185 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4186 if (space_info->full) {
4187 /* No more free physical space */
4188 if (should_alloc)
4189 ret = -ENOSPC;
4190 else
4191 ret = 0;
4192 spin_unlock(&space_info->lock);
4193 return ret;
4194 } else if (!should_alloc) {
4195 spin_unlock(&space_info->lock);
4196 return 0;
4197 } else if (space_info->chunk_alloc) {
4198 /*
4199 * Someone is already allocating, so we need to block
4200 * until this someone is finished and then loop to
4201 * recheck if we should continue with our allocation
4202 * attempt.
4203 */
4204 wait_for_alloc = true;
4205 force = CHUNK_ALLOC_NO_FORCE;
4206 spin_unlock(&space_info->lock);
4207 mutex_lock(&fs_info->chunk_mutex);
4208 mutex_unlock(&fs_info->chunk_mutex);
4209 } else {
4210 /* Proceed with allocation */
4211 space_info->chunk_alloc = 1;
4212 wait_for_alloc = false;
4213 spin_unlock(&space_info->lock);
4214 }
4215
4216 cond_resched();
4217 } while (wait_for_alloc);
4218
4219 mutex_lock(&fs_info->chunk_mutex);
4220 trans->allocating_chunk = true;
4221
4222 /*
4223 * If we have mixed data/metadata chunks we want to make sure we keep
4224 * allocating mixed chunks instead of individual chunks.
4225 */
4226 if (btrfs_mixed_space_info(space_info))
4227 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4228
4229 /*
4230 * if we're doing a data chunk, go ahead and make sure that
4231 * we keep a reasonable number of metadata chunks allocated in the
4232 * FS as well.
4233 */
4234 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4235 fs_info->data_chunk_allocations++;
4236 if (!(fs_info->data_chunk_allocations %
4237 fs_info->metadata_ratio))
4238 force_metadata_allocation(fs_info);
4239 }
4240
4241 ret_bg = do_chunk_alloc(trans, space_info, flags);
4242 trans->allocating_chunk = false;
4243
4244 if (IS_ERR(ret_bg)) {
4245 ret = PTR_ERR(ret_bg);
4246 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4247 /*
4248 * New block group is likely to be used soon. Try to activate
4249 * it now. Failure is OK for now.
4250 */
4251 btrfs_zone_activate(ret_bg);
4252 }
4253
4254 if (!ret)
4255 btrfs_put_block_group(ret_bg);
4256
4257 spin_lock(&space_info->lock);
4258 if (ret < 0) {
4259 if (ret == -ENOSPC)
4260 space_info->full = 1;
4261 else
4262 goto out;
4263 } else {
4264 ret = 1;
4265 space_info->max_extent_size = 0;
4266 }
4267
4268 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4269 out:
4270 space_info->chunk_alloc = 0;
4271 spin_unlock(&space_info->lock);
4272 mutex_unlock(&fs_info->chunk_mutex);
4273
4274 return ret;
4275 }
4276
get_profile_num_devs(const struct btrfs_fs_info * fs_info,u64 type)4277 static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type)
4278 {
4279 u64 num_dev;
4280
4281 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4282 if (!num_dev)
4283 num_dev = fs_info->fs_devices->rw_devices;
4284
4285 return num_dev;
4286 }
4287
reserve_chunk_space(struct btrfs_trans_handle * trans,u64 bytes,u64 type)4288 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4289 u64 bytes,
4290 u64 type)
4291 {
4292 struct btrfs_fs_info *fs_info = trans->fs_info;
4293 struct btrfs_space_info *info;
4294 u64 left;
4295 int ret = 0;
4296
4297 /*
4298 * Needed because we can end up allocating a system chunk and for an
4299 * atomic and race free space reservation in the chunk block reserve.
4300 */
4301 lockdep_assert_held(&fs_info->chunk_mutex);
4302
4303 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4304 spin_lock(&info->lock);
4305 left = info->total_bytes - btrfs_space_info_used(info, true);
4306 spin_unlock(&info->lock);
4307
4308 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4309 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4310 left, bytes, type);
4311 btrfs_dump_space_info(fs_info, info, 0, false);
4312 }
4313
4314 if (left < bytes) {
4315 u64 flags = btrfs_system_alloc_profile(fs_info);
4316 struct btrfs_block_group *bg;
4317 struct btrfs_space_info *space_info;
4318
4319 space_info = btrfs_find_space_info(fs_info, flags);
4320 ASSERT(space_info);
4321
4322 /*
4323 * Ignore failure to create system chunk. We might end up not
4324 * needing it, as we might not need to COW all nodes/leafs from
4325 * the paths we visit in the chunk tree (they were already COWed
4326 * or created in the current transaction for example).
4327 */
4328 bg = btrfs_create_chunk(trans, space_info, flags);
4329 if (IS_ERR(bg)) {
4330 ret = PTR_ERR(bg);
4331 } else {
4332 /*
4333 * We have a new chunk. We also need to activate it for
4334 * zoned filesystem.
4335 */
4336 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4337 if (ret < 0)
4338 return;
4339
4340 /*
4341 * If we fail to add the chunk item here, we end up
4342 * trying again at phase 2 of chunk allocation, at
4343 * btrfs_create_pending_block_groups(). So ignore
4344 * any error here. An ENOSPC here could happen, due to
4345 * the cases described at do_chunk_alloc() - the system
4346 * block group we just created was just turned into RO
4347 * mode by a scrub for example, or a running discard
4348 * temporarily removed its free space entries, etc.
4349 */
4350 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4351 }
4352 }
4353
4354 if (!ret) {
4355 ret = btrfs_block_rsv_add(fs_info,
4356 &fs_info->chunk_block_rsv,
4357 bytes, BTRFS_RESERVE_NO_FLUSH);
4358 if (!ret)
4359 trans->chunk_bytes_reserved += bytes;
4360 }
4361 }
4362
4363 /*
4364 * Reserve space in the system space for allocating or removing a chunk.
4365 * The caller must be holding fs_info->chunk_mutex.
4366 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4367 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4368 {
4369 struct btrfs_fs_info *fs_info = trans->fs_info;
4370 const u64 num_devs = get_profile_num_devs(fs_info, type);
4371 u64 bytes;
4372
4373 /* num_devs device items to update and 1 chunk item to add or remove. */
4374 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4375 btrfs_calc_insert_metadata_size(fs_info, 1);
4376
4377 reserve_chunk_space(trans, bytes, type);
4378 }
4379
4380 /*
4381 * Reserve space in the system space, if needed, for doing a modification to the
4382 * chunk btree.
4383 *
4384 * @trans: A transaction handle.
4385 * @is_item_insertion: Indicate if the modification is for inserting a new item
4386 * in the chunk btree or if it's for the deletion or update
4387 * of an existing item.
4388 *
4389 * This is used in a context where we need to update the chunk btree outside
4390 * block group allocation and removal, to avoid a deadlock with a concurrent
4391 * task that is allocating a metadata or data block group and therefore needs to
4392 * update the chunk btree while holding the chunk mutex. After the update to the
4393 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4394 *
4395 */
btrfs_reserve_chunk_metadata(struct btrfs_trans_handle * trans,bool is_item_insertion)4396 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4397 bool is_item_insertion)
4398 {
4399 struct btrfs_fs_info *fs_info = trans->fs_info;
4400 u64 bytes;
4401
4402 if (is_item_insertion)
4403 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4404 else
4405 bytes = btrfs_calc_metadata_size(fs_info, 1);
4406
4407 mutex_lock(&fs_info->chunk_mutex);
4408 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4409 mutex_unlock(&fs_info->chunk_mutex);
4410 }
4411
btrfs_put_block_group_cache(struct btrfs_fs_info * info)4412 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4413 {
4414 struct btrfs_block_group *block_group;
4415
4416 block_group = btrfs_lookup_first_block_group(info, 0);
4417 while (block_group) {
4418 btrfs_wait_block_group_cache_done(block_group);
4419 spin_lock(&block_group->lock);
4420 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4421 &block_group->runtime_flags)) {
4422 struct btrfs_inode *inode = block_group->inode;
4423
4424 block_group->inode = NULL;
4425 spin_unlock(&block_group->lock);
4426
4427 ASSERT(block_group->io_ctl.inode == NULL);
4428 iput(&inode->vfs_inode);
4429 } else {
4430 spin_unlock(&block_group->lock);
4431 }
4432 block_group = btrfs_next_block_group(block_group);
4433 }
4434 }
4435
check_removing_space_info(struct btrfs_space_info * space_info)4436 static void check_removing_space_info(struct btrfs_space_info *space_info)
4437 {
4438 struct btrfs_fs_info *info = space_info->fs_info;
4439
4440 if (space_info->subgroup_id == BTRFS_SUB_GROUP_PRIMARY) {
4441 /* This is a top space_info, proceed with its children first. */
4442 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) {
4443 if (space_info->sub_group[i]) {
4444 check_removing_space_info(space_info->sub_group[i]);
4445 kfree(space_info->sub_group[i]);
4446 space_info->sub_group[i] = NULL;
4447 }
4448 }
4449 }
4450
4451 /*
4452 * Do not hide this behind enospc_debug, this is actually important and
4453 * indicates a real bug if this happens.
4454 */
4455 if (WARN_ON(space_info->bytes_pinned > 0 || space_info->bytes_may_use > 0))
4456 btrfs_dump_space_info(info, space_info, 0, false);
4457
4458 /*
4459 * If there was a failure to cleanup a log tree, very likely due to an
4460 * IO failure on a writeback attempt of one or more of its extent
4461 * buffers, we could not do proper (and cheap) unaccounting of their
4462 * reserved space, so don't warn on bytes_reserved > 0 in that case.
4463 */
4464 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4465 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4466 if (WARN_ON(space_info->bytes_reserved > 0))
4467 btrfs_dump_space_info(info, space_info, 0, false);
4468 }
4469
4470 WARN_ON(space_info->reclaim_size > 0);
4471 }
4472
4473 /*
4474 * Must be called only after stopping all workers, since we could have block
4475 * group caching kthreads running, and therefore they could race with us if we
4476 * freed the block groups before stopping them.
4477 */
btrfs_free_block_groups(struct btrfs_fs_info * info)4478 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4479 {
4480 struct btrfs_block_group *block_group;
4481 struct btrfs_space_info *space_info;
4482 struct btrfs_caching_control *caching_ctl;
4483 struct rb_node *n;
4484
4485 if (btrfs_is_zoned(info)) {
4486 if (info->active_meta_bg) {
4487 btrfs_put_block_group(info->active_meta_bg);
4488 info->active_meta_bg = NULL;
4489 }
4490 if (info->active_system_bg) {
4491 btrfs_put_block_group(info->active_system_bg);
4492 info->active_system_bg = NULL;
4493 }
4494 }
4495
4496 write_lock(&info->block_group_cache_lock);
4497 while (!list_empty(&info->caching_block_groups)) {
4498 caching_ctl = list_first_entry(&info->caching_block_groups,
4499 struct btrfs_caching_control, list);
4500 list_del(&caching_ctl->list);
4501 btrfs_put_caching_control(caching_ctl);
4502 }
4503 write_unlock(&info->block_group_cache_lock);
4504
4505 spin_lock(&info->unused_bgs_lock);
4506 while (!list_empty(&info->unused_bgs)) {
4507 block_group = list_first_entry(&info->unused_bgs,
4508 struct btrfs_block_group,
4509 bg_list);
4510 list_del_init(&block_group->bg_list);
4511 btrfs_put_block_group(block_group);
4512 }
4513
4514 while (!list_empty(&info->reclaim_bgs)) {
4515 block_group = list_first_entry(&info->reclaim_bgs,
4516 struct btrfs_block_group,
4517 bg_list);
4518 list_del_init(&block_group->bg_list);
4519 btrfs_put_block_group(block_group);
4520 }
4521 spin_unlock(&info->unused_bgs_lock);
4522
4523 spin_lock(&info->zone_active_bgs_lock);
4524 while (!list_empty(&info->zone_active_bgs)) {
4525 block_group = list_first_entry(&info->zone_active_bgs,
4526 struct btrfs_block_group,
4527 active_bg_list);
4528 list_del_init(&block_group->active_bg_list);
4529 btrfs_put_block_group(block_group);
4530 }
4531 spin_unlock(&info->zone_active_bgs_lock);
4532
4533 write_lock(&info->block_group_cache_lock);
4534 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4535 block_group = rb_entry(n, struct btrfs_block_group,
4536 cache_node);
4537 rb_erase_cached(&block_group->cache_node,
4538 &info->block_group_cache_tree);
4539 RB_CLEAR_NODE(&block_group->cache_node);
4540 write_unlock(&info->block_group_cache_lock);
4541
4542 down_write(&block_group->space_info->groups_sem);
4543 list_del(&block_group->list);
4544 up_write(&block_group->space_info->groups_sem);
4545
4546 /*
4547 * We haven't cached this block group, which means we could
4548 * possibly have excluded extents on this block group.
4549 */
4550 if (block_group->cached == BTRFS_CACHE_NO ||
4551 block_group->cached == BTRFS_CACHE_ERROR)
4552 btrfs_free_excluded_extents(block_group);
4553
4554 btrfs_remove_free_space_cache(block_group);
4555 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4556 ASSERT(list_empty(&block_group->dirty_list));
4557 ASSERT(list_empty(&block_group->io_list));
4558 ASSERT(list_empty(&block_group->bg_list));
4559 ASSERT(refcount_read(&block_group->refs) == 1);
4560 ASSERT(block_group->swap_extents == 0);
4561 btrfs_put_block_group(block_group);
4562
4563 write_lock(&info->block_group_cache_lock);
4564 }
4565 write_unlock(&info->block_group_cache_lock);
4566
4567 btrfs_release_global_block_rsv(info);
4568
4569 while (!list_empty(&info->space_info)) {
4570 space_info = list_first_entry(&info->space_info,
4571 struct btrfs_space_info, list);
4572
4573 check_removing_space_info(space_info);
4574 list_del(&space_info->list);
4575 btrfs_sysfs_remove_space_info(space_info);
4576 }
4577 return 0;
4578 }
4579
btrfs_freeze_block_group(struct btrfs_block_group * cache)4580 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4581 {
4582 atomic_inc(&cache->frozen);
4583 }
4584
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)4585 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4586 {
4587 struct btrfs_fs_info *fs_info = block_group->fs_info;
4588 bool cleanup;
4589
4590 spin_lock(&block_group->lock);
4591 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4592 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4593 spin_unlock(&block_group->lock);
4594
4595 if (cleanup) {
4596 struct btrfs_chunk_map *map;
4597
4598 map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4599 /* Logic error, can't happen. */
4600 ASSERT(map);
4601
4602 btrfs_remove_chunk_map(fs_info, map);
4603
4604 /* Once for our lookup reference. */
4605 btrfs_free_chunk_map(map);
4606
4607 /*
4608 * We may have left one free space entry and other possible
4609 * tasks trimming this block group have left 1 entry each one.
4610 * Free them if any.
4611 */
4612 btrfs_remove_free_space_cache(block_group);
4613 }
4614 }
4615
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)4616 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4617 {
4618 bool ret = true;
4619
4620 spin_lock(&bg->lock);
4621 if (bg->ro)
4622 ret = false;
4623 else
4624 bg->swap_extents++;
4625 spin_unlock(&bg->lock);
4626
4627 return ret;
4628 }
4629
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)4630 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4631 {
4632 spin_lock(&bg->lock);
4633 ASSERT(!bg->ro);
4634 ASSERT(bg->swap_extents >= amount);
4635 bg->swap_extents -= amount;
4636 spin_unlock(&bg->lock);
4637 }
4638
btrfs_calc_block_group_size_class(u64 size)4639 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4640 {
4641 if (size <= SZ_128K)
4642 return BTRFS_BG_SZ_SMALL;
4643 if (size <= SZ_8M)
4644 return BTRFS_BG_SZ_MEDIUM;
4645 return BTRFS_BG_SZ_LARGE;
4646 }
4647
4648 /*
4649 * Handle a block group allocating an extent in a size class
4650 *
4651 * @bg: The block group we allocated in.
4652 * @size_class: The size class of the allocation.
4653 * @force_wrong_size_class: Whether we are desperate enough to allow
4654 * mismatched size classes.
4655 *
4656 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4657 * case of a race that leads to the wrong size class without
4658 * force_wrong_size_class set.
4659 *
4660 * find_free_extent will skip block groups with a mismatched size class until
4661 * it really needs to avoid ENOSPC. In that case it will set
4662 * force_wrong_size_class. However, if a block group is newly allocated and
4663 * doesn't yet have a size class, then it is possible for two allocations of
4664 * different sizes to race and both try to use it. The loser is caught here and
4665 * has to retry.
4666 */
btrfs_use_block_group_size_class(struct btrfs_block_group * bg,enum btrfs_block_group_size_class size_class,bool force_wrong_size_class)4667 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4668 enum btrfs_block_group_size_class size_class,
4669 bool force_wrong_size_class)
4670 {
4671 ASSERT(size_class != BTRFS_BG_SZ_NONE);
4672
4673 /* The new allocation is in the right size class, do nothing */
4674 if (bg->size_class == size_class)
4675 return 0;
4676 /*
4677 * The new allocation is in a mismatched size class.
4678 * This means one of two things:
4679 *
4680 * 1. Two tasks in find_free_extent for different size_classes raced
4681 * and hit the same empty block_group. Make the loser try again.
4682 * 2. A call to find_free_extent got desperate enough to set
4683 * 'force_wrong_slab'. Don't change the size_class, but allow the
4684 * allocation.
4685 */
4686 if (bg->size_class != BTRFS_BG_SZ_NONE) {
4687 if (force_wrong_size_class)
4688 return 0;
4689 return -EAGAIN;
4690 }
4691 /*
4692 * The happy new block group case: the new allocation is the first
4693 * one in the block_group so we set size_class.
4694 */
4695 bg->size_class = size_class;
4696
4697 return 0;
4698 }
4699
btrfs_block_group_should_use_size_class(const struct btrfs_block_group * bg)4700 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg)
4701 {
4702 if (btrfs_is_zoned(bg->fs_info))
4703 return false;
4704 if (!btrfs_is_block_group_data_only(bg))
4705 return false;
4706 return true;
4707 }
4708