xref: /linux/fs/btrfs/relocation.c (revision 0e39a731820ad26533eb988cef27ad2506063b5b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 #include "raid-stripe-tree.h"
40 
41 /*
42  * Relocation overview
43  *
44  * [What does relocation do]
45  *
46  * The objective of relocation is to relocate all extents of the target block
47  * group to other block groups.
48  * This is utilized by resize (shrink only), profile converting, compacting
49  * space, or balance routine to spread chunks over devices.
50  *
51  * 		Before		|		After
52  * ------------------------------------------------------------------
53  *  BG A: 10 data extents	| BG A: deleted
54  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
55  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
56  *
57  * [How does relocation work]
58  *
59  * 1.   Mark the target block group read-only
60  *      New extents won't be allocated from the target block group.
61  *
62  * 2.1  Record each extent in the target block group
63  *      To build a proper map of extents to be relocated.
64  *
65  * 2.2  Build data reloc tree and reloc trees
66  *      Data reloc tree will contain an inode, recording all newly relocated
67  *      data extents.
68  *      There will be only one data reloc tree for one data block group.
69  *
70  *      Reloc tree will be a special snapshot of its source tree, containing
71  *      relocated tree blocks.
72  *      Each tree referring to a tree block in target block group will get its
73  *      reloc tree built.
74  *
75  * 2.3  Swap source tree with its corresponding reloc tree
76  *      Each involved tree only refers to new extents after swap.
77  *
78  * 3.   Cleanup reloc trees and data reloc tree.
79  *      As old extents in the target block group are still referenced by reloc
80  *      trees, we need to clean them up before really freeing the target block
81  *      group.
82  *
83  * The main complexity is in steps 2.2 and 2.3.
84  *
85  * The entry point of relocation is relocate_block_group() function.
86  */
87 
88 #define RELOCATION_RESERVED_NODES	256
89 /*
90  * map address of tree root to tree
91  */
92 struct mapping_node {
93 	union {
94 		/* Use rb_simple_node for search/insert */
95 		struct {
96 			struct rb_node rb_node;
97 			u64 bytenr;
98 		};
99 
100 		struct rb_simple_node simple_node;
101 	};
102 	void *data;
103 };
104 
105 struct mapping_tree {
106 	struct rb_root rb_root;
107 	spinlock_t lock;
108 };
109 
110 /*
111  * present a tree block to process
112  */
113 struct tree_block {
114 	union {
115 		/* Use rb_simple_node for search/insert */
116 		struct {
117 			struct rb_node rb_node;
118 			u64 bytenr;
119 		};
120 
121 		struct rb_simple_node simple_node;
122 	};
123 	u64 owner;
124 	struct btrfs_key key;
125 	u8 level;
126 	bool key_ready;
127 };
128 
129 #define MAX_EXTENTS 128
130 
131 struct file_extent_cluster {
132 	u64 start;
133 	u64 end;
134 	u64 boundary[MAX_EXTENTS];
135 	unsigned int nr;
136 	u64 owning_root;
137 };
138 
139 /* Stages of data relocation. */
140 enum reloc_stage {
141 	MOVE_DATA_EXTENTS,
142 	UPDATE_DATA_PTRS
143 };
144 
145 struct reloc_control {
146 	/* block group to relocate */
147 	struct btrfs_block_group *block_group;
148 	/* extent tree */
149 	struct btrfs_root *extent_root;
150 	/* inode for moving data */
151 	struct inode *data_inode;
152 
153 	struct btrfs_block_rsv *block_rsv;
154 
155 	struct btrfs_backref_cache backref_cache;
156 
157 	struct file_extent_cluster cluster;
158 	/* tree blocks have been processed */
159 	struct extent_io_tree processed_blocks;
160 	/* map start of tree root to corresponding reloc tree */
161 	struct mapping_tree reloc_root_tree;
162 	/* list of reloc trees */
163 	struct list_head reloc_roots;
164 	/* list of subvolume trees that get relocated */
165 	struct list_head dirty_subvol_roots;
166 	/* size of metadata reservation for merging reloc trees */
167 	u64 merging_rsv_size;
168 	/* size of relocated tree nodes */
169 	u64 nodes_relocated;
170 	/* reserved size for block group relocation*/
171 	u64 reserved_bytes;
172 
173 	u64 search_start;
174 	u64 extents_found;
175 
176 	enum reloc_stage stage;
177 	bool create_reloc_tree;
178 	bool merge_reloc_tree;
179 	bool found_file_extent;
180 };
181 
mark_block_processed(struct reloc_control * rc,struct btrfs_backref_node * node)182 static void mark_block_processed(struct reloc_control *rc,
183 				 struct btrfs_backref_node *node)
184 {
185 	u32 blocksize;
186 
187 	if (node->level == 0 ||
188 	    in_range(node->bytenr, rc->block_group->start,
189 		     rc->block_group->length)) {
190 		blocksize = rc->extent_root->fs_info->nodesize;
191 		btrfs_set_extent_bit(&rc->processed_blocks, node->bytenr,
192 				     node->bytenr + blocksize - 1, EXTENT_DIRTY,
193 				     NULL);
194 	}
195 	node->processed = 1;
196 }
197 
198 /*
199  * walk up backref nodes until reach node presents tree root
200  */
walk_up_backref(struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[],int * index)201 static struct btrfs_backref_node *walk_up_backref(
202 		struct btrfs_backref_node *node,
203 		struct btrfs_backref_edge *edges[], int *index)
204 {
205 	struct btrfs_backref_edge *edge;
206 	int idx = *index;
207 
208 	while (!list_empty(&node->upper)) {
209 		edge = list_first_entry(&node->upper, struct btrfs_backref_edge,
210 					list[LOWER]);
211 		edges[idx++] = edge;
212 		node = edge->node[UPPER];
213 	}
214 	BUG_ON(node->detached);
215 	*index = idx;
216 	return node;
217 }
218 
219 /*
220  * walk down backref nodes to find start of next reference path
221  */
walk_down_backref(struct btrfs_backref_edge * edges[],int * index)222 static struct btrfs_backref_node *walk_down_backref(
223 		struct btrfs_backref_edge *edges[], int *index)
224 {
225 	struct btrfs_backref_edge *edge;
226 	struct btrfs_backref_node *lower;
227 	int idx = *index;
228 
229 	while (idx > 0) {
230 		edge = edges[idx - 1];
231 		lower = edge->node[LOWER];
232 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
233 			idx--;
234 			continue;
235 		}
236 		edge = list_first_entry(&edge->list[LOWER], struct btrfs_backref_edge,
237 					list[LOWER]);
238 		edges[idx - 1] = edge;
239 		*index = idx;
240 		return edge->node[UPPER];
241 	}
242 	*index = 0;
243 	return NULL;
244 }
245 
reloc_root_is_dead(const struct btrfs_root * root)246 static bool reloc_root_is_dead(const struct btrfs_root *root)
247 {
248 	/*
249 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
250 	 * btrfs_update_reloc_root. We need to see the updated bit before
251 	 * trying to access reloc_root
252 	 */
253 	smp_rmb();
254 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
255 		return true;
256 	return false;
257 }
258 
259 /*
260  * Check if this subvolume tree has valid reloc tree.
261  *
262  * Reloc tree after swap is considered dead, thus not considered as valid.
263  * This is enough for most callers, as they don't distinguish dead reloc root
264  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
265  * special case.
266  */
have_reloc_root(const struct btrfs_root * root)267 static bool have_reloc_root(const struct btrfs_root *root)
268 {
269 	if (reloc_root_is_dead(root))
270 		return false;
271 	if (!root->reloc_root)
272 		return false;
273 	return true;
274 }
275 
btrfs_should_ignore_reloc_root(const struct btrfs_root * root)276 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
277 {
278 	struct btrfs_root *reloc_root;
279 
280 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
281 		return false;
282 
283 	/* This root has been merged with its reloc tree, we can ignore it */
284 	if (reloc_root_is_dead(root))
285 		return true;
286 
287 	reloc_root = root->reloc_root;
288 	if (!reloc_root)
289 		return false;
290 
291 	if (btrfs_header_generation(reloc_root->commit_root) ==
292 	    root->fs_info->running_transaction->transid)
293 		return false;
294 	/*
295 	 * If there is reloc tree and it was created in previous transaction
296 	 * backref lookup can find the reloc tree, so backref node for the fs
297 	 * tree root is useless for relocation.
298 	 */
299 	return true;
300 }
301 
302 /*
303  * find reloc tree by address of tree root
304  */
find_reloc_root(struct btrfs_fs_info * fs_info,u64 bytenr)305 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
306 {
307 	struct reloc_control *rc = fs_info->reloc_ctl;
308 	struct rb_node *rb_node;
309 	struct mapping_node *node;
310 	struct btrfs_root *root = NULL;
311 
312 	ASSERT(rc);
313 	spin_lock(&rc->reloc_root_tree.lock);
314 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
315 	if (rb_node) {
316 		node = rb_entry(rb_node, struct mapping_node, rb_node);
317 		root = node->data;
318 	}
319 	spin_unlock(&rc->reloc_root_tree.lock);
320 	return btrfs_grab_root(root);
321 }
322 
323 /*
324  * For useless nodes, do two major clean ups:
325  *
326  * - Cleanup the children edges and nodes
327  *   If child node is also orphan (no parent) during cleanup, then the child
328  *   node will also be cleaned up.
329  *
330  * - Freeing up leaves (level 0), keeps nodes detached
331  *   For nodes, the node is still cached as "detached"
332  *
333  * Return false if @node is not in the @useless_nodes list.
334  * Return true if @node is in the @useless_nodes list.
335  */
handle_useless_nodes(struct reloc_control * rc,struct btrfs_backref_node * node)336 static bool handle_useless_nodes(struct reloc_control *rc,
337 				 struct btrfs_backref_node *node)
338 {
339 	struct btrfs_backref_cache *cache = &rc->backref_cache;
340 	struct list_head *useless_node = &cache->useless_node;
341 	bool ret = false;
342 
343 	while (!list_empty(useless_node)) {
344 		struct btrfs_backref_node *cur;
345 
346 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
347 				 list);
348 		list_del_init(&cur->list);
349 
350 		/* Only tree root nodes can be added to @useless_nodes */
351 		ASSERT(list_empty(&cur->upper));
352 
353 		if (cur == node)
354 			ret = true;
355 
356 		/* Cleanup the lower edges */
357 		while (!list_empty(&cur->lower)) {
358 			struct btrfs_backref_edge *edge;
359 			struct btrfs_backref_node *lower;
360 
361 			edge = list_first_entry(&cur->lower, struct btrfs_backref_edge,
362 						list[UPPER]);
363 			list_del(&edge->list[UPPER]);
364 			list_del(&edge->list[LOWER]);
365 			lower = edge->node[LOWER];
366 			btrfs_backref_free_edge(cache, edge);
367 
368 			/* Child node is also orphan, queue for cleanup */
369 			if (list_empty(&lower->upper))
370 				list_add(&lower->list, useless_node);
371 		}
372 		/* Mark this block processed for relocation */
373 		mark_block_processed(rc, cur);
374 
375 		/*
376 		 * Backref nodes for tree leaves are deleted from the cache.
377 		 * Backref nodes for upper level tree blocks are left in the
378 		 * cache to avoid unnecessary backref lookup.
379 		 */
380 		if (cur->level > 0) {
381 			cur->detached = 1;
382 		} else {
383 			rb_erase(&cur->rb_node, &cache->rb_root);
384 			btrfs_backref_free_node(cache, cur);
385 		}
386 	}
387 	return ret;
388 }
389 
390 /*
391  * Build backref tree for a given tree block. Root of the backref tree
392  * corresponds the tree block, leaves of the backref tree correspond roots of
393  * b-trees that reference the tree block.
394  *
395  * The basic idea of this function is check backrefs of a given block to find
396  * upper level blocks that reference the block, and then check backrefs of
397  * these upper level blocks recursively. The recursion stops when tree root is
398  * reached or backrefs for the block is cached.
399  *
400  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
401  * all upper level blocks that directly/indirectly reference the block are also
402  * cached.
403  */
build_backref_tree(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)404 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
405 			struct btrfs_trans_handle *trans,
406 			struct reloc_control *rc, struct btrfs_key *node_key,
407 			int level, u64 bytenr)
408 {
409 	struct btrfs_backref_iter *iter;
410 	struct btrfs_backref_cache *cache = &rc->backref_cache;
411 	/* For searching parent of TREE_BLOCK_REF */
412 	struct btrfs_path *path;
413 	struct btrfs_backref_node *cur;
414 	struct btrfs_backref_node *node = NULL;
415 	struct btrfs_backref_edge *edge;
416 	int ret;
417 
418 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
419 	if (!iter)
420 		return ERR_PTR(-ENOMEM);
421 	path = btrfs_alloc_path();
422 	if (!path) {
423 		ret = -ENOMEM;
424 		goto out;
425 	}
426 
427 	node = btrfs_backref_alloc_node(cache, bytenr, level);
428 	if (!node) {
429 		ret = -ENOMEM;
430 		goto out;
431 	}
432 
433 	cur = node;
434 
435 	/* Breadth-first search to build backref cache */
436 	do {
437 		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
438 						  node_key, cur);
439 		if (ret < 0)
440 			goto out;
441 
442 		edge = list_first_entry_or_null(&cache->pending_edge,
443 				struct btrfs_backref_edge, list[UPPER]);
444 		/*
445 		 * The pending list isn't empty, take the first block to
446 		 * process
447 		 */
448 		if (edge) {
449 			list_del_init(&edge->list[UPPER]);
450 			cur = edge->node[UPPER];
451 		}
452 	} while (edge);
453 
454 	/* Finish the upper linkage of newly added edges/nodes */
455 	ret = btrfs_backref_finish_upper_links(cache, node);
456 	if (ret < 0)
457 		goto out;
458 
459 	if (handle_useless_nodes(rc, node))
460 		node = NULL;
461 out:
462 	btrfs_free_path(iter->path);
463 	kfree(iter);
464 	btrfs_free_path(path);
465 	if (ret) {
466 		btrfs_backref_error_cleanup(cache, node);
467 		return ERR_PTR(ret);
468 	}
469 	ASSERT(!node || !node->detached);
470 	ASSERT(list_empty(&cache->useless_node) &&
471 	       list_empty(&cache->pending_edge));
472 	return node;
473 }
474 
475 /*
476  * helper to add 'address of tree root -> reloc tree' mapping
477  */
__add_reloc_root(struct btrfs_root * root)478 static int __add_reloc_root(struct btrfs_root *root)
479 {
480 	struct btrfs_fs_info *fs_info = root->fs_info;
481 	struct rb_node *rb_node;
482 	struct mapping_node *node;
483 	struct reloc_control *rc = fs_info->reloc_ctl;
484 
485 	node = kmalloc(sizeof(*node), GFP_NOFS);
486 	if (!node)
487 		return -ENOMEM;
488 
489 	node->bytenr = root->commit_root->start;
490 	node->data = root;
491 
492 	spin_lock(&rc->reloc_root_tree.lock);
493 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node);
494 	spin_unlock(&rc->reloc_root_tree.lock);
495 	if (rb_node) {
496 		btrfs_err(fs_info,
497 			    "Duplicate root found for start=%llu while inserting into relocation tree",
498 			    node->bytenr);
499 		return -EEXIST;
500 	}
501 
502 	list_add_tail(&root->root_list, &rc->reloc_roots);
503 	return 0;
504 }
505 
506 /*
507  * helper to delete the 'address of tree root -> reloc tree'
508  * mapping
509  */
__del_reloc_root(struct btrfs_root * root)510 static void __del_reloc_root(struct btrfs_root *root)
511 {
512 	struct btrfs_fs_info *fs_info = root->fs_info;
513 	struct rb_node *rb_node;
514 	struct mapping_node *node = NULL;
515 	struct reloc_control *rc = fs_info->reloc_ctl;
516 	bool put_ref = false;
517 
518 	if (rc && root->node) {
519 		spin_lock(&rc->reloc_root_tree.lock);
520 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
521 					   root->commit_root->start);
522 		if (rb_node) {
523 			node = rb_entry(rb_node, struct mapping_node, rb_node);
524 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
525 			RB_CLEAR_NODE(&node->rb_node);
526 		}
527 		spin_unlock(&rc->reloc_root_tree.lock);
528 		ASSERT(!node || (struct btrfs_root *)node->data == root);
529 	}
530 
531 	/*
532 	 * We only put the reloc root here if it's on the list.  There's a lot
533 	 * of places where the pattern is to splice the rc->reloc_roots, process
534 	 * the reloc roots, and then add the reloc root back onto
535 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
536 	 * list we don't want the reference being dropped, because the guy
537 	 * messing with the list is in charge of the reference.
538 	 */
539 	spin_lock(&fs_info->trans_lock);
540 	if (!list_empty(&root->root_list)) {
541 		put_ref = true;
542 		list_del_init(&root->root_list);
543 	}
544 	spin_unlock(&fs_info->trans_lock);
545 	if (put_ref)
546 		btrfs_put_root(root);
547 	kfree(node);
548 }
549 
550 /*
551  * helper to update the 'address of tree root -> reloc tree'
552  * mapping
553  */
__update_reloc_root(struct btrfs_root * root)554 static int __update_reloc_root(struct btrfs_root *root)
555 {
556 	struct btrfs_fs_info *fs_info = root->fs_info;
557 	struct rb_node *rb_node;
558 	struct mapping_node *node = NULL;
559 	struct reloc_control *rc = fs_info->reloc_ctl;
560 
561 	spin_lock(&rc->reloc_root_tree.lock);
562 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
563 				   root->commit_root->start);
564 	if (rb_node) {
565 		node = rb_entry(rb_node, struct mapping_node, rb_node);
566 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
567 	}
568 	spin_unlock(&rc->reloc_root_tree.lock);
569 
570 	if (!node)
571 		return 0;
572 	BUG_ON((struct btrfs_root *)node->data != root);
573 
574 	spin_lock(&rc->reloc_root_tree.lock);
575 	node->bytenr = root->node->start;
576 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node);
577 	spin_unlock(&rc->reloc_root_tree.lock);
578 	if (rb_node)
579 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
580 	return 0;
581 }
582 
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)583 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
584 					struct btrfs_root *root, u64 objectid)
585 {
586 	struct btrfs_fs_info *fs_info = root->fs_info;
587 	struct btrfs_root *reloc_root;
588 	struct extent_buffer *eb;
589 	struct btrfs_root_item *root_item;
590 	struct btrfs_key root_key;
591 	int ret = 0;
592 	bool must_abort = false;
593 
594 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
595 	if (!root_item)
596 		return ERR_PTR(-ENOMEM);
597 
598 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
599 	root_key.type = BTRFS_ROOT_ITEM_KEY;
600 	root_key.offset = objectid;
601 
602 	if (btrfs_root_id(root) == objectid) {
603 		u64 commit_root_gen;
604 
605 		/*
606 		 * Relocation will wait for cleaner thread, and any half-dropped
607 		 * subvolume will be fully cleaned up at mount time.
608 		 * So here we shouldn't hit a subvolume with non-zero drop_progress.
609 		 *
610 		 * If this isn't the case, error out since it can make us attempt to
611 		 * drop references for extents that were already dropped before.
612 		 */
613 		if (unlikely(btrfs_disk_key_objectid(&root->root_item.drop_progress))) {
614 			struct btrfs_key cpu_key;
615 
616 			btrfs_disk_key_to_cpu(&cpu_key, &root->root_item.drop_progress);
617 			btrfs_err(fs_info,
618 	"cannot relocate partially dropped subvolume %llu, drop progress key (%llu %u %llu)",
619 				  objectid, cpu_key.objectid, cpu_key.type, cpu_key.offset);
620 			ret = -EUCLEAN;
621 			goto fail;
622 		}
623 
624 		/* called by btrfs_init_reloc_root */
625 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
626 				      BTRFS_TREE_RELOC_OBJECTID);
627 		if (ret)
628 			goto fail;
629 
630 		/*
631 		 * Set the last_snapshot field to the generation of the commit
632 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
633 		 * correctly (returns true) when the relocation root is created
634 		 * either inside the critical section of a transaction commit
635 		 * (through transaction.c:qgroup_account_snapshot()) and when
636 		 * it's created before the transaction commit is started.
637 		 */
638 		commit_root_gen = btrfs_header_generation(root->commit_root);
639 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
640 	} else {
641 		/*
642 		 * called by btrfs_reloc_post_snapshot_hook.
643 		 * the source tree is a reloc tree, all tree blocks
644 		 * modified after it was created have RELOC flag
645 		 * set in their headers. so it's OK to not update
646 		 * the 'last_snapshot'.
647 		 */
648 		ret = btrfs_copy_root(trans, root, root->node, &eb,
649 				      BTRFS_TREE_RELOC_OBJECTID);
650 		if (ret)
651 			goto fail;
652 	}
653 
654 	/*
655 	 * We have changed references at this point, we must abort the
656 	 * transaction if anything fails.
657 	 */
658 	must_abort = true;
659 
660 	memcpy(root_item, &root->root_item, sizeof(*root_item));
661 	btrfs_set_root_bytenr(root_item, eb->start);
662 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
663 	btrfs_set_root_generation(root_item, trans->transid);
664 
665 	if (btrfs_root_id(root) == objectid) {
666 		btrfs_set_root_refs(root_item, 0);
667 		memset(&root_item->drop_progress, 0,
668 		       sizeof(struct btrfs_disk_key));
669 		btrfs_set_root_drop_level(root_item, 0);
670 	}
671 
672 	btrfs_tree_unlock(eb);
673 	free_extent_buffer(eb);
674 
675 	ret = btrfs_insert_root(trans, fs_info->tree_root,
676 				&root_key, root_item);
677 	if (ret)
678 		goto fail;
679 
680 	kfree(root_item);
681 
682 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
683 	if (IS_ERR(reloc_root)) {
684 		ret = PTR_ERR(reloc_root);
685 		goto abort;
686 	}
687 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
688 	btrfs_set_root_last_trans(reloc_root, trans->transid);
689 	return reloc_root;
690 fail:
691 	kfree(root_item);
692 abort:
693 	if (must_abort)
694 		btrfs_abort_transaction(trans, ret);
695 	return ERR_PTR(ret);
696 }
697 
698 /*
699  * create reloc tree for a given fs tree. reloc tree is just a
700  * snapshot of the fs tree with special root objectid.
701  *
702  * The reloc_root comes out of here with two references, one for
703  * root->reloc_root, and another for being on the rc->reloc_roots list.
704  */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)705 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
706 			  struct btrfs_root *root)
707 {
708 	struct btrfs_fs_info *fs_info = root->fs_info;
709 	struct btrfs_root *reloc_root;
710 	struct reloc_control *rc = fs_info->reloc_ctl;
711 	struct btrfs_block_rsv *rsv;
712 	int clear_rsv = 0;
713 	int ret;
714 
715 	if (!rc)
716 		return 0;
717 
718 	/*
719 	 * The subvolume has reloc tree but the swap is finished, no need to
720 	 * create/update the dead reloc tree
721 	 */
722 	if (reloc_root_is_dead(root))
723 		return 0;
724 
725 	/*
726 	 * This is subtle but important.  We do not do
727 	 * record_root_in_transaction for reloc roots, instead we record their
728 	 * corresponding fs root, and then here we update the last trans for the
729 	 * reloc root.  This means that we have to do this for the entire life
730 	 * of the reloc root, regardless of which stage of the relocation we are
731 	 * in.
732 	 */
733 	if (root->reloc_root) {
734 		reloc_root = root->reloc_root;
735 		btrfs_set_root_last_trans(reloc_root, trans->transid);
736 		return 0;
737 	}
738 
739 	/*
740 	 * We are merging reloc roots, we do not need new reloc trees.  Also
741 	 * reloc trees never need their own reloc tree.
742 	 */
743 	if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
744 		return 0;
745 
746 	if (!trans->reloc_reserved) {
747 		rsv = trans->block_rsv;
748 		trans->block_rsv = rc->block_rsv;
749 		clear_rsv = 1;
750 	}
751 	reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
752 	if (clear_rsv)
753 		trans->block_rsv = rsv;
754 	if (IS_ERR(reloc_root))
755 		return PTR_ERR(reloc_root);
756 
757 	ret = __add_reloc_root(reloc_root);
758 	ASSERT(ret != -EEXIST);
759 	if (ret) {
760 		/* Pairs with create_reloc_root */
761 		btrfs_put_root(reloc_root);
762 		return ret;
763 	}
764 	root->reloc_root = btrfs_grab_root(reloc_root);
765 	return 0;
766 }
767 
768 /*
769  * update root item of reloc tree
770  */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)771 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
772 			    struct btrfs_root *root)
773 {
774 	struct btrfs_fs_info *fs_info = root->fs_info;
775 	struct btrfs_root *reloc_root;
776 	struct btrfs_root_item *root_item;
777 	int ret;
778 
779 	if (!have_reloc_root(root))
780 		return 0;
781 
782 	reloc_root = root->reloc_root;
783 	root_item = &reloc_root->root_item;
784 
785 	/*
786 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
787 	 * the root.  We have the ref for root->reloc_root, but just in case
788 	 * hold it while we update the reloc root.
789 	 */
790 	btrfs_grab_root(reloc_root);
791 
792 	/* root->reloc_root will stay until current relocation finished */
793 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
794 	    btrfs_root_refs(root_item) == 0) {
795 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
796 		/*
797 		 * Mark the tree as dead before we change reloc_root so
798 		 * have_reloc_root will not touch it from now on.
799 		 */
800 		smp_wmb();
801 		__del_reloc_root(reloc_root);
802 	}
803 
804 	if (reloc_root->commit_root != reloc_root->node) {
805 		__update_reloc_root(reloc_root);
806 		btrfs_set_root_node(root_item, reloc_root->node);
807 		free_extent_buffer(reloc_root->commit_root);
808 		reloc_root->commit_root = btrfs_root_node(reloc_root);
809 	}
810 
811 	ret = btrfs_update_root(trans, fs_info->tree_root,
812 				&reloc_root->root_key, root_item);
813 	btrfs_put_root(reloc_root);
814 	return ret;
815 }
816 
817 /*
818  * get new location of data
819  */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)820 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
821 			    u64 bytenr, u64 num_bytes)
822 {
823 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
824 	struct btrfs_path *path;
825 	struct btrfs_file_extent_item *fi;
826 	struct extent_buffer *leaf;
827 	int ret;
828 
829 	path = btrfs_alloc_path();
830 	if (!path)
831 		return -ENOMEM;
832 
833 	bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
834 	ret = btrfs_lookup_file_extent(NULL, root, path,
835 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
836 	if (ret < 0)
837 		goto out;
838 	if (ret > 0) {
839 		ret = -ENOENT;
840 		goto out;
841 	}
842 
843 	leaf = path->nodes[0];
844 	fi = btrfs_item_ptr(leaf, path->slots[0],
845 			    struct btrfs_file_extent_item);
846 
847 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
848 	       btrfs_file_extent_compression(leaf, fi) ||
849 	       btrfs_file_extent_encryption(leaf, fi) ||
850 	       btrfs_file_extent_other_encoding(leaf, fi));
851 
852 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
853 		ret = -EINVAL;
854 		goto out;
855 	}
856 
857 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
858 	ret = 0;
859 out:
860 	btrfs_free_path(path);
861 	return ret;
862 }
863 
864 /*
865  * update file extent items in the tree leaf to point to
866  * the new locations.
867  */
868 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)869 int replace_file_extents(struct btrfs_trans_handle *trans,
870 			 struct reloc_control *rc,
871 			 struct btrfs_root *root,
872 			 struct extent_buffer *leaf)
873 {
874 	struct btrfs_fs_info *fs_info = root->fs_info;
875 	struct btrfs_key key;
876 	struct btrfs_file_extent_item *fi;
877 	struct btrfs_inode *inode = NULL;
878 	u64 parent;
879 	u64 bytenr;
880 	u64 new_bytenr = 0;
881 	u64 num_bytes;
882 	u64 end;
883 	u32 nritems;
884 	u32 i;
885 	int ret = 0;
886 	int first = 1;
887 
888 	if (rc->stage != UPDATE_DATA_PTRS)
889 		return 0;
890 
891 	/* reloc trees always use full backref */
892 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
893 		parent = leaf->start;
894 	else
895 		parent = 0;
896 
897 	nritems = btrfs_header_nritems(leaf);
898 	for (i = 0; i < nritems; i++) {
899 		struct btrfs_ref ref = { 0 };
900 
901 		cond_resched();
902 		btrfs_item_key_to_cpu(leaf, &key, i);
903 		if (key.type != BTRFS_EXTENT_DATA_KEY)
904 			continue;
905 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
906 		if (btrfs_file_extent_type(leaf, fi) ==
907 		    BTRFS_FILE_EXTENT_INLINE)
908 			continue;
909 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
910 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
911 		if (bytenr == 0)
912 			continue;
913 		if (!in_range(bytenr, rc->block_group->start,
914 			      rc->block_group->length))
915 			continue;
916 
917 		/*
918 		 * if we are modifying block in fs tree, wait for read_folio
919 		 * to complete and drop the extent cache
920 		 */
921 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
922 			if (first) {
923 				inode = btrfs_find_first_inode(root, key.objectid);
924 				first = 0;
925 			} else if (inode && btrfs_ino(inode) < key.objectid) {
926 				btrfs_add_delayed_iput(inode);
927 				inode = btrfs_find_first_inode(root, key.objectid);
928 			}
929 			if (inode && btrfs_ino(inode) == key.objectid) {
930 				struct extent_state *cached_state = NULL;
931 
932 				end = key.offset +
933 				      btrfs_file_extent_num_bytes(leaf, fi);
934 				WARN_ON(!IS_ALIGNED(key.offset,
935 						    fs_info->sectorsize));
936 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
937 				end--;
938 				/* Take mmap lock to serialize with reflinks. */
939 				if (!down_read_trylock(&inode->i_mmap_lock))
940 					continue;
941 				ret = btrfs_try_lock_extent(&inode->io_tree, key.offset,
942 							    end, &cached_state);
943 				if (!ret) {
944 					up_read(&inode->i_mmap_lock);
945 					continue;
946 				}
947 
948 				btrfs_drop_extent_map_range(inode, key.offset, end, true);
949 				btrfs_unlock_extent(&inode->io_tree, key.offset, end,
950 						    &cached_state);
951 				up_read(&inode->i_mmap_lock);
952 			}
953 		}
954 
955 		ret = get_new_location(rc->data_inode, &new_bytenr,
956 				       bytenr, num_bytes);
957 		if (ret) {
958 			/*
959 			 * Don't have to abort since we've not changed anything
960 			 * in the file extent yet.
961 			 */
962 			break;
963 		}
964 
965 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
966 
967 		key.offset -= btrfs_file_extent_offset(leaf, fi);
968 		ref.action = BTRFS_ADD_DELAYED_REF;
969 		ref.bytenr = new_bytenr;
970 		ref.num_bytes = num_bytes;
971 		ref.parent = parent;
972 		ref.owning_root = btrfs_root_id(root);
973 		ref.ref_root = btrfs_header_owner(leaf);
974 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
975 				    btrfs_root_id(root), false);
976 		ret = btrfs_inc_extent_ref(trans, &ref);
977 		if (ret) {
978 			btrfs_abort_transaction(trans, ret);
979 			break;
980 		}
981 
982 		ref.action = BTRFS_DROP_DELAYED_REF;
983 		ref.bytenr = bytenr;
984 		ref.num_bytes = num_bytes;
985 		ref.parent = parent;
986 		ref.owning_root = btrfs_root_id(root);
987 		ref.ref_root = btrfs_header_owner(leaf);
988 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
989 				    btrfs_root_id(root), false);
990 		ret = btrfs_free_extent(trans, &ref);
991 		if (ret) {
992 			btrfs_abort_transaction(trans, ret);
993 			break;
994 		}
995 	}
996 	if (inode)
997 		btrfs_add_delayed_iput(inode);
998 	return ret;
999 }
1000 
memcmp_node_keys(const struct extent_buffer * eb,int slot,const struct btrfs_path * path,int level)1001 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
1002 					       int slot, const struct btrfs_path *path,
1003 					       int level)
1004 {
1005 	struct btrfs_disk_key key1;
1006 	struct btrfs_disk_key key2;
1007 	btrfs_node_key(eb, &key1, slot);
1008 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1009 	return memcmp(&key1, &key2, sizeof(key1));
1010 }
1011 
1012 /*
1013  * try to replace tree blocks in fs tree with the new blocks
1014  * in reloc tree. tree blocks haven't been modified since the
1015  * reloc tree was create can be replaced.
1016  *
1017  * if a block was replaced, level of the block + 1 is returned.
1018  * if no block got replaced, 0 is returned. if there are other
1019  * errors, a negative error number is returned.
1020  */
1021 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1022 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1023 		 struct btrfs_root *dest, struct btrfs_root *src,
1024 		 struct btrfs_path *path, struct btrfs_key *next_key,
1025 		 int lowest_level, int max_level)
1026 {
1027 	struct btrfs_fs_info *fs_info = dest->fs_info;
1028 	struct extent_buffer *eb;
1029 	struct extent_buffer *parent;
1030 	struct btrfs_ref ref = { 0 };
1031 	struct btrfs_key key;
1032 	u64 old_bytenr;
1033 	u64 new_bytenr;
1034 	u64 old_ptr_gen;
1035 	u64 new_ptr_gen;
1036 	u64 last_snapshot;
1037 	u32 blocksize;
1038 	int cow = 0;
1039 	int level;
1040 	int ret;
1041 	int slot;
1042 
1043 	ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1044 	ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1045 
1046 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1047 again:
1048 	slot = path->slots[lowest_level];
1049 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1050 
1051 	eb = btrfs_lock_root_node(dest);
1052 	level = btrfs_header_level(eb);
1053 
1054 	if (level < lowest_level) {
1055 		btrfs_tree_unlock(eb);
1056 		free_extent_buffer(eb);
1057 		return 0;
1058 	}
1059 
1060 	if (cow) {
1061 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1062 				      BTRFS_NESTING_COW);
1063 		if (ret) {
1064 			btrfs_tree_unlock(eb);
1065 			free_extent_buffer(eb);
1066 			return ret;
1067 		}
1068 	}
1069 
1070 	if (next_key) {
1071 		next_key->objectid = (u64)-1;
1072 		next_key->type = (u8)-1;
1073 		next_key->offset = (u64)-1;
1074 	}
1075 
1076 	parent = eb;
1077 	while (1) {
1078 		level = btrfs_header_level(parent);
1079 		ASSERT(level >= lowest_level);
1080 
1081 		ret = btrfs_bin_search(parent, 0, &key, &slot);
1082 		if (ret < 0)
1083 			break;
1084 		if (ret && slot > 0)
1085 			slot--;
1086 
1087 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1088 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1089 
1090 		old_bytenr = btrfs_node_blockptr(parent, slot);
1091 		blocksize = fs_info->nodesize;
1092 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1093 
1094 		if (level <= max_level) {
1095 			eb = path->nodes[level];
1096 			new_bytenr = btrfs_node_blockptr(eb,
1097 							path->slots[level]);
1098 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1099 							path->slots[level]);
1100 		} else {
1101 			new_bytenr = 0;
1102 			new_ptr_gen = 0;
1103 		}
1104 
1105 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1106 			ret = level;
1107 			break;
1108 		}
1109 
1110 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1111 		    memcmp_node_keys(parent, slot, path, level)) {
1112 			if (level <= lowest_level) {
1113 				ret = 0;
1114 				break;
1115 			}
1116 
1117 			eb = btrfs_read_node_slot(parent, slot);
1118 			if (IS_ERR(eb)) {
1119 				ret = PTR_ERR(eb);
1120 				break;
1121 			}
1122 			btrfs_tree_lock(eb);
1123 			if (cow) {
1124 				ret = btrfs_cow_block(trans, dest, eb, parent,
1125 						      slot, &eb,
1126 						      BTRFS_NESTING_COW);
1127 				if (ret) {
1128 					btrfs_tree_unlock(eb);
1129 					free_extent_buffer(eb);
1130 					break;
1131 				}
1132 			}
1133 
1134 			btrfs_tree_unlock(parent);
1135 			free_extent_buffer(parent);
1136 
1137 			parent = eb;
1138 			continue;
1139 		}
1140 
1141 		if (!cow) {
1142 			btrfs_tree_unlock(parent);
1143 			free_extent_buffer(parent);
1144 			cow = 1;
1145 			goto again;
1146 		}
1147 
1148 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1149 				      path->slots[level]);
1150 		btrfs_release_path(path);
1151 
1152 		path->lowest_level = level;
1153 		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1154 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1155 		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1156 		path->lowest_level = 0;
1157 		if (ret) {
1158 			if (ret > 0)
1159 				ret = -ENOENT;
1160 			break;
1161 		}
1162 
1163 		/*
1164 		 * Info qgroup to trace both subtrees.
1165 		 *
1166 		 * We must trace both trees.
1167 		 * 1) Tree reloc subtree
1168 		 *    If not traced, we will leak data numbers
1169 		 * 2) Fs subtree
1170 		 *    If not traced, we will double count old data
1171 		 *
1172 		 * We don't scan the subtree right now, but only record
1173 		 * the swapped tree blocks.
1174 		 * The real subtree rescan is delayed until we have new
1175 		 * CoW on the subtree root node before transaction commit.
1176 		 */
1177 		ret = btrfs_qgroup_add_swapped_blocks(dest,
1178 				rc->block_group, parent, slot,
1179 				path->nodes[level], path->slots[level],
1180 				last_snapshot);
1181 		if (ret < 0)
1182 			break;
1183 		/*
1184 		 * swap blocks in fs tree and reloc tree.
1185 		 */
1186 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1187 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1188 
1189 		btrfs_set_node_blockptr(path->nodes[level],
1190 					path->slots[level], old_bytenr);
1191 		btrfs_set_node_ptr_generation(path->nodes[level],
1192 					      path->slots[level], old_ptr_gen);
1193 
1194 		ref.action = BTRFS_ADD_DELAYED_REF;
1195 		ref.bytenr = old_bytenr;
1196 		ref.num_bytes = blocksize;
1197 		ref.parent = path->nodes[level]->start;
1198 		ref.owning_root = btrfs_root_id(src);
1199 		ref.ref_root = btrfs_root_id(src);
1200 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1201 		ret = btrfs_inc_extent_ref(trans, &ref);
1202 		if (ret) {
1203 			btrfs_abort_transaction(trans, ret);
1204 			break;
1205 		}
1206 
1207 		ref.action = BTRFS_ADD_DELAYED_REF;
1208 		ref.bytenr = new_bytenr;
1209 		ref.num_bytes = blocksize;
1210 		ref.parent = 0;
1211 		ref.owning_root = btrfs_root_id(dest);
1212 		ref.ref_root = btrfs_root_id(dest);
1213 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1214 		ret = btrfs_inc_extent_ref(trans, &ref);
1215 		if (ret) {
1216 			btrfs_abort_transaction(trans, ret);
1217 			break;
1218 		}
1219 
1220 		/* We don't know the real owning_root, use 0. */
1221 		ref.action = BTRFS_DROP_DELAYED_REF;
1222 		ref.bytenr = new_bytenr;
1223 		ref.num_bytes = blocksize;
1224 		ref.parent = path->nodes[level]->start;
1225 		ref.owning_root = 0;
1226 		ref.ref_root = btrfs_root_id(src);
1227 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1228 		ret = btrfs_free_extent(trans, &ref);
1229 		if (ret) {
1230 			btrfs_abort_transaction(trans, ret);
1231 			break;
1232 		}
1233 
1234 		/* We don't know the real owning_root, use 0. */
1235 		ref.action = BTRFS_DROP_DELAYED_REF;
1236 		ref.bytenr = old_bytenr;
1237 		ref.num_bytes = blocksize;
1238 		ref.parent = 0;
1239 		ref.owning_root = 0;
1240 		ref.ref_root = btrfs_root_id(dest);
1241 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1242 		ret = btrfs_free_extent(trans, &ref);
1243 		if (ret) {
1244 			btrfs_abort_transaction(trans, ret);
1245 			break;
1246 		}
1247 
1248 		btrfs_unlock_up_safe(path, 0);
1249 
1250 		ret = level;
1251 		break;
1252 	}
1253 	btrfs_tree_unlock(parent);
1254 	free_extent_buffer(parent);
1255 	return ret;
1256 }
1257 
1258 /*
1259  * helper to find next relocated block in reloc tree
1260  */
1261 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1262 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1263 		       int *level)
1264 {
1265 	struct extent_buffer *eb;
1266 	int i;
1267 	u64 last_snapshot;
1268 	u32 nritems;
1269 
1270 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1271 
1272 	for (i = 0; i < *level; i++) {
1273 		free_extent_buffer(path->nodes[i]);
1274 		path->nodes[i] = NULL;
1275 	}
1276 
1277 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1278 		eb = path->nodes[i];
1279 		nritems = btrfs_header_nritems(eb);
1280 		while (path->slots[i] + 1 < nritems) {
1281 			path->slots[i]++;
1282 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1283 			    last_snapshot)
1284 				continue;
1285 
1286 			*level = i;
1287 			return 0;
1288 		}
1289 		free_extent_buffer(path->nodes[i]);
1290 		path->nodes[i] = NULL;
1291 	}
1292 	return 1;
1293 }
1294 
1295 /*
1296  * walk down reloc tree to find relocated block of lowest level
1297  */
1298 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1299 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1300 			 int *level)
1301 {
1302 	struct extent_buffer *eb = NULL;
1303 	int i;
1304 	u64 ptr_gen = 0;
1305 	u64 last_snapshot;
1306 	u32 nritems;
1307 
1308 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1309 
1310 	for (i = *level; i > 0; i--) {
1311 		eb = path->nodes[i];
1312 		nritems = btrfs_header_nritems(eb);
1313 		while (path->slots[i] < nritems) {
1314 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1315 			if (ptr_gen > last_snapshot)
1316 				break;
1317 			path->slots[i]++;
1318 		}
1319 		if (path->slots[i] >= nritems) {
1320 			if (i == *level)
1321 				break;
1322 			*level = i + 1;
1323 			return 0;
1324 		}
1325 		if (i == 1) {
1326 			*level = i;
1327 			return 0;
1328 		}
1329 
1330 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1331 		if (IS_ERR(eb))
1332 			return PTR_ERR(eb);
1333 		BUG_ON(btrfs_header_level(eb) != i - 1);
1334 		path->nodes[i - 1] = eb;
1335 		path->slots[i - 1] = 0;
1336 	}
1337 	return 1;
1338 }
1339 
1340 /*
1341  * invalidate extent cache for file extents whose key in range of
1342  * [min_key, max_key)
1343  */
invalidate_extent_cache(struct btrfs_root * root,const struct btrfs_key * min_key,const struct btrfs_key * max_key)1344 static int invalidate_extent_cache(struct btrfs_root *root,
1345 				   const struct btrfs_key *min_key,
1346 				   const struct btrfs_key *max_key)
1347 {
1348 	struct btrfs_fs_info *fs_info = root->fs_info;
1349 	struct btrfs_inode *inode = NULL;
1350 	u64 objectid;
1351 	u64 start, end;
1352 	u64 ino;
1353 
1354 	objectid = min_key->objectid;
1355 	while (1) {
1356 		struct extent_state *cached_state = NULL;
1357 
1358 		cond_resched();
1359 		if (inode)
1360 			iput(&inode->vfs_inode);
1361 
1362 		if (objectid > max_key->objectid)
1363 			break;
1364 
1365 		inode = btrfs_find_first_inode(root, objectid);
1366 		if (!inode)
1367 			break;
1368 		ino = btrfs_ino(inode);
1369 
1370 		if (ino > max_key->objectid) {
1371 			iput(&inode->vfs_inode);
1372 			break;
1373 		}
1374 
1375 		objectid = ino + 1;
1376 		if (!S_ISREG(inode->vfs_inode.i_mode))
1377 			continue;
1378 
1379 		if (unlikely(min_key->objectid == ino)) {
1380 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1381 				continue;
1382 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1383 				start = 0;
1384 			else {
1385 				start = min_key->offset;
1386 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1387 			}
1388 		} else {
1389 			start = 0;
1390 		}
1391 
1392 		if (unlikely(max_key->objectid == ino)) {
1393 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1394 				continue;
1395 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1396 				end = (u64)-1;
1397 			} else {
1398 				if (max_key->offset == 0)
1399 					continue;
1400 				end = max_key->offset;
1401 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1402 				end--;
1403 			}
1404 		} else {
1405 			end = (u64)-1;
1406 		}
1407 
1408 		/* the lock_extent waits for read_folio to complete */
1409 		btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
1410 		btrfs_drop_extent_map_range(inode, start, end, true);
1411 		btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1412 	}
1413 	return 0;
1414 }
1415 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1416 static int find_next_key(struct btrfs_path *path, int level,
1417 			 struct btrfs_key *key)
1418 
1419 {
1420 	while (level < BTRFS_MAX_LEVEL) {
1421 		if (!path->nodes[level])
1422 			break;
1423 		if (path->slots[level] + 1 <
1424 		    btrfs_header_nritems(path->nodes[level])) {
1425 			btrfs_node_key_to_cpu(path->nodes[level], key,
1426 					      path->slots[level] + 1);
1427 			return 0;
1428 		}
1429 		level++;
1430 	}
1431 	return 1;
1432 }
1433 
1434 /*
1435  * Insert current subvolume into reloc_control::dirty_subvol_roots
1436  */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)1437 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1438 			       struct reloc_control *rc,
1439 			       struct btrfs_root *root)
1440 {
1441 	struct btrfs_root *reloc_root = root->reloc_root;
1442 	struct btrfs_root_item *reloc_root_item;
1443 	int ret;
1444 
1445 	/* @root must be a subvolume tree root with a valid reloc tree */
1446 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1447 	ASSERT(reloc_root);
1448 
1449 	reloc_root_item = &reloc_root->root_item;
1450 	memset(&reloc_root_item->drop_progress, 0,
1451 		sizeof(reloc_root_item->drop_progress));
1452 	btrfs_set_root_drop_level(reloc_root_item, 0);
1453 	btrfs_set_root_refs(reloc_root_item, 0);
1454 	ret = btrfs_update_reloc_root(trans, root);
1455 	if (ret)
1456 		return ret;
1457 
1458 	if (list_empty(&root->reloc_dirty_list)) {
1459 		btrfs_grab_root(root);
1460 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1461 	}
1462 
1463 	return 0;
1464 }
1465 
clean_dirty_subvols(struct reloc_control * rc)1466 static int clean_dirty_subvols(struct reloc_control *rc)
1467 {
1468 	struct btrfs_root *root;
1469 	struct btrfs_root *next;
1470 	int ret = 0;
1471 	int ret2;
1472 
1473 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1474 				 reloc_dirty_list) {
1475 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1476 			/* Merged subvolume, cleanup its reloc root */
1477 			struct btrfs_root *reloc_root = root->reloc_root;
1478 
1479 			list_del_init(&root->reloc_dirty_list);
1480 			root->reloc_root = NULL;
1481 			/*
1482 			 * Need barrier to ensure clear_bit() only happens after
1483 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1484 			 */
1485 			smp_wmb();
1486 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1487 			if (reloc_root) {
1488 				/*
1489 				 * btrfs_drop_snapshot drops our ref we hold for
1490 				 * ->reloc_root.  If it fails however we must
1491 				 * drop the ref ourselves.
1492 				 */
1493 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1494 				if (ret2 < 0) {
1495 					btrfs_put_root(reloc_root);
1496 					if (!ret)
1497 						ret = ret2;
1498 				}
1499 			}
1500 			btrfs_put_root(root);
1501 		} else {
1502 			/* Orphan reloc tree, just clean it up */
1503 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1504 			if (ret2 < 0) {
1505 				btrfs_put_root(root);
1506 				if (!ret)
1507 					ret = ret2;
1508 			}
1509 		}
1510 	}
1511 	return ret;
1512 }
1513 
1514 /*
1515  * merge the relocated tree blocks in reloc tree with corresponding
1516  * fs tree.
1517  */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)1518 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1519 					       struct btrfs_root *root)
1520 {
1521 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1522 	struct btrfs_key key;
1523 	struct btrfs_key next_key;
1524 	struct btrfs_trans_handle *trans = NULL;
1525 	struct btrfs_root *reloc_root;
1526 	struct btrfs_root_item *root_item;
1527 	struct btrfs_path *path;
1528 	struct extent_buffer *leaf;
1529 	int reserve_level;
1530 	int level;
1531 	int max_level;
1532 	int replaced = 0;
1533 	int ret = 0;
1534 	u32 min_reserved;
1535 
1536 	path = btrfs_alloc_path();
1537 	if (!path)
1538 		return -ENOMEM;
1539 	path->reada = READA_FORWARD;
1540 
1541 	reloc_root = root->reloc_root;
1542 	root_item = &reloc_root->root_item;
1543 
1544 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1545 		level = btrfs_root_level(root_item);
1546 		refcount_inc(&reloc_root->node->refs);
1547 		path->nodes[level] = reloc_root->node;
1548 		path->slots[level] = 0;
1549 	} else {
1550 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1551 
1552 		level = btrfs_root_drop_level(root_item);
1553 		BUG_ON(level == 0);
1554 		path->lowest_level = level;
1555 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1556 		path->lowest_level = 0;
1557 		if (ret < 0) {
1558 			btrfs_free_path(path);
1559 			return ret;
1560 		}
1561 
1562 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1563 				      path->slots[level]);
1564 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1565 
1566 		btrfs_unlock_up_safe(path, 0);
1567 	}
1568 
1569 	/*
1570 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1571 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1572 	 * block COW, we COW at most from level 1 to root level for each tree.
1573 	 *
1574 	 * Thus the needed metadata size is at most root_level * nodesize,
1575 	 * and * 2 since we have two trees to COW.
1576 	 */
1577 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1578 	min_reserved = fs_info->nodesize * reserve_level * 2;
1579 	memset(&next_key, 0, sizeof(next_key));
1580 
1581 	while (1) {
1582 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1583 					     min_reserved,
1584 					     BTRFS_RESERVE_FLUSH_LIMIT);
1585 		if (ret)
1586 			goto out;
1587 		trans = btrfs_start_transaction(root, 0);
1588 		if (IS_ERR(trans)) {
1589 			ret = PTR_ERR(trans);
1590 			trans = NULL;
1591 			goto out;
1592 		}
1593 
1594 		/*
1595 		 * At this point we no longer have a reloc_control, so we can't
1596 		 * depend on btrfs_init_reloc_root to update our last_trans.
1597 		 *
1598 		 * But that's ok, we started the trans handle on our
1599 		 * corresponding fs_root, which means it's been added to the
1600 		 * dirty list.  At commit time we'll still call
1601 		 * btrfs_update_reloc_root() and update our root item
1602 		 * appropriately.
1603 		 */
1604 		btrfs_set_root_last_trans(reloc_root, trans->transid);
1605 		trans->block_rsv = rc->block_rsv;
1606 
1607 		replaced = 0;
1608 		max_level = level;
1609 
1610 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1611 		if (ret < 0)
1612 			goto out;
1613 		if (ret > 0)
1614 			break;
1615 
1616 		if (!find_next_key(path, level, &key) &&
1617 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1618 			ret = 0;
1619 		} else {
1620 			ret = replace_path(trans, rc, root, reloc_root, path,
1621 					   &next_key, level, max_level);
1622 		}
1623 		if (ret < 0)
1624 			goto out;
1625 		if (ret > 0) {
1626 			level = ret;
1627 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1628 					      path->slots[level]);
1629 			replaced = 1;
1630 		}
1631 
1632 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1633 		if (ret > 0)
1634 			break;
1635 
1636 		BUG_ON(level == 0);
1637 		/*
1638 		 * save the merging progress in the drop_progress.
1639 		 * this is OK since root refs == 1 in this case.
1640 		 */
1641 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1642 			       path->slots[level]);
1643 		btrfs_set_root_drop_level(root_item, level);
1644 
1645 		btrfs_end_transaction_throttle(trans);
1646 		trans = NULL;
1647 
1648 		btrfs_btree_balance_dirty(fs_info);
1649 
1650 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1651 			invalidate_extent_cache(root, &key, &next_key);
1652 	}
1653 
1654 	/*
1655 	 * handle the case only one block in the fs tree need to be
1656 	 * relocated and the block is tree root.
1657 	 */
1658 	leaf = btrfs_lock_root_node(root);
1659 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1660 			      BTRFS_NESTING_COW);
1661 	btrfs_tree_unlock(leaf);
1662 	free_extent_buffer(leaf);
1663 out:
1664 	btrfs_free_path(path);
1665 
1666 	if (ret == 0) {
1667 		ret = insert_dirty_subvol(trans, rc, root);
1668 		if (ret)
1669 			btrfs_abort_transaction(trans, ret);
1670 	}
1671 
1672 	if (trans)
1673 		btrfs_end_transaction_throttle(trans);
1674 
1675 	btrfs_btree_balance_dirty(fs_info);
1676 
1677 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1678 		invalidate_extent_cache(root, &key, &next_key);
1679 
1680 	return ret;
1681 }
1682 
1683 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)1684 int prepare_to_merge(struct reloc_control *rc, int err)
1685 {
1686 	struct btrfs_root *root = rc->extent_root;
1687 	struct btrfs_fs_info *fs_info = root->fs_info;
1688 	struct btrfs_root *reloc_root;
1689 	struct btrfs_trans_handle *trans;
1690 	LIST_HEAD(reloc_roots);
1691 	u64 num_bytes = 0;
1692 	int ret;
1693 
1694 	mutex_lock(&fs_info->reloc_mutex);
1695 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1696 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1697 	mutex_unlock(&fs_info->reloc_mutex);
1698 
1699 again:
1700 	if (!err) {
1701 		num_bytes = rc->merging_rsv_size;
1702 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1703 					  BTRFS_RESERVE_FLUSH_ALL);
1704 		if (ret)
1705 			err = ret;
1706 	}
1707 
1708 	trans = btrfs_join_transaction(rc->extent_root);
1709 	if (IS_ERR(trans)) {
1710 		if (!err)
1711 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1712 						num_bytes, NULL);
1713 		return PTR_ERR(trans);
1714 	}
1715 
1716 	if (!err) {
1717 		if (num_bytes != rc->merging_rsv_size) {
1718 			btrfs_end_transaction(trans);
1719 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1720 						num_bytes, NULL);
1721 			goto again;
1722 		}
1723 	}
1724 
1725 	rc->merge_reloc_tree = true;
1726 
1727 	while (!list_empty(&rc->reloc_roots)) {
1728 		reloc_root = list_first_entry(&rc->reloc_roots,
1729 					      struct btrfs_root, root_list);
1730 		list_del_init(&reloc_root->root_list);
1731 
1732 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1733 				false);
1734 		if (IS_ERR(root)) {
1735 			/*
1736 			 * Even if we have an error we need this reloc root
1737 			 * back on our list so we can clean up properly.
1738 			 */
1739 			list_add(&reloc_root->root_list, &reloc_roots);
1740 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1741 			if (!err)
1742 				err = PTR_ERR(root);
1743 			break;
1744 		}
1745 
1746 		if (unlikely(root->reloc_root != reloc_root)) {
1747 			if (root->reloc_root) {
1748 				btrfs_err(fs_info,
1749 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1750 					  btrfs_root_id(root),
1751 					  btrfs_root_id(root->reloc_root),
1752 					  root->reloc_root->root_key.type,
1753 					  root->reloc_root->root_key.offset,
1754 					  btrfs_root_generation(
1755 						  &root->reloc_root->root_item),
1756 					  btrfs_root_id(reloc_root),
1757 					  reloc_root->root_key.type,
1758 					  reloc_root->root_key.offset,
1759 					  btrfs_root_generation(
1760 						  &reloc_root->root_item));
1761 			} else {
1762 				btrfs_err(fs_info,
1763 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1764 					  btrfs_root_id(root),
1765 					  btrfs_root_id(reloc_root),
1766 					  reloc_root->root_key.type,
1767 					  reloc_root->root_key.offset,
1768 					  btrfs_root_generation(
1769 						  &reloc_root->root_item));
1770 			}
1771 			list_add(&reloc_root->root_list, &reloc_roots);
1772 			btrfs_put_root(root);
1773 			btrfs_abort_transaction(trans, -EUCLEAN);
1774 			if (!err)
1775 				err = -EUCLEAN;
1776 			break;
1777 		}
1778 
1779 		/*
1780 		 * set reference count to 1, so btrfs_recover_relocation
1781 		 * knows it should resumes merging
1782 		 */
1783 		if (!err)
1784 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1785 		ret = btrfs_update_reloc_root(trans, root);
1786 
1787 		/*
1788 		 * Even if we have an error we need this reloc root back on our
1789 		 * list so we can clean up properly.
1790 		 */
1791 		list_add(&reloc_root->root_list, &reloc_roots);
1792 		btrfs_put_root(root);
1793 
1794 		if (ret) {
1795 			btrfs_abort_transaction(trans, ret);
1796 			if (!err)
1797 				err = ret;
1798 			break;
1799 		}
1800 	}
1801 
1802 	list_splice(&reloc_roots, &rc->reloc_roots);
1803 
1804 	if (!err)
1805 		err = btrfs_commit_transaction(trans);
1806 	else
1807 		btrfs_end_transaction(trans);
1808 	return err;
1809 }
1810 
1811 static noinline_for_stack
free_reloc_roots(struct list_head * list)1812 void free_reloc_roots(struct list_head *list)
1813 {
1814 	struct btrfs_root *reloc_root, *tmp;
1815 
1816 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1817 		__del_reloc_root(reloc_root);
1818 }
1819 
1820 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)1821 void merge_reloc_roots(struct reloc_control *rc)
1822 {
1823 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1824 	struct btrfs_root *root;
1825 	struct btrfs_root *reloc_root;
1826 	LIST_HEAD(reloc_roots);
1827 	int found = 0;
1828 	int ret = 0;
1829 again:
1830 	root = rc->extent_root;
1831 
1832 	/*
1833 	 * this serializes us with btrfs_record_root_in_transaction,
1834 	 * we have to make sure nobody is in the middle of
1835 	 * adding their roots to the list while we are
1836 	 * doing this splice
1837 	 */
1838 	mutex_lock(&fs_info->reloc_mutex);
1839 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1840 	mutex_unlock(&fs_info->reloc_mutex);
1841 
1842 	while (!list_empty(&reloc_roots)) {
1843 		found = 1;
1844 		reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list);
1845 
1846 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1847 					 false);
1848 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1849 			if (WARN_ON(IS_ERR(root))) {
1850 				/*
1851 				 * For recovery we read the fs roots on mount,
1852 				 * and if we didn't find the root then we marked
1853 				 * the reloc root as a garbage root.  For normal
1854 				 * relocation obviously the root should exist in
1855 				 * memory.  However there's no reason we can't
1856 				 * handle the error properly here just in case.
1857 				 */
1858 				ret = PTR_ERR(root);
1859 				goto out;
1860 			}
1861 			if (WARN_ON(root->reloc_root != reloc_root)) {
1862 				/*
1863 				 * This can happen if on-disk metadata has some
1864 				 * corruption, e.g. bad reloc tree key offset.
1865 				 */
1866 				ret = -EINVAL;
1867 				goto out;
1868 			}
1869 			ret = merge_reloc_root(rc, root);
1870 			btrfs_put_root(root);
1871 			if (ret) {
1872 				if (list_empty(&reloc_root->root_list))
1873 					list_add_tail(&reloc_root->root_list,
1874 						      &reloc_roots);
1875 				goto out;
1876 			}
1877 		} else {
1878 			if (!IS_ERR(root)) {
1879 				if (root->reloc_root == reloc_root) {
1880 					root->reloc_root = NULL;
1881 					btrfs_put_root(reloc_root);
1882 				}
1883 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1884 					  &root->state);
1885 				btrfs_put_root(root);
1886 			}
1887 
1888 			list_del_init(&reloc_root->root_list);
1889 			/* Don't forget to queue this reloc root for cleanup */
1890 			list_add_tail(&reloc_root->reloc_dirty_list,
1891 				      &rc->dirty_subvol_roots);
1892 		}
1893 	}
1894 
1895 	if (found) {
1896 		found = 0;
1897 		goto again;
1898 	}
1899 out:
1900 	if (ret) {
1901 		btrfs_handle_fs_error(fs_info, ret, NULL);
1902 		free_reloc_roots(&reloc_roots);
1903 
1904 		/* new reloc root may be added */
1905 		mutex_lock(&fs_info->reloc_mutex);
1906 		list_splice_init(&rc->reloc_roots, &reloc_roots);
1907 		mutex_unlock(&fs_info->reloc_mutex);
1908 		free_reloc_roots(&reloc_roots);
1909 	}
1910 
1911 	/*
1912 	 * We used to have
1913 	 *
1914 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1915 	 *
1916 	 * here, but it's wrong.  If we fail to start the transaction in
1917 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1918 	 * have actually been removed from the reloc_root_tree rb tree.  This is
1919 	 * fine because we're bailing here, and we hold a reference on the root
1920 	 * for the list that holds it, so these roots will be cleaned up when we
1921 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1922 	 * will be cleaned up on unmount.
1923 	 *
1924 	 * The remaining nodes will be cleaned up by free_reloc_control.
1925 	 */
1926 }
1927 
free_block_list(struct rb_root * blocks)1928 static void free_block_list(struct rb_root *blocks)
1929 {
1930 	struct tree_block *block;
1931 	struct rb_node *rb_node;
1932 	while ((rb_node = rb_first(blocks))) {
1933 		block = rb_entry(rb_node, struct tree_block, rb_node);
1934 		rb_erase(rb_node, blocks);
1935 		kfree(block);
1936 	}
1937 }
1938 
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)1939 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1940 				      struct btrfs_root *reloc_root)
1941 {
1942 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1943 	struct btrfs_root *root;
1944 	int ret;
1945 
1946 	if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
1947 		return 0;
1948 
1949 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1950 
1951 	/*
1952 	 * This should succeed, since we can't have a reloc root without having
1953 	 * already looked up the actual root and created the reloc root for this
1954 	 * root.
1955 	 *
1956 	 * However if there's some sort of corruption where we have a ref to a
1957 	 * reloc root without a corresponding root this could return ENOENT.
1958 	 */
1959 	if (IS_ERR(root)) {
1960 		DEBUG_WARN("error %ld reading root for reloc root", PTR_ERR(root));
1961 		return PTR_ERR(root);
1962 	}
1963 	if (root->reloc_root != reloc_root) {
1964 		DEBUG_WARN("unexpected reloc root found");
1965 		btrfs_err(fs_info,
1966 			  "root %llu has two reloc roots associated with it",
1967 			  reloc_root->root_key.offset);
1968 		btrfs_put_root(root);
1969 		return -EUCLEAN;
1970 	}
1971 	ret = btrfs_record_root_in_trans(trans, root);
1972 	btrfs_put_root(root);
1973 
1974 	return ret;
1975 }
1976 
1977 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[])1978 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1979 				     struct reloc_control *rc,
1980 				     struct btrfs_backref_node *node,
1981 				     struct btrfs_backref_edge *edges[])
1982 {
1983 	struct btrfs_backref_node *next;
1984 	struct btrfs_root *root;
1985 	int index = 0;
1986 	int ret;
1987 
1988 	next = walk_up_backref(node, edges, &index);
1989 	root = next->root;
1990 
1991 	/*
1992 	 * If there is no root, then our references for this block are
1993 	 * incomplete, as we should be able to walk all the way up to a block
1994 	 * that is owned by a root.
1995 	 *
1996 	 * This path is only for SHAREABLE roots, so if we come upon a
1997 	 * non-SHAREABLE root then we have backrefs that resolve improperly.
1998 	 *
1999 	 * Both of these cases indicate file system corruption, or a bug in the
2000 	 * backref walking code.
2001 	 */
2002 	if (unlikely(!root)) {
2003 		btrfs_err(trans->fs_info,
2004 			  "bytenr %llu doesn't have a backref path ending in a root",
2005 			  node->bytenr);
2006 		return ERR_PTR(-EUCLEAN);
2007 	}
2008 	if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
2009 		btrfs_err(trans->fs_info,
2010 			  "bytenr %llu has multiple refs with one ending in a non-shareable root",
2011 			  node->bytenr);
2012 		return ERR_PTR(-EUCLEAN);
2013 	}
2014 
2015 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
2016 		ret = record_reloc_root_in_trans(trans, root);
2017 		if (ret)
2018 			return ERR_PTR(ret);
2019 		goto found;
2020 	}
2021 
2022 	ret = btrfs_record_root_in_trans(trans, root);
2023 	if (ret)
2024 		return ERR_PTR(ret);
2025 	root = root->reloc_root;
2026 
2027 	/*
2028 	 * We could have raced with another thread which failed, so
2029 	 * root->reloc_root may not be set, return ENOENT in this case.
2030 	 */
2031 	if (!root)
2032 		return ERR_PTR(-ENOENT);
2033 
2034 	if (next->new_bytenr) {
2035 		/*
2036 		 * We just created the reloc root, so we shouldn't have
2037 		 * ->new_bytenr set yet. If it is then we have multiple roots
2038 		 *  pointing at the same bytenr which indicates corruption, or
2039 		 *  we've made a mistake in the backref walking code.
2040 		 */
2041 		ASSERT(next->new_bytenr == 0);
2042 		btrfs_err(trans->fs_info,
2043 			  "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2044 			  node->bytenr, next->bytenr);
2045 		return ERR_PTR(-EUCLEAN);
2046 	}
2047 
2048 	next->new_bytenr = root->node->start;
2049 	btrfs_put_root(next->root);
2050 	next->root = btrfs_grab_root(root);
2051 	ASSERT(next->root);
2052 	mark_block_processed(rc, next);
2053 found:
2054 	next = node;
2055 	/* setup backref node path for btrfs_reloc_cow_block */
2056 	while (1) {
2057 		rc->backref_cache.path[next->level] = next;
2058 		if (--index < 0)
2059 			break;
2060 		next = edges[index]->node[UPPER];
2061 	}
2062 	return root;
2063 }
2064 
2065 /*
2066  * Select a tree root for relocation.
2067  *
2068  * Return NULL if the block is not shareable. We should use do_relocation() in
2069  * this case.
2070  *
2071  * Return a tree root pointer if the block is shareable.
2072  * Return -ENOENT if the block is root of reloc tree.
2073  */
2074 static noinline_for_stack
select_one_root(struct btrfs_backref_node * node)2075 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2076 {
2077 	struct btrfs_backref_node *next;
2078 	struct btrfs_root *root;
2079 	struct btrfs_root *fs_root = NULL;
2080 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2081 	int index = 0;
2082 
2083 	next = node;
2084 	while (1) {
2085 		cond_resched();
2086 		next = walk_up_backref(next, edges, &index);
2087 		root = next->root;
2088 
2089 		/*
2090 		 * This can occur if we have incomplete extent refs leading all
2091 		 * the way up a particular path, in this case return -EUCLEAN.
2092 		 */
2093 		if (!root)
2094 			return ERR_PTR(-EUCLEAN);
2095 
2096 		/* No other choice for non-shareable tree */
2097 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2098 			return root;
2099 
2100 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2101 			fs_root = root;
2102 
2103 		if (next != node)
2104 			return NULL;
2105 
2106 		next = walk_down_backref(edges, &index);
2107 		if (!next || next->level <= node->level)
2108 			break;
2109 	}
2110 
2111 	if (!fs_root)
2112 		return ERR_PTR(-ENOENT);
2113 	return fs_root;
2114 }
2115 
calcu_metadata_size(struct reloc_control * rc,struct btrfs_backref_node * node)2116 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2117 						  struct btrfs_backref_node *node)
2118 {
2119 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2120 	struct btrfs_backref_node *next = node;
2121 	struct btrfs_backref_edge *edge;
2122 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2123 	u64 num_bytes = 0;
2124 	int index = 0;
2125 
2126 	BUG_ON(node->processed);
2127 
2128 	while (next) {
2129 		cond_resched();
2130 		while (1) {
2131 			if (next->processed)
2132 				break;
2133 
2134 			num_bytes += fs_info->nodesize;
2135 
2136 			if (list_empty(&next->upper))
2137 				break;
2138 
2139 			edge = list_first_entry(&next->upper, struct btrfs_backref_edge,
2140 						list[LOWER]);
2141 			edges[index++] = edge;
2142 			next = edge->node[UPPER];
2143 		}
2144 		next = walk_down_backref(edges, &index);
2145 	}
2146 	return num_bytes;
2147 }
2148 
refill_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,u64 num_bytes)2149 static int refill_metadata_space(struct btrfs_trans_handle *trans,
2150 				 struct reloc_control *rc, u64 num_bytes)
2151 {
2152 	struct btrfs_fs_info *fs_info = trans->fs_info;
2153 	int ret;
2154 
2155 	trans->block_rsv = rc->block_rsv;
2156 	rc->reserved_bytes += num_bytes;
2157 
2158 	/*
2159 	 * We are under a transaction here so we can only do limited flushing.
2160 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2161 	 * transaction and try to refill when we can flush all the things.
2162 	 */
2163 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2164 				     BTRFS_RESERVE_FLUSH_LIMIT);
2165 	if (ret) {
2166 		u64 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2167 
2168 		while (tmp <= rc->reserved_bytes)
2169 			tmp <<= 1;
2170 		/*
2171 		 * only one thread can access block_rsv at this point,
2172 		 * so we don't need hold lock to protect block_rsv.
2173 		 * we expand more reservation size here to allow enough
2174 		 * space for relocation and we will return earlier in
2175 		 * enospc case.
2176 		 */
2177 		rc->block_rsv->size = tmp + fs_info->nodesize *
2178 				      RELOCATION_RESERVED_NODES;
2179 		return -EAGAIN;
2180 	}
2181 
2182 	return 0;
2183 }
2184 
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node)2185 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2186 				  struct reloc_control *rc,
2187 				  struct btrfs_backref_node *node)
2188 {
2189 	u64 num_bytes;
2190 
2191 	num_bytes = calcu_metadata_size(rc, node) * 2;
2192 	return refill_metadata_space(trans, rc, num_bytes);
2193 }
2194 
2195 /*
2196  * relocate a block tree, and then update pointers in upper level
2197  * blocks that reference the block to point to the new location.
2198  *
2199  * if called by link_to_upper, the block has already been relocated.
2200  * in that case this function just updates pointers.
2201  */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2202 static int do_relocation(struct btrfs_trans_handle *trans,
2203 			 struct reloc_control *rc,
2204 			 struct btrfs_backref_node *node,
2205 			 struct btrfs_key *key,
2206 			 struct btrfs_path *path, int lowest)
2207 {
2208 	struct btrfs_backref_node *upper;
2209 	struct btrfs_backref_edge *edge;
2210 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2211 	struct btrfs_root *root;
2212 	struct extent_buffer *eb;
2213 	u32 blocksize;
2214 	u64 bytenr;
2215 	int slot;
2216 	int ret = 0;
2217 
2218 	/*
2219 	 * If we are lowest then this is the first time we're processing this
2220 	 * block, and thus shouldn't have an eb associated with it yet.
2221 	 */
2222 	ASSERT(!lowest || !node->eb);
2223 
2224 	path->lowest_level = node->level + 1;
2225 	rc->backref_cache.path[node->level] = node;
2226 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2227 		cond_resched();
2228 
2229 		upper = edge->node[UPPER];
2230 		root = select_reloc_root(trans, rc, upper, edges);
2231 		if (IS_ERR(root)) {
2232 			ret = PTR_ERR(root);
2233 			goto next;
2234 		}
2235 
2236 		if (upper->eb && !upper->locked) {
2237 			if (!lowest) {
2238 				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2239 				if (ret < 0)
2240 					goto next;
2241 				BUG_ON(ret);
2242 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2243 				if (node->eb->start == bytenr)
2244 					goto next;
2245 			}
2246 			btrfs_backref_drop_node_buffer(upper);
2247 		}
2248 
2249 		if (!upper->eb) {
2250 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2251 			if (ret) {
2252 				if (ret > 0)
2253 					ret = -ENOENT;
2254 
2255 				btrfs_release_path(path);
2256 				break;
2257 			}
2258 
2259 			if (!upper->eb) {
2260 				upper->eb = path->nodes[upper->level];
2261 				path->nodes[upper->level] = NULL;
2262 			} else {
2263 				BUG_ON(upper->eb != path->nodes[upper->level]);
2264 			}
2265 
2266 			upper->locked = 1;
2267 			path->locks[upper->level] = 0;
2268 
2269 			slot = path->slots[upper->level];
2270 			btrfs_release_path(path);
2271 		} else {
2272 			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2273 			if (ret < 0)
2274 				goto next;
2275 			BUG_ON(ret);
2276 		}
2277 
2278 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2279 		if (lowest) {
2280 			if (bytenr != node->bytenr) {
2281 				btrfs_err(root->fs_info,
2282 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2283 					  bytenr, node->bytenr, slot,
2284 					  upper->eb->start);
2285 				ret = -EIO;
2286 				goto next;
2287 			}
2288 		} else {
2289 			if (node->eb->start == bytenr)
2290 				goto next;
2291 		}
2292 
2293 		blocksize = root->fs_info->nodesize;
2294 		eb = btrfs_read_node_slot(upper->eb, slot);
2295 		if (IS_ERR(eb)) {
2296 			ret = PTR_ERR(eb);
2297 			goto next;
2298 		}
2299 		btrfs_tree_lock(eb);
2300 
2301 		if (!node->eb) {
2302 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2303 					      slot, &eb, BTRFS_NESTING_COW);
2304 			btrfs_tree_unlock(eb);
2305 			free_extent_buffer(eb);
2306 			if (ret < 0)
2307 				goto next;
2308 			/*
2309 			 * We've just COWed this block, it should have updated
2310 			 * the correct backref node entry.
2311 			 */
2312 			ASSERT(node->eb == eb);
2313 		} else {
2314 			struct btrfs_ref ref = {
2315 				.action = BTRFS_ADD_DELAYED_REF,
2316 				.bytenr = node->eb->start,
2317 				.num_bytes = blocksize,
2318 				.parent = upper->eb->start,
2319 				.owning_root = btrfs_header_owner(upper->eb),
2320 				.ref_root = btrfs_header_owner(upper->eb),
2321 			};
2322 
2323 			btrfs_set_node_blockptr(upper->eb, slot,
2324 						node->eb->start);
2325 			btrfs_set_node_ptr_generation(upper->eb, slot,
2326 						      trans->transid);
2327 			btrfs_mark_buffer_dirty(trans, upper->eb);
2328 
2329 			btrfs_init_tree_ref(&ref, node->level,
2330 					    btrfs_root_id(root), false);
2331 			ret = btrfs_inc_extent_ref(trans, &ref);
2332 			if (!ret)
2333 				ret = btrfs_drop_subtree(trans, root, eb,
2334 							 upper->eb);
2335 			if (ret)
2336 				btrfs_abort_transaction(trans, ret);
2337 		}
2338 next:
2339 		if (!upper->pending)
2340 			btrfs_backref_drop_node_buffer(upper);
2341 		else
2342 			btrfs_backref_unlock_node_buffer(upper);
2343 		if (ret)
2344 			break;
2345 	}
2346 
2347 	if (!ret && node->pending) {
2348 		btrfs_backref_drop_node_buffer(node);
2349 		list_del_init(&node->list);
2350 		node->pending = 0;
2351 	}
2352 
2353 	path->lowest_level = 0;
2354 
2355 	/*
2356 	 * We should have allocated all of our space in the block rsv and thus
2357 	 * shouldn't ENOSPC.
2358 	 */
2359 	ASSERT(ret != -ENOSPC);
2360 	return ret;
2361 }
2362 
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_path * path)2363 static int link_to_upper(struct btrfs_trans_handle *trans,
2364 			 struct reloc_control *rc,
2365 			 struct btrfs_backref_node *node,
2366 			 struct btrfs_path *path)
2367 {
2368 	struct btrfs_key key;
2369 
2370 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2371 	return do_relocation(trans, rc, node, &key, path, 0);
2372 }
2373 
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2374 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2375 				struct reloc_control *rc,
2376 				struct btrfs_path *path, int err)
2377 {
2378 	LIST_HEAD(list);
2379 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2380 	struct btrfs_backref_node *node;
2381 	int level;
2382 	int ret;
2383 
2384 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2385 		while (!list_empty(&cache->pending[level])) {
2386 			node = list_first_entry(&cache->pending[level],
2387 						struct btrfs_backref_node, list);
2388 			list_move_tail(&node->list, &list);
2389 			BUG_ON(!node->pending);
2390 
2391 			if (!err) {
2392 				ret = link_to_upper(trans, rc, node, path);
2393 				if (ret < 0)
2394 					err = ret;
2395 			}
2396 		}
2397 		list_splice_init(&list, &cache->pending[level]);
2398 	}
2399 	return err;
2400 }
2401 
2402 /*
2403  * mark a block and all blocks directly/indirectly reference the block
2404  * as processed.
2405  */
update_processed_blocks(struct reloc_control * rc,struct btrfs_backref_node * node)2406 static void update_processed_blocks(struct reloc_control *rc,
2407 				    struct btrfs_backref_node *node)
2408 {
2409 	struct btrfs_backref_node *next = node;
2410 	struct btrfs_backref_edge *edge;
2411 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2412 	int index = 0;
2413 
2414 	while (next) {
2415 		cond_resched();
2416 		while (1) {
2417 			if (next->processed)
2418 				break;
2419 
2420 			mark_block_processed(rc, next);
2421 
2422 			if (list_empty(&next->upper))
2423 				break;
2424 
2425 			edge = list_first_entry(&next->upper, struct btrfs_backref_edge,
2426 						list[LOWER]);
2427 			edges[index++] = edge;
2428 			next = edge->node[UPPER];
2429 		}
2430 		next = walk_down_backref(edges, &index);
2431 	}
2432 }
2433 
tree_block_processed(u64 bytenr,struct reloc_control * rc)2434 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2435 {
2436 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2437 
2438 	if (btrfs_test_range_bit(&rc->processed_blocks, bytenr,
2439 				 bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2440 		return 1;
2441 	return 0;
2442 }
2443 
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2444 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2445 			      struct tree_block *block)
2446 {
2447 	struct btrfs_tree_parent_check check = {
2448 		.level = block->level,
2449 		.owner_root = block->owner,
2450 		.transid = block->key.offset
2451 	};
2452 	struct extent_buffer *eb;
2453 
2454 	eb = read_tree_block(fs_info, block->bytenr, &check);
2455 	if (IS_ERR(eb))
2456 		return PTR_ERR(eb);
2457 	if (!extent_buffer_uptodate(eb)) {
2458 		free_extent_buffer(eb);
2459 		return -EIO;
2460 	}
2461 	if (block->level == 0)
2462 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2463 	else
2464 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2465 	free_extent_buffer(eb);
2466 	block->key_ready = true;
2467 	return 0;
2468 }
2469 
2470 /*
2471  * helper function to relocate a tree block
2472  */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2473 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2474 				struct reloc_control *rc,
2475 				struct btrfs_backref_node *node,
2476 				struct btrfs_key *key,
2477 				struct btrfs_path *path)
2478 {
2479 	struct btrfs_root *root;
2480 	int ret = 0;
2481 
2482 	if (!node)
2483 		return 0;
2484 
2485 	/*
2486 	 * If we fail here we want to drop our backref_node because we are going
2487 	 * to start over and regenerate the tree for it.
2488 	 */
2489 	ret = reserve_metadata_space(trans, rc, node);
2490 	if (ret)
2491 		goto out;
2492 
2493 	BUG_ON(node->processed);
2494 	root = select_one_root(node);
2495 	if (IS_ERR(root)) {
2496 		ret = PTR_ERR(root);
2497 
2498 		/* See explanation in select_one_root for the -EUCLEAN case. */
2499 		ASSERT(ret == -ENOENT);
2500 		if (ret == -ENOENT) {
2501 			ret = 0;
2502 			update_processed_blocks(rc, node);
2503 		}
2504 		goto out;
2505 	}
2506 
2507 	if (root) {
2508 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2509 			/*
2510 			 * This block was the root block of a root, and this is
2511 			 * the first time we're processing the block and thus it
2512 			 * should not have had the ->new_bytenr modified.
2513 			 *
2514 			 * However in the case of corruption we could have
2515 			 * multiple refs pointing to the same block improperly,
2516 			 * and thus we would trip over these checks.  ASSERT()
2517 			 * for the developer case, because it could indicate a
2518 			 * bug in the backref code, however error out for a
2519 			 * normal user in the case of corruption.
2520 			 */
2521 			ASSERT(node->new_bytenr == 0);
2522 			if (node->new_bytenr) {
2523 				btrfs_err(root->fs_info,
2524 				  "bytenr %llu has improper references to it",
2525 					  node->bytenr);
2526 				ret = -EUCLEAN;
2527 				goto out;
2528 			}
2529 			ret = btrfs_record_root_in_trans(trans, root);
2530 			if (ret)
2531 				goto out;
2532 			/*
2533 			 * Another thread could have failed, need to check if we
2534 			 * have reloc_root actually set.
2535 			 */
2536 			if (!root->reloc_root) {
2537 				ret = -ENOENT;
2538 				goto out;
2539 			}
2540 			root = root->reloc_root;
2541 			node->new_bytenr = root->node->start;
2542 			btrfs_put_root(node->root);
2543 			node->root = btrfs_grab_root(root);
2544 			ASSERT(node->root);
2545 		} else {
2546 			btrfs_err(root->fs_info,
2547 				  "bytenr %llu resolved to a non-shareable root",
2548 				  node->bytenr);
2549 			ret = -EUCLEAN;
2550 			goto out;
2551 		}
2552 		if (!ret)
2553 			update_processed_blocks(rc, node);
2554 	} else {
2555 		ret = do_relocation(trans, rc, node, key, path, 1);
2556 	}
2557 out:
2558 	if (ret || node->level == 0)
2559 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2560 	return ret;
2561 }
2562 
relocate_cowonly_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct tree_block * block,struct btrfs_path * path)2563 static int relocate_cowonly_block(struct btrfs_trans_handle *trans,
2564 				  struct reloc_control *rc, struct tree_block *block,
2565 				  struct btrfs_path *path)
2566 {
2567 	struct btrfs_fs_info *fs_info = trans->fs_info;
2568 	struct btrfs_root *root;
2569 	u64 num_bytes;
2570 	int nr_levels;
2571 	int ret;
2572 
2573 	root = btrfs_get_fs_root(fs_info, block->owner, true);
2574 	if (IS_ERR(root))
2575 		return PTR_ERR(root);
2576 
2577 	nr_levels = max(btrfs_header_level(root->node) - block->level, 0) + 1;
2578 
2579 	num_bytes = fs_info->nodesize * nr_levels;
2580 	ret = refill_metadata_space(trans, rc, num_bytes);
2581 	if (ret) {
2582 		btrfs_put_root(root);
2583 		return ret;
2584 	}
2585 	path->lowest_level = block->level;
2586 	if (root == root->fs_info->chunk_root)
2587 		btrfs_reserve_chunk_metadata(trans, false);
2588 
2589 	ret = btrfs_search_slot(trans, root, &block->key, path, 0, 1);
2590 	path->lowest_level = 0;
2591 	btrfs_release_path(path);
2592 
2593 	if (root == root->fs_info->chunk_root)
2594 		btrfs_trans_release_chunk_metadata(trans);
2595 	if (ret > 0)
2596 		ret = 0;
2597 	btrfs_put_root(root);
2598 
2599 	return ret;
2600 }
2601 
2602 /*
2603  * relocate a list of blocks
2604  */
2605 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2606 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2607 			 struct reloc_control *rc, struct rb_root *blocks)
2608 {
2609 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2610 	struct btrfs_backref_node *node;
2611 	struct btrfs_path *path;
2612 	struct tree_block *block;
2613 	struct tree_block *next;
2614 	int ret = 0;
2615 
2616 	path = btrfs_alloc_path();
2617 	if (!path) {
2618 		ret = -ENOMEM;
2619 		goto out_free_blocks;
2620 	}
2621 
2622 	/* Kick in readahead for tree blocks with missing keys */
2623 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2624 		if (!block->key_ready)
2625 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2626 						   block->owner, 0,
2627 						   block->level);
2628 	}
2629 
2630 	/* Get first keys */
2631 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2632 		if (!block->key_ready) {
2633 			ret = get_tree_block_key(fs_info, block);
2634 			if (ret)
2635 				goto out_free_path;
2636 		}
2637 	}
2638 
2639 	/* Do tree relocation */
2640 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2641 		/*
2642 		 * For COWonly blocks, or the data reloc tree, we only need to
2643 		 * COW down to the block, there's no need to generate a backref
2644 		 * tree.
2645 		 */
2646 		if (block->owner &&
2647 		    (!btrfs_is_fstree(block->owner) ||
2648 		     block->owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
2649 			ret = relocate_cowonly_block(trans, rc, block, path);
2650 			if (ret)
2651 				break;
2652 			continue;
2653 		}
2654 
2655 		node = build_backref_tree(trans, rc, &block->key,
2656 					  block->level, block->bytenr);
2657 		if (IS_ERR(node)) {
2658 			ret = PTR_ERR(node);
2659 			goto out;
2660 		}
2661 
2662 		ret = relocate_tree_block(trans, rc, node, &block->key,
2663 					  path);
2664 		if (ret < 0)
2665 			break;
2666 	}
2667 out:
2668 	ret = finish_pending_nodes(trans, rc, path, ret);
2669 
2670 out_free_path:
2671 	btrfs_free_path(path);
2672 out_free_blocks:
2673 	free_block_list(blocks);
2674 	return ret;
2675 }
2676 
prealloc_file_extent_cluster(struct reloc_control * rc)2677 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
2678 {
2679 	const struct file_extent_cluster *cluster = &rc->cluster;
2680 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2681 	u64 alloc_hint = 0;
2682 	u64 start;
2683 	u64 end;
2684 	u64 offset = inode->reloc_block_group_start;
2685 	u64 num_bytes;
2686 	int nr;
2687 	int ret = 0;
2688 	u64 prealloc_start = cluster->start - offset;
2689 	u64 prealloc_end = cluster->end - offset;
2690 	u64 cur_offset = prealloc_start;
2691 
2692 	/*
2693 	 * For blocksize < folio size case (either bs < page size or large folios),
2694 	 * beyond i_size, all blocks are filled with zero.
2695 	 *
2696 	 * If the current cluster covers the above range, btrfs_do_readpage()
2697 	 * will skip the read, and relocate_one_folio() will later writeback
2698 	 * the padding zeros as new data, causing data corruption.
2699 	 *
2700 	 * Here we have to invalidate the cache covering our cluster.
2701 	 */
2702 	ret = filemap_invalidate_inode(&inode->vfs_inode, true, prealloc_start,
2703 				       prealloc_end);
2704 	if (ret < 0)
2705 		return ret;
2706 
2707 	BUG_ON(cluster->start != cluster->boundary[0]);
2708 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2709 					      prealloc_end + 1 - prealloc_start);
2710 	if (ret)
2711 		return ret;
2712 
2713 	btrfs_inode_lock(inode, 0);
2714 	for (nr = 0; nr < cluster->nr; nr++) {
2715 		struct extent_state *cached_state = NULL;
2716 
2717 		start = cluster->boundary[nr] - offset;
2718 		if (nr + 1 < cluster->nr)
2719 			end = cluster->boundary[nr + 1] - 1 - offset;
2720 		else
2721 			end = cluster->end - offset;
2722 
2723 		btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
2724 		num_bytes = end + 1 - start;
2725 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2726 						num_bytes, num_bytes,
2727 						end + 1, &alloc_hint);
2728 		cur_offset = end + 1;
2729 		btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2730 		if (ret)
2731 			break;
2732 	}
2733 	btrfs_inode_unlock(inode, 0);
2734 
2735 	if (cur_offset < prealloc_end)
2736 		btrfs_free_reserved_data_space_noquota(inode,
2737 						       prealloc_end + 1 - cur_offset);
2738 	return ret;
2739 }
2740 
setup_relocation_extent_mapping(struct reloc_control * rc)2741 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
2742 {
2743 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2744 	struct extent_map *em;
2745 	struct extent_state *cached_state = NULL;
2746 	u64 offset = inode->reloc_block_group_start;
2747 	u64 start = rc->cluster.start - offset;
2748 	u64 end = rc->cluster.end - offset;
2749 	int ret = 0;
2750 
2751 	em = btrfs_alloc_extent_map();
2752 	if (!em)
2753 		return -ENOMEM;
2754 
2755 	em->start = start;
2756 	em->len = end + 1 - start;
2757 	em->disk_bytenr = rc->cluster.start;
2758 	em->disk_num_bytes = em->len;
2759 	em->ram_bytes = em->len;
2760 	em->flags |= EXTENT_FLAG_PINNED;
2761 
2762 	btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
2763 	ret = btrfs_replace_extent_map_range(inode, em, false);
2764 	btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2765 	btrfs_free_extent_map(em);
2766 
2767 	return ret;
2768 }
2769 
2770 /*
2771  * Allow error injection to test balance/relocation cancellation
2772  */
btrfs_should_cancel_balance(const struct btrfs_fs_info * fs_info)2773 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2774 {
2775 	return atomic_read(&fs_info->balance_cancel_req) ||
2776 		atomic_read(&fs_info->reloc_cancel_req) ||
2777 		fatal_signal_pending(current);
2778 }
2779 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2780 
get_cluster_boundary_end(const struct file_extent_cluster * cluster,int cluster_nr)2781 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2782 				    int cluster_nr)
2783 {
2784 	/* Last extent, use cluster end directly */
2785 	if (cluster_nr >= cluster->nr - 1)
2786 		return cluster->end;
2787 
2788 	/* Use next boundary start*/
2789 	return cluster->boundary[cluster_nr + 1] - 1;
2790 }
2791 
relocate_one_folio(struct reloc_control * rc,struct file_ra_state * ra,int * cluster_nr,u64 * file_offset_ret)2792 static int relocate_one_folio(struct reloc_control *rc,
2793 			      struct file_ra_state *ra,
2794 			      int *cluster_nr, u64 *file_offset_ret)
2795 {
2796 	const struct file_extent_cluster *cluster = &rc->cluster;
2797 	struct inode *inode = rc->data_inode;
2798 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2799 	const u64 orig_file_offset = *file_offset_ret;
2800 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2801 	const pgoff_t last_index = (cluster->end - offset) >> PAGE_SHIFT;
2802 	const pgoff_t index = orig_file_offset >> PAGE_SHIFT;
2803 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2804 	struct folio *folio;
2805 	u64 folio_start;
2806 	u64 folio_end;
2807 	u64 cur;
2808 	int ret;
2809 	const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2810 
2811 	ASSERT(index <= last_index);
2812 again:
2813 	folio = filemap_lock_folio(inode->i_mapping, index);
2814 	if (IS_ERR(folio)) {
2815 
2816 		/*
2817 		 * On relocation we're doing readahead on the relocation inode,
2818 		 * but if the filesystem is backed by a RAID stripe tree we can
2819 		 * get ENOENT (e.g. due to preallocated extents not being
2820 		 * mapped in the RST) from the lookup.
2821 		 *
2822 		 * But readahead doesn't handle the error and submits invalid
2823 		 * reads to the device, causing a assertion failures.
2824 		 */
2825 		if (!use_rst)
2826 			page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2827 						  index, last_index + 1 - index);
2828 		folio = __filemap_get_folio(inode->i_mapping, index,
2829 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2830 					    mask);
2831 		if (IS_ERR(folio))
2832 			return PTR_ERR(folio);
2833 	}
2834 
2835 	if (folio_test_readahead(folio) && !use_rst)
2836 		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2837 					   folio, last_index + 1 - index);
2838 
2839 	if (!folio_test_uptodate(folio)) {
2840 		btrfs_read_folio(NULL, folio);
2841 		folio_lock(folio);
2842 		if (!folio_test_uptodate(folio)) {
2843 			ret = -EIO;
2844 			goto release_folio;
2845 		}
2846 		if (folio->mapping != inode->i_mapping) {
2847 			folio_unlock(folio);
2848 			folio_put(folio);
2849 			goto again;
2850 		}
2851 	}
2852 
2853 	/*
2854 	 * We could have lost folio private when we dropped the lock to read the
2855 	 * folio above, make sure we set_folio_extent_mapped() here so we have any
2856 	 * of the subpage blocksize stuff we need in place.
2857 	 */
2858 	ret = set_folio_extent_mapped(folio);
2859 	if (ret < 0)
2860 		goto release_folio;
2861 
2862 	folio_start = folio_pos(folio);
2863 	folio_end = folio_start + folio_size(folio) - 1;
2864 
2865 	/*
2866 	 * Start from the cluster, as for subpage case, the cluster can start
2867 	 * inside the folio.
2868 	 */
2869 	cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
2870 	while (cur <= folio_end) {
2871 		struct extent_state *cached_state = NULL;
2872 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2873 		u64 extent_end = get_cluster_boundary_end(cluster,
2874 						*cluster_nr) - offset;
2875 		u64 clamped_start = max(folio_start, extent_start);
2876 		u64 clamped_end = min(folio_end, extent_end);
2877 		u32 clamped_len = clamped_end + 1 - clamped_start;
2878 
2879 		/* Reserve metadata for this range */
2880 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2881 						      clamped_len, clamped_len,
2882 						      false);
2883 		if (ret)
2884 			goto release_folio;
2885 
2886 		/* Mark the range delalloc and dirty for later writeback */
2887 		btrfs_lock_extent(&BTRFS_I(inode)->io_tree, clamped_start,
2888 				  clamped_end, &cached_state);
2889 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
2890 						clamped_end, 0, &cached_state);
2891 		if (ret) {
2892 			btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree,
2893 					       clamped_start, clamped_end,
2894 					       EXTENT_LOCKED | EXTENT_BOUNDARY,
2895 					       &cached_state);
2896 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2897 							clamped_len, true);
2898 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2899 						       clamped_len);
2900 			goto release_folio;
2901 		}
2902 		btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
2903 
2904 		/*
2905 		 * Set the boundary if it's inside the folio.
2906 		 * Data relocation requires the destination extents to have the
2907 		 * same size as the source.
2908 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
2909 		 * with previous extent.
2910 		 */
2911 		if (in_range(cluster->boundary[*cluster_nr] - offset,
2912 			     folio_start, folio_size(folio))) {
2913 			u64 boundary_start = cluster->boundary[*cluster_nr] -
2914 						offset;
2915 			u64 boundary_end = boundary_start +
2916 					   fs_info->sectorsize - 1;
2917 
2918 			btrfs_set_extent_bit(&BTRFS_I(inode)->io_tree,
2919 					     boundary_start, boundary_end,
2920 					     EXTENT_BOUNDARY, NULL);
2921 		}
2922 		btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2923 				    &cached_state);
2924 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
2925 		cur += clamped_len;
2926 
2927 		/* Crossed extent end, go to next extent */
2928 		if (cur >= extent_end) {
2929 			(*cluster_nr)++;
2930 			/* Just finished the last extent of the cluster, exit. */
2931 			if (*cluster_nr >= cluster->nr)
2932 				break;
2933 		}
2934 	}
2935 	folio_unlock(folio);
2936 	folio_put(folio);
2937 
2938 	balance_dirty_pages_ratelimited(inode->i_mapping);
2939 	btrfs_throttle(fs_info);
2940 	if (btrfs_should_cancel_balance(fs_info))
2941 		ret = -ECANCELED;
2942 	*file_offset_ret = folio_end + 1;
2943 	return ret;
2944 
2945 release_folio:
2946 	folio_unlock(folio);
2947 	folio_put(folio);
2948 	return ret;
2949 }
2950 
relocate_file_extent_cluster(struct reloc_control * rc)2951 static int relocate_file_extent_cluster(struct reloc_control *rc)
2952 {
2953 	struct inode *inode = rc->data_inode;
2954 	const struct file_extent_cluster *cluster = &rc->cluster;
2955 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2956 	u64 cur_file_offset = cluster->start - offset;
2957 	struct file_ra_state *ra;
2958 	int cluster_nr = 0;
2959 	int ret = 0;
2960 
2961 	if (!cluster->nr)
2962 		return 0;
2963 
2964 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2965 	if (!ra)
2966 		return -ENOMEM;
2967 
2968 	ret = prealloc_file_extent_cluster(rc);
2969 	if (ret)
2970 		goto out;
2971 
2972 	file_ra_state_init(ra, inode->i_mapping);
2973 
2974 	ret = setup_relocation_extent_mapping(rc);
2975 	if (ret)
2976 		goto out;
2977 
2978 	while (cur_file_offset < cluster->end - offset) {
2979 		ret = relocate_one_folio(rc, ra, &cluster_nr, &cur_file_offset);
2980 		if (ret)
2981 			break;
2982 	}
2983 	if (ret == 0)
2984 		WARN_ON(cluster_nr != cluster->nr);
2985 out:
2986 	kfree(ra);
2987 	return ret;
2988 }
2989 
relocate_data_extent(struct reloc_control * rc,const struct btrfs_key * extent_key)2990 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
2991 					   const struct btrfs_key *extent_key)
2992 {
2993 	struct inode *inode = rc->data_inode;
2994 	struct file_extent_cluster *cluster = &rc->cluster;
2995 	int ret;
2996 	struct btrfs_root *root = BTRFS_I(inode)->root;
2997 
2998 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2999 		ret = relocate_file_extent_cluster(rc);
3000 		if (ret)
3001 			return ret;
3002 		cluster->nr = 0;
3003 	}
3004 
3005 	/*
3006 	 * Under simple quotas, we set root->relocation_src_root when we find
3007 	 * the extent. If adjacent extents have different owners, we can't merge
3008 	 * them while relocating. Handle this by storing the owning root that
3009 	 * started a cluster and if we see an extent from a different root break
3010 	 * cluster formation (just like the above case of non-adjacent extents).
3011 	 *
3012 	 * Without simple quotas, relocation_src_root is always 0, so we should
3013 	 * never see a mismatch, and it should have no effect on relocation
3014 	 * clusters.
3015 	 */
3016 	if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3017 		u64 tmp = root->relocation_src_root;
3018 
3019 		/*
3020 		 * root->relocation_src_root is the state that actually affects
3021 		 * the preallocation we do here, so set it to the root owning
3022 		 * the cluster we need to relocate.
3023 		 */
3024 		root->relocation_src_root = cluster->owning_root;
3025 		ret = relocate_file_extent_cluster(rc);
3026 		if (ret)
3027 			return ret;
3028 		cluster->nr = 0;
3029 		/* And reset it back for the current extent's owning root. */
3030 		root->relocation_src_root = tmp;
3031 	}
3032 
3033 	if (!cluster->nr) {
3034 		cluster->start = extent_key->objectid;
3035 		cluster->owning_root = root->relocation_src_root;
3036 	}
3037 	else
3038 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3039 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3040 	cluster->boundary[cluster->nr] = extent_key->objectid;
3041 	cluster->nr++;
3042 
3043 	if (cluster->nr >= MAX_EXTENTS) {
3044 		ret = relocate_file_extent_cluster(rc);
3045 		if (ret)
3046 			return ret;
3047 		cluster->nr = 0;
3048 	}
3049 	return 0;
3050 }
3051 
3052 /*
3053  * helper to add a tree block to the list.
3054  * the major work is getting the generation and level of the block
3055  */
add_tree_block(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3056 static int add_tree_block(struct reloc_control *rc,
3057 			  const struct btrfs_key *extent_key,
3058 			  struct btrfs_path *path,
3059 			  struct rb_root *blocks)
3060 {
3061 	struct extent_buffer *eb;
3062 	struct btrfs_extent_item *ei;
3063 	struct btrfs_tree_block_info *bi;
3064 	struct tree_block *block;
3065 	struct rb_node *rb_node;
3066 	u32 item_size;
3067 	int level = -1;
3068 	u64 generation;
3069 	u64 owner = 0;
3070 
3071 	eb =  path->nodes[0];
3072 	item_size = btrfs_item_size(eb, path->slots[0]);
3073 
3074 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3075 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3076 		unsigned long ptr = 0, end;
3077 
3078 		ei = btrfs_item_ptr(eb, path->slots[0],
3079 				struct btrfs_extent_item);
3080 		end = (unsigned long)ei + item_size;
3081 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3082 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3083 			level = btrfs_tree_block_level(eb, bi);
3084 			ptr = (unsigned long)(bi + 1);
3085 		} else {
3086 			level = (int)extent_key->offset;
3087 			ptr = (unsigned long)(ei + 1);
3088 		}
3089 		generation = btrfs_extent_generation(eb, ei);
3090 
3091 		/*
3092 		 * We're reading random blocks without knowing their owner ahead
3093 		 * of time.  This is ok most of the time, as all reloc roots and
3094 		 * fs roots have the same lock type.  However normal trees do
3095 		 * not, and the only way to know ahead of time is to read the
3096 		 * inline ref offset.  We know it's an fs root if
3097 		 *
3098 		 * 1. There's more than one ref.
3099 		 * 2. There's a SHARED_DATA_REF_KEY set.
3100 		 * 3. FULL_BACKREF is set on the flags.
3101 		 *
3102 		 * Otherwise it's safe to assume that the ref offset == the
3103 		 * owner of this block, so we can use that when calling
3104 		 * read_tree_block.
3105 		 */
3106 		if (btrfs_extent_refs(eb, ei) == 1 &&
3107 		    !(btrfs_extent_flags(eb, ei) &
3108 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3109 		    ptr < end) {
3110 			struct btrfs_extent_inline_ref *iref;
3111 			int type;
3112 
3113 			iref = (struct btrfs_extent_inline_ref *)ptr;
3114 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3115 							BTRFS_REF_TYPE_BLOCK);
3116 			if (type == BTRFS_REF_TYPE_INVALID)
3117 				return -EINVAL;
3118 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3119 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3120 		}
3121 	} else {
3122 		btrfs_print_leaf(eb);
3123 		btrfs_err(rc->block_group->fs_info,
3124 			  "unrecognized tree backref at tree block %llu slot %u",
3125 			  eb->start, path->slots[0]);
3126 		btrfs_release_path(path);
3127 		return -EUCLEAN;
3128 	}
3129 
3130 	btrfs_release_path(path);
3131 
3132 	BUG_ON(level == -1);
3133 
3134 	block = kmalloc(sizeof(*block), GFP_NOFS);
3135 	if (!block)
3136 		return -ENOMEM;
3137 
3138 	block->bytenr = extent_key->objectid;
3139 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3140 	block->key.offset = generation;
3141 	block->level = level;
3142 	block->key_ready = false;
3143 	block->owner = owner;
3144 
3145 	rb_node = rb_simple_insert(blocks, &block->simple_node);
3146 	if (rb_node)
3147 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3148 				    -EEXIST);
3149 
3150 	return 0;
3151 }
3152 
3153 /*
3154  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3155  */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3156 static int __add_tree_block(struct reloc_control *rc,
3157 			    u64 bytenr, u32 blocksize,
3158 			    struct rb_root *blocks)
3159 {
3160 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3161 	struct btrfs_path *path;
3162 	struct btrfs_key key;
3163 	int ret;
3164 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3165 
3166 	if (tree_block_processed(bytenr, rc))
3167 		return 0;
3168 
3169 	if (rb_simple_search(blocks, bytenr))
3170 		return 0;
3171 
3172 	path = btrfs_alloc_path();
3173 	if (!path)
3174 		return -ENOMEM;
3175 again:
3176 	key.objectid = bytenr;
3177 	if (skinny) {
3178 		key.type = BTRFS_METADATA_ITEM_KEY;
3179 		key.offset = (u64)-1;
3180 	} else {
3181 		key.type = BTRFS_EXTENT_ITEM_KEY;
3182 		key.offset = blocksize;
3183 	}
3184 
3185 	path->search_commit_root = 1;
3186 	path->skip_locking = 1;
3187 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3188 	if (ret < 0)
3189 		goto out;
3190 
3191 	if (ret > 0 && skinny) {
3192 		if (path->slots[0]) {
3193 			path->slots[0]--;
3194 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3195 					      path->slots[0]);
3196 			if (key.objectid == bytenr &&
3197 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3198 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3199 			      key.offset == blocksize)))
3200 				ret = 0;
3201 		}
3202 
3203 		if (ret) {
3204 			skinny = false;
3205 			btrfs_release_path(path);
3206 			goto again;
3207 		}
3208 	}
3209 	if (ret) {
3210 		ASSERT(ret == 1);
3211 		btrfs_print_leaf(path->nodes[0]);
3212 		btrfs_err(fs_info,
3213 	     "tree block extent item (%llu) is not found in extent tree",
3214 		     bytenr);
3215 		WARN_ON(1);
3216 		ret = -EINVAL;
3217 		goto out;
3218 	}
3219 
3220 	ret = add_tree_block(rc, &key, path, blocks);
3221 out:
3222 	btrfs_free_path(path);
3223 	return ret;
3224 }
3225 
delete_block_group_cache(struct btrfs_block_group * block_group,struct inode * inode,u64 ino)3226 static int delete_block_group_cache(struct btrfs_block_group *block_group,
3227 				    struct inode *inode,
3228 				    u64 ino)
3229 {
3230 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3231 	struct btrfs_root *root = fs_info->tree_root;
3232 	struct btrfs_trans_handle *trans;
3233 	struct btrfs_inode *btrfs_inode;
3234 	int ret = 0;
3235 
3236 	if (inode)
3237 		goto truncate;
3238 
3239 	btrfs_inode = btrfs_iget(ino, root);
3240 	if (IS_ERR(btrfs_inode))
3241 		return -ENOENT;
3242 	inode = &btrfs_inode->vfs_inode;
3243 
3244 truncate:
3245 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3246 						 &fs_info->global_block_rsv);
3247 	if (ret)
3248 		goto out;
3249 
3250 	trans = btrfs_join_transaction(root);
3251 	if (IS_ERR(trans)) {
3252 		ret = PTR_ERR(trans);
3253 		goto out;
3254 	}
3255 
3256 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3257 
3258 	btrfs_end_transaction(trans);
3259 	btrfs_btree_balance_dirty(fs_info);
3260 out:
3261 	iput(inode);
3262 	return ret;
3263 }
3264 
3265 /*
3266  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3267  * cache inode, to avoid free space cache data extent blocking data relocation.
3268  */
delete_v1_space_cache(struct extent_buffer * leaf,struct btrfs_block_group * block_group,u64 data_bytenr)3269 static int delete_v1_space_cache(struct extent_buffer *leaf,
3270 				 struct btrfs_block_group *block_group,
3271 				 u64 data_bytenr)
3272 {
3273 	u64 space_cache_ino;
3274 	struct btrfs_file_extent_item *ei;
3275 	struct btrfs_key key;
3276 	bool found = false;
3277 	int i;
3278 	int ret;
3279 
3280 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3281 		return 0;
3282 
3283 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3284 		u8 type;
3285 
3286 		btrfs_item_key_to_cpu(leaf, &key, i);
3287 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3288 			continue;
3289 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3290 		type = btrfs_file_extent_type(leaf, ei);
3291 
3292 		if ((type == BTRFS_FILE_EXTENT_REG ||
3293 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3294 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3295 			found = true;
3296 			space_cache_ino = key.objectid;
3297 			break;
3298 		}
3299 	}
3300 	if (!found)
3301 		return -ENOENT;
3302 	ret = delete_block_group_cache(block_group, NULL, space_cache_ino);
3303 	return ret;
3304 }
3305 
3306 /*
3307  * helper to find all tree blocks that reference a given data extent
3308  */
add_data_references(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3309 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3310 						  const struct btrfs_key *extent_key,
3311 						  struct btrfs_path *path,
3312 						  struct rb_root *blocks)
3313 {
3314 	struct btrfs_backref_walk_ctx ctx = { 0 };
3315 	struct ulist_iterator leaf_uiter;
3316 	struct ulist_node *ref_node = NULL;
3317 	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3318 	int ret = 0;
3319 
3320 	btrfs_release_path(path);
3321 
3322 	ctx.bytenr = extent_key->objectid;
3323 	ctx.skip_inode_ref_list = true;
3324 	ctx.fs_info = rc->extent_root->fs_info;
3325 
3326 	ret = btrfs_find_all_leafs(&ctx);
3327 	if (ret < 0)
3328 		return ret;
3329 
3330 	ULIST_ITER_INIT(&leaf_uiter);
3331 	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3332 		struct btrfs_tree_parent_check check = { 0 };
3333 		struct extent_buffer *eb;
3334 
3335 		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3336 		if (IS_ERR(eb)) {
3337 			ret = PTR_ERR(eb);
3338 			break;
3339 		}
3340 		ret = delete_v1_space_cache(eb, rc->block_group,
3341 					    extent_key->objectid);
3342 		free_extent_buffer(eb);
3343 		if (ret < 0)
3344 			break;
3345 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3346 		if (ret < 0)
3347 			break;
3348 	}
3349 	if (ret < 0)
3350 		free_block_list(blocks);
3351 	ulist_free(ctx.refs);
3352 	return ret;
3353 }
3354 
3355 /*
3356  * helper to find next unprocessed extent
3357  */
3358 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3359 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3360 		     struct btrfs_key *extent_key)
3361 {
3362 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3363 	struct btrfs_key key;
3364 	struct extent_buffer *leaf;
3365 	u64 start, end, last;
3366 	int ret;
3367 
3368 	last = rc->block_group->start + rc->block_group->length;
3369 	while (1) {
3370 		bool block_found;
3371 
3372 		cond_resched();
3373 		if (rc->search_start >= last) {
3374 			ret = 1;
3375 			break;
3376 		}
3377 
3378 		key.objectid = rc->search_start;
3379 		key.type = BTRFS_EXTENT_ITEM_KEY;
3380 		key.offset = 0;
3381 
3382 		path->search_commit_root = 1;
3383 		path->skip_locking = 1;
3384 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3385 					0, 0);
3386 		if (ret < 0)
3387 			break;
3388 next:
3389 		leaf = path->nodes[0];
3390 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3391 			ret = btrfs_next_leaf(rc->extent_root, path);
3392 			if (ret != 0)
3393 				break;
3394 			leaf = path->nodes[0];
3395 		}
3396 
3397 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3398 		if (key.objectid >= last) {
3399 			ret = 1;
3400 			break;
3401 		}
3402 
3403 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3404 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3405 			path->slots[0]++;
3406 			goto next;
3407 		}
3408 
3409 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3410 		    key.objectid + key.offset <= rc->search_start) {
3411 			path->slots[0]++;
3412 			goto next;
3413 		}
3414 
3415 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3416 		    key.objectid + fs_info->nodesize <=
3417 		    rc->search_start) {
3418 			path->slots[0]++;
3419 			goto next;
3420 		}
3421 
3422 		block_found = btrfs_find_first_extent_bit(&rc->processed_blocks,
3423 							  key.objectid, &start, &end,
3424 							  EXTENT_DIRTY, NULL);
3425 
3426 		if (block_found && start <= key.objectid) {
3427 			btrfs_release_path(path);
3428 			rc->search_start = end + 1;
3429 		} else {
3430 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3431 				rc->search_start = key.objectid + key.offset;
3432 			else
3433 				rc->search_start = key.objectid +
3434 					fs_info->nodesize;
3435 			memcpy(extent_key, &key, sizeof(key));
3436 			return 0;
3437 		}
3438 	}
3439 	btrfs_release_path(path);
3440 	return ret;
3441 }
3442 
set_reloc_control(struct reloc_control * rc)3443 static void set_reloc_control(struct reloc_control *rc)
3444 {
3445 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3446 
3447 	mutex_lock(&fs_info->reloc_mutex);
3448 	fs_info->reloc_ctl = rc;
3449 	mutex_unlock(&fs_info->reloc_mutex);
3450 }
3451 
unset_reloc_control(struct reloc_control * rc)3452 static void unset_reloc_control(struct reloc_control *rc)
3453 {
3454 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3455 
3456 	mutex_lock(&fs_info->reloc_mutex);
3457 	fs_info->reloc_ctl = NULL;
3458 	mutex_unlock(&fs_info->reloc_mutex);
3459 }
3460 
3461 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3462 int prepare_to_relocate(struct reloc_control *rc)
3463 {
3464 	struct btrfs_trans_handle *trans;
3465 	int ret;
3466 
3467 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3468 					      BTRFS_BLOCK_RSV_TEMP);
3469 	if (!rc->block_rsv)
3470 		return -ENOMEM;
3471 
3472 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3473 	rc->search_start = rc->block_group->start;
3474 	rc->extents_found = 0;
3475 	rc->nodes_relocated = 0;
3476 	rc->merging_rsv_size = 0;
3477 	rc->reserved_bytes = 0;
3478 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3479 			      RELOCATION_RESERVED_NODES;
3480 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3481 				     rc->block_rsv, rc->block_rsv->size,
3482 				     BTRFS_RESERVE_FLUSH_ALL);
3483 	if (ret)
3484 		return ret;
3485 
3486 	rc->create_reloc_tree = true;
3487 	set_reloc_control(rc);
3488 
3489 	trans = btrfs_join_transaction(rc->extent_root);
3490 	if (IS_ERR(trans)) {
3491 		unset_reloc_control(rc);
3492 		/*
3493 		 * extent tree is not a ref_cow tree and has no reloc_root to
3494 		 * cleanup.  And callers are responsible to free the above
3495 		 * block rsv.
3496 		 */
3497 		return PTR_ERR(trans);
3498 	}
3499 
3500 	ret = btrfs_commit_transaction(trans);
3501 	if (ret)
3502 		unset_reloc_control(rc);
3503 
3504 	return ret;
3505 }
3506 
relocate_block_group(struct reloc_control * rc)3507 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3508 {
3509 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3510 	struct rb_root blocks = RB_ROOT;
3511 	struct btrfs_key key;
3512 	struct btrfs_trans_handle *trans = NULL;
3513 	struct btrfs_path *path;
3514 	struct btrfs_extent_item *ei;
3515 	u64 flags;
3516 	int ret;
3517 	int err = 0;
3518 	int progress = 0;
3519 
3520 	path = btrfs_alloc_path();
3521 	if (!path)
3522 		return -ENOMEM;
3523 	path->reada = READA_FORWARD;
3524 
3525 	ret = prepare_to_relocate(rc);
3526 	if (ret) {
3527 		err = ret;
3528 		goto out_free;
3529 	}
3530 
3531 	while (1) {
3532 		rc->reserved_bytes = 0;
3533 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3534 					     rc->block_rsv->size,
3535 					     BTRFS_RESERVE_FLUSH_ALL);
3536 		if (ret) {
3537 			err = ret;
3538 			break;
3539 		}
3540 		progress++;
3541 		trans = btrfs_start_transaction(rc->extent_root, 0);
3542 		if (IS_ERR(trans)) {
3543 			err = PTR_ERR(trans);
3544 			trans = NULL;
3545 			break;
3546 		}
3547 restart:
3548 		if (rc->backref_cache.last_trans != trans->transid)
3549 			btrfs_backref_release_cache(&rc->backref_cache);
3550 		rc->backref_cache.last_trans = trans->transid;
3551 
3552 		ret = find_next_extent(rc, path, &key);
3553 		if (ret < 0)
3554 			err = ret;
3555 		if (ret != 0)
3556 			break;
3557 
3558 		rc->extents_found++;
3559 
3560 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3561 				    struct btrfs_extent_item);
3562 		flags = btrfs_extent_flags(path->nodes[0], ei);
3563 
3564 		/*
3565 		 * If we are relocating a simple quota owned extent item, we
3566 		 * need to note the owner on the reloc data root so that when
3567 		 * we allocate the replacement item, we can attribute it to the
3568 		 * correct eventual owner (rather than the reloc data root).
3569 		 */
3570 		if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3571 			struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3572 			u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3573 								 path->nodes[0],
3574 								 path->slots[0]);
3575 
3576 			root->relocation_src_root = owning_root_id;
3577 		}
3578 
3579 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3580 			ret = add_tree_block(rc, &key, path, &blocks);
3581 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3582 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3583 			ret = add_data_references(rc, &key, path, &blocks);
3584 		} else {
3585 			btrfs_release_path(path);
3586 			ret = 0;
3587 		}
3588 		if (ret < 0) {
3589 			err = ret;
3590 			break;
3591 		}
3592 
3593 		if (!RB_EMPTY_ROOT(&blocks)) {
3594 			ret = relocate_tree_blocks(trans, rc, &blocks);
3595 			if (ret < 0) {
3596 				if (ret != -EAGAIN) {
3597 					err = ret;
3598 					break;
3599 				}
3600 				rc->extents_found--;
3601 				rc->search_start = key.objectid;
3602 			}
3603 		}
3604 
3605 		btrfs_end_transaction_throttle(trans);
3606 		btrfs_btree_balance_dirty(fs_info);
3607 		trans = NULL;
3608 
3609 		if (rc->stage == MOVE_DATA_EXTENTS &&
3610 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3611 			rc->found_file_extent = true;
3612 			ret = relocate_data_extent(rc, &key);
3613 			if (ret < 0) {
3614 				err = ret;
3615 				break;
3616 			}
3617 		}
3618 		if (btrfs_should_cancel_balance(fs_info)) {
3619 			err = -ECANCELED;
3620 			break;
3621 		}
3622 	}
3623 	if (trans && progress && err == -ENOSPC) {
3624 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3625 		if (ret == 1) {
3626 			err = 0;
3627 			progress = 0;
3628 			goto restart;
3629 		}
3630 	}
3631 
3632 	btrfs_release_path(path);
3633 	btrfs_clear_extent_bit(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, NULL);
3634 
3635 	if (trans) {
3636 		btrfs_end_transaction_throttle(trans);
3637 		btrfs_btree_balance_dirty(fs_info);
3638 	}
3639 
3640 	if (!err) {
3641 		ret = relocate_file_extent_cluster(rc);
3642 		if (ret < 0)
3643 			err = ret;
3644 	}
3645 
3646 	rc->create_reloc_tree = false;
3647 	set_reloc_control(rc);
3648 
3649 	btrfs_backref_release_cache(&rc->backref_cache);
3650 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3651 
3652 	/*
3653 	 * Even in the case when the relocation is cancelled, we should all go
3654 	 * through prepare_to_merge() and merge_reloc_roots().
3655 	 *
3656 	 * For error (including cancelled balance), prepare_to_merge() will
3657 	 * mark all reloc trees orphan, then queue them for cleanup in
3658 	 * merge_reloc_roots()
3659 	 */
3660 	err = prepare_to_merge(rc, err);
3661 
3662 	merge_reloc_roots(rc);
3663 
3664 	rc->merge_reloc_tree = false;
3665 	unset_reloc_control(rc);
3666 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3667 
3668 	/* get rid of pinned extents */
3669 	trans = btrfs_join_transaction(rc->extent_root);
3670 	if (IS_ERR(trans)) {
3671 		err = PTR_ERR(trans);
3672 		goto out_free;
3673 	}
3674 	ret = btrfs_commit_transaction(trans);
3675 	if (ret && !err)
3676 		err = ret;
3677 out_free:
3678 	ret = clean_dirty_subvols(rc);
3679 	if (ret < 0 && !err)
3680 		err = ret;
3681 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3682 	btrfs_free_path(path);
3683 	return err;
3684 }
3685 
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3686 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3687 				 struct btrfs_root *root, u64 objectid)
3688 {
3689 	struct btrfs_path *path;
3690 	struct btrfs_inode_item *item;
3691 	struct extent_buffer *leaf;
3692 	int ret;
3693 
3694 	path = btrfs_alloc_path();
3695 	if (!path)
3696 		return -ENOMEM;
3697 
3698 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3699 	if (ret)
3700 		goto out;
3701 
3702 	leaf = path->nodes[0];
3703 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3704 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3705 	btrfs_set_inode_generation(leaf, item, 1);
3706 	btrfs_set_inode_size(leaf, item, 0);
3707 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3708 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3709 					  BTRFS_INODE_PREALLOC);
3710 out:
3711 	btrfs_free_path(path);
3712 	return ret;
3713 }
3714 
delete_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3715 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3716 				struct btrfs_root *root, u64 objectid)
3717 {
3718 	struct btrfs_path *path;
3719 	struct btrfs_key key;
3720 	int ret = 0;
3721 
3722 	path = btrfs_alloc_path();
3723 	if (!path) {
3724 		ret = -ENOMEM;
3725 		goto out;
3726 	}
3727 
3728 	key.objectid = objectid;
3729 	key.type = BTRFS_INODE_ITEM_KEY;
3730 	key.offset = 0;
3731 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3732 	if (ret) {
3733 		if (ret > 0)
3734 			ret = -ENOENT;
3735 		goto out;
3736 	}
3737 	ret = btrfs_del_item(trans, root, path);
3738 out:
3739 	if (ret)
3740 		btrfs_abort_transaction(trans, ret);
3741 	btrfs_free_path(path);
3742 }
3743 
3744 /*
3745  * helper to create inode for data relocation.
3746  * the inode is in data relocation tree and its link count is 0
3747  */
create_reloc_inode(const struct btrfs_block_group * group)3748 static noinline_for_stack struct inode *create_reloc_inode(
3749 					const struct btrfs_block_group *group)
3750 {
3751 	struct btrfs_fs_info *fs_info = group->fs_info;
3752 	struct btrfs_inode *inode = NULL;
3753 	struct btrfs_trans_handle *trans;
3754 	struct btrfs_root *root;
3755 	u64 objectid;
3756 	int ret = 0;
3757 
3758 	root = btrfs_grab_root(fs_info->data_reloc_root);
3759 	trans = btrfs_start_transaction(root, 6);
3760 	if (IS_ERR(trans)) {
3761 		btrfs_put_root(root);
3762 		return ERR_CAST(trans);
3763 	}
3764 
3765 	ret = btrfs_get_free_objectid(root, &objectid);
3766 	if (ret)
3767 		goto out;
3768 
3769 	ret = __insert_orphan_inode(trans, root, objectid);
3770 	if (ret)
3771 		goto out;
3772 
3773 	inode = btrfs_iget(objectid, root);
3774 	if (IS_ERR(inode)) {
3775 		delete_orphan_inode(trans, root, objectid);
3776 		ret = PTR_ERR(inode);
3777 		inode = NULL;
3778 		goto out;
3779 	}
3780 	inode->reloc_block_group_start = group->start;
3781 
3782 	ret = btrfs_orphan_add(trans, inode);
3783 out:
3784 	btrfs_put_root(root);
3785 	btrfs_end_transaction(trans);
3786 	btrfs_btree_balance_dirty(fs_info);
3787 	if (ret) {
3788 		if (inode)
3789 			iput(&inode->vfs_inode);
3790 		return ERR_PTR(ret);
3791 	}
3792 	return &inode->vfs_inode;
3793 }
3794 
3795 /*
3796  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3797  * has been requested meanwhile and don't start in that case.
3798  *
3799  * Return:
3800  *   0             success
3801  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3802  *   -ECANCELED    cancellation request was set before the operation started
3803  */
reloc_chunk_start(struct btrfs_fs_info * fs_info)3804 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3805 {
3806 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3807 		/* This should not happen */
3808 		btrfs_err(fs_info, "reloc already running, cannot start");
3809 		return -EINPROGRESS;
3810 	}
3811 
3812 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3813 		btrfs_info(fs_info, "chunk relocation canceled on start");
3814 		/*
3815 		 * On cancel, clear all requests but let the caller mark
3816 		 * the end after cleanup operations.
3817 		 */
3818 		atomic_set(&fs_info->reloc_cancel_req, 0);
3819 		return -ECANCELED;
3820 	}
3821 	return 0;
3822 }
3823 
3824 /*
3825  * Mark end of chunk relocation that is cancellable and wake any waiters.
3826  */
reloc_chunk_end(struct btrfs_fs_info * fs_info)3827 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3828 {
3829 	/* Requested after start, clear bit first so any waiters can continue */
3830 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3831 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3832 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3833 	atomic_set(&fs_info->reloc_cancel_req, 0);
3834 }
3835 
alloc_reloc_control(struct btrfs_fs_info * fs_info)3836 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3837 {
3838 	struct reloc_control *rc;
3839 
3840 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3841 	if (!rc)
3842 		return NULL;
3843 
3844 	INIT_LIST_HEAD(&rc->reloc_roots);
3845 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3846 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3847 	rc->reloc_root_tree.rb_root = RB_ROOT;
3848 	spin_lock_init(&rc->reloc_root_tree.lock);
3849 	btrfs_extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3850 	return rc;
3851 }
3852 
free_reloc_control(struct reloc_control * rc)3853 static void free_reloc_control(struct reloc_control *rc)
3854 {
3855 	struct mapping_node *node, *tmp;
3856 
3857 	free_reloc_roots(&rc->reloc_roots);
3858 	rbtree_postorder_for_each_entry_safe(node, tmp,
3859 			&rc->reloc_root_tree.rb_root, rb_node)
3860 		kfree(node);
3861 
3862 	kfree(rc);
3863 }
3864 
3865 /*
3866  * Print the block group being relocated
3867  */
describe_relocation(struct btrfs_block_group * block_group)3868 static void describe_relocation(struct btrfs_block_group *block_group)
3869 {
3870 	char buf[128] = "NONE";
3871 
3872 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3873 
3874 	btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
3875 		   block_group->start, buf);
3876 }
3877 
stage_to_string(enum reloc_stage stage)3878 static const char *stage_to_string(enum reloc_stage stage)
3879 {
3880 	if (stage == MOVE_DATA_EXTENTS)
3881 		return "move data extents";
3882 	if (stage == UPDATE_DATA_PTRS)
3883 		return "update data pointers";
3884 	return "unknown";
3885 }
3886 
3887 /*
3888  * function to relocate all extents in a block group.
3889  */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start,bool verbose)3890 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start,
3891 			       bool verbose)
3892 {
3893 	struct btrfs_block_group *bg;
3894 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3895 	struct reloc_control *rc;
3896 	struct inode *inode;
3897 	struct btrfs_path *path;
3898 	int ret;
3899 	int rw = 0;
3900 	int err = 0;
3901 
3902 	/*
3903 	 * This only gets set if we had a half-deleted snapshot on mount.  We
3904 	 * cannot allow relocation to start while we're still trying to clean up
3905 	 * these pending deletions.
3906 	 */
3907 	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3908 	if (ret)
3909 		return ret;
3910 
3911 	/* We may have been woken up by close_ctree, so bail if we're closing. */
3912 	if (btrfs_fs_closing(fs_info))
3913 		return -EINTR;
3914 
3915 	bg = btrfs_lookup_block_group(fs_info, group_start);
3916 	if (!bg)
3917 		return -ENOENT;
3918 
3919 	/*
3920 	 * Relocation of a data block group creates ordered extents.  Without
3921 	 * sb_start_write(), we can freeze the filesystem while unfinished
3922 	 * ordered extents are left. Such ordered extents can cause a deadlock
3923 	 * e.g. when syncfs() is waiting for their completion but they can't
3924 	 * finish because they block when joining a transaction, due to the
3925 	 * fact that the freeze locks are being held in write mode.
3926 	 */
3927 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
3928 		ASSERT(sb_write_started(fs_info->sb));
3929 
3930 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3931 		btrfs_put_block_group(bg);
3932 		return -ETXTBSY;
3933 	}
3934 
3935 	rc = alloc_reloc_control(fs_info);
3936 	if (!rc) {
3937 		btrfs_put_block_group(bg);
3938 		return -ENOMEM;
3939 	}
3940 
3941 	ret = reloc_chunk_start(fs_info);
3942 	if (ret < 0) {
3943 		err = ret;
3944 		goto out_put_bg;
3945 	}
3946 
3947 	rc->extent_root = extent_root;
3948 	rc->block_group = bg;
3949 
3950 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3951 	if (ret) {
3952 		err = ret;
3953 		goto out;
3954 	}
3955 	rw = 1;
3956 
3957 	path = btrfs_alloc_path();
3958 	if (!path) {
3959 		err = -ENOMEM;
3960 		goto out;
3961 	}
3962 
3963 	inode = lookup_free_space_inode(rc->block_group, path);
3964 	btrfs_free_path(path);
3965 
3966 	if (!IS_ERR(inode))
3967 		ret = delete_block_group_cache(rc->block_group, inode, 0);
3968 	else
3969 		ret = PTR_ERR(inode);
3970 
3971 	if (ret && ret != -ENOENT) {
3972 		err = ret;
3973 		goto out;
3974 	}
3975 
3976 	rc->data_inode = create_reloc_inode(rc->block_group);
3977 	if (IS_ERR(rc->data_inode)) {
3978 		err = PTR_ERR(rc->data_inode);
3979 		rc->data_inode = NULL;
3980 		goto out;
3981 	}
3982 
3983 	if (verbose)
3984 		describe_relocation(rc->block_group);
3985 
3986 	btrfs_wait_block_group_reservations(rc->block_group);
3987 	btrfs_wait_nocow_writers(rc->block_group);
3988 	btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
3989 
3990 	ret = btrfs_zone_finish(rc->block_group);
3991 	WARN_ON(ret && ret != -EAGAIN);
3992 
3993 	while (1) {
3994 		enum reloc_stage finishes_stage;
3995 
3996 		mutex_lock(&fs_info->cleaner_mutex);
3997 		ret = relocate_block_group(rc);
3998 		mutex_unlock(&fs_info->cleaner_mutex);
3999 		if (ret < 0)
4000 			err = ret;
4001 
4002 		finishes_stage = rc->stage;
4003 		/*
4004 		 * We may have gotten ENOSPC after we already dirtied some
4005 		 * extents.  If writeout happens while we're relocating a
4006 		 * different block group we could end up hitting the
4007 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4008 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4009 		 * properly so we don't trip over this problem, and then break
4010 		 * out of the loop if we hit an error.
4011 		 */
4012 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4013 			ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
4014 						       (u64)-1);
4015 			if (ret)
4016 				err = ret;
4017 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4018 						 0, -1);
4019 			rc->stage = UPDATE_DATA_PTRS;
4020 		}
4021 
4022 		if (err < 0)
4023 			goto out;
4024 
4025 		if (rc->extents_found == 0)
4026 			break;
4027 
4028 		if (verbose)
4029 			btrfs_info(fs_info, "found %llu extents, stage: %s",
4030 				   rc->extents_found,
4031 				   stage_to_string(finishes_stage));
4032 	}
4033 
4034 	WARN_ON(rc->block_group->pinned > 0);
4035 	WARN_ON(rc->block_group->reserved > 0);
4036 	WARN_ON(rc->block_group->used > 0);
4037 out:
4038 	if (err && rw)
4039 		btrfs_dec_block_group_ro(rc->block_group);
4040 	iput(rc->data_inode);
4041 out_put_bg:
4042 	btrfs_put_block_group(bg);
4043 	reloc_chunk_end(fs_info);
4044 	free_reloc_control(rc);
4045 	return err;
4046 }
4047 
mark_garbage_root(struct btrfs_root * root)4048 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4049 {
4050 	struct btrfs_fs_info *fs_info = root->fs_info;
4051 	struct btrfs_trans_handle *trans;
4052 	int ret, err;
4053 
4054 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4055 	if (IS_ERR(trans))
4056 		return PTR_ERR(trans);
4057 
4058 	memset(&root->root_item.drop_progress, 0,
4059 		sizeof(root->root_item.drop_progress));
4060 	btrfs_set_root_drop_level(&root->root_item, 0);
4061 	btrfs_set_root_refs(&root->root_item, 0);
4062 	ret = btrfs_update_root(trans, fs_info->tree_root,
4063 				&root->root_key, &root->root_item);
4064 
4065 	err = btrfs_end_transaction(trans);
4066 	if (err)
4067 		return err;
4068 	return ret;
4069 }
4070 
4071 /*
4072  * recover relocation interrupted by system crash.
4073  *
4074  * this function resumes merging reloc trees with corresponding fs trees.
4075  * this is important for keeping the sharing of tree blocks
4076  */
btrfs_recover_relocation(struct btrfs_fs_info * fs_info)4077 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4078 {
4079 	LIST_HEAD(reloc_roots);
4080 	struct btrfs_key key;
4081 	struct btrfs_root *fs_root;
4082 	struct btrfs_root *reloc_root;
4083 	struct btrfs_path *path;
4084 	struct extent_buffer *leaf;
4085 	struct reloc_control *rc = NULL;
4086 	struct btrfs_trans_handle *trans;
4087 	int ret2;
4088 	int ret = 0;
4089 
4090 	path = btrfs_alloc_path();
4091 	if (!path)
4092 		return -ENOMEM;
4093 	path->reada = READA_BACK;
4094 
4095 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4096 	key.type = BTRFS_ROOT_ITEM_KEY;
4097 	key.offset = (u64)-1;
4098 
4099 	while (1) {
4100 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4101 					path, 0, 0);
4102 		if (ret < 0)
4103 			goto out;
4104 		if (ret > 0) {
4105 			if (path->slots[0] == 0)
4106 				break;
4107 			path->slots[0]--;
4108 		}
4109 		ret = 0;
4110 		leaf = path->nodes[0];
4111 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4112 		btrfs_release_path(path);
4113 
4114 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4115 		    key.type != BTRFS_ROOT_ITEM_KEY)
4116 			break;
4117 
4118 		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4119 		if (IS_ERR(reloc_root)) {
4120 			ret = PTR_ERR(reloc_root);
4121 			goto out;
4122 		}
4123 
4124 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4125 		list_add(&reloc_root->root_list, &reloc_roots);
4126 
4127 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4128 			fs_root = btrfs_get_fs_root(fs_info,
4129 					reloc_root->root_key.offset, false);
4130 			if (IS_ERR(fs_root)) {
4131 				ret = PTR_ERR(fs_root);
4132 				if (ret != -ENOENT)
4133 					goto out;
4134 				ret = mark_garbage_root(reloc_root);
4135 				if (ret < 0)
4136 					goto out;
4137 				ret = 0;
4138 			} else {
4139 				btrfs_put_root(fs_root);
4140 			}
4141 		}
4142 
4143 		if (key.offset == 0)
4144 			break;
4145 
4146 		key.offset--;
4147 	}
4148 	btrfs_release_path(path);
4149 
4150 	if (list_empty(&reloc_roots))
4151 		goto out;
4152 
4153 	rc = alloc_reloc_control(fs_info);
4154 	if (!rc) {
4155 		ret = -ENOMEM;
4156 		goto out;
4157 	}
4158 
4159 	ret = reloc_chunk_start(fs_info);
4160 	if (ret < 0)
4161 		goto out_end;
4162 
4163 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4164 
4165 	set_reloc_control(rc);
4166 
4167 	trans = btrfs_join_transaction(rc->extent_root);
4168 	if (IS_ERR(trans)) {
4169 		ret = PTR_ERR(trans);
4170 		goto out_unset;
4171 	}
4172 
4173 	rc->merge_reloc_tree = true;
4174 
4175 	while (!list_empty(&reloc_roots)) {
4176 		reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list);
4177 		list_del(&reloc_root->root_list);
4178 
4179 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4180 			list_add_tail(&reloc_root->root_list,
4181 				      &rc->reloc_roots);
4182 			continue;
4183 		}
4184 
4185 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4186 					    false);
4187 		if (IS_ERR(fs_root)) {
4188 			ret = PTR_ERR(fs_root);
4189 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4190 			btrfs_end_transaction(trans);
4191 			goto out_unset;
4192 		}
4193 
4194 		ret = __add_reloc_root(reloc_root);
4195 		ASSERT(ret != -EEXIST);
4196 		if (ret) {
4197 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4198 			btrfs_put_root(fs_root);
4199 			btrfs_end_transaction(trans);
4200 			goto out_unset;
4201 		}
4202 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4203 		btrfs_put_root(fs_root);
4204 	}
4205 
4206 	ret = btrfs_commit_transaction(trans);
4207 	if (ret)
4208 		goto out_unset;
4209 
4210 	merge_reloc_roots(rc);
4211 
4212 	unset_reloc_control(rc);
4213 
4214 	trans = btrfs_join_transaction(rc->extent_root);
4215 	if (IS_ERR(trans)) {
4216 		ret = PTR_ERR(trans);
4217 		goto out_clean;
4218 	}
4219 	ret = btrfs_commit_transaction(trans);
4220 out_clean:
4221 	ret2 = clean_dirty_subvols(rc);
4222 	if (ret2 < 0 && !ret)
4223 		ret = ret2;
4224 out_unset:
4225 	unset_reloc_control(rc);
4226 out_end:
4227 	reloc_chunk_end(fs_info);
4228 	free_reloc_control(rc);
4229 out:
4230 	free_reloc_roots(&reloc_roots);
4231 
4232 	btrfs_free_path(path);
4233 
4234 	if (ret == 0) {
4235 		/* cleanup orphan inode in data relocation tree */
4236 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4237 		ASSERT(fs_root);
4238 		ret = btrfs_orphan_cleanup(fs_root);
4239 		btrfs_put_root(fs_root);
4240 	}
4241 	return ret;
4242 }
4243 
4244 /*
4245  * helper to add ordered checksum for data relocation.
4246  *
4247  * cloning checksum properly handles the nodatasum extents.
4248  * it also saves CPU time to re-calculate the checksum.
4249  */
btrfs_reloc_clone_csums(struct btrfs_ordered_extent * ordered)4250 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4251 {
4252 	struct btrfs_inode *inode = ordered->inode;
4253 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4254 	u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4255 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4256 	LIST_HEAD(list);
4257 	int ret;
4258 
4259 	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4260 				      disk_bytenr + ordered->num_bytes - 1,
4261 				      &list, false);
4262 	if (ret < 0) {
4263 		btrfs_mark_ordered_extent_error(ordered);
4264 		return ret;
4265 	}
4266 
4267 	while (!list_empty(&list)) {
4268 		struct btrfs_ordered_sum *sums =
4269 			list_first_entry(&list, struct btrfs_ordered_sum, list);
4270 
4271 		list_del_init(&sums->list);
4272 
4273 		/*
4274 		 * We need to offset the new_bytenr based on where the csum is.
4275 		 * We need to do this because we will read in entire prealloc
4276 		 * extents but we may have written to say the middle of the
4277 		 * prealloc extent, so we need to make sure the csum goes with
4278 		 * the right disk offset.
4279 		 *
4280 		 * We can do this because the data reloc inode refers strictly
4281 		 * to the on disk bytes, so we don't have to worry about
4282 		 * disk_len vs real len like with real inodes since it's all
4283 		 * disk length.
4284 		 */
4285 		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4286 		btrfs_add_ordered_sum(ordered, sums);
4287 	}
4288 
4289 	return 0;
4290 }
4291 
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct extent_buffer * buf,struct extent_buffer * cow)4292 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4293 			  struct btrfs_root *root,
4294 			  const struct extent_buffer *buf,
4295 			  struct extent_buffer *cow)
4296 {
4297 	struct btrfs_fs_info *fs_info = root->fs_info;
4298 	struct reloc_control *rc;
4299 	struct btrfs_backref_node *node;
4300 	int first_cow = 0;
4301 	int level;
4302 	int ret = 0;
4303 
4304 	rc = fs_info->reloc_ctl;
4305 	if (!rc)
4306 		return 0;
4307 
4308 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4309 
4310 	level = btrfs_header_level(buf);
4311 	if (btrfs_header_generation(buf) <=
4312 	    btrfs_root_last_snapshot(&root->root_item))
4313 		first_cow = 1;
4314 
4315 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4316 		WARN_ON(!first_cow && level == 0);
4317 
4318 		node = rc->backref_cache.path[level];
4319 
4320 		/*
4321 		 * If node->bytenr != buf->start and node->new_bytenr !=
4322 		 * buf->start then we've got the wrong backref node for what we
4323 		 * expected to see here and the cache is incorrect.
4324 		 */
4325 		if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) {
4326 			btrfs_err(fs_info,
4327 "bytenr %llu was found but our backref cache was expecting %llu or %llu",
4328 				  buf->start, node->bytenr, node->new_bytenr);
4329 			return -EUCLEAN;
4330 		}
4331 
4332 		btrfs_backref_drop_node_buffer(node);
4333 		refcount_inc(&cow->refs);
4334 		node->eb = cow;
4335 		node->new_bytenr = cow->start;
4336 
4337 		if (!node->pending) {
4338 			list_move_tail(&node->list,
4339 				       &rc->backref_cache.pending[level]);
4340 			node->pending = 1;
4341 		}
4342 
4343 		if (first_cow)
4344 			mark_block_processed(rc, node);
4345 
4346 		if (first_cow && level > 0)
4347 			rc->nodes_relocated += buf->len;
4348 	}
4349 
4350 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4351 		ret = replace_file_extents(trans, rc, root, cow);
4352 	return ret;
4353 }
4354 
4355 /*
4356  * called before creating snapshot. it calculates metadata reservation
4357  * required for relocating tree blocks in the snapshot
4358  */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4359 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4360 			      u64 *bytes_to_reserve)
4361 {
4362 	struct btrfs_root *root = pending->root;
4363 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4364 
4365 	if (!rc || !have_reloc_root(root))
4366 		return;
4367 
4368 	if (!rc->merge_reloc_tree)
4369 		return;
4370 
4371 	root = root->reloc_root;
4372 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4373 	/*
4374 	 * relocation is in the stage of merging trees. the space
4375 	 * used by merging a reloc tree is twice the size of
4376 	 * relocated tree nodes in the worst case. half for cowing
4377 	 * the reloc tree, half for cowing the fs tree. the space
4378 	 * used by cowing the reloc tree will be freed after the
4379 	 * tree is dropped. if we create snapshot, cowing the fs
4380 	 * tree may use more space than it frees. so we need
4381 	 * reserve extra space.
4382 	 */
4383 	*bytes_to_reserve += rc->nodes_relocated;
4384 }
4385 
4386 /*
4387  * called after snapshot is created. migrate block reservation
4388  * and create reloc root for the newly created snapshot
4389  *
4390  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4391  * references held on the reloc_root, one for root->reloc_root and one for
4392  * rc->reloc_roots.
4393  */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4394 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4395 			       struct btrfs_pending_snapshot *pending)
4396 {
4397 	struct btrfs_root *root = pending->root;
4398 	struct btrfs_root *reloc_root;
4399 	struct btrfs_root *new_root;
4400 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4401 	int ret;
4402 
4403 	if (!rc || !have_reloc_root(root))
4404 		return 0;
4405 
4406 	rc = root->fs_info->reloc_ctl;
4407 	rc->merging_rsv_size += rc->nodes_relocated;
4408 
4409 	if (rc->merge_reloc_tree) {
4410 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4411 					      rc->block_rsv,
4412 					      rc->nodes_relocated, true);
4413 		if (ret)
4414 			return ret;
4415 	}
4416 
4417 	new_root = pending->snap;
4418 	reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4419 	if (IS_ERR(reloc_root))
4420 		return PTR_ERR(reloc_root);
4421 
4422 	ret = __add_reloc_root(reloc_root);
4423 	ASSERT(ret != -EEXIST);
4424 	if (ret) {
4425 		/* Pairs with create_reloc_root */
4426 		btrfs_put_root(reloc_root);
4427 		return ret;
4428 	}
4429 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4430 	return 0;
4431 }
4432 
4433 /*
4434  * Get the current bytenr for the block group which is being relocated.
4435  *
4436  * Return U64_MAX if no running relocation.
4437  */
btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info * fs_info)4438 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4439 {
4440 	u64 logical = U64_MAX;
4441 
4442 	lockdep_assert_held(&fs_info->reloc_mutex);
4443 
4444 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4445 		logical = fs_info->reloc_ctl->block_group->start;
4446 	return logical;
4447 }
4448