1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #define NVME_MINORS (1U << MINORBITS)
35
36 struct nvme_ns_info {
37 struct nvme_ns_ids ids;
38 u32 nsid;
39 __le32 anagrpid;
40 u8 pi_offset;
41 u16 endgid;
42 u64 runs;
43 bool is_shared;
44 bool is_readonly;
45 bool is_ready;
46 bool is_removed;
47 bool is_rotational;
48 bool no_vwc;
49 };
50
51 unsigned int admin_timeout = 60;
52 module_param(admin_timeout, uint, 0644);
53 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
54 EXPORT_SYMBOL_GPL(admin_timeout);
55
56 unsigned int nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59 EXPORT_SYMBOL_GPL(nvme_io_timeout);
60
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
65 static u8 nvme_max_retries = 5;
66 module_param_named(max_retries, nvme_max_retries, byte, 0644);
67 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
68
69 static unsigned long default_ps_max_latency_us = 100000;
70 module_param(default_ps_max_latency_us, ulong, 0644);
71 MODULE_PARM_DESC(default_ps_max_latency_us,
72 "max power saving latency for new devices; use PM QOS to change per device");
73
74 static bool force_apst;
75 module_param(force_apst, bool, 0644);
76 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
77
78 static unsigned long apst_primary_timeout_ms = 100;
79 module_param(apst_primary_timeout_ms, ulong, 0644);
80 MODULE_PARM_DESC(apst_primary_timeout_ms,
81 "primary APST timeout in ms");
82
83 static unsigned long apst_secondary_timeout_ms = 2000;
84 module_param(apst_secondary_timeout_ms, ulong, 0644);
85 MODULE_PARM_DESC(apst_secondary_timeout_ms,
86 "secondary APST timeout in ms");
87
88 static unsigned long apst_primary_latency_tol_us = 15000;
89 module_param(apst_primary_latency_tol_us, ulong, 0644);
90 MODULE_PARM_DESC(apst_primary_latency_tol_us,
91 "primary APST latency tolerance in us");
92
93 static unsigned long apst_secondary_latency_tol_us = 100000;
94 module_param(apst_secondary_latency_tol_us, ulong, 0644);
95 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
96 "secondary APST latency tolerance in us");
97
98 /*
99 * Older kernels didn't enable protection information if it was at an offset.
100 * Newer kernels do, so it breaks reads on the upgrade if such formats were
101 * used in prior kernels since the metadata written did not contain a valid
102 * checksum.
103 */
104 static bool disable_pi_offsets = false;
105 module_param(disable_pi_offsets, bool, 0444);
106 MODULE_PARM_DESC(disable_pi_offsets,
107 "disable protection information if it has an offset");
108
109 /*
110 * nvme_wq - hosts nvme related works that are not reset or delete
111 * nvme_reset_wq - hosts nvme reset works
112 * nvme_delete_wq - hosts nvme delete works
113 *
114 * nvme_wq will host works such as scan, aen handling, fw activation,
115 * keep-alive, periodic reconnects etc. nvme_reset_wq
116 * runs reset works which also flush works hosted on nvme_wq for
117 * serialization purposes. nvme_delete_wq host controller deletion
118 * works which flush reset works for serialization.
119 */
120 struct workqueue_struct *nvme_wq;
121 EXPORT_SYMBOL_GPL(nvme_wq);
122
123 struct workqueue_struct *nvme_reset_wq;
124 EXPORT_SYMBOL_GPL(nvme_reset_wq);
125
126 struct workqueue_struct *nvme_delete_wq;
127 EXPORT_SYMBOL_GPL(nvme_delete_wq);
128
129 static LIST_HEAD(nvme_subsystems);
130 DEFINE_MUTEX(nvme_subsystems_lock);
131
132 static DEFINE_IDA(nvme_instance_ida);
133 static dev_t nvme_ctrl_base_chr_devt;
134 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
135 static const struct class nvme_class = {
136 .name = "nvme",
137 .dev_uevent = nvme_class_uevent,
138 };
139
140 static const struct class nvme_subsys_class = {
141 .name = "nvme-subsystem",
142 };
143
144 static DEFINE_IDA(nvme_ns_chr_minor_ida);
145 static dev_t nvme_ns_chr_devt;
146 static const struct class nvme_ns_chr_class = {
147 .name = "nvme-generic",
148 };
149
150 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
151 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
152 unsigned nsid);
153 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
154 struct nvme_command *cmd);
155 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
156 u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi);
157
nvme_queue_scan(struct nvme_ctrl * ctrl)158 void nvme_queue_scan(struct nvme_ctrl *ctrl)
159 {
160 /*
161 * Only new queue scan work when admin and IO queues are both alive
162 */
163 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
164 queue_work(nvme_wq, &ctrl->scan_work);
165 }
166
167 /*
168 * Use this function to proceed with scheduling reset_work for a controller
169 * that had previously been set to the resetting state. This is intended for
170 * code paths that can't be interrupted by other reset attempts. A hot removal
171 * may prevent this from succeeding.
172 */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)173 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
174 {
175 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
176 return -EBUSY;
177 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
178 return -EBUSY;
179 return 0;
180 }
181 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
182
nvme_failfast_work(struct work_struct * work)183 static void nvme_failfast_work(struct work_struct *work)
184 {
185 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
186 struct nvme_ctrl, failfast_work);
187
188 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
189 return;
190
191 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
192 dev_info(ctrl->device, "failfast expired\n");
193 nvme_kick_requeue_lists(ctrl);
194 }
195
nvme_start_failfast_work(struct nvme_ctrl * ctrl)196 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
197 {
198 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
199 return;
200
201 schedule_delayed_work(&ctrl->failfast_work,
202 ctrl->opts->fast_io_fail_tmo * HZ);
203 }
204
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)205 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
206 {
207 if (!ctrl->opts)
208 return;
209
210 cancel_delayed_work_sync(&ctrl->failfast_work);
211 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
212 }
213
214
nvme_reset_ctrl(struct nvme_ctrl * ctrl)215 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
216 {
217 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
218 return -EBUSY;
219 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
220 return -EBUSY;
221 return 0;
222 }
223 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
224
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)225 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
226 {
227 int ret;
228
229 ret = nvme_reset_ctrl(ctrl);
230 if (!ret) {
231 flush_work(&ctrl->reset_work);
232 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
233 ret = -ENETRESET;
234 }
235
236 return ret;
237 }
238
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)239 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
240 {
241 dev_info(ctrl->device,
242 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
243
244 flush_work(&ctrl->reset_work);
245 nvme_stop_ctrl(ctrl);
246 nvme_remove_namespaces(ctrl);
247 ctrl->ops->delete_ctrl(ctrl);
248 nvme_uninit_ctrl(ctrl);
249 }
250
nvme_delete_ctrl_work(struct work_struct * work)251 static void nvme_delete_ctrl_work(struct work_struct *work)
252 {
253 struct nvme_ctrl *ctrl =
254 container_of(work, struct nvme_ctrl, delete_work);
255
256 nvme_do_delete_ctrl(ctrl);
257 }
258
nvme_delete_ctrl(struct nvme_ctrl * ctrl)259 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
260 {
261 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
262 return -EBUSY;
263 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
264 return -EBUSY;
265 return 0;
266 }
267 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
268
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)269 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
270 {
271 /*
272 * Keep a reference until nvme_do_delete_ctrl() complete,
273 * since ->delete_ctrl can free the controller.
274 */
275 nvme_get_ctrl(ctrl);
276 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
277 nvme_do_delete_ctrl(ctrl);
278 nvme_put_ctrl(ctrl);
279 }
280
nvme_error_status(u16 status)281 static blk_status_t nvme_error_status(u16 status)
282 {
283 switch (status & NVME_SCT_SC_MASK) {
284 case NVME_SC_SUCCESS:
285 return BLK_STS_OK;
286 case NVME_SC_CAP_EXCEEDED:
287 return BLK_STS_NOSPC;
288 case NVME_SC_LBA_RANGE:
289 case NVME_SC_CMD_INTERRUPTED:
290 case NVME_SC_NS_NOT_READY:
291 return BLK_STS_TARGET;
292 case NVME_SC_BAD_ATTRIBUTES:
293 case NVME_SC_INVALID_OPCODE:
294 case NVME_SC_INVALID_FIELD:
295 case NVME_SC_INVALID_NS:
296 return BLK_STS_NOTSUPP;
297 case NVME_SC_WRITE_FAULT:
298 case NVME_SC_READ_ERROR:
299 case NVME_SC_UNWRITTEN_BLOCK:
300 case NVME_SC_ACCESS_DENIED:
301 case NVME_SC_READ_ONLY:
302 case NVME_SC_COMPARE_FAILED:
303 return BLK_STS_MEDIUM;
304 case NVME_SC_GUARD_CHECK:
305 case NVME_SC_APPTAG_CHECK:
306 case NVME_SC_REFTAG_CHECK:
307 case NVME_SC_INVALID_PI:
308 return BLK_STS_PROTECTION;
309 case NVME_SC_RESERVATION_CONFLICT:
310 return BLK_STS_RESV_CONFLICT;
311 case NVME_SC_HOST_PATH_ERROR:
312 return BLK_STS_TRANSPORT;
313 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
314 return BLK_STS_ZONE_ACTIVE_RESOURCE;
315 case NVME_SC_ZONE_TOO_MANY_OPEN:
316 return BLK_STS_ZONE_OPEN_RESOURCE;
317 default:
318 return BLK_STS_IOERR;
319 }
320 }
321
nvme_retry_req(struct request * req)322 static void nvme_retry_req(struct request *req)
323 {
324 unsigned long delay = 0;
325 u16 crd;
326
327 /* The mask and shift result must be <= 3 */
328 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
329 if (crd)
330 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
331
332 nvme_req(req)->retries++;
333 blk_mq_requeue_request(req, false);
334 blk_mq_delay_kick_requeue_list(req->q, delay);
335 }
336
nvme_log_error(struct request * req)337 static void nvme_log_error(struct request *req)
338 {
339 struct nvme_ns *ns = req->q->queuedata;
340 struct nvme_request *nr = nvme_req(req);
341
342 if (ns) {
343 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
344 ns->disk ? ns->disk->disk_name : "?",
345 nvme_get_opcode_str(nr->cmd->common.opcode),
346 nr->cmd->common.opcode,
347 nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
348 blk_rq_bytes(req) >> ns->head->lba_shift,
349 nvme_get_error_status_str(nr->status),
350 NVME_SCT(nr->status), /* Status Code Type */
351 nr->status & NVME_SC_MASK, /* Status Code */
352 nr->status & NVME_STATUS_MORE ? "MORE " : "",
353 nr->status & NVME_STATUS_DNR ? "DNR " : "");
354 return;
355 }
356
357 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
358 dev_name(nr->ctrl->device),
359 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 nr->cmd->common.opcode,
361 nvme_get_error_status_str(nr->status),
362 NVME_SCT(nr->status), /* Status Code Type */
363 nr->status & NVME_SC_MASK, /* Status Code */
364 nr->status & NVME_STATUS_MORE ? "MORE " : "",
365 nr->status & NVME_STATUS_DNR ? "DNR " : "");
366 }
367
nvme_log_err_passthru(struct request * req)368 static void nvme_log_err_passthru(struct request *req)
369 {
370 struct nvme_ns *ns = req->q->queuedata;
371 struct nvme_request *nr = nvme_req(req);
372
373 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
374 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
375 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
376 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
377 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
378 nr->cmd->common.opcode,
379 nvme_get_error_status_str(nr->status),
380 NVME_SCT(nr->status), /* Status Code Type */
381 nr->status & NVME_SC_MASK, /* Status Code */
382 nr->status & NVME_STATUS_MORE ? "MORE " : "",
383 nr->status & NVME_STATUS_DNR ? "DNR " : "",
384 le32_to_cpu(nr->cmd->common.cdw10),
385 le32_to_cpu(nr->cmd->common.cdw11),
386 le32_to_cpu(nr->cmd->common.cdw12),
387 le32_to_cpu(nr->cmd->common.cdw13),
388 le32_to_cpu(nr->cmd->common.cdw14),
389 le32_to_cpu(nr->cmd->common.cdw15));
390 }
391
392 enum nvme_disposition {
393 COMPLETE,
394 RETRY,
395 FAILOVER,
396 AUTHENTICATE,
397 };
398
nvme_decide_disposition(struct request * req)399 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
400 {
401 if (likely(nvme_req(req)->status == 0))
402 return COMPLETE;
403
404 if (blk_noretry_request(req) ||
405 (nvme_req(req)->status & NVME_STATUS_DNR) ||
406 nvme_req(req)->retries >= nvme_max_retries)
407 return COMPLETE;
408
409 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
410 return AUTHENTICATE;
411
412 if (req->cmd_flags & REQ_NVME_MPATH) {
413 if (nvme_is_path_error(nvme_req(req)->status) ||
414 blk_queue_dying(req->q))
415 return FAILOVER;
416 } else {
417 if (blk_queue_dying(req->q))
418 return COMPLETE;
419 }
420
421 return RETRY;
422 }
423
nvme_end_req_zoned(struct request * req)424 static inline void nvme_end_req_zoned(struct request *req)
425 {
426 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
427 req_op(req) == REQ_OP_ZONE_APPEND) {
428 struct nvme_ns *ns = req->q->queuedata;
429
430 req->__sector = nvme_lba_to_sect(ns->head,
431 le64_to_cpu(nvme_req(req)->result.u64));
432 }
433 }
434
__nvme_end_req(struct request * req)435 static inline void __nvme_end_req(struct request *req)
436 {
437 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
438 if (blk_rq_is_passthrough(req))
439 nvme_log_err_passthru(req);
440 else
441 nvme_log_error(req);
442 }
443 nvme_end_req_zoned(req);
444 nvme_trace_bio_complete(req);
445 if (req->cmd_flags & REQ_NVME_MPATH)
446 nvme_mpath_end_request(req);
447 }
448
nvme_end_req(struct request * req)449 void nvme_end_req(struct request *req)
450 {
451 blk_status_t status = nvme_error_status(nvme_req(req)->status);
452
453 __nvme_end_req(req);
454 blk_mq_end_request(req, status);
455 }
456
nvme_complete_rq(struct request * req)457 void nvme_complete_rq(struct request *req)
458 {
459 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
460
461 trace_nvme_complete_rq(req);
462 nvme_cleanup_cmd(req);
463
464 /*
465 * Completions of long-running commands should not be able to
466 * defer sending of periodic keep alives, since the controller
467 * may have completed processing such commands a long time ago
468 * (arbitrarily close to command submission time).
469 * req->deadline - req->timeout is the command submission time
470 * in jiffies.
471 */
472 if (ctrl->kas &&
473 req->deadline - req->timeout >= ctrl->ka_last_check_time)
474 ctrl->comp_seen = true;
475
476 switch (nvme_decide_disposition(req)) {
477 case COMPLETE:
478 nvme_end_req(req);
479 return;
480 case RETRY:
481 nvme_retry_req(req);
482 return;
483 case FAILOVER:
484 nvme_failover_req(req);
485 return;
486 case AUTHENTICATE:
487 #ifdef CONFIG_NVME_HOST_AUTH
488 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
489 nvme_retry_req(req);
490 #else
491 nvme_end_req(req);
492 #endif
493 return;
494 }
495 }
496 EXPORT_SYMBOL_GPL(nvme_complete_rq);
497
nvme_complete_batch_req(struct request * req)498 void nvme_complete_batch_req(struct request *req)
499 {
500 trace_nvme_complete_rq(req);
501 nvme_cleanup_cmd(req);
502 __nvme_end_req(req);
503 }
504 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
505
506 /*
507 * Called to unwind from ->queue_rq on a failed command submission so that the
508 * multipathing code gets called to potentially failover to another path.
509 * The caller needs to unwind all transport specific resource allocations and
510 * must return propagate the return value.
511 */
nvme_host_path_error(struct request * req)512 blk_status_t nvme_host_path_error(struct request *req)
513 {
514 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
515 blk_mq_set_request_complete(req);
516 nvme_complete_rq(req);
517 return BLK_STS_OK;
518 }
519 EXPORT_SYMBOL_GPL(nvme_host_path_error);
520
nvme_cancel_request(struct request * req,void * data)521 bool nvme_cancel_request(struct request *req, void *data)
522 {
523 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
524 "Cancelling I/O %d", req->tag);
525
526 /* don't abort one completed or idle request */
527 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
528 return true;
529
530 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
531 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
532 blk_mq_complete_request(req);
533 return true;
534 }
535 EXPORT_SYMBOL_GPL(nvme_cancel_request);
536
nvme_cancel_tagset(struct nvme_ctrl * ctrl)537 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
538 {
539 if (ctrl->tagset) {
540 blk_mq_tagset_busy_iter(ctrl->tagset,
541 nvme_cancel_request, ctrl);
542 blk_mq_tagset_wait_completed_request(ctrl->tagset);
543 }
544 }
545 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
546
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)547 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
548 {
549 if (ctrl->admin_tagset) {
550 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
551 nvme_cancel_request, ctrl);
552 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
553 }
554 }
555 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
556
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)557 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
558 enum nvme_ctrl_state new_state)
559 {
560 enum nvme_ctrl_state old_state;
561 unsigned long flags;
562 bool changed = false;
563
564 spin_lock_irqsave(&ctrl->lock, flags);
565
566 old_state = nvme_ctrl_state(ctrl);
567 switch (new_state) {
568 case NVME_CTRL_LIVE:
569 switch (old_state) {
570 case NVME_CTRL_CONNECTING:
571 changed = true;
572 fallthrough;
573 default:
574 break;
575 }
576 break;
577 case NVME_CTRL_RESETTING:
578 switch (old_state) {
579 case NVME_CTRL_NEW:
580 case NVME_CTRL_LIVE:
581 changed = true;
582 fallthrough;
583 default:
584 break;
585 }
586 break;
587 case NVME_CTRL_CONNECTING:
588 switch (old_state) {
589 case NVME_CTRL_NEW:
590 case NVME_CTRL_RESETTING:
591 changed = true;
592 fallthrough;
593 default:
594 break;
595 }
596 break;
597 case NVME_CTRL_DELETING:
598 switch (old_state) {
599 case NVME_CTRL_LIVE:
600 case NVME_CTRL_RESETTING:
601 case NVME_CTRL_CONNECTING:
602 changed = true;
603 fallthrough;
604 default:
605 break;
606 }
607 break;
608 case NVME_CTRL_DELETING_NOIO:
609 switch (old_state) {
610 case NVME_CTRL_DELETING:
611 case NVME_CTRL_DEAD:
612 changed = true;
613 fallthrough;
614 default:
615 break;
616 }
617 break;
618 case NVME_CTRL_DEAD:
619 switch (old_state) {
620 case NVME_CTRL_DELETING:
621 changed = true;
622 fallthrough;
623 default:
624 break;
625 }
626 break;
627 default:
628 break;
629 }
630
631 if (changed) {
632 WRITE_ONCE(ctrl->state, new_state);
633 wake_up_all(&ctrl->state_wq);
634 }
635
636 spin_unlock_irqrestore(&ctrl->lock, flags);
637 if (!changed)
638 return false;
639
640 if (new_state == NVME_CTRL_LIVE) {
641 if (old_state == NVME_CTRL_CONNECTING)
642 nvme_stop_failfast_work(ctrl);
643 nvme_kick_requeue_lists(ctrl);
644 } else if (new_state == NVME_CTRL_CONNECTING &&
645 old_state == NVME_CTRL_RESETTING) {
646 nvme_start_failfast_work(ctrl);
647 }
648 return changed;
649 }
650 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
651
652 /*
653 * Waits for the controller state to be resetting, or returns false if it is
654 * not possible to ever transition to that state.
655 */
nvme_wait_reset(struct nvme_ctrl * ctrl)656 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
657 {
658 wait_event(ctrl->state_wq,
659 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
660 nvme_state_terminal(ctrl));
661 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
662 }
663 EXPORT_SYMBOL_GPL(nvme_wait_reset);
664
nvme_free_ns_head(struct kref * ref)665 static void nvme_free_ns_head(struct kref *ref)
666 {
667 struct nvme_ns_head *head =
668 container_of(ref, struct nvme_ns_head, ref);
669
670 nvme_mpath_put_disk(head);
671 ida_free(&head->subsys->ns_ida, head->instance);
672 cleanup_srcu_struct(&head->srcu);
673 nvme_put_subsystem(head->subsys);
674 kfree(head->plids);
675 kfree(head);
676 }
677
nvme_tryget_ns_head(struct nvme_ns_head * head)678 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
679 {
680 return kref_get_unless_zero(&head->ref);
681 }
682
nvme_put_ns_head(struct nvme_ns_head * head)683 void nvme_put_ns_head(struct nvme_ns_head *head)
684 {
685 kref_put(&head->ref, nvme_free_ns_head);
686 }
687
nvme_free_ns(struct kref * kref)688 static void nvme_free_ns(struct kref *kref)
689 {
690 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
691
692 put_disk(ns->disk);
693 nvme_put_ns_head(ns->head);
694 nvme_put_ctrl(ns->ctrl);
695 kfree(ns);
696 }
697
nvme_get_ns(struct nvme_ns * ns)698 bool nvme_get_ns(struct nvme_ns *ns)
699 {
700 return kref_get_unless_zero(&ns->kref);
701 }
702
nvme_put_ns(struct nvme_ns * ns)703 void nvme_put_ns(struct nvme_ns *ns)
704 {
705 kref_put(&ns->kref, nvme_free_ns);
706 }
707 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
708
nvme_clear_nvme_request(struct request * req)709 static inline void nvme_clear_nvme_request(struct request *req)
710 {
711 nvme_req(req)->status = 0;
712 nvme_req(req)->retries = 0;
713 nvme_req(req)->flags = 0;
714 req->rq_flags |= RQF_DONTPREP;
715 }
716
717 /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)718 void nvme_init_request(struct request *req, struct nvme_command *cmd)
719 {
720 struct nvme_request *nr = nvme_req(req);
721 bool logging_enabled;
722
723 if (req->q->queuedata) {
724 struct nvme_ns *ns = req->q->disk->private_data;
725
726 logging_enabled = ns->head->passthru_err_log_enabled;
727 req->timeout = NVME_IO_TIMEOUT;
728 } else { /* no queuedata implies admin queue */
729 logging_enabled = nr->ctrl->passthru_err_log_enabled;
730 req->timeout = NVME_ADMIN_TIMEOUT;
731 }
732
733 if (!logging_enabled)
734 req->rq_flags |= RQF_QUIET;
735
736 /* passthru commands should let the driver set the SGL flags */
737 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
738
739 req->cmd_flags |= REQ_FAILFAST_DRIVER;
740 if (req->mq_hctx->type == HCTX_TYPE_POLL)
741 req->cmd_flags |= REQ_POLLED;
742 nvme_clear_nvme_request(req);
743 memcpy(nr->cmd, cmd, sizeof(*cmd));
744 }
745 EXPORT_SYMBOL_GPL(nvme_init_request);
746
747 /*
748 * For something we're not in a state to send to the device the default action
749 * is to busy it and retry it after the controller state is recovered. However,
750 * if the controller is deleting or if anything is marked for failfast or
751 * nvme multipath it is immediately failed.
752 *
753 * Note: commands used to initialize the controller will be marked for failfast.
754 * Note: nvme cli/ioctl commands are marked for failfast.
755 */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)756 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
757 struct request *rq)
758 {
759 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
760
761 if (state != NVME_CTRL_DELETING_NOIO &&
762 state != NVME_CTRL_DELETING &&
763 state != NVME_CTRL_DEAD &&
764 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
765 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
766 return BLK_STS_RESOURCE;
767
768 if (!(rq->rq_flags & RQF_DONTPREP))
769 nvme_clear_nvme_request(rq);
770
771 return nvme_host_path_error(rq);
772 }
773 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
774
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live,enum nvme_ctrl_state state)775 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
776 bool queue_live, enum nvme_ctrl_state state)
777 {
778 struct nvme_request *req = nvme_req(rq);
779
780 /*
781 * currently we have a problem sending passthru commands
782 * on the admin_q if the controller is not LIVE because we can't
783 * make sure that they are going out after the admin connect,
784 * controller enable and/or other commands in the initialization
785 * sequence. until the controller will be LIVE, fail with
786 * BLK_STS_RESOURCE so that they will be rescheduled.
787 */
788 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
789 return false;
790
791 if (ctrl->ops->flags & NVME_F_FABRICS) {
792 /*
793 * Only allow commands on a live queue, except for the connect
794 * command, which is require to set the queue live in the
795 * appropinquate states.
796 */
797 switch (state) {
798 case NVME_CTRL_CONNECTING:
799 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
800 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
801 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
802 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
803 return true;
804 break;
805 default:
806 break;
807 case NVME_CTRL_DEAD:
808 return false;
809 }
810 }
811
812 return queue_live;
813 }
814 EXPORT_SYMBOL_GPL(__nvme_check_ready);
815
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)816 static inline void nvme_setup_flush(struct nvme_ns *ns,
817 struct nvme_command *cmnd)
818 {
819 memset(cmnd, 0, sizeof(*cmnd));
820 cmnd->common.opcode = nvme_cmd_flush;
821 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
822 }
823
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)824 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
825 struct nvme_command *cmnd)
826 {
827 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
828 struct nvme_dsm_range *range;
829 struct bio *bio;
830
831 /*
832 * Some devices do not consider the DSM 'Number of Ranges' field when
833 * determining how much data to DMA. Always allocate memory for maximum
834 * number of segments to prevent device reading beyond end of buffer.
835 */
836 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
837
838 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
839 if (!range) {
840 /*
841 * If we fail allocation our range, fallback to the controller
842 * discard page. If that's also busy, it's safe to return
843 * busy, as we know we can make progress once that's freed.
844 */
845 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
846 return BLK_STS_RESOURCE;
847
848 range = page_address(ns->ctrl->discard_page);
849 }
850
851 if (queue_max_discard_segments(req->q) == 1) {
852 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
853 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
854
855 range[0].cattr = cpu_to_le32(0);
856 range[0].nlb = cpu_to_le32(nlb);
857 range[0].slba = cpu_to_le64(slba);
858 n = 1;
859 } else {
860 __rq_for_each_bio(bio, req) {
861 u64 slba = nvme_sect_to_lba(ns->head,
862 bio->bi_iter.bi_sector);
863 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
864
865 if (n < segments) {
866 range[n].cattr = cpu_to_le32(0);
867 range[n].nlb = cpu_to_le32(nlb);
868 range[n].slba = cpu_to_le64(slba);
869 }
870 n++;
871 }
872 }
873
874 if (WARN_ON_ONCE(n != segments)) {
875 if (virt_to_page(range) == ns->ctrl->discard_page)
876 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
877 else
878 kfree(range);
879 return BLK_STS_IOERR;
880 }
881
882 memset(cmnd, 0, sizeof(*cmnd));
883 cmnd->dsm.opcode = nvme_cmd_dsm;
884 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
885 cmnd->dsm.nr = cpu_to_le32(segments - 1);
886 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
887
888 bvec_set_virt(&req->special_vec, range, alloc_size);
889 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
890
891 return BLK_STS_OK;
892 }
893
nvme_set_app_tag(struct request * req,struct nvme_command * cmnd)894 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd)
895 {
896 cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag);
897 cmnd->rw.lbatm = cpu_to_le16(0xffff);
898 }
899
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)900 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
901 struct request *req)
902 {
903 u32 upper, lower;
904 u64 ref48;
905
906 /* both rw and write zeroes share the same reftag format */
907 switch (ns->head->guard_type) {
908 case NVME_NVM_NS_16B_GUARD:
909 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
910 break;
911 case NVME_NVM_NS_64B_GUARD:
912 ref48 = ext_pi_ref_tag(req);
913 lower = lower_32_bits(ref48);
914 upper = upper_32_bits(ref48);
915
916 cmnd->rw.reftag = cpu_to_le32(lower);
917 cmnd->rw.cdw3 = cpu_to_le32(upper);
918 break;
919 default:
920 break;
921 }
922 }
923
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)924 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
925 struct request *req, struct nvme_command *cmnd)
926 {
927 memset(cmnd, 0, sizeof(*cmnd));
928
929 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
930 return nvme_setup_discard(ns, req, cmnd);
931
932 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
933 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
934 cmnd->write_zeroes.slba =
935 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
936 cmnd->write_zeroes.length =
937 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
938
939 if (!(req->cmd_flags & REQ_NOUNMAP) &&
940 (ns->head->features & NVME_NS_DEAC))
941 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
942
943 if (nvme_ns_has_pi(ns->head)) {
944 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
945
946 switch (ns->head->pi_type) {
947 case NVME_NS_DPS_PI_TYPE1:
948 case NVME_NS_DPS_PI_TYPE2:
949 nvme_set_ref_tag(ns, cmnd, req);
950 break;
951 }
952 }
953
954 return BLK_STS_OK;
955 }
956
957 /*
958 * NVMe does not support a dedicated command to issue an atomic write. A write
959 * which does adhere to the device atomic limits will silently be executed
960 * non-atomically. The request issuer should ensure that the write is within
961 * the queue atomic writes limits, but just validate this in case it is not.
962 */
nvme_valid_atomic_write(struct request * req)963 static bool nvme_valid_atomic_write(struct request *req)
964 {
965 struct request_queue *q = req->q;
966 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
967
968 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
969 return false;
970
971 if (boundary_bytes) {
972 u64 mask = boundary_bytes - 1, imask = ~mask;
973 u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
974 u64 end = start + blk_rq_bytes(req) - 1;
975
976 /* If greater then must be crossing a boundary */
977 if (blk_rq_bytes(req) > boundary_bytes)
978 return false;
979
980 if ((start & imask) != (end & imask))
981 return false;
982 }
983
984 return true;
985 }
986
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)987 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
988 struct request *req, struct nvme_command *cmnd,
989 enum nvme_opcode op)
990 {
991 u16 control = 0;
992 u32 dsmgmt = 0;
993
994 if (req->cmd_flags & REQ_FUA)
995 control |= NVME_RW_FUA;
996 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
997 control |= NVME_RW_LR;
998
999 if (req->cmd_flags & REQ_RAHEAD)
1000 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
1001
1002 if (op == nvme_cmd_write && ns->head->nr_plids) {
1003 u16 write_stream = req->bio->bi_write_stream;
1004
1005 if (WARN_ON_ONCE(write_stream > ns->head->nr_plids))
1006 return BLK_STS_INVAL;
1007
1008 if (write_stream) {
1009 dsmgmt |= ns->head->plids[write_stream - 1] << 16;
1010 control |= NVME_RW_DTYPE_DPLCMT;
1011 }
1012 }
1013
1014 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
1015 return BLK_STS_INVAL;
1016
1017 cmnd->rw.opcode = op;
1018 cmnd->rw.flags = 0;
1019 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
1020 cmnd->rw.cdw2 = 0;
1021 cmnd->rw.cdw3 = 0;
1022 cmnd->rw.metadata = 0;
1023 cmnd->rw.slba =
1024 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1025 cmnd->rw.length =
1026 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1027 cmnd->rw.reftag = 0;
1028 cmnd->rw.lbat = 0;
1029 cmnd->rw.lbatm = 0;
1030
1031 if (ns->head->ms) {
1032 /*
1033 * If formatted with metadata, the block layer always provides a
1034 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
1035 * we enable the PRACT bit for protection information or set the
1036 * namespace capacity to zero to prevent any I/O.
1037 */
1038 if (!blk_integrity_rq(req)) {
1039 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1040 return BLK_STS_NOTSUPP;
1041 control |= NVME_RW_PRINFO_PRACT;
1042 }
1043
1044 if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD))
1045 control |= NVME_RW_PRINFO_PRCHK_GUARD;
1046 if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) {
1047 control |= NVME_RW_PRINFO_PRCHK_REF;
1048 if (op == nvme_cmd_zone_append)
1049 control |= NVME_RW_APPEND_PIREMAP;
1050 nvme_set_ref_tag(ns, cmnd, req);
1051 }
1052 if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) {
1053 control |= NVME_RW_PRINFO_PRCHK_APP;
1054 nvme_set_app_tag(req, cmnd);
1055 }
1056 }
1057
1058 cmnd->rw.control = cpu_to_le16(control);
1059 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1060 return 0;
1061 }
1062
nvme_cleanup_cmd(struct request * req)1063 void nvme_cleanup_cmd(struct request *req)
1064 {
1065 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1066 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1067
1068 if (req->special_vec.bv_page == ctrl->discard_page)
1069 clear_bit_unlock(0, &ctrl->discard_page_busy);
1070 else
1071 kfree(bvec_virt(&req->special_vec));
1072 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1073 }
1074 }
1075 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1076
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)1077 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1078 {
1079 struct nvme_command *cmd = nvme_req(req)->cmd;
1080 blk_status_t ret = BLK_STS_OK;
1081
1082 if (!(req->rq_flags & RQF_DONTPREP))
1083 nvme_clear_nvme_request(req);
1084
1085 switch (req_op(req)) {
1086 case REQ_OP_DRV_IN:
1087 case REQ_OP_DRV_OUT:
1088 /* these are setup prior to execution in nvme_init_request() */
1089 break;
1090 case REQ_OP_FLUSH:
1091 nvme_setup_flush(ns, cmd);
1092 break;
1093 case REQ_OP_ZONE_RESET_ALL:
1094 case REQ_OP_ZONE_RESET:
1095 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1096 break;
1097 case REQ_OP_ZONE_OPEN:
1098 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1099 break;
1100 case REQ_OP_ZONE_CLOSE:
1101 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1102 break;
1103 case REQ_OP_ZONE_FINISH:
1104 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1105 break;
1106 case REQ_OP_WRITE_ZEROES:
1107 ret = nvme_setup_write_zeroes(ns, req, cmd);
1108 break;
1109 case REQ_OP_DISCARD:
1110 ret = nvme_setup_discard(ns, req, cmd);
1111 break;
1112 case REQ_OP_READ:
1113 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1114 break;
1115 case REQ_OP_WRITE:
1116 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1117 break;
1118 case REQ_OP_ZONE_APPEND:
1119 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1120 break;
1121 default:
1122 WARN_ON_ONCE(1);
1123 return BLK_STS_IOERR;
1124 }
1125
1126 cmd->common.command_id = nvme_cid(req);
1127 trace_nvme_setup_cmd(req, cmd);
1128 return ret;
1129 }
1130 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1131
1132 /*
1133 * Return values:
1134 * 0: success
1135 * >0: nvme controller's cqe status response
1136 * <0: kernel error in lieu of controller response
1137 */
nvme_execute_rq(struct request * rq,bool at_head)1138 int nvme_execute_rq(struct request *rq, bool at_head)
1139 {
1140 blk_status_t status;
1141
1142 status = blk_execute_rq(rq, at_head);
1143 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1144 return -EINTR;
1145 if (nvme_req(rq)->status)
1146 return nvme_req(rq)->status;
1147 return blk_status_to_errno(status);
1148 }
1149 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1150
1151 /*
1152 * Returns 0 on success. If the result is negative, it's a Linux error code;
1153 * if the result is positive, it's an NVM Express status code
1154 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,nvme_submit_flags_t flags)1155 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1156 union nvme_result *result, void *buffer, unsigned bufflen,
1157 int qid, nvme_submit_flags_t flags)
1158 {
1159 struct request *req;
1160 int ret;
1161 blk_mq_req_flags_t blk_flags = 0;
1162
1163 if (flags & NVME_SUBMIT_NOWAIT)
1164 blk_flags |= BLK_MQ_REQ_NOWAIT;
1165 if (flags & NVME_SUBMIT_RESERVED)
1166 blk_flags |= BLK_MQ_REQ_RESERVED;
1167 if (qid == NVME_QID_ANY)
1168 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1169 else
1170 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1171 qid - 1);
1172
1173 if (IS_ERR(req))
1174 return PTR_ERR(req);
1175 nvme_init_request(req, cmd);
1176 if (flags & NVME_SUBMIT_RETRY)
1177 req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1178
1179 if (buffer && bufflen) {
1180 ret = blk_rq_map_kern(req, buffer, bufflen, GFP_KERNEL);
1181 if (ret)
1182 goto out;
1183 }
1184
1185 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1186 if (result && ret >= 0)
1187 *result = nvme_req(req)->result;
1188 out:
1189 blk_mq_free_request(req);
1190 return ret;
1191 }
1192 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1193
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1194 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1195 void *buffer, unsigned bufflen)
1196 {
1197 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1198 NVME_QID_ANY, 0);
1199 }
1200 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1201
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1202 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1203 {
1204 u32 effects = 0;
1205
1206 if (ns) {
1207 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1208 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1209 dev_warn_once(ctrl->device,
1210 "IO command:%02x has unusual effects:%08x\n",
1211 opcode, effects);
1212
1213 /*
1214 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1215 * which would deadlock when done on an I/O command. Note that
1216 * We already warn about an unusual effect above.
1217 */
1218 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1219 } else {
1220 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1221
1222 /* Ignore execution restrictions if any relaxation bits are set */
1223 if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1224 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1225 }
1226
1227 return effects;
1228 }
1229 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1230
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1231 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1232 {
1233 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1234
1235 /*
1236 * For simplicity, IO to all namespaces is quiesced even if the command
1237 * effects say only one namespace is affected.
1238 */
1239 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1240 mutex_lock(&ctrl->scan_lock);
1241 mutex_lock(&ctrl->subsys->lock);
1242 nvme_mpath_start_freeze(ctrl->subsys);
1243 nvme_mpath_wait_freeze(ctrl->subsys);
1244 nvme_start_freeze(ctrl);
1245 nvme_wait_freeze(ctrl);
1246 }
1247 return effects;
1248 }
1249 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1250
nvme_passthru_end(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 effects,struct nvme_command * cmd,int status)1251 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1252 struct nvme_command *cmd, int status)
1253 {
1254 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1255 nvme_unfreeze(ctrl);
1256 nvme_mpath_unfreeze(ctrl->subsys);
1257 mutex_unlock(&ctrl->subsys->lock);
1258 mutex_unlock(&ctrl->scan_lock);
1259 }
1260 if (effects & NVME_CMD_EFFECTS_CCC) {
1261 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1262 &ctrl->flags)) {
1263 dev_info(ctrl->device,
1264 "controller capabilities changed, reset may be required to take effect.\n");
1265 }
1266 }
1267 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1268 nvme_queue_scan(ctrl);
1269 flush_work(&ctrl->scan_work);
1270 }
1271 if (ns)
1272 return;
1273
1274 switch (cmd->common.opcode) {
1275 case nvme_admin_set_features:
1276 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1277 case NVME_FEAT_KATO:
1278 /*
1279 * Keep alive commands interval on the host should be
1280 * updated when KATO is modified by Set Features
1281 * commands.
1282 */
1283 if (!status)
1284 nvme_update_keep_alive(ctrl, cmd);
1285 break;
1286 default:
1287 break;
1288 }
1289 break;
1290 default:
1291 break;
1292 }
1293 }
1294 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1295
1296 /*
1297 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1298 *
1299 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1300 * accounting for transport roundtrip times [..].
1301 */
nvme_keep_alive_work_period(struct nvme_ctrl * ctrl)1302 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1303 {
1304 unsigned long delay = ctrl->kato * HZ / 2;
1305
1306 /*
1307 * When using Traffic Based Keep Alive, we need to run
1308 * nvme_keep_alive_work at twice the normal frequency, as one
1309 * command completion can postpone sending a keep alive command
1310 * by up to twice the delay between runs.
1311 */
1312 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1313 delay /= 2;
1314 return delay;
1315 }
1316
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1317 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1318 {
1319 unsigned long now = jiffies;
1320 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1321 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1322
1323 if (time_after(now, ka_next_check_tm))
1324 delay = 0;
1325 else
1326 delay = ka_next_check_tm - now;
1327
1328 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1329 }
1330
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1331 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1332 blk_status_t status)
1333 {
1334 struct nvme_ctrl *ctrl = rq->end_io_data;
1335 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1336 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1337 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1338
1339 /*
1340 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1341 * at the desired frequency.
1342 */
1343 if (rtt <= delay) {
1344 delay -= rtt;
1345 } else {
1346 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1347 jiffies_to_msecs(rtt));
1348 delay = 0;
1349 }
1350
1351 blk_mq_free_request(rq);
1352
1353 if (status) {
1354 dev_err(ctrl->device,
1355 "failed nvme_keep_alive_end_io error=%d\n",
1356 status);
1357 return RQ_END_IO_NONE;
1358 }
1359
1360 ctrl->ka_last_check_time = jiffies;
1361 ctrl->comp_seen = false;
1362 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1363 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1364 return RQ_END_IO_NONE;
1365 }
1366
nvme_keep_alive_work(struct work_struct * work)1367 static void nvme_keep_alive_work(struct work_struct *work)
1368 {
1369 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1370 struct nvme_ctrl, ka_work);
1371 bool comp_seen = ctrl->comp_seen;
1372 struct request *rq;
1373
1374 ctrl->ka_last_check_time = jiffies;
1375
1376 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1377 dev_dbg(ctrl->device,
1378 "reschedule traffic based keep-alive timer\n");
1379 ctrl->comp_seen = false;
1380 nvme_queue_keep_alive_work(ctrl);
1381 return;
1382 }
1383
1384 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1385 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1386 if (IS_ERR(rq)) {
1387 /* allocation failure, reset the controller */
1388 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1389 nvme_reset_ctrl(ctrl);
1390 return;
1391 }
1392 nvme_init_request(rq, &ctrl->ka_cmd);
1393
1394 rq->timeout = ctrl->kato * HZ;
1395 rq->end_io = nvme_keep_alive_end_io;
1396 rq->end_io_data = ctrl;
1397 blk_execute_rq_nowait(rq, false);
1398 }
1399
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1400 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1401 {
1402 if (unlikely(ctrl->kato == 0))
1403 return;
1404
1405 nvme_queue_keep_alive_work(ctrl);
1406 }
1407
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1408 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1409 {
1410 if (unlikely(ctrl->kato == 0))
1411 return;
1412
1413 cancel_delayed_work_sync(&ctrl->ka_work);
1414 }
1415 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1416
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1417 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1418 struct nvme_command *cmd)
1419 {
1420 unsigned int new_kato =
1421 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1422
1423 dev_info(ctrl->device,
1424 "keep alive interval updated from %u ms to %u ms\n",
1425 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1426
1427 nvme_stop_keep_alive(ctrl);
1428 ctrl->kato = new_kato;
1429 nvme_start_keep_alive(ctrl);
1430 }
1431
nvme_id_cns_ok(struct nvme_ctrl * ctrl,u8 cns)1432 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1433 {
1434 /*
1435 * The CNS field occupies a full byte starting with NVMe 1.2
1436 */
1437 if (ctrl->vs >= NVME_VS(1, 2, 0))
1438 return true;
1439
1440 /*
1441 * NVMe 1.1 expanded the CNS value to two bits, which means values
1442 * larger than that could get truncated and treated as an incorrect
1443 * value.
1444 *
1445 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1446 * compliance, so they need to be quirked here.
1447 */
1448 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1449 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1450 return cns <= 3;
1451
1452 /*
1453 * NVMe 1.0 used a single bit for the CNS value.
1454 */
1455 return cns <= 1;
1456 }
1457
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1458 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1459 {
1460 struct nvme_command c = { };
1461 int error;
1462
1463 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1464 c.identify.opcode = nvme_admin_identify;
1465 c.identify.cns = NVME_ID_CNS_CTRL;
1466
1467 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1468 if (!*id)
1469 return -ENOMEM;
1470
1471 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1472 sizeof(struct nvme_id_ctrl));
1473 if (error) {
1474 kfree(*id);
1475 *id = NULL;
1476 }
1477 return error;
1478 }
1479
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1480 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1481 struct nvme_ns_id_desc *cur, bool *csi_seen)
1482 {
1483 const char *warn_str = "ctrl returned bogus length:";
1484 void *data = cur;
1485
1486 switch (cur->nidt) {
1487 case NVME_NIDT_EUI64:
1488 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1489 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1490 warn_str, cur->nidl);
1491 return -1;
1492 }
1493 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1494 return NVME_NIDT_EUI64_LEN;
1495 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1496 return NVME_NIDT_EUI64_LEN;
1497 case NVME_NIDT_NGUID:
1498 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1499 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1500 warn_str, cur->nidl);
1501 return -1;
1502 }
1503 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1504 return NVME_NIDT_NGUID_LEN;
1505 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1506 return NVME_NIDT_NGUID_LEN;
1507 case NVME_NIDT_UUID:
1508 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1509 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1510 warn_str, cur->nidl);
1511 return -1;
1512 }
1513 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1514 return NVME_NIDT_UUID_LEN;
1515 uuid_copy(&ids->uuid, data + sizeof(*cur));
1516 return NVME_NIDT_UUID_LEN;
1517 case NVME_NIDT_CSI:
1518 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1519 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1520 warn_str, cur->nidl);
1521 return -1;
1522 }
1523 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1524 *csi_seen = true;
1525 return NVME_NIDT_CSI_LEN;
1526 default:
1527 /* Skip unknown types */
1528 return cur->nidl;
1529 }
1530 }
1531
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1532 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1533 struct nvme_ns_info *info)
1534 {
1535 struct nvme_command c = { };
1536 bool csi_seen = false;
1537 int status, pos, len;
1538 void *data;
1539
1540 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1541 return 0;
1542 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1543 return 0;
1544
1545 c.identify.opcode = nvme_admin_identify;
1546 c.identify.nsid = cpu_to_le32(info->nsid);
1547 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1548
1549 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1550 if (!data)
1551 return -ENOMEM;
1552
1553 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1554 NVME_IDENTIFY_DATA_SIZE);
1555 if (status) {
1556 dev_warn(ctrl->device,
1557 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1558 info->nsid, status);
1559 goto free_data;
1560 }
1561
1562 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1563 struct nvme_ns_id_desc *cur = data + pos;
1564
1565 if (cur->nidl == 0)
1566 break;
1567
1568 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1569 if (len < 0)
1570 break;
1571
1572 len += sizeof(*cur);
1573 }
1574
1575 if (nvme_multi_css(ctrl) && !csi_seen) {
1576 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1577 info->nsid);
1578 status = -EINVAL;
1579 }
1580
1581 free_data:
1582 kfree(data);
1583 return status;
1584 }
1585
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1586 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1587 struct nvme_id_ns **id)
1588 {
1589 struct nvme_command c = { };
1590 int error;
1591
1592 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1593 c.identify.opcode = nvme_admin_identify;
1594 c.identify.nsid = cpu_to_le32(nsid);
1595 c.identify.cns = NVME_ID_CNS_NS;
1596
1597 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1598 if (!*id)
1599 return -ENOMEM;
1600
1601 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1602 if (error) {
1603 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1604 kfree(*id);
1605 *id = NULL;
1606 }
1607 return error;
1608 }
1609
nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1610 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1611 struct nvme_ns_info *info)
1612 {
1613 struct nvme_ns_ids *ids = &info->ids;
1614 struct nvme_id_ns *id;
1615 int ret;
1616
1617 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1618 if (ret)
1619 return ret;
1620
1621 if (id->ncap == 0) {
1622 /* namespace not allocated or attached */
1623 info->is_removed = true;
1624 ret = -ENODEV;
1625 goto error;
1626 }
1627
1628 info->anagrpid = id->anagrpid;
1629 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1630 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1631 info->is_ready = true;
1632 info->endgid = le16_to_cpu(id->endgid);
1633 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1634 dev_info(ctrl->device,
1635 "Ignoring bogus Namespace Identifiers\n");
1636 } else {
1637 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1638 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1639 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1640 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1641 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1642 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1643 }
1644
1645 error:
1646 kfree(id);
1647 return ret;
1648 }
1649
nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1650 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1651 struct nvme_ns_info *info)
1652 {
1653 struct nvme_id_ns_cs_indep *id;
1654 struct nvme_command c = {
1655 .identify.opcode = nvme_admin_identify,
1656 .identify.nsid = cpu_to_le32(info->nsid),
1657 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1658 };
1659 int ret;
1660
1661 id = kmalloc(sizeof(*id), GFP_KERNEL);
1662 if (!id)
1663 return -ENOMEM;
1664
1665 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1666 if (!ret) {
1667 info->anagrpid = id->anagrpid;
1668 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1669 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1670 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1671 info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1672 info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1673 info->endgid = le16_to_cpu(id->endgid);
1674 }
1675 kfree(id);
1676 return ret;
1677 }
1678
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1679 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1680 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1681 {
1682 union nvme_result res = { 0 };
1683 struct nvme_command c = { };
1684 int ret;
1685
1686 c.features.opcode = op;
1687 c.features.fid = cpu_to_le32(fid);
1688 c.features.dword11 = cpu_to_le32(dword11);
1689
1690 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1691 buffer, buflen, NVME_QID_ANY, 0);
1692 if (ret >= 0 && result)
1693 *result = le32_to_cpu(res.u32);
1694 return ret;
1695 }
1696
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,void * result)1697 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1698 unsigned int dword11, void *buffer, size_t buflen,
1699 void *result)
1700 {
1701 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1702 buflen, result);
1703 }
1704 EXPORT_SYMBOL_GPL(nvme_set_features);
1705
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,void * result)1706 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1707 unsigned int dword11, void *buffer, size_t buflen,
1708 void *result)
1709 {
1710 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1711 buflen, result);
1712 }
1713 EXPORT_SYMBOL_GPL(nvme_get_features);
1714
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1715 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1716 {
1717 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1718 u32 result;
1719 int status, nr_io_queues;
1720
1721 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1722 &result);
1723
1724 /*
1725 * It's either a kernel error or the host observed a connection
1726 * lost. In either case it's not possible communicate with the
1727 * controller and thus enter the error code path.
1728 */
1729 if (status < 0 || status == NVME_SC_HOST_PATH_ERROR)
1730 return status;
1731
1732 /*
1733 * Degraded controllers might return an error when setting the queue
1734 * count. We still want to be able to bring them online and offer
1735 * access to the admin queue, as that might be only way to fix them up.
1736 */
1737 if (status > 0) {
1738 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1739 *count = 0;
1740 } else {
1741 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1742 *count = min(*count, nr_io_queues);
1743 }
1744
1745 return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1748
1749 #define NVME_AEN_SUPPORTED \
1750 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1751 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1752
nvme_enable_aen(struct nvme_ctrl * ctrl)1753 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1754 {
1755 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1756 int status;
1757
1758 if (!supported_aens)
1759 return;
1760
1761 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1762 NULL, 0, &result);
1763 if (status)
1764 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1765 supported_aens);
1766
1767 queue_work(nvme_wq, &ctrl->async_event_work);
1768 }
1769
nvme_ns_open(struct nvme_ns * ns)1770 static int nvme_ns_open(struct nvme_ns *ns)
1771 {
1772
1773 /* should never be called due to GENHD_FL_HIDDEN */
1774 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1775 goto fail;
1776 if (!nvme_get_ns(ns))
1777 goto fail;
1778 if (!try_module_get(ns->ctrl->ops->module))
1779 goto fail_put_ns;
1780
1781 return 0;
1782
1783 fail_put_ns:
1784 nvme_put_ns(ns);
1785 fail:
1786 return -ENXIO;
1787 }
1788
nvme_ns_release(struct nvme_ns * ns)1789 static void nvme_ns_release(struct nvme_ns *ns)
1790 {
1791
1792 module_put(ns->ctrl->ops->module);
1793 nvme_put_ns(ns);
1794 }
1795
nvme_open(struct gendisk * disk,blk_mode_t mode)1796 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1797 {
1798 return nvme_ns_open(disk->private_data);
1799 }
1800
nvme_release(struct gendisk * disk)1801 static void nvme_release(struct gendisk *disk)
1802 {
1803 nvme_ns_release(disk->private_data);
1804 }
1805
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1806 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1807 {
1808 /* some standard values */
1809 geo->heads = 1 << 6;
1810 geo->sectors = 1 << 5;
1811 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1812 return 0;
1813 }
1814
nvme_init_integrity(struct nvme_ns_head * head,struct queue_limits * lim,struct nvme_ns_info * info)1815 static bool nvme_init_integrity(struct nvme_ns_head *head,
1816 struct queue_limits *lim, struct nvme_ns_info *info)
1817 {
1818 struct blk_integrity *bi = &lim->integrity;
1819
1820 memset(bi, 0, sizeof(*bi));
1821
1822 if (!head->ms)
1823 return true;
1824
1825 /*
1826 * PI can always be supported as we can ask the controller to simply
1827 * insert/strip it, which is not possible for other kinds of metadata.
1828 */
1829 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1830 !(head->features & NVME_NS_METADATA_SUPPORTED))
1831 return nvme_ns_has_pi(head);
1832
1833 switch (head->pi_type) {
1834 case NVME_NS_DPS_PI_TYPE3:
1835 switch (head->guard_type) {
1836 case NVME_NVM_NS_16B_GUARD:
1837 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1838 bi->tag_size = sizeof(u16) + sizeof(u32);
1839 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1840 break;
1841 case NVME_NVM_NS_64B_GUARD:
1842 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1843 bi->tag_size = sizeof(u16) + 6;
1844 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1845 break;
1846 default:
1847 break;
1848 }
1849 break;
1850 case NVME_NS_DPS_PI_TYPE1:
1851 case NVME_NS_DPS_PI_TYPE2:
1852 switch (head->guard_type) {
1853 case NVME_NVM_NS_16B_GUARD:
1854 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1855 bi->tag_size = sizeof(u16);
1856 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1857 BLK_INTEGRITY_REF_TAG;
1858 break;
1859 case NVME_NVM_NS_64B_GUARD:
1860 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1861 bi->tag_size = sizeof(u16);
1862 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1863 BLK_INTEGRITY_REF_TAG;
1864 break;
1865 default:
1866 break;
1867 }
1868 break;
1869 default:
1870 break;
1871 }
1872
1873 bi->metadata_size = head->ms;
1874 if (bi->csum_type) {
1875 bi->pi_tuple_size = head->pi_size;
1876 bi->pi_offset = info->pi_offset;
1877 }
1878 return true;
1879 }
1880
nvme_config_discard(struct nvme_ns * ns,struct queue_limits * lim)1881 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1882 {
1883 struct nvme_ctrl *ctrl = ns->ctrl;
1884
1885 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1886 lim->max_hw_discard_sectors =
1887 nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1888 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1889 lim->max_hw_discard_sectors = UINT_MAX;
1890 else
1891 lim->max_hw_discard_sectors = 0;
1892
1893 lim->discard_granularity = lim->logical_block_size;
1894
1895 if (ctrl->dmrl)
1896 lim->max_discard_segments = ctrl->dmrl;
1897 else
1898 lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1899 }
1900
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1901 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1902 {
1903 return uuid_equal(&a->uuid, &b->uuid) &&
1904 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1905 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1906 a->csi == b->csi;
1907 }
1908
nvme_identify_ns_nvm(struct nvme_ctrl * ctrl,unsigned int nsid,struct nvme_id_ns_nvm ** nvmp)1909 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1910 struct nvme_id_ns_nvm **nvmp)
1911 {
1912 struct nvme_command c = {
1913 .identify.opcode = nvme_admin_identify,
1914 .identify.nsid = cpu_to_le32(nsid),
1915 .identify.cns = NVME_ID_CNS_CS_NS,
1916 .identify.csi = NVME_CSI_NVM,
1917 };
1918 struct nvme_id_ns_nvm *nvm;
1919 int ret;
1920
1921 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1922 if (!nvm)
1923 return -ENOMEM;
1924
1925 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1926 if (ret)
1927 kfree(nvm);
1928 else
1929 *nvmp = nvm;
1930 return ret;
1931 }
1932
nvme_configure_pi_elbas(struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm)1933 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1934 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1935 {
1936 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1937 u8 guard_type;
1938
1939 /* no support for storage tag formats right now */
1940 if (nvme_elbaf_sts(elbaf))
1941 return;
1942
1943 guard_type = nvme_elbaf_guard_type(elbaf);
1944 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1945 guard_type == NVME_NVM_NS_QTYPE_GUARD)
1946 guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1947
1948 head->guard_type = guard_type;
1949 switch (head->guard_type) {
1950 case NVME_NVM_NS_64B_GUARD:
1951 head->pi_size = sizeof(struct crc64_pi_tuple);
1952 break;
1953 case NVME_NVM_NS_16B_GUARD:
1954 head->pi_size = sizeof(struct t10_pi_tuple);
1955 break;
1956 default:
1957 break;
1958 }
1959 }
1960
nvme_configure_metadata(struct nvme_ctrl * ctrl,struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm,struct nvme_ns_info * info)1961 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1962 struct nvme_ns_head *head, struct nvme_id_ns *id,
1963 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1964 {
1965 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1966 head->pi_type = 0;
1967 head->pi_size = 0;
1968 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1969 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1970 return;
1971
1972 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1973 nvme_configure_pi_elbas(head, id, nvm);
1974 } else {
1975 head->pi_size = sizeof(struct t10_pi_tuple);
1976 head->guard_type = NVME_NVM_NS_16B_GUARD;
1977 }
1978
1979 if (head->pi_size && head->ms >= head->pi_size)
1980 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1981 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1982 if (disable_pi_offsets)
1983 head->pi_type = 0;
1984 else
1985 info->pi_offset = head->ms - head->pi_size;
1986 }
1987
1988 if (ctrl->ops->flags & NVME_F_FABRICS) {
1989 /*
1990 * The NVMe over Fabrics specification only supports metadata as
1991 * part of the extended data LBA. We rely on HCA/HBA support to
1992 * remap the separate metadata buffer from the block layer.
1993 */
1994 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1995 return;
1996
1997 head->features |= NVME_NS_EXT_LBAS;
1998
1999 /*
2000 * The current fabrics transport drivers support namespace
2001 * metadata formats only if nvme_ns_has_pi() returns true.
2002 * Suppress support for all other formats so the namespace will
2003 * have a 0 capacity and not be usable through the block stack.
2004 *
2005 * Note, this check will need to be modified if any drivers
2006 * gain the ability to use other metadata formats.
2007 */
2008 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
2009 head->features |= NVME_NS_METADATA_SUPPORTED;
2010 } else {
2011 /*
2012 * For PCIe controllers, we can't easily remap the separate
2013 * metadata buffer from the block layer and thus require a
2014 * separate metadata buffer for block layer metadata/PI support.
2015 * We allow extended LBAs for the passthrough interface, though.
2016 */
2017 if (id->flbas & NVME_NS_FLBAS_META_EXT)
2018 head->features |= NVME_NS_EXT_LBAS;
2019 else
2020 head->features |= NVME_NS_METADATA_SUPPORTED;
2021 }
2022 }
2023
2024
nvme_configure_atomic_write(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim,u32 bs)2025 static u32 nvme_configure_atomic_write(struct nvme_ns *ns,
2026 struct nvme_id_ns *id, struct queue_limits *lim, u32 bs)
2027 {
2028 u32 atomic_bs, boundary = 0;
2029
2030 /*
2031 * We do not support an offset for the atomic boundaries.
2032 */
2033 if (id->nabo)
2034 return bs;
2035
2036 if ((id->nsfeat & NVME_NS_FEAT_ATOMICS) && id->nawupf) {
2037 /*
2038 * Use the per-namespace atomic write unit when available.
2039 */
2040 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2041 if (id->nabspf)
2042 boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2043 } else {
2044 /*
2045 * Use the controller wide atomic write unit. This sucks
2046 * because the limit is defined in terms of logical blocks while
2047 * namespaces can have different formats, and because there is
2048 * no clear language in the specification prohibiting different
2049 * values for different controllers in the subsystem.
2050 */
2051 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2052 }
2053
2054 lim->atomic_write_hw_max = atomic_bs;
2055 lim->atomic_write_hw_boundary = boundary;
2056 lim->atomic_write_hw_unit_min = bs;
2057 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2058 lim->features |= BLK_FEAT_ATOMIC_WRITES;
2059 return atomic_bs;
2060 }
2061
nvme_max_drv_segments(struct nvme_ctrl * ctrl)2062 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2063 {
2064 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2065 }
2066
nvme_set_ctrl_limits(struct nvme_ctrl * ctrl,struct queue_limits * lim)2067 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2068 struct queue_limits *lim)
2069 {
2070 lim->max_hw_sectors = ctrl->max_hw_sectors;
2071 lim->max_segments = min_t(u32, USHRT_MAX,
2072 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2073 lim->max_integrity_segments = ctrl->max_integrity_segments;
2074 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2075 lim->max_segment_size = UINT_MAX;
2076 lim->dma_alignment = 3;
2077 }
2078
nvme_update_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2079 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2080 struct queue_limits *lim)
2081 {
2082 struct nvme_ns_head *head = ns->head;
2083 u32 bs = 1U << head->lba_shift;
2084 u32 atomic_bs, phys_bs, io_opt = 0;
2085 bool valid = true;
2086
2087 /*
2088 * The block layer can't support LBA sizes larger than the page size
2089 * or smaller than a sector size yet, so catch this early and don't
2090 * allow block I/O.
2091 */
2092 if (blk_validate_block_size(bs)) {
2093 bs = (1 << 9);
2094 valid = false;
2095 }
2096
2097 phys_bs = bs;
2098 atomic_bs = nvme_configure_atomic_write(ns, id, lim, bs);
2099
2100 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2101 /* NPWG = Namespace Preferred Write Granularity */
2102 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2103 /* NOWS = Namespace Optimal Write Size */
2104 if (id->nows)
2105 io_opt = bs * (1 + le16_to_cpu(id->nows));
2106 }
2107
2108 /*
2109 * Linux filesystems assume writing a single physical block is
2110 * an atomic operation. Hence limit the physical block size to the
2111 * value of the Atomic Write Unit Power Fail parameter.
2112 */
2113 lim->logical_block_size = bs;
2114 lim->physical_block_size = min(phys_bs, atomic_bs);
2115 lim->io_min = phys_bs;
2116 lim->io_opt = io_opt;
2117 if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2118 (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2119 lim->max_write_zeroes_sectors = UINT_MAX;
2120 else
2121 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2122 return valid;
2123 }
2124
nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)2125 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2126 {
2127 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2128 }
2129
nvme_first_scan(struct gendisk * disk)2130 static inline bool nvme_first_scan(struct gendisk *disk)
2131 {
2132 /* nvme_alloc_ns() scans the disk prior to adding it */
2133 return !disk_live(disk);
2134 }
2135
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2136 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2137 struct queue_limits *lim)
2138 {
2139 struct nvme_ctrl *ctrl = ns->ctrl;
2140 u32 iob;
2141
2142 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2143 is_power_of_2(ctrl->max_hw_sectors))
2144 iob = ctrl->max_hw_sectors;
2145 else
2146 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2147
2148 if (!iob)
2149 return;
2150
2151 if (!is_power_of_2(iob)) {
2152 if (nvme_first_scan(ns->disk))
2153 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2154 ns->disk->disk_name, iob);
2155 return;
2156 }
2157
2158 if (blk_queue_is_zoned(ns->disk->queue)) {
2159 if (nvme_first_scan(ns->disk))
2160 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2161 ns->disk->disk_name);
2162 return;
2163 }
2164
2165 lim->chunk_sectors = iob;
2166 }
2167
nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)2168 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2169 struct nvme_ns_info *info)
2170 {
2171 struct queue_limits lim;
2172 unsigned int memflags;
2173 int ret;
2174
2175 lim = queue_limits_start_update(ns->disk->queue);
2176 nvme_set_ctrl_limits(ns->ctrl, &lim);
2177
2178 memflags = blk_mq_freeze_queue(ns->disk->queue);
2179 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2180 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2181 blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2182
2183 /* Hide the block-interface for these devices */
2184 if (!ret)
2185 ret = -ENODEV;
2186 return ret;
2187 }
2188
nvme_query_fdp_granularity(struct nvme_ctrl * ctrl,struct nvme_ns_info * info,u8 fdp_idx)2189 static int nvme_query_fdp_granularity(struct nvme_ctrl *ctrl,
2190 struct nvme_ns_info *info, u8 fdp_idx)
2191 {
2192 struct nvme_fdp_config_log hdr, *h;
2193 struct nvme_fdp_config_desc *desc;
2194 size_t size = sizeof(hdr);
2195 void *log, *end;
2196 int i, n, ret;
2197
2198 ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2199 NVME_CSI_NVM, &hdr, size, 0, info->endgid);
2200 if (ret) {
2201 dev_warn(ctrl->device,
2202 "FDP configs log header status:0x%x endgid:%d\n", ret,
2203 info->endgid);
2204 return ret;
2205 }
2206
2207 size = le32_to_cpu(hdr.sze);
2208 if (size > PAGE_SIZE * MAX_ORDER_NR_PAGES) {
2209 dev_warn(ctrl->device, "FDP config size too large:%zu\n",
2210 size);
2211 return 0;
2212 }
2213
2214 h = kvmalloc(size, GFP_KERNEL);
2215 if (!h)
2216 return -ENOMEM;
2217
2218 ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2219 NVME_CSI_NVM, h, size, 0, info->endgid);
2220 if (ret) {
2221 dev_warn(ctrl->device,
2222 "FDP configs log status:0x%x endgid:%d\n", ret,
2223 info->endgid);
2224 goto out;
2225 }
2226
2227 n = le16_to_cpu(h->numfdpc) + 1;
2228 if (fdp_idx > n) {
2229 dev_warn(ctrl->device, "FDP index:%d out of range:%d\n",
2230 fdp_idx, n);
2231 /* Proceed without registering FDP streams */
2232 ret = 0;
2233 goto out;
2234 }
2235
2236 log = h + 1;
2237 desc = log;
2238 end = log + size - sizeof(*h);
2239 for (i = 0; i < fdp_idx; i++) {
2240 log += le16_to_cpu(desc->dsze);
2241 desc = log;
2242 if (log >= end) {
2243 dev_warn(ctrl->device,
2244 "FDP invalid config descriptor list\n");
2245 ret = 0;
2246 goto out;
2247 }
2248 }
2249
2250 if (le32_to_cpu(desc->nrg) > 1) {
2251 dev_warn(ctrl->device, "FDP NRG > 1 not supported\n");
2252 ret = 0;
2253 goto out;
2254 }
2255
2256 info->runs = le64_to_cpu(desc->runs);
2257 out:
2258 kvfree(h);
2259 return ret;
2260 }
2261
nvme_query_fdp_info(struct nvme_ns * ns,struct nvme_ns_info * info)2262 static int nvme_query_fdp_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2263 {
2264 struct nvme_ns_head *head = ns->head;
2265 struct nvme_ctrl *ctrl = ns->ctrl;
2266 struct nvme_fdp_ruh_status *ruhs;
2267 struct nvme_fdp_config fdp;
2268 struct nvme_command c = {};
2269 size_t size;
2270 int i, ret;
2271
2272 /*
2273 * The FDP configuration is static for the lifetime of the namespace,
2274 * so return immediately if we've already registered this namespace's
2275 * streams.
2276 */
2277 if (head->nr_plids)
2278 return 0;
2279
2280 ret = nvme_get_features(ctrl, NVME_FEAT_FDP, info->endgid, NULL, 0,
2281 &fdp);
2282 if (ret) {
2283 dev_warn(ctrl->device, "FDP get feature status:0x%x\n", ret);
2284 return ret;
2285 }
2286
2287 if (!(fdp.flags & FDPCFG_FDPE))
2288 return 0;
2289
2290 ret = nvme_query_fdp_granularity(ctrl, info, fdp.fdpcidx);
2291 if (!info->runs)
2292 return ret;
2293
2294 size = struct_size(ruhs, ruhsd, S8_MAX - 1);
2295 ruhs = kzalloc(size, GFP_KERNEL);
2296 if (!ruhs)
2297 return -ENOMEM;
2298
2299 c.imr.opcode = nvme_cmd_io_mgmt_recv;
2300 c.imr.nsid = cpu_to_le32(head->ns_id);
2301 c.imr.mo = NVME_IO_MGMT_RECV_MO_RUHS;
2302 c.imr.numd = cpu_to_le32(nvme_bytes_to_numd(size));
2303 ret = nvme_submit_sync_cmd(ns->queue, &c, ruhs, size);
2304 if (ret) {
2305 dev_warn(ctrl->device, "FDP io-mgmt status:0x%x\n", ret);
2306 goto free;
2307 }
2308
2309 head->nr_plids = le16_to_cpu(ruhs->nruhsd);
2310 if (!head->nr_plids)
2311 goto free;
2312
2313 head->plids = kcalloc(head->nr_plids, sizeof(*head->plids),
2314 GFP_KERNEL);
2315 if (!head->plids) {
2316 dev_warn(ctrl->device,
2317 "failed to allocate %u FDP placement IDs\n",
2318 head->nr_plids);
2319 head->nr_plids = 0;
2320 ret = -ENOMEM;
2321 goto free;
2322 }
2323
2324 for (i = 0; i < head->nr_plids; i++)
2325 head->plids[i] = le16_to_cpu(ruhs->ruhsd[i].pid);
2326 free:
2327 kfree(ruhs);
2328 return ret;
2329 }
2330
nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)2331 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2332 struct nvme_ns_info *info)
2333 {
2334 struct queue_limits lim;
2335 struct nvme_id_ns_nvm *nvm = NULL;
2336 struct nvme_zone_info zi = {};
2337 struct nvme_id_ns *id;
2338 unsigned int memflags;
2339 sector_t capacity;
2340 unsigned lbaf;
2341 int ret;
2342
2343 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2344 if (ret)
2345 return ret;
2346
2347 if (id->ncap == 0) {
2348 /* namespace not allocated or attached */
2349 info->is_removed = true;
2350 ret = -ENXIO;
2351 goto out;
2352 }
2353 lbaf = nvme_lbaf_index(id->flbas);
2354
2355 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2356 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2357 if (ret < 0)
2358 goto out;
2359 }
2360
2361 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2362 ns->head->ids.csi == NVME_CSI_ZNS) {
2363 ret = nvme_query_zone_info(ns, lbaf, &zi);
2364 if (ret < 0)
2365 goto out;
2366 }
2367
2368 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_FDPS) {
2369 ret = nvme_query_fdp_info(ns, info);
2370 if (ret < 0)
2371 goto out;
2372 }
2373
2374 lim = queue_limits_start_update(ns->disk->queue);
2375
2376 memflags = blk_mq_freeze_queue(ns->disk->queue);
2377 ns->head->lba_shift = id->lbaf[lbaf].ds;
2378 ns->head->nuse = le64_to_cpu(id->nuse);
2379 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2380 nvme_set_ctrl_limits(ns->ctrl, &lim);
2381 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2382 nvme_set_chunk_sectors(ns, id, &lim);
2383 if (!nvme_update_disk_info(ns, id, &lim))
2384 capacity = 0;
2385
2386 nvme_config_discard(ns, &lim);
2387 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2388 ns->head->ids.csi == NVME_CSI_ZNS)
2389 nvme_update_zone_info(ns, &lim, &zi);
2390
2391 if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2392 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2393 else
2394 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2395
2396 if (info->is_rotational)
2397 lim.features |= BLK_FEAT_ROTATIONAL;
2398
2399 /*
2400 * Register a metadata profile for PI, or the plain non-integrity NVMe
2401 * metadata masquerading as Type 0 if supported, otherwise reject block
2402 * I/O to namespaces with metadata except when the namespace supports
2403 * PI, as it can strip/insert in that case.
2404 */
2405 if (!nvme_init_integrity(ns->head, &lim, info))
2406 capacity = 0;
2407
2408 lim.max_write_streams = ns->head->nr_plids;
2409 if (lim.max_write_streams)
2410 lim.write_stream_granularity = min(info->runs, U32_MAX);
2411 else
2412 lim.write_stream_granularity = 0;
2413
2414 /*
2415 * Only set the DEAC bit if the device guarantees that reads from
2416 * deallocated data return zeroes. While the DEAC bit does not
2417 * require that, it must be a no-op if reads from deallocated data
2418 * do not return zeroes.
2419 */
2420 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) {
2421 ns->head->features |= NVME_NS_DEAC;
2422 lim.max_hw_wzeroes_unmap_sectors = lim.max_write_zeroes_sectors;
2423 }
2424
2425 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2426 if (ret) {
2427 blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2428 goto out;
2429 }
2430
2431 set_capacity_and_notify(ns->disk, capacity);
2432 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2433 set_bit(NVME_NS_READY, &ns->flags);
2434 blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2435
2436 if (blk_queue_is_zoned(ns->queue)) {
2437 ret = blk_revalidate_disk_zones(ns->disk);
2438 if (ret && !nvme_first_scan(ns->disk))
2439 goto out;
2440 }
2441
2442 ret = 0;
2443 out:
2444 kfree(nvm);
2445 kfree(id);
2446 return ret;
2447 }
2448
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2449 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2450 {
2451 bool unsupported = false;
2452 int ret;
2453
2454 switch (info->ids.csi) {
2455 case NVME_CSI_ZNS:
2456 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2457 dev_info(ns->ctrl->device,
2458 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2459 info->nsid);
2460 ret = nvme_update_ns_info_generic(ns, info);
2461 break;
2462 }
2463 ret = nvme_update_ns_info_block(ns, info);
2464 break;
2465 case NVME_CSI_NVM:
2466 ret = nvme_update_ns_info_block(ns, info);
2467 break;
2468 default:
2469 dev_info(ns->ctrl->device,
2470 "block device for nsid %u not supported (csi %u)\n",
2471 info->nsid, info->ids.csi);
2472 ret = nvme_update_ns_info_generic(ns, info);
2473 break;
2474 }
2475
2476 /*
2477 * If probing fails due an unsupported feature, hide the block device,
2478 * but still allow other access.
2479 */
2480 if (ret == -ENODEV) {
2481 ns->disk->flags |= GENHD_FL_HIDDEN;
2482 set_bit(NVME_NS_READY, &ns->flags);
2483 unsupported = true;
2484 ret = 0;
2485 }
2486
2487 if (!ret && nvme_ns_head_multipath(ns->head)) {
2488 struct queue_limits *ns_lim = &ns->disk->queue->limits;
2489 struct queue_limits lim;
2490 unsigned int memflags;
2491
2492 lim = queue_limits_start_update(ns->head->disk->queue);
2493 memflags = blk_mq_freeze_queue(ns->head->disk->queue);
2494 /*
2495 * queue_limits mixes values that are the hardware limitations
2496 * for bio splitting with what is the device configuration.
2497 *
2498 * For NVMe the device configuration can change after e.g. a
2499 * Format command, and we really want to pick up the new format
2500 * value here. But we must still stack the queue limits to the
2501 * least common denominator for multipathing to split the bios
2502 * properly.
2503 *
2504 * To work around this, we explicitly set the device
2505 * configuration to those that we just queried, but only stack
2506 * the splitting limits in to make sure we still obey possibly
2507 * lower limitations of other controllers.
2508 */
2509 lim.logical_block_size = ns_lim->logical_block_size;
2510 lim.physical_block_size = ns_lim->physical_block_size;
2511 lim.io_min = ns_lim->io_min;
2512 lim.io_opt = ns_lim->io_opt;
2513 queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2514 ns->head->disk->disk_name);
2515 if (unsupported)
2516 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2517 else
2518 nvme_init_integrity(ns->head, &lim, info);
2519 lim.max_write_streams = ns_lim->max_write_streams;
2520 lim.write_stream_granularity = ns_lim->write_stream_granularity;
2521 ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2522
2523 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2524 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2525 nvme_mpath_revalidate_paths(ns);
2526
2527 blk_mq_unfreeze_queue(ns->head->disk->queue, memflags);
2528 }
2529
2530 return ret;
2531 }
2532
nvme_ns_get_unique_id(struct nvme_ns * ns,u8 id[16],enum blk_unique_id type)2533 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2534 enum blk_unique_id type)
2535 {
2536 struct nvme_ns_ids *ids = &ns->head->ids;
2537
2538 if (type != BLK_UID_EUI64)
2539 return -EINVAL;
2540
2541 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2542 memcpy(id, &ids->nguid, sizeof(ids->nguid));
2543 return sizeof(ids->nguid);
2544 }
2545 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2546 memcpy(id, &ids->eui64, sizeof(ids->eui64));
2547 return sizeof(ids->eui64);
2548 }
2549
2550 return -EINVAL;
2551 }
2552
nvme_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)2553 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2554 enum blk_unique_id type)
2555 {
2556 return nvme_ns_get_unique_id(disk->private_data, id, type);
2557 }
2558
2559 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2560 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2561 bool send)
2562 {
2563 struct nvme_ctrl *ctrl = data;
2564 struct nvme_command cmd = { };
2565
2566 if (send)
2567 cmd.common.opcode = nvme_admin_security_send;
2568 else
2569 cmd.common.opcode = nvme_admin_security_recv;
2570 cmd.common.nsid = 0;
2571 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2572 cmd.common.cdw11 = cpu_to_le32(len);
2573
2574 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2575 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2576 }
2577
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2578 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2579 {
2580 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2581 if (!ctrl->opal_dev)
2582 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2583 else if (was_suspended)
2584 opal_unlock_from_suspend(ctrl->opal_dev);
2585 } else {
2586 free_opal_dev(ctrl->opal_dev);
2587 ctrl->opal_dev = NULL;
2588 }
2589 }
2590 #else
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2591 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2592 {
2593 }
2594 #endif /* CONFIG_BLK_SED_OPAL */
2595
2596 #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2597 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2598 unsigned int nr_zones, report_zones_cb cb, void *data)
2599 {
2600 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2601 data);
2602 }
2603 #else
2604 #define nvme_report_zones NULL
2605 #endif /* CONFIG_BLK_DEV_ZONED */
2606
2607 const struct block_device_operations nvme_bdev_ops = {
2608 .owner = THIS_MODULE,
2609 .ioctl = nvme_ioctl,
2610 .compat_ioctl = blkdev_compat_ptr_ioctl,
2611 .open = nvme_open,
2612 .release = nvme_release,
2613 .getgeo = nvme_getgeo,
2614 .get_unique_id = nvme_get_unique_id,
2615 .report_zones = nvme_report_zones,
2616 .pr_ops = &nvme_pr_ops,
2617 };
2618
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 mask,u32 val,u32 timeout,const char * op)2619 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2620 u32 timeout, const char *op)
2621 {
2622 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2623 u32 csts;
2624 int ret;
2625
2626 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2627 if (csts == ~0)
2628 return -ENODEV;
2629 if ((csts & mask) == val)
2630 break;
2631
2632 usleep_range(1000, 2000);
2633 if (fatal_signal_pending(current))
2634 return -EINTR;
2635 if (time_after(jiffies, timeout_jiffies)) {
2636 dev_err(ctrl->device,
2637 "Device not ready; aborting %s, CSTS=0x%x\n",
2638 op, csts);
2639 return -ENODEV;
2640 }
2641 }
2642
2643 return ret;
2644 }
2645
nvme_disable_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2646 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2647 {
2648 int ret;
2649
2650 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2651 if (shutdown)
2652 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2653 else
2654 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2655
2656 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2657 if (ret)
2658 return ret;
2659
2660 if (shutdown) {
2661 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2662 NVME_CSTS_SHST_CMPLT,
2663 ctrl->shutdown_timeout, "shutdown");
2664 }
2665 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2666 msleep(NVME_QUIRK_DELAY_AMOUNT);
2667 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2668 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2669 }
2670 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2671
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2672 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2673 {
2674 unsigned dev_page_min;
2675 u32 timeout;
2676 int ret;
2677
2678 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2679 if (ret) {
2680 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2681 return ret;
2682 }
2683 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2684
2685 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2686 dev_err(ctrl->device,
2687 "Minimum device page size %u too large for host (%u)\n",
2688 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2689 return -ENODEV;
2690 }
2691
2692 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2693 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2694 else
2695 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2696
2697 /*
2698 * Setting CRIME results in CSTS.RDY before the media is ready. This
2699 * makes it possible for media related commands to return the error
2700 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2701 * restructured to handle retries, disable CC.CRIME.
2702 */
2703 ctrl->ctrl_config &= ~NVME_CC_CRIME;
2704
2705 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2706 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2707 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2708 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2709 if (ret)
2710 return ret;
2711
2712 /* CAP value may change after initial CC write */
2713 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2714 if (ret)
2715 return ret;
2716
2717 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2718 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2719 u32 crto, ready_timeout;
2720
2721 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2722 if (ret) {
2723 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2724 ret);
2725 return ret;
2726 }
2727
2728 /*
2729 * CRTO should always be greater or equal to CAP.TO, but some
2730 * devices are known to get this wrong. Use the larger of the
2731 * two values.
2732 */
2733 ready_timeout = NVME_CRTO_CRWMT(crto);
2734
2735 if (ready_timeout < timeout)
2736 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2737 crto, ctrl->cap);
2738 else
2739 timeout = ready_timeout;
2740 }
2741
2742 ctrl->ctrl_config |= NVME_CC_ENABLE;
2743 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2744 if (ret)
2745 return ret;
2746 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2747 (timeout + 1) / 2, "initialisation");
2748 }
2749 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2750
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2751 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2752 {
2753 __le64 ts;
2754 int ret;
2755
2756 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2757 return 0;
2758
2759 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2760 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2761 NULL);
2762 if (ret)
2763 dev_warn_once(ctrl->device,
2764 "could not set timestamp (%d)\n", ret);
2765 return ret;
2766 }
2767
nvme_configure_host_options(struct nvme_ctrl * ctrl)2768 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2769 {
2770 struct nvme_feat_host_behavior *host;
2771 u8 acre = 0, lbafee = 0;
2772 int ret;
2773
2774 /* Don't bother enabling the feature if retry delay is not reported */
2775 if (ctrl->crdt[0])
2776 acre = NVME_ENABLE_ACRE;
2777 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2778 lbafee = NVME_ENABLE_LBAFEE;
2779
2780 if (!acre && !lbafee)
2781 return 0;
2782
2783 host = kzalloc(sizeof(*host), GFP_KERNEL);
2784 if (!host)
2785 return 0;
2786
2787 host->acre = acre;
2788 host->lbafee = lbafee;
2789 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2790 host, sizeof(*host), NULL);
2791 kfree(host);
2792 return ret;
2793 }
2794
2795 /*
2796 * The function checks whether the given total (exlat + enlat) latency of
2797 * a power state allows the latter to be used as an APST transition target.
2798 * It does so by comparing the latency to the primary and secondary latency
2799 * tolerances defined by module params. If there's a match, the corresponding
2800 * timeout value is returned and the matching tolerance index (1 or 2) is
2801 * reported.
2802 */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2803 static bool nvme_apst_get_transition_time(u64 total_latency,
2804 u64 *transition_time, unsigned *last_index)
2805 {
2806 if (total_latency <= apst_primary_latency_tol_us) {
2807 if (*last_index == 1)
2808 return false;
2809 *last_index = 1;
2810 *transition_time = apst_primary_timeout_ms;
2811 return true;
2812 }
2813 if (apst_secondary_timeout_ms &&
2814 total_latency <= apst_secondary_latency_tol_us) {
2815 if (*last_index <= 2)
2816 return false;
2817 *last_index = 2;
2818 *transition_time = apst_secondary_timeout_ms;
2819 return true;
2820 }
2821 return false;
2822 }
2823
2824 /*
2825 * APST (Autonomous Power State Transition) lets us program a table of power
2826 * state transitions that the controller will perform automatically.
2827 *
2828 * Depending on module params, one of the two supported techniques will be used:
2829 *
2830 * - If the parameters provide explicit timeouts and tolerances, they will be
2831 * used to build a table with up to 2 non-operational states to transition to.
2832 * The default parameter values were selected based on the values used by
2833 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2834 * regeneration of the APST table in the event of switching between external
2835 * and battery power, the timeouts and tolerances reflect a compromise
2836 * between values used by Microsoft for AC and battery scenarios.
2837 * - If not, we'll configure the table with a simple heuristic: we are willing
2838 * to spend at most 2% of the time transitioning between power states.
2839 * Therefore, when running in any given state, we will enter the next
2840 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2841 * microseconds, as long as that state's exit latency is under the requested
2842 * maximum latency.
2843 *
2844 * We will not autonomously enter any non-operational state for which the total
2845 * latency exceeds ps_max_latency_us.
2846 *
2847 * Users can set ps_max_latency_us to zero to turn off APST.
2848 */
nvme_configure_apst(struct nvme_ctrl * ctrl)2849 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2850 {
2851 struct nvme_feat_auto_pst *table;
2852 unsigned apste = 0;
2853 u64 max_lat_us = 0;
2854 __le64 target = 0;
2855 int max_ps = -1;
2856 int state;
2857 int ret;
2858 unsigned last_lt_index = UINT_MAX;
2859
2860 /*
2861 * If APST isn't supported or if we haven't been initialized yet,
2862 * then don't do anything.
2863 */
2864 if (!ctrl->apsta)
2865 return 0;
2866
2867 if (ctrl->npss > 31) {
2868 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2869 return 0;
2870 }
2871
2872 table = kzalloc(sizeof(*table), GFP_KERNEL);
2873 if (!table)
2874 return 0;
2875
2876 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2877 /* Turn off APST. */
2878 dev_dbg(ctrl->device, "APST disabled\n");
2879 goto done;
2880 }
2881
2882 /*
2883 * Walk through all states from lowest- to highest-power.
2884 * According to the spec, lower-numbered states use more power. NPSS,
2885 * despite the name, is the index of the lowest-power state, not the
2886 * number of states.
2887 */
2888 for (state = (int)ctrl->npss; state >= 0; state--) {
2889 u64 total_latency_us, exit_latency_us, transition_ms;
2890
2891 if (target)
2892 table->entries[state] = target;
2893
2894 /*
2895 * Don't allow transitions to the deepest state if it's quirked
2896 * off.
2897 */
2898 if (state == ctrl->npss &&
2899 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2900 continue;
2901
2902 /*
2903 * Is this state a useful non-operational state for higher-power
2904 * states to autonomously transition to?
2905 */
2906 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2907 continue;
2908
2909 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2910 if (exit_latency_us > ctrl->ps_max_latency_us)
2911 continue;
2912
2913 total_latency_us = exit_latency_us +
2914 le32_to_cpu(ctrl->psd[state].entry_lat);
2915
2916 /*
2917 * This state is good. It can be used as the APST idle target
2918 * for higher power states.
2919 */
2920 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2921 if (!nvme_apst_get_transition_time(total_latency_us,
2922 &transition_ms, &last_lt_index))
2923 continue;
2924 } else {
2925 transition_ms = total_latency_us + 19;
2926 do_div(transition_ms, 20);
2927 if (transition_ms > (1 << 24) - 1)
2928 transition_ms = (1 << 24) - 1;
2929 }
2930
2931 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2932 if (max_ps == -1)
2933 max_ps = state;
2934 if (total_latency_us > max_lat_us)
2935 max_lat_us = total_latency_us;
2936 }
2937
2938 if (max_ps == -1)
2939 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2940 else
2941 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2942 max_ps, max_lat_us, (int)sizeof(*table), table);
2943 apste = 1;
2944
2945 done:
2946 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2947 table, sizeof(*table), NULL);
2948 if (ret)
2949 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2950 kfree(table);
2951 return ret;
2952 }
2953
nvme_set_latency_tolerance(struct device * dev,s32 val)2954 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2955 {
2956 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2957 u64 latency;
2958
2959 switch (val) {
2960 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2961 case PM_QOS_LATENCY_ANY:
2962 latency = U64_MAX;
2963 break;
2964
2965 default:
2966 latency = val;
2967 }
2968
2969 if (ctrl->ps_max_latency_us != latency) {
2970 ctrl->ps_max_latency_us = latency;
2971 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2972 nvme_configure_apst(ctrl);
2973 }
2974 }
2975
2976 struct nvme_core_quirk_entry {
2977 /*
2978 * NVMe model and firmware strings are padded with spaces. For
2979 * simplicity, strings in the quirk table are padded with NULLs
2980 * instead.
2981 */
2982 u16 vid;
2983 const char *mn;
2984 const char *fr;
2985 unsigned long quirks;
2986 };
2987
2988 static const struct nvme_core_quirk_entry core_quirks[] = {
2989 {
2990 /*
2991 * This Toshiba device seems to die using any APST states. See:
2992 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2993 */
2994 .vid = 0x1179,
2995 .mn = "THNSF5256GPUK TOSHIBA",
2996 .quirks = NVME_QUIRK_NO_APST,
2997 },
2998 {
2999 /*
3000 * This LiteON CL1-3D*-Q11 firmware version has a race
3001 * condition associated with actions related to suspend to idle
3002 * LiteON has resolved the problem in future firmware
3003 */
3004 .vid = 0x14a4,
3005 .fr = "22301111",
3006 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
3007 },
3008 {
3009 /*
3010 * This Kioxia CD6-V Series / HPE PE8030 device times out and
3011 * aborts I/O during any load, but more easily reproducible
3012 * with discards (fstrim).
3013 *
3014 * The device is left in a state where it is also not possible
3015 * to use "nvme set-feature" to disable APST, but booting with
3016 * nvme_core.default_ps_max_latency=0 works.
3017 */
3018 .vid = 0x1e0f,
3019 .mn = "KCD6XVUL6T40",
3020 .quirks = NVME_QUIRK_NO_APST,
3021 },
3022 {
3023 /*
3024 * The external Samsung X5 SSD fails initialization without a
3025 * delay before checking if it is ready and has a whole set of
3026 * other problems. To make this even more interesting, it
3027 * shares the PCI ID with internal Samsung 970 Evo Plus that
3028 * does not need or want these quirks.
3029 */
3030 .vid = 0x144d,
3031 .mn = "Samsung Portable SSD X5",
3032 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3033 NVME_QUIRK_NO_DEEPEST_PS |
3034 NVME_QUIRK_IGNORE_DEV_SUBNQN,
3035 }
3036 };
3037
3038 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)3039 static bool string_matches(const char *idstr, const char *match, size_t len)
3040 {
3041 size_t matchlen;
3042
3043 if (!match)
3044 return true;
3045
3046 matchlen = strlen(match);
3047 WARN_ON_ONCE(matchlen > len);
3048
3049 if (memcmp(idstr, match, matchlen))
3050 return false;
3051
3052 for (; matchlen < len; matchlen++)
3053 if (idstr[matchlen] != ' ')
3054 return false;
3055
3056 return true;
3057 }
3058
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)3059 static bool quirk_matches(const struct nvme_id_ctrl *id,
3060 const struct nvme_core_quirk_entry *q)
3061 {
3062 return q->vid == le16_to_cpu(id->vid) &&
3063 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
3064 string_matches(id->fr, q->fr, sizeof(id->fr));
3065 }
3066
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3067 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
3068 struct nvme_id_ctrl *id)
3069 {
3070 size_t nqnlen;
3071 int off;
3072
3073 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
3074 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
3075 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
3076 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
3077 return;
3078 }
3079
3080 if (ctrl->vs >= NVME_VS(1, 2, 1))
3081 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
3082 }
3083
3084 /*
3085 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
3086 * Base Specification 2.0. It is slightly different from the format
3087 * specified there due to historic reasons, and we can't change it now.
3088 */
3089 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
3090 "nqn.2014.08.org.nvmexpress:%04x%04x",
3091 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
3092 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
3093 off += sizeof(id->sn);
3094 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
3095 off += sizeof(id->mn);
3096 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
3097 }
3098
nvme_release_subsystem(struct device * dev)3099 static void nvme_release_subsystem(struct device *dev)
3100 {
3101 struct nvme_subsystem *subsys =
3102 container_of(dev, struct nvme_subsystem, dev);
3103
3104 if (subsys->instance >= 0)
3105 ida_free(&nvme_instance_ida, subsys->instance);
3106 kfree(subsys);
3107 }
3108
nvme_destroy_subsystem(struct kref * ref)3109 static void nvme_destroy_subsystem(struct kref *ref)
3110 {
3111 struct nvme_subsystem *subsys =
3112 container_of(ref, struct nvme_subsystem, ref);
3113
3114 mutex_lock(&nvme_subsystems_lock);
3115 list_del(&subsys->entry);
3116 mutex_unlock(&nvme_subsystems_lock);
3117
3118 ida_destroy(&subsys->ns_ida);
3119 device_del(&subsys->dev);
3120 put_device(&subsys->dev);
3121 }
3122
nvme_put_subsystem(struct nvme_subsystem * subsys)3123 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
3124 {
3125 kref_put(&subsys->ref, nvme_destroy_subsystem);
3126 }
3127
__nvme_find_get_subsystem(const char * subsysnqn)3128 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
3129 {
3130 struct nvme_subsystem *subsys;
3131
3132 lockdep_assert_held(&nvme_subsystems_lock);
3133
3134 /*
3135 * Fail matches for discovery subsystems. This results
3136 * in each discovery controller bound to a unique subsystem.
3137 * This avoids issues with validating controller values
3138 * that can only be true when there is a single unique subsystem.
3139 * There may be multiple and completely independent entities
3140 * that provide discovery controllers.
3141 */
3142 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
3143 return NULL;
3144
3145 list_for_each_entry(subsys, &nvme_subsystems, entry) {
3146 if (strcmp(subsys->subnqn, subsysnqn))
3147 continue;
3148 if (!kref_get_unless_zero(&subsys->ref))
3149 continue;
3150 return subsys;
3151 }
3152
3153 return NULL;
3154 }
3155
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)3156 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
3157 {
3158 return ctrl->opts && ctrl->opts->discovery_nqn;
3159 }
3160
nvme_admin_ctrl(struct nvme_ctrl * ctrl)3161 static inline bool nvme_admin_ctrl(struct nvme_ctrl *ctrl)
3162 {
3163 return ctrl->cntrltype == NVME_CTRL_ADMIN;
3164 }
3165
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3166 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
3167 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3168 {
3169 struct nvme_ctrl *tmp;
3170
3171 lockdep_assert_held(&nvme_subsystems_lock);
3172
3173 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
3174 if (nvme_state_terminal(tmp))
3175 continue;
3176
3177 if (tmp->cntlid == ctrl->cntlid) {
3178 dev_err(ctrl->device,
3179 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
3180 ctrl->cntlid, dev_name(tmp->device),
3181 subsys->subnqn);
3182 return false;
3183 }
3184
3185 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
3186 nvme_discovery_ctrl(ctrl))
3187 continue;
3188
3189 dev_err(ctrl->device,
3190 "Subsystem does not support multiple controllers\n");
3191 return false;
3192 }
3193
3194 return true;
3195 }
3196
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3197 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3198 {
3199 struct nvme_subsystem *subsys, *found;
3200 int ret;
3201
3202 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
3203 if (!subsys)
3204 return -ENOMEM;
3205
3206 subsys->instance = -1;
3207 mutex_init(&subsys->lock);
3208 kref_init(&subsys->ref);
3209 INIT_LIST_HEAD(&subsys->ctrls);
3210 INIT_LIST_HEAD(&subsys->nsheads);
3211 nvme_init_subnqn(subsys, ctrl, id);
3212 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3213 memcpy(subsys->model, id->mn, sizeof(subsys->model));
3214 subsys->vendor_id = le16_to_cpu(id->vid);
3215 subsys->cmic = id->cmic;
3216 subsys->awupf = le16_to_cpu(id->awupf);
3217
3218 /* Versions prior to 1.4 don't necessarily report a valid type */
3219 if (id->cntrltype == NVME_CTRL_DISC ||
3220 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3221 subsys->subtype = NVME_NQN_DISC;
3222 else
3223 subsys->subtype = NVME_NQN_NVME;
3224
3225 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3226 dev_err(ctrl->device,
3227 "Subsystem %s is not a discovery controller",
3228 subsys->subnqn);
3229 kfree(subsys);
3230 return -EINVAL;
3231 }
3232 nvme_mpath_default_iopolicy(subsys);
3233
3234 subsys->dev.class = &nvme_subsys_class;
3235 subsys->dev.release = nvme_release_subsystem;
3236 subsys->dev.groups = nvme_subsys_attrs_groups;
3237 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3238 device_initialize(&subsys->dev);
3239
3240 mutex_lock(&nvme_subsystems_lock);
3241 found = __nvme_find_get_subsystem(subsys->subnqn);
3242 if (found) {
3243 put_device(&subsys->dev);
3244 subsys = found;
3245
3246 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3247 ret = -EINVAL;
3248 goto out_put_subsystem;
3249 }
3250 } else {
3251 ret = device_add(&subsys->dev);
3252 if (ret) {
3253 dev_err(ctrl->device,
3254 "failed to register subsystem device.\n");
3255 put_device(&subsys->dev);
3256 goto out_unlock;
3257 }
3258 ida_init(&subsys->ns_ida);
3259 list_add_tail(&subsys->entry, &nvme_subsystems);
3260 }
3261
3262 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3263 dev_name(ctrl->device));
3264 if (ret) {
3265 dev_err(ctrl->device,
3266 "failed to create sysfs link from subsystem.\n");
3267 goto out_put_subsystem;
3268 }
3269
3270 if (!found)
3271 subsys->instance = ctrl->instance;
3272 ctrl->subsys = subsys;
3273 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3274 mutex_unlock(&nvme_subsystems_lock);
3275 return 0;
3276
3277 out_put_subsystem:
3278 nvme_put_subsystem(subsys);
3279 out_unlock:
3280 mutex_unlock(&nvme_subsystems_lock);
3281 return ret;
3282 }
3283
nvme_get_log_lsi(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset,u16 lsi)3284 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
3285 u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi)
3286 {
3287 struct nvme_command c = { };
3288 u32 dwlen = nvme_bytes_to_numd(size);
3289
3290 c.get_log_page.opcode = nvme_admin_get_log_page;
3291 c.get_log_page.nsid = cpu_to_le32(nsid);
3292 c.get_log_page.lid = log_page;
3293 c.get_log_page.lsp = lsp;
3294 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3295 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3296 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3297 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3298 c.get_log_page.csi = csi;
3299 c.get_log_page.lsi = cpu_to_le16(lsi);
3300
3301 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3302 }
3303
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)3304 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3305 void *log, size_t size, u64 offset)
3306 {
3307 return nvme_get_log_lsi(ctrl, nsid, log_page, lsp, csi, log, size,
3308 offset, 0);
3309 }
3310
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3311 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3312 struct nvme_effects_log **log)
3313 {
3314 struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi);
3315 int ret;
3316
3317 if (cel)
3318 goto out;
3319
3320 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3321 if (!cel)
3322 return -ENOMEM;
3323
3324 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3325 cel, sizeof(*cel), 0);
3326 if (ret) {
3327 kfree(cel);
3328 return ret;
3329 }
3330
3331 old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3332 if (xa_is_err(old)) {
3333 kfree(cel);
3334 return xa_err(old);
3335 }
3336 out:
3337 *log = cel;
3338 return 0;
3339 }
3340
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)3341 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3342 {
3343 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3344
3345 if (check_shl_overflow(1U, units + page_shift - 9, &val))
3346 return UINT_MAX;
3347 return val;
3348 }
3349
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)3350 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3351 {
3352 struct nvme_command c = { };
3353 struct nvme_id_ctrl_nvm *id;
3354 int ret;
3355
3356 /*
3357 * Even though NVMe spec explicitly states that MDTS is not applicable
3358 * to the write-zeroes, we are cautious and limit the size to the
3359 * controllers max_hw_sectors value, which is based on the MDTS field
3360 * and possibly other limiting factors.
3361 */
3362 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3363 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3364 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3365 else
3366 ctrl->max_zeroes_sectors = 0;
3367
3368 if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3369 !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3370 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3371 return 0;
3372
3373 id = kzalloc(sizeof(*id), GFP_KERNEL);
3374 if (!id)
3375 return -ENOMEM;
3376
3377 c.identify.opcode = nvme_admin_identify;
3378 c.identify.cns = NVME_ID_CNS_CS_CTRL;
3379 c.identify.csi = NVME_CSI_NVM;
3380
3381 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3382 if (ret)
3383 goto free_data;
3384
3385 ctrl->dmrl = id->dmrl;
3386 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3387 if (id->wzsl)
3388 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3389
3390 free_data:
3391 if (ret > 0)
3392 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3393 kfree(id);
3394 return ret;
3395 }
3396
nvme_init_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3397 static int nvme_init_effects_log(struct nvme_ctrl *ctrl,
3398 u8 csi, struct nvme_effects_log **log)
3399 {
3400 struct nvme_effects_log *effects, *old;
3401
3402 effects = kzalloc(sizeof(*effects), GFP_KERNEL);
3403 if (!effects)
3404 return -ENOMEM;
3405
3406 old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL);
3407 if (xa_is_err(old)) {
3408 kfree(effects);
3409 return xa_err(old);
3410 }
3411
3412 *log = effects;
3413 return 0;
3414 }
3415
nvme_init_known_nvm_effects(struct nvme_ctrl * ctrl)3416 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3417 {
3418 struct nvme_effects_log *log = ctrl->effects;
3419
3420 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3421 NVME_CMD_EFFECTS_NCC |
3422 NVME_CMD_EFFECTS_CSE_MASK);
3423 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3424 NVME_CMD_EFFECTS_CSE_MASK);
3425
3426 /*
3427 * The spec says the result of a security receive command depends on
3428 * the previous security send command. As such, many vendors log this
3429 * command as one to submitted only when no other commands to the same
3430 * namespace are outstanding. The intention is to tell the host to
3431 * prevent mixing security send and receive.
3432 *
3433 * This driver can only enforce such exclusive access against IO
3434 * queues, though. We are not readily able to enforce such a rule for
3435 * two commands to the admin queue, which is the only queue that
3436 * matters for this command.
3437 *
3438 * Rather than blindly freezing the IO queues for this effect that
3439 * doesn't even apply to IO, mask it off.
3440 */
3441 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3442
3443 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3444 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3445 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3446 }
3447
nvme_init_effects(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3448 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3449 {
3450 int ret = 0;
3451
3452 if (ctrl->effects)
3453 return 0;
3454
3455 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3456 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3457 if (ret < 0)
3458 return ret;
3459 }
3460
3461 if (!ctrl->effects) {
3462 ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3463 if (ret < 0)
3464 return ret;
3465 }
3466
3467 nvme_init_known_nvm_effects(ctrl);
3468 return 0;
3469 }
3470
nvme_check_ctrl_fabric_info(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3471 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3472 {
3473 /*
3474 * In fabrics we need to verify the cntlid matches the
3475 * admin connect
3476 */
3477 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3478 dev_err(ctrl->device,
3479 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3480 ctrl->cntlid, le16_to_cpu(id->cntlid));
3481 return -EINVAL;
3482 }
3483
3484 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3485 dev_err(ctrl->device,
3486 "keep-alive support is mandatory for fabrics\n");
3487 return -EINVAL;
3488 }
3489
3490 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3491 dev_err(ctrl->device,
3492 "I/O queue command capsule supported size %d < 4\n",
3493 ctrl->ioccsz);
3494 return -EINVAL;
3495 }
3496
3497 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3498 dev_err(ctrl->device,
3499 "I/O queue response capsule supported size %d < 1\n",
3500 ctrl->iorcsz);
3501 return -EINVAL;
3502 }
3503
3504 if (!ctrl->maxcmd) {
3505 dev_warn(ctrl->device,
3506 "Firmware bug: maximum outstanding commands is 0\n");
3507 ctrl->maxcmd = ctrl->sqsize + 1;
3508 }
3509
3510 return 0;
3511 }
3512
nvme_init_identify(struct nvme_ctrl * ctrl)3513 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3514 {
3515 struct queue_limits lim;
3516 struct nvme_id_ctrl *id;
3517 u32 max_hw_sectors;
3518 bool prev_apst_enabled;
3519 int ret;
3520
3521 ret = nvme_identify_ctrl(ctrl, &id);
3522 if (ret) {
3523 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3524 return -EIO;
3525 }
3526
3527 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3528 ctrl->cntlid = le16_to_cpu(id->cntlid);
3529
3530 if (!ctrl->identified) {
3531 unsigned int i;
3532
3533 /*
3534 * Check for quirks. Quirk can depend on firmware version,
3535 * so, in principle, the set of quirks present can change
3536 * across a reset. As a possible future enhancement, we
3537 * could re-scan for quirks every time we reinitialize
3538 * the device, but we'd have to make sure that the driver
3539 * behaves intelligently if the quirks change.
3540 */
3541 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3542 if (quirk_matches(id, &core_quirks[i]))
3543 ctrl->quirks |= core_quirks[i].quirks;
3544 }
3545
3546 ret = nvme_init_subsystem(ctrl, id);
3547 if (ret)
3548 goto out_free;
3549
3550 ret = nvme_init_effects(ctrl, id);
3551 if (ret)
3552 goto out_free;
3553 }
3554 memcpy(ctrl->subsys->firmware_rev, id->fr,
3555 sizeof(ctrl->subsys->firmware_rev));
3556
3557 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3558 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3559 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3560 }
3561
3562 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3563 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3564 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3565
3566 ctrl->oacs = le16_to_cpu(id->oacs);
3567 ctrl->oncs = le16_to_cpu(id->oncs);
3568 ctrl->mtfa = le16_to_cpu(id->mtfa);
3569 ctrl->oaes = le32_to_cpu(id->oaes);
3570 ctrl->wctemp = le16_to_cpu(id->wctemp);
3571 ctrl->cctemp = le16_to_cpu(id->cctemp);
3572
3573 atomic_set(&ctrl->abort_limit, id->acl + 1);
3574 ctrl->vwc = id->vwc;
3575 if (id->mdts)
3576 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3577 else
3578 max_hw_sectors = UINT_MAX;
3579 ctrl->max_hw_sectors =
3580 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3581
3582 lim = queue_limits_start_update(ctrl->admin_q);
3583 nvme_set_ctrl_limits(ctrl, &lim);
3584 ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3585 if (ret)
3586 goto out_free;
3587
3588 ctrl->sgls = le32_to_cpu(id->sgls);
3589 ctrl->kas = le16_to_cpu(id->kas);
3590 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3591 ctrl->ctratt = le32_to_cpu(id->ctratt);
3592
3593 ctrl->cntrltype = id->cntrltype;
3594 ctrl->dctype = id->dctype;
3595
3596 if (id->rtd3e) {
3597 /* us -> s */
3598 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3599
3600 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3601 shutdown_timeout, 60);
3602
3603 if (ctrl->shutdown_timeout != shutdown_timeout)
3604 dev_info(ctrl->device,
3605 "D3 entry latency set to %u seconds\n",
3606 ctrl->shutdown_timeout);
3607 } else
3608 ctrl->shutdown_timeout = shutdown_timeout;
3609
3610 ctrl->npss = id->npss;
3611 ctrl->apsta = id->apsta;
3612 prev_apst_enabled = ctrl->apst_enabled;
3613 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3614 if (force_apst && id->apsta) {
3615 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3616 ctrl->apst_enabled = true;
3617 } else {
3618 ctrl->apst_enabled = false;
3619 }
3620 } else {
3621 ctrl->apst_enabled = id->apsta;
3622 }
3623 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3624
3625 if (ctrl->ops->flags & NVME_F_FABRICS) {
3626 ctrl->icdoff = le16_to_cpu(id->icdoff);
3627 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3628 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3629 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3630
3631 ret = nvme_check_ctrl_fabric_info(ctrl, id);
3632 if (ret)
3633 goto out_free;
3634 } else {
3635 ctrl->hmpre = le32_to_cpu(id->hmpre);
3636 ctrl->hmmin = le32_to_cpu(id->hmmin);
3637 ctrl->hmminds = le32_to_cpu(id->hmminds);
3638 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3639 }
3640
3641 ret = nvme_mpath_init_identify(ctrl, id);
3642 if (ret < 0)
3643 goto out_free;
3644
3645 if (ctrl->apst_enabled && !prev_apst_enabled)
3646 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3647 else if (!ctrl->apst_enabled && prev_apst_enabled)
3648 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3649 out_free:
3650 kfree(id);
3651 return ret;
3652 }
3653
3654 /*
3655 * Initialize the cached copies of the Identify data and various controller
3656 * register in our nvme_ctrl structure. This should be called as soon as
3657 * the admin queue is fully up and running.
3658 */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl,bool was_suspended)3659 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3660 {
3661 int ret;
3662
3663 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3664 if (ret) {
3665 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3666 return ret;
3667 }
3668
3669 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3670
3671 if (ctrl->vs >= NVME_VS(1, 1, 0))
3672 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3673
3674 ret = nvme_init_identify(ctrl);
3675 if (ret)
3676 return ret;
3677
3678 if (nvme_admin_ctrl(ctrl)) {
3679 /*
3680 * An admin controller has one admin queue, but no I/O queues.
3681 * Override queue_count so it only creates an admin queue.
3682 */
3683 dev_dbg(ctrl->device,
3684 "Subsystem %s is an administrative controller",
3685 ctrl->subsys->subnqn);
3686 ctrl->queue_count = 1;
3687 }
3688
3689 ret = nvme_configure_apst(ctrl);
3690 if (ret < 0)
3691 return ret;
3692
3693 ret = nvme_configure_timestamp(ctrl);
3694 if (ret < 0)
3695 return ret;
3696
3697 ret = nvme_configure_host_options(ctrl);
3698 if (ret < 0)
3699 return ret;
3700
3701 nvme_configure_opal(ctrl, was_suspended);
3702
3703 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3704 /*
3705 * Do not return errors unless we are in a controller reset,
3706 * the controller works perfectly fine without hwmon.
3707 */
3708 ret = nvme_hwmon_init(ctrl);
3709 if (ret == -EINTR)
3710 return ret;
3711 }
3712
3713 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3714 ctrl->identified = true;
3715
3716 nvme_start_keep_alive(ctrl);
3717
3718 return 0;
3719 }
3720 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3721
nvme_dev_open(struct inode * inode,struct file * file)3722 static int nvme_dev_open(struct inode *inode, struct file *file)
3723 {
3724 struct nvme_ctrl *ctrl =
3725 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3726
3727 switch (nvme_ctrl_state(ctrl)) {
3728 case NVME_CTRL_LIVE:
3729 break;
3730 default:
3731 return -EWOULDBLOCK;
3732 }
3733
3734 nvme_get_ctrl(ctrl);
3735 if (!try_module_get(ctrl->ops->module)) {
3736 nvme_put_ctrl(ctrl);
3737 return -EINVAL;
3738 }
3739
3740 file->private_data = ctrl;
3741 return 0;
3742 }
3743
nvme_dev_release(struct inode * inode,struct file * file)3744 static int nvme_dev_release(struct inode *inode, struct file *file)
3745 {
3746 struct nvme_ctrl *ctrl =
3747 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3748
3749 module_put(ctrl->ops->module);
3750 nvme_put_ctrl(ctrl);
3751 return 0;
3752 }
3753
3754 static const struct file_operations nvme_dev_fops = {
3755 .owner = THIS_MODULE,
3756 .open = nvme_dev_open,
3757 .release = nvme_dev_release,
3758 .unlocked_ioctl = nvme_dev_ioctl,
3759 .compat_ioctl = compat_ptr_ioctl,
3760 .uring_cmd = nvme_dev_uring_cmd,
3761 };
3762
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3763 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3764 unsigned nsid)
3765 {
3766 struct nvme_ns_head *h;
3767
3768 lockdep_assert_held(&ctrl->subsys->lock);
3769
3770 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3771 /*
3772 * Private namespaces can share NSIDs under some conditions.
3773 * In that case we can't use the same ns_head for namespaces
3774 * with the same NSID.
3775 */
3776 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3777 continue;
3778 if (nvme_tryget_ns_head(h))
3779 return h;
3780 }
3781
3782 return NULL;
3783 }
3784
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3785 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3786 struct nvme_ns_ids *ids)
3787 {
3788 bool has_uuid = !uuid_is_null(&ids->uuid);
3789 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3790 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3791 struct nvme_ns_head *h;
3792
3793 lockdep_assert_held(&subsys->lock);
3794
3795 list_for_each_entry(h, &subsys->nsheads, entry) {
3796 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3797 return -EINVAL;
3798 if (has_nguid &&
3799 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3800 return -EINVAL;
3801 if (has_eui64 &&
3802 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3803 return -EINVAL;
3804 }
3805
3806 return 0;
3807 }
3808
nvme_cdev_rel(struct device * dev)3809 static void nvme_cdev_rel(struct device *dev)
3810 {
3811 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3812 }
3813
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3814 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3815 {
3816 cdev_device_del(cdev, cdev_device);
3817 put_device(cdev_device);
3818 }
3819
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3820 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3821 const struct file_operations *fops, struct module *owner)
3822 {
3823 int minor, ret;
3824
3825 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3826 if (minor < 0)
3827 return minor;
3828 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3829 cdev_device->class = &nvme_ns_chr_class;
3830 cdev_device->release = nvme_cdev_rel;
3831 device_initialize(cdev_device);
3832 cdev_init(cdev, fops);
3833 cdev->owner = owner;
3834 ret = cdev_device_add(cdev, cdev_device);
3835 if (ret)
3836 put_device(cdev_device);
3837
3838 return ret;
3839 }
3840
nvme_ns_chr_open(struct inode * inode,struct file * file)3841 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3842 {
3843 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3844 }
3845
nvme_ns_chr_release(struct inode * inode,struct file * file)3846 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3847 {
3848 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3849 return 0;
3850 }
3851
3852 static const struct file_operations nvme_ns_chr_fops = {
3853 .owner = THIS_MODULE,
3854 .open = nvme_ns_chr_open,
3855 .release = nvme_ns_chr_release,
3856 .unlocked_ioctl = nvme_ns_chr_ioctl,
3857 .compat_ioctl = compat_ptr_ioctl,
3858 .uring_cmd = nvme_ns_chr_uring_cmd,
3859 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3860 };
3861
nvme_add_ns_cdev(struct nvme_ns * ns)3862 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3863 {
3864 int ret;
3865
3866 ns->cdev_device.parent = ns->ctrl->device;
3867 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3868 ns->ctrl->instance, ns->head->instance);
3869 if (ret)
3870 return ret;
3871
3872 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3873 ns->ctrl->ops->module);
3874 }
3875
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3876 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3877 struct nvme_ns_info *info)
3878 {
3879 struct nvme_ns_head *head;
3880 size_t size = sizeof(*head);
3881 int ret = -ENOMEM;
3882
3883 #ifdef CONFIG_NVME_MULTIPATH
3884 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3885 #endif
3886
3887 head = kzalloc(size, GFP_KERNEL);
3888 if (!head)
3889 goto out;
3890 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3891 if (ret < 0)
3892 goto out_free_head;
3893 head->instance = ret;
3894 INIT_LIST_HEAD(&head->list);
3895 ret = init_srcu_struct(&head->srcu);
3896 if (ret)
3897 goto out_ida_remove;
3898 head->subsys = ctrl->subsys;
3899 head->ns_id = info->nsid;
3900 head->ids = info->ids;
3901 head->shared = info->is_shared;
3902 head->rotational = info->is_rotational;
3903 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3904 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3905 kref_init(&head->ref);
3906
3907 if (head->ids.csi) {
3908 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3909 if (ret)
3910 goto out_cleanup_srcu;
3911 } else
3912 head->effects = ctrl->effects;
3913
3914 ret = nvme_mpath_alloc_disk(ctrl, head);
3915 if (ret)
3916 goto out_cleanup_srcu;
3917
3918 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3919
3920 kref_get(&ctrl->subsys->ref);
3921
3922 return head;
3923 out_cleanup_srcu:
3924 cleanup_srcu_struct(&head->srcu);
3925 out_ida_remove:
3926 ida_free(&ctrl->subsys->ns_ida, head->instance);
3927 out_free_head:
3928 kfree(head);
3929 out:
3930 if (ret > 0)
3931 ret = blk_status_to_errno(nvme_error_status(ret));
3932 return ERR_PTR(ret);
3933 }
3934
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3935 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3936 struct nvme_ns_ids *ids)
3937 {
3938 struct nvme_subsystem *s;
3939 int ret = 0;
3940
3941 /*
3942 * Note that this check is racy as we try to avoid holding the global
3943 * lock over the whole ns_head creation. But it is only intended as
3944 * a sanity check anyway.
3945 */
3946 mutex_lock(&nvme_subsystems_lock);
3947 list_for_each_entry(s, &nvme_subsystems, entry) {
3948 if (s == this)
3949 continue;
3950 mutex_lock(&s->lock);
3951 ret = nvme_subsys_check_duplicate_ids(s, ids);
3952 mutex_unlock(&s->lock);
3953 if (ret)
3954 break;
3955 }
3956 mutex_unlock(&nvme_subsystems_lock);
3957
3958 return ret;
3959 }
3960
nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)3961 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3962 {
3963 struct nvme_ctrl *ctrl = ns->ctrl;
3964 struct nvme_ns_head *head = NULL;
3965 int ret;
3966
3967 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3968 if (ret) {
3969 /*
3970 * We've found two different namespaces on two different
3971 * subsystems that report the same ID. This is pretty nasty
3972 * for anything that actually requires unique device
3973 * identification. In the kernel we need this for multipathing,
3974 * and in user space the /dev/disk/by-id/ links rely on it.
3975 *
3976 * If the device also claims to be multi-path capable back off
3977 * here now and refuse the probe the second device as this is a
3978 * recipe for data corruption. If not this is probably a
3979 * cheap consumer device if on the PCIe bus, so let the user
3980 * proceed and use the shiny toy, but warn that with changing
3981 * probing order (which due to our async probing could just be
3982 * device taking longer to startup) the other device could show
3983 * up at any time.
3984 */
3985 nvme_print_device_info(ctrl);
3986 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3987 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3988 info->is_shared)) {
3989 dev_err(ctrl->device,
3990 "ignoring nsid %d because of duplicate IDs\n",
3991 info->nsid);
3992 return ret;
3993 }
3994
3995 dev_err(ctrl->device,
3996 "clearing duplicate IDs for nsid %d\n", info->nsid);
3997 dev_err(ctrl->device,
3998 "use of /dev/disk/by-id/ may cause data corruption\n");
3999 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
4000 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
4001 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
4002 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
4003 }
4004
4005 mutex_lock(&ctrl->subsys->lock);
4006 head = nvme_find_ns_head(ctrl, info->nsid);
4007 if (!head) {
4008 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
4009 if (ret) {
4010 dev_err(ctrl->device,
4011 "duplicate IDs in subsystem for nsid %d\n",
4012 info->nsid);
4013 goto out_unlock;
4014 }
4015 head = nvme_alloc_ns_head(ctrl, info);
4016 if (IS_ERR(head)) {
4017 ret = PTR_ERR(head);
4018 goto out_unlock;
4019 }
4020 } else {
4021 ret = -EINVAL;
4022 if ((!info->is_shared || !head->shared) &&
4023 !list_empty(&head->list)) {
4024 dev_err(ctrl->device,
4025 "Duplicate unshared namespace %d\n",
4026 info->nsid);
4027 goto out_put_ns_head;
4028 }
4029 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4030 dev_err(ctrl->device,
4031 "IDs don't match for shared namespace %d\n",
4032 info->nsid);
4033 goto out_put_ns_head;
4034 }
4035
4036 if (!multipath) {
4037 dev_warn(ctrl->device,
4038 "Found shared namespace %d, but multipathing not supported.\n",
4039 info->nsid);
4040 dev_warn_once(ctrl->device,
4041 "Shared namespace support requires core_nvme.multipath=Y.\n");
4042 }
4043 }
4044
4045 list_add_tail_rcu(&ns->siblings, &head->list);
4046 ns->head = head;
4047 mutex_unlock(&ctrl->subsys->lock);
4048
4049 #ifdef CONFIG_NVME_MULTIPATH
4050 cancel_delayed_work(&head->remove_work);
4051 #endif
4052 return 0;
4053
4054 out_put_ns_head:
4055 nvme_put_ns_head(head);
4056 out_unlock:
4057 mutex_unlock(&ctrl->subsys->lock);
4058 return ret;
4059 }
4060
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)4061 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4062 {
4063 struct nvme_ns *ns, *ret = NULL;
4064 int srcu_idx;
4065
4066 srcu_idx = srcu_read_lock(&ctrl->srcu);
4067 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4068 srcu_read_lock_held(&ctrl->srcu)) {
4069 if (ns->head->ns_id == nsid) {
4070 if (!nvme_get_ns(ns))
4071 continue;
4072 ret = ns;
4073 break;
4074 }
4075 if (ns->head->ns_id > nsid)
4076 break;
4077 }
4078 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4079 return ret;
4080 }
4081 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
4082
4083 /*
4084 * Add the namespace to the controller list while keeping the list ordered.
4085 */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)4086 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4087 {
4088 struct nvme_ns *tmp;
4089
4090 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4091 if (tmp->head->ns_id < ns->head->ns_id) {
4092 list_add_rcu(&ns->list, &tmp->list);
4093 return;
4094 }
4095 }
4096 list_add_rcu(&ns->list, &ns->ctrl->namespaces);
4097 }
4098
nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)4099 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4100 {
4101 struct queue_limits lim = { };
4102 struct nvme_ns *ns;
4103 struct gendisk *disk;
4104 int node = ctrl->numa_node;
4105 bool last_path = false;
4106
4107 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4108 if (!ns)
4109 return;
4110
4111 if (ctrl->opts && ctrl->opts->data_digest)
4112 lim.features |= BLK_FEAT_STABLE_WRITES;
4113 if (ctrl->ops->supports_pci_p2pdma &&
4114 ctrl->ops->supports_pci_p2pdma(ctrl))
4115 lim.features |= BLK_FEAT_PCI_P2PDMA;
4116
4117 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
4118 if (IS_ERR(disk))
4119 goto out_free_ns;
4120 disk->fops = &nvme_bdev_ops;
4121 disk->private_data = ns;
4122
4123 ns->disk = disk;
4124 ns->queue = disk->queue;
4125 ns->ctrl = ctrl;
4126 kref_init(&ns->kref);
4127
4128 if (nvme_init_ns_head(ns, info))
4129 goto out_cleanup_disk;
4130
4131 /*
4132 * If multipathing is enabled, the device name for all disks and not
4133 * just those that represent shared namespaces needs to be based on the
4134 * subsystem instance. Using the controller instance for private
4135 * namespaces could lead to naming collisions between shared and private
4136 * namespaces if they don't use a common numbering scheme.
4137 *
4138 * If multipathing is not enabled, disk names must use the controller
4139 * instance as shared namespaces will show up as multiple block
4140 * devices.
4141 */
4142 if (nvme_ns_head_multipath(ns->head)) {
4143 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4144 ctrl->instance, ns->head->instance);
4145 disk->flags |= GENHD_FL_HIDDEN;
4146 } else if (multipath) {
4147 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4148 ns->head->instance);
4149 } else {
4150 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4151 ns->head->instance);
4152 }
4153
4154 if (nvme_update_ns_info(ns, info))
4155 goto out_unlink_ns;
4156
4157 mutex_lock(&ctrl->namespaces_lock);
4158 /*
4159 * Ensure that no namespaces are added to the ctrl list after the queues
4160 * are frozen, thereby avoiding a deadlock between scan and reset.
4161 */
4162 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
4163 mutex_unlock(&ctrl->namespaces_lock);
4164 goto out_unlink_ns;
4165 }
4166 nvme_ns_add_to_ctrl_list(ns);
4167 mutex_unlock(&ctrl->namespaces_lock);
4168 synchronize_srcu(&ctrl->srcu);
4169 nvme_get_ctrl(ctrl);
4170
4171 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
4172 goto out_cleanup_ns_from_list;
4173
4174 if (!nvme_ns_head_multipath(ns->head))
4175 nvme_add_ns_cdev(ns);
4176
4177 nvme_mpath_add_disk(ns, info->anagrpid);
4178 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4179
4180 /*
4181 * Set ns->disk->device->driver_data to ns so we can access
4182 * ns->head->passthru_err_log_enabled in
4183 * nvme_io_passthru_err_log_enabled_[store | show]().
4184 */
4185 dev_set_drvdata(disk_to_dev(ns->disk), ns);
4186
4187 return;
4188
4189 out_cleanup_ns_from_list:
4190 nvme_put_ctrl(ctrl);
4191 mutex_lock(&ctrl->namespaces_lock);
4192 list_del_rcu(&ns->list);
4193 mutex_unlock(&ctrl->namespaces_lock);
4194 synchronize_srcu(&ctrl->srcu);
4195 out_unlink_ns:
4196 mutex_lock(&ctrl->subsys->lock);
4197 list_del_rcu(&ns->siblings);
4198 if (list_empty(&ns->head->list)) {
4199 list_del_init(&ns->head->entry);
4200 /*
4201 * If multipath is not configured, we still create a namespace
4202 * head (nshead), but head->disk is not initialized in that
4203 * case. As a result, only a single reference to nshead is held
4204 * (via kref_init()) when it is created. Therefore, ensure that
4205 * we do not release the reference to nshead twice if head->disk
4206 * is not present.
4207 */
4208 if (ns->head->disk)
4209 last_path = true;
4210 }
4211 mutex_unlock(&ctrl->subsys->lock);
4212 if (last_path)
4213 nvme_put_ns_head(ns->head);
4214 nvme_put_ns_head(ns->head);
4215 out_cleanup_disk:
4216 put_disk(disk);
4217 out_free_ns:
4218 kfree(ns);
4219 }
4220
nvme_ns_remove(struct nvme_ns * ns)4221 static void nvme_ns_remove(struct nvme_ns *ns)
4222 {
4223 bool last_path = false;
4224
4225 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4226 return;
4227
4228 clear_bit(NVME_NS_READY, &ns->flags);
4229 set_capacity(ns->disk, 0);
4230 nvme_fault_inject_fini(&ns->fault_inject);
4231
4232 /*
4233 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4234 * this ns going back into current_path.
4235 */
4236 synchronize_srcu(&ns->head->srcu);
4237
4238 /* wait for concurrent submissions */
4239 if (nvme_mpath_clear_current_path(ns))
4240 synchronize_srcu(&ns->head->srcu);
4241
4242 mutex_lock(&ns->ctrl->subsys->lock);
4243 list_del_rcu(&ns->siblings);
4244 if (list_empty(&ns->head->list)) {
4245 if (!nvme_mpath_queue_if_no_path(ns->head))
4246 list_del_init(&ns->head->entry);
4247 last_path = true;
4248 }
4249 mutex_unlock(&ns->ctrl->subsys->lock);
4250
4251 /* guarantee not available in head->list */
4252 synchronize_srcu(&ns->head->srcu);
4253
4254 if (!nvme_ns_head_multipath(ns->head))
4255 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4256
4257 nvme_mpath_remove_sysfs_link(ns);
4258
4259 del_gendisk(ns->disk);
4260
4261 mutex_lock(&ns->ctrl->namespaces_lock);
4262 list_del_rcu(&ns->list);
4263 mutex_unlock(&ns->ctrl->namespaces_lock);
4264 synchronize_srcu(&ns->ctrl->srcu);
4265
4266 if (last_path)
4267 nvme_mpath_remove_disk(ns->head);
4268 nvme_put_ns(ns);
4269 }
4270
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)4271 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4272 {
4273 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4274
4275 if (ns) {
4276 nvme_ns_remove(ns);
4277 nvme_put_ns(ns);
4278 }
4279 }
4280
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)4281 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4282 {
4283 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4284
4285 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4286 dev_err(ns->ctrl->device,
4287 "identifiers changed for nsid %d\n", ns->head->ns_id);
4288 goto out;
4289 }
4290
4291 ret = nvme_update_ns_info(ns, info);
4292 out:
4293 /*
4294 * Only remove the namespace if we got a fatal error back from the
4295 * device, otherwise ignore the error and just move on.
4296 *
4297 * TODO: we should probably schedule a delayed retry here.
4298 */
4299 if (ret > 0 && (ret & NVME_STATUS_DNR))
4300 nvme_ns_remove(ns);
4301 }
4302
nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)4303 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4304 {
4305 struct nvme_ns_info info = { .nsid = nsid };
4306 struct nvme_ns *ns;
4307 int ret = 1;
4308
4309 if (nvme_identify_ns_descs(ctrl, &info))
4310 return;
4311
4312 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4313 dev_warn(ctrl->device,
4314 "command set not reported for nsid: %d\n", nsid);
4315 return;
4316 }
4317
4318 /*
4319 * If available try to use the Command Set Independent Identify Namespace
4320 * data structure to find all the generic information that is needed to
4321 * set up a namespace. If not fall back to the legacy version.
4322 */
4323 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4324 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4325 ctrl->vs >= NVME_VS(2, 0, 0))
4326 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4327 if (ret > 0)
4328 ret = nvme_ns_info_from_identify(ctrl, &info);
4329
4330 if (info.is_removed)
4331 nvme_ns_remove_by_nsid(ctrl, nsid);
4332
4333 /*
4334 * Ignore the namespace if it is not ready. We will get an AEN once it
4335 * becomes ready and restart the scan.
4336 */
4337 if (ret || !info.is_ready)
4338 return;
4339
4340 ns = nvme_find_get_ns(ctrl, nsid);
4341 if (ns) {
4342 nvme_validate_ns(ns, &info);
4343 nvme_put_ns(ns);
4344 } else {
4345 nvme_alloc_ns(ctrl, &info);
4346 }
4347 }
4348
4349 /**
4350 * struct async_scan_info - keeps track of controller & NSIDs to scan
4351 * @ctrl: Controller on which namespaces are being scanned
4352 * @next_nsid: Index of next NSID to scan in ns_list
4353 * @ns_list: Pointer to list of NSIDs to scan
4354 *
4355 * Note: There is a single async_scan_info structure shared by all instances
4356 * of nvme_scan_ns_async() scanning a given controller, so the atomic
4357 * operations on next_nsid are critical to ensure each instance scans a unique
4358 * NSID.
4359 */
4360 struct async_scan_info {
4361 struct nvme_ctrl *ctrl;
4362 atomic_t next_nsid;
4363 __le32 *ns_list;
4364 };
4365
nvme_scan_ns_async(void * data,async_cookie_t cookie)4366 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4367 {
4368 struct async_scan_info *scan_info = data;
4369 int idx;
4370 u32 nsid;
4371
4372 idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4373 nsid = le32_to_cpu(scan_info->ns_list[idx]);
4374
4375 nvme_scan_ns(scan_info->ctrl, nsid);
4376 }
4377
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4378 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4379 unsigned nsid)
4380 {
4381 struct nvme_ns *ns, *next;
4382 LIST_HEAD(rm_list);
4383
4384 mutex_lock(&ctrl->namespaces_lock);
4385 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4386 if (ns->head->ns_id > nsid) {
4387 list_del_rcu(&ns->list);
4388 synchronize_srcu(&ctrl->srcu);
4389 list_add_tail_rcu(&ns->list, &rm_list);
4390 }
4391 }
4392 mutex_unlock(&ctrl->namespaces_lock);
4393
4394 list_for_each_entry_safe(ns, next, &rm_list, list)
4395 nvme_ns_remove(ns);
4396 }
4397
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4398 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4399 {
4400 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4401 __le32 *ns_list;
4402 u32 prev = 0;
4403 int ret = 0, i;
4404 ASYNC_DOMAIN(domain);
4405 struct async_scan_info scan_info;
4406
4407 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4408 if (!ns_list)
4409 return -ENOMEM;
4410
4411 scan_info.ctrl = ctrl;
4412 scan_info.ns_list = ns_list;
4413 for (;;) {
4414 struct nvme_command cmd = {
4415 .identify.opcode = nvme_admin_identify,
4416 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4417 .identify.nsid = cpu_to_le32(prev),
4418 };
4419
4420 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4421 NVME_IDENTIFY_DATA_SIZE);
4422 if (ret) {
4423 dev_warn(ctrl->device,
4424 "Identify NS List failed (status=0x%x)\n", ret);
4425 goto free;
4426 }
4427
4428 atomic_set(&scan_info.next_nsid, 0);
4429 for (i = 0; i < nr_entries; i++) {
4430 u32 nsid = le32_to_cpu(ns_list[i]);
4431
4432 if (!nsid) /* end of the list? */
4433 goto out;
4434 async_schedule_domain(nvme_scan_ns_async, &scan_info,
4435 &domain);
4436 while (++prev < nsid)
4437 nvme_ns_remove_by_nsid(ctrl, prev);
4438 }
4439 async_synchronize_full_domain(&domain);
4440 }
4441 out:
4442 nvme_remove_invalid_namespaces(ctrl, prev);
4443 free:
4444 async_synchronize_full_domain(&domain);
4445 kfree(ns_list);
4446 return ret;
4447 }
4448
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4449 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4450 {
4451 struct nvme_id_ctrl *id;
4452 u32 nn, i;
4453
4454 if (nvme_identify_ctrl(ctrl, &id))
4455 return;
4456 nn = le32_to_cpu(id->nn);
4457 kfree(id);
4458
4459 for (i = 1; i <= nn; i++)
4460 nvme_scan_ns(ctrl, i);
4461
4462 nvme_remove_invalid_namespaces(ctrl, nn);
4463 }
4464
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4465 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4466 {
4467 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4468 __le32 *log;
4469 int error;
4470
4471 log = kzalloc(log_size, GFP_KERNEL);
4472 if (!log)
4473 return;
4474
4475 /*
4476 * We need to read the log to clear the AEN, but we don't want to rely
4477 * on it for the changed namespace information as userspace could have
4478 * raced with us in reading the log page, which could cause us to miss
4479 * updates.
4480 */
4481 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4482 NVME_CSI_NVM, log, log_size, 0);
4483 if (error)
4484 dev_warn(ctrl->device,
4485 "reading changed ns log failed: %d\n", error);
4486
4487 kfree(log);
4488 }
4489
nvme_scan_work(struct work_struct * work)4490 static void nvme_scan_work(struct work_struct *work)
4491 {
4492 struct nvme_ctrl *ctrl =
4493 container_of(work, struct nvme_ctrl, scan_work);
4494 int ret;
4495
4496 /* No tagset on a live ctrl means IO queues could not created */
4497 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4498 return;
4499
4500 /*
4501 * Identify controller limits can change at controller reset due to
4502 * new firmware download, even though it is not common we cannot ignore
4503 * such scenario. Controller's non-mdts limits are reported in the unit
4504 * of logical blocks that is dependent on the format of attached
4505 * namespace. Hence re-read the limits at the time of ns allocation.
4506 */
4507 ret = nvme_init_non_mdts_limits(ctrl);
4508 if (ret < 0) {
4509 dev_warn(ctrl->device,
4510 "reading non-mdts-limits failed: %d\n", ret);
4511 return;
4512 }
4513
4514 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4515 dev_info(ctrl->device, "rescanning namespaces.\n");
4516 nvme_clear_changed_ns_log(ctrl);
4517 }
4518
4519 mutex_lock(&ctrl->scan_lock);
4520 if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4521 nvme_scan_ns_sequential(ctrl);
4522 } else {
4523 /*
4524 * Fall back to sequential scan if DNR is set to handle broken
4525 * devices which should support Identify NS List (as per the VS
4526 * they report) but don't actually support it.
4527 */
4528 ret = nvme_scan_ns_list(ctrl);
4529 if (ret > 0 && ret & NVME_STATUS_DNR)
4530 nvme_scan_ns_sequential(ctrl);
4531 }
4532 mutex_unlock(&ctrl->scan_lock);
4533
4534 /* Requeue if we have missed AENs */
4535 if (test_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events))
4536 nvme_queue_scan(ctrl);
4537 #ifdef CONFIG_NVME_MULTIPATH
4538 else if (ctrl->ana_log_buf)
4539 /* Re-read the ANA log page to not miss updates */
4540 queue_work(nvme_wq, &ctrl->ana_work);
4541 #endif
4542 }
4543
4544 /*
4545 * This function iterates the namespace list unlocked to allow recovery from
4546 * controller failure. It is up to the caller to ensure the namespace list is
4547 * not modified by scan work while this function is executing.
4548 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4549 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4550 {
4551 struct nvme_ns *ns, *next;
4552 LIST_HEAD(ns_list);
4553
4554 /*
4555 * make sure to requeue I/O to all namespaces as these
4556 * might result from the scan itself and must complete
4557 * for the scan_work to make progress
4558 */
4559 nvme_mpath_clear_ctrl_paths(ctrl);
4560
4561 /*
4562 * Unquiesce io queues so any pending IO won't hang, especially
4563 * those submitted from scan work
4564 */
4565 nvme_unquiesce_io_queues(ctrl);
4566
4567 /* prevent racing with ns scanning */
4568 flush_work(&ctrl->scan_work);
4569
4570 /*
4571 * The dead states indicates the controller was not gracefully
4572 * disconnected. In that case, we won't be able to flush any data while
4573 * removing the namespaces' disks; fail all the queues now to avoid
4574 * potentially having to clean up the failed sync later.
4575 */
4576 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4577 nvme_mark_namespaces_dead(ctrl);
4578
4579 /* this is a no-op when called from the controller reset handler */
4580 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4581
4582 mutex_lock(&ctrl->namespaces_lock);
4583 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4584 mutex_unlock(&ctrl->namespaces_lock);
4585 synchronize_srcu(&ctrl->srcu);
4586
4587 list_for_each_entry_safe(ns, next, &ns_list, list)
4588 nvme_ns_remove(ns);
4589 }
4590 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4591
nvme_class_uevent(const struct device * dev,struct kobj_uevent_env * env)4592 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4593 {
4594 const struct nvme_ctrl *ctrl =
4595 container_of(dev, struct nvme_ctrl, ctrl_device);
4596 struct nvmf_ctrl_options *opts = ctrl->opts;
4597 int ret;
4598
4599 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4600 if (ret)
4601 return ret;
4602
4603 if (opts) {
4604 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4605 if (ret)
4606 return ret;
4607
4608 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4609 opts->trsvcid ?: "none");
4610 if (ret)
4611 return ret;
4612
4613 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4614 opts->host_traddr ?: "none");
4615 if (ret)
4616 return ret;
4617
4618 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4619 opts->host_iface ?: "none");
4620 }
4621 return ret;
4622 }
4623
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4624 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4625 {
4626 char *envp[2] = { envdata, NULL };
4627
4628 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4629 }
4630
nvme_aen_uevent(struct nvme_ctrl * ctrl)4631 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4632 {
4633 char *envp[2] = { NULL, NULL };
4634 u32 aen_result = ctrl->aen_result;
4635
4636 ctrl->aen_result = 0;
4637 if (!aen_result)
4638 return;
4639
4640 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4641 if (!envp[0])
4642 return;
4643 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4644 kfree(envp[0]);
4645 }
4646
nvme_async_event_work(struct work_struct * work)4647 static void nvme_async_event_work(struct work_struct *work)
4648 {
4649 struct nvme_ctrl *ctrl =
4650 container_of(work, struct nvme_ctrl, async_event_work);
4651
4652 nvme_aen_uevent(ctrl);
4653
4654 /*
4655 * The transport drivers must guarantee AER submission here is safe by
4656 * flushing ctrl async_event_work after changing the controller state
4657 * from LIVE and before freeing the admin queue.
4658 */
4659 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4660 ctrl->ops->submit_async_event(ctrl);
4661 }
4662
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4663 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4664 {
4665
4666 u32 csts;
4667
4668 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4669 return false;
4670
4671 if (csts == ~0)
4672 return false;
4673
4674 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4675 }
4676
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4677 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4678 {
4679 struct nvme_fw_slot_info_log *log;
4680 u8 next_fw_slot, cur_fw_slot;
4681
4682 log = kmalloc(sizeof(*log), GFP_KERNEL);
4683 if (!log)
4684 return;
4685
4686 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4687 log, sizeof(*log), 0)) {
4688 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4689 goto out_free_log;
4690 }
4691
4692 cur_fw_slot = log->afi & 0x7;
4693 next_fw_slot = (log->afi & 0x70) >> 4;
4694 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4695 dev_info(ctrl->device,
4696 "Firmware is activated after next Controller Level Reset\n");
4697 goto out_free_log;
4698 }
4699
4700 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4701 sizeof(ctrl->subsys->firmware_rev));
4702
4703 out_free_log:
4704 kfree(log);
4705 }
4706
nvme_fw_act_work(struct work_struct * work)4707 static void nvme_fw_act_work(struct work_struct *work)
4708 {
4709 struct nvme_ctrl *ctrl = container_of(work,
4710 struct nvme_ctrl, fw_act_work);
4711 unsigned long fw_act_timeout;
4712
4713 nvme_auth_stop(ctrl);
4714
4715 if (ctrl->mtfa)
4716 fw_act_timeout = jiffies + msecs_to_jiffies(ctrl->mtfa * 100);
4717 else
4718 fw_act_timeout = jiffies + secs_to_jiffies(admin_timeout);
4719
4720 nvme_quiesce_io_queues(ctrl);
4721 while (nvme_ctrl_pp_status(ctrl)) {
4722 if (time_after(jiffies, fw_act_timeout)) {
4723 dev_warn(ctrl->device,
4724 "Fw activation timeout, reset controller\n");
4725 nvme_try_sched_reset(ctrl);
4726 return;
4727 }
4728 msleep(100);
4729 }
4730
4731 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) ||
4732 !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4733 return;
4734
4735 nvme_unquiesce_io_queues(ctrl);
4736 /* read FW slot information to clear the AER */
4737 nvme_get_fw_slot_info(ctrl);
4738
4739 queue_work(nvme_wq, &ctrl->async_event_work);
4740 }
4741
nvme_aer_type(u32 result)4742 static u32 nvme_aer_type(u32 result)
4743 {
4744 return result & 0x7;
4745 }
4746
nvme_aer_subtype(u32 result)4747 static u32 nvme_aer_subtype(u32 result)
4748 {
4749 return (result & 0xff00) >> 8;
4750 }
4751
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4752 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4753 {
4754 u32 aer_notice_type = nvme_aer_subtype(result);
4755 bool requeue = true;
4756
4757 switch (aer_notice_type) {
4758 case NVME_AER_NOTICE_NS_CHANGED:
4759 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4760 nvme_queue_scan(ctrl);
4761 break;
4762 case NVME_AER_NOTICE_FW_ACT_STARTING:
4763 /*
4764 * We are (ab)using the RESETTING state to prevent subsequent
4765 * recovery actions from interfering with the controller's
4766 * firmware activation.
4767 */
4768 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4769 requeue = false;
4770 queue_work(nvme_wq, &ctrl->fw_act_work);
4771 }
4772 break;
4773 #ifdef CONFIG_NVME_MULTIPATH
4774 case NVME_AER_NOTICE_ANA:
4775 if (!ctrl->ana_log_buf)
4776 break;
4777 queue_work(nvme_wq, &ctrl->ana_work);
4778 break;
4779 #endif
4780 case NVME_AER_NOTICE_DISC_CHANGED:
4781 ctrl->aen_result = result;
4782 break;
4783 default:
4784 dev_warn(ctrl->device, "async event result %08x\n", result);
4785 }
4786 return requeue;
4787 }
4788
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4789 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4790 {
4791 dev_warn(ctrl->device,
4792 "resetting controller due to persistent internal error\n");
4793 nvme_reset_ctrl(ctrl);
4794 }
4795
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4796 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4797 volatile union nvme_result *res)
4798 {
4799 u32 result = le32_to_cpu(res->u32);
4800 u32 aer_type = nvme_aer_type(result);
4801 u32 aer_subtype = nvme_aer_subtype(result);
4802 bool requeue = true;
4803
4804 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4805 return;
4806
4807 trace_nvme_async_event(ctrl, result);
4808 switch (aer_type) {
4809 case NVME_AER_NOTICE:
4810 requeue = nvme_handle_aen_notice(ctrl, result);
4811 break;
4812 case NVME_AER_ERROR:
4813 /*
4814 * For a persistent internal error, don't run async_event_work
4815 * to submit a new AER. The controller reset will do it.
4816 */
4817 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4818 nvme_handle_aer_persistent_error(ctrl);
4819 return;
4820 }
4821 fallthrough;
4822 case NVME_AER_SMART:
4823 case NVME_AER_CSS:
4824 case NVME_AER_VS:
4825 ctrl->aen_result = result;
4826 break;
4827 default:
4828 break;
4829 }
4830
4831 if (requeue)
4832 queue_work(nvme_wq, &ctrl->async_event_work);
4833 }
4834 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4835
nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4836 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4837 const struct blk_mq_ops *ops, unsigned int cmd_size)
4838 {
4839 struct queue_limits lim = {};
4840 int ret;
4841
4842 memset(set, 0, sizeof(*set));
4843 set->ops = ops;
4844 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4845 if (ctrl->ops->flags & NVME_F_FABRICS)
4846 /* Reserved for fabric connect and keep alive */
4847 set->reserved_tags = 2;
4848 set->numa_node = ctrl->numa_node;
4849 if (ctrl->ops->flags & NVME_F_BLOCKING)
4850 set->flags |= BLK_MQ_F_BLOCKING;
4851 set->cmd_size = cmd_size;
4852 set->driver_data = ctrl;
4853 set->nr_hw_queues = 1;
4854 set->timeout = NVME_ADMIN_TIMEOUT;
4855 ret = blk_mq_alloc_tag_set(set);
4856 if (ret)
4857 return ret;
4858
4859 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4860 if (IS_ERR(ctrl->admin_q)) {
4861 ret = PTR_ERR(ctrl->admin_q);
4862 goto out_free_tagset;
4863 }
4864
4865 if (ctrl->ops->flags & NVME_F_FABRICS) {
4866 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4867 if (IS_ERR(ctrl->fabrics_q)) {
4868 ret = PTR_ERR(ctrl->fabrics_q);
4869 goto out_cleanup_admin_q;
4870 }
4871 }
4872
4873 ctrl->admin_tagset = set;
4874 return 0;
4875
4876 out_cleanup_admin_q:
4877 blk_mq_destroy_queue(ctrl->admin_q);
4878 blk_put_queue(ctrl->admin_q);
4879 out_free_tagset:
4880 blk_mq_free_tag_set(set);
4881 ctrl->admin_q = NULL;
4882 ctrl->fabrics_q = NULL;
4883 return ret;
4884 }
4885 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4886
nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4887 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4888 {
4889 /*
4890 * As we're about to destroy the queue and free tagset
4891 * we can not have keep-alive work running.
4892 */
4893 nvme_stop_keep_alive(ctrl);
4894 blk_mq_destroy_queue(ctrl->admin_q);
4895 blk_put_queue(ctrl->admin_q);
4896 if (ctrl->ops->flags & NVME_F_FABRICS) {
4897 blk_mq_destroy_queue(ctrl->fabrics_q);
4898 blk_put_queue(ctrl->fabrics_q);
4899 }
4900 blk_mq_free_tag_set(ctrl->admin_tagset);
4901 }
4902 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4903
nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4904 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4905 const struct blk_mq_ops *ops, unsigned int nr_maps,
4906 unsigned int cmd_size)
4907 {
4908 int ret;
4909
4910 memset(set, 0, sizeof(*set));
4911 set->ops = ops;
4912 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4913 /*
4914 * Some Apple controllers requires tags to be unique across admin and
4915 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4916 */
4917 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4918 set->reserved_tags = NVME_AQ_DEPTH;
4919 else if (ctrl->ops->flags & NVME_F_FABRICS)
4920 /* Reserved for fabric connect */
4921 set->reserved_tags = 1;
4922 set->numa_node = ctrl->numa_node;
4923 if (ctrl->ops->flags & NVME_F_BLOCKING)
4924 set->flags |= BLK_MQ_F_BLOCKING;
4925 set->cmd_size = cmd_size;
4926 set->driver_data = ctrl;
4927 set->nr_hw_queues = ctrl->queue_count - 1;
4928 set->timeout = NVME_IO_TIMEOUT;
4929 set->nr_maps = nr_maps;
4930 ret = blk_mq_alloc_tag_set(set);
4931 if (ret)
4932 return ret;
4933
4934 if (ctrl->ops->flags & NVME_F_FABRICS) {
4935 struct queue_limits lim = {
4936 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE,
4937 };
4938
4939 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4940 if (IS_ERR(ctrl->connect_q)) {
4941 ret = PTR_ERR(ctrl->connect_q);
4942 goto out_free_tag_set;
4943 }
4944 }
4945
4946 ctrl->tagset = set;
4947 return 0;
4948
4949 out_free_tag_set:
4950 blk_mq_free_tag_set(set);
4951 ctrl->connect_q = NULL;
4952 return ret;
4953 }
4954 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4955
nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4956 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4957 {
4958 if (ctrl->ops->flags & NVME_F_FABRICS) {
4959 blk_mq_destroy_queue(ctrl->connect_q);
4960 blk_put_queue(ctrl->connect_q);
4961 }
4962 blk_mq_free_tag_set(ctrl->tagset);
4963 }
4964 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4965
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4966 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4967 {
4968 nvme_mpath_stop(ctrl);
4969 nvme_auth_stop(ctrl);
4970 nvme_stop_failfast_work(ctrl);
4971 flush_work(&ctrl->async_event_work);
4972 cancel_work_sync(&ctrl->fw_act_work);
4973 if (ctrl->ops->stop_ctrl)
4974 ctrl->ops->stop_ctrl(ctrl);
4975 }
4976 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4977
nvme_start_ctrl(struct nvme_ctrl * ctrl)4978 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4979 {
4980 nvme_enable_aen(ctrl);
4981
4982 /*
4983 * persistent discovery controllers need to send indication to userspace
4984 * to re-read the discovery log page to learn about possible changes
4985 * that were missed. We identify persistent discovery controllers by
4986 * checking that they started once before, hence are reconnecting back.
4987 */
4988 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4989 nvme_discovery_ctrl(ctrl))
4990 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4991
4992 if (ctrl->queue_count > 1) {
4993 nvme_queue_scan(ctrl);
4994 nvme_unquiesce_io_queues(ctrl);
4995 nvme_mpath_update(ctrl);
4996 }
4997
4998 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4999 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
5000 }
5001 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
5002
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)5003 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
5004 {
5005 nvme_stop_keep_alive(ctrl);
5006 nvme_hwmon_exit(ctrl);
5007 nvme_fault_inject_fini(&ctrl->fault_inject);
5008 dev_pm_qos_hide_latency_tolerance(ctrl->device);
5009 cdev_device_del(&ctrl->cdev, ctrl->device);
5010 nvme_put_ctrl(ctrl);
5011 }
5012 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
5013
nvme_free_cels(struct nvme_ctrl * ctrl)5014 static void nvme_free_cels(struct nvme_ctrl *ctrl)
5015 {
5016 struct nvme_effects_log *cel;
5017 unsigned long i;
5018
5019 xa_for_each(&ctrl->cels, i, cel) {
5020 xa_erase(&ctrl->cels, i);
5021 kfree(cel);
5022 }
5023
5024 xa_destroy(&ctrl->cels);
5025 }
5026
nvme_free_ctrl(struct device * dev)5027 static void nvme_free_ctrl(struct device *dev)
5028 {
5029 struct nvme_ctrl *ctrl =
5030 container_of(dev, struct nvme_ctrl, ctrl_device);
5031 struct nvme_subsystem *subsys = ctrl->subsys;
5032
5033 if (!subsys || ctrl->instance != subsys->instance)
5034 ida_free(&nvme_instance_ida, ctrl->instance);
5035 nvme_free_cels(ctrl);
5036 nvme_mpath_uninit(ctrl);
5037 cleanup_srcu_struct(&ctrl->srcu);
5038 nvme_auth_stop(ctrl);
5039 nvme_auth_free(ctrl);
5040 __free_page(ctrl->discard_page);
5041 free_opal_dev(ctrl->opal_dev);
5042
5043 if (subsys) {
5044 mutex_lock(&nvme_subsystems_lock);
5045 list_del(&ctrl->subsys_entry);
5046 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
5047 mutex_unlock(&nvme_subsystems_lock);
5048 }
5049
5050 ctrl->ops->free_ctrl(ctrl);
5051
5052 if (subsys)
5053 nvme_put_subsystem(subsys);
5054 }
5055
5056 /*
5057 * Initialize a NVMe controller structures. This needs to be called during
5058 * earliest initialization so that we have the initialized structured around
5059 * during probing.
5060 *
5061 * On success, the caller must use the nvme_put_ctrl() to release this when
5062 * needed, which also invokes the ops->free_ctrl() callback.
5063 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)5064 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
5065 const struct nvme_ctrl_ops *ops, unsigned long quirks)
5066 {
5067 int ret;
5068
5069 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
5070 ctrl->passthru_err_log_enabled = false;
5071 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
5072 spin_lock_init(&ctrl->lock);
5073 mutex_init(&ctrl->namespaces_lock);
5074
5075 ret = init_srcu_struct(&ctrl->srcu);
5076 if (ret)
5077 return ret;
5078
5079 mutex_init(&ctrl->scan_lock);
5080 INIT_LIST_HEAD(&ctrl->namespaces);
5081 xa_init(&ctrl->cels);
5082 ctrl->dev = dev;
5083 ctrl->ops = ops;
5084 ctrl->quirks = quirks;
5085 ctrl->numa_node = NUMA_NO_NODE;
5086 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
5087 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
5088 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
5089 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
5090 init_waitqueue_head(&ctrl->state_wq);
5091
5092 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
5093 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
5094 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
5095 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
5096 ctrl->ka_last_check_time = jiffies;
5097
5098 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
5099 PAGE_SIZE);
5100 ctrl->discard_page = alloc_page(GFP_KERNEL);
5101 if (!ctrl->discard_page) {
5102 ret = -ENOMEM;
5103 goto out;
5104 }
5105
5106 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
5107 if (ret < 0)
5108 goto out;
5109 ctrl->instance = ret;
5110
5111 ret = nvme_auth_init_ctrl(ctrl);
5112 if (ret)
5113 goto out_release_instance;
5114
5115 nvme_mpath_init_ctrl(ctrl);
5116
5117 device_initialize(&ctrl->ctrl_device);
5118 ctrl->device = &ctrl->ctrl_device;
5119 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
5120 ctrl->instance);
5121 ctrl->device->class = &nvme_class;
5122 ctrl->device->parent = ctrl->dev;
5123 if (ops->dev_attr_groups)
5124 ctrl->device->groups = ops->dev_attr_groups;
5125 else
5126 ctrl->device->groups = nvme_dev_attr_groups;
5127 ctrl->device->release = nvme_free_ctrl;
5128 dev_set_drvdata(ctrl->device, ctrl);
5129
5130 return ret;
5131
5132 out_release_instance:
5133 ida_free(&nvme_instance_ida, ctrl->instance);
5134 out:
5135 if (ctrl->discard_page)
5136 __free_page(ctrl->discard_page);
5137 cleanup_srcu_struct(&ctrl->srcu);
5138 return ret;
5139 }
5140 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
5141
5142 /*
5143 * On success, returns with an elevated controller reference and caller must
5144 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
5145 */
nvme_add_ctrl(struct nvme_ctrl * ctrl)5146 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
5147 {
5148 int ret;
5149
5150 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
5151 if (ret)
5152 return ret;
5153
5154 cdev_init(&ctrl->cdev, &nvme_dev_fops);
5155 ctrl->cdev.owner = ctrl->ops->module;
5156 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
5157 if (ret)
5158 return ret;
5159
5160 /*
5161 * Initialize latency tolerance controls. The sysfs files won't
5162 * be visible to userspace unless the device actually supports APST.
5163 */
5164 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
5165 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
5166 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
5167
5168 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5169 nvme_get_ctrl(ctrl);
5170
5171 return 0;
5172 }
5173 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
5174
5175 /* let I/O to all namespaces fail in preparation for surprise removal */
nvme_mark_namespaces_dead(struct nvme_ctrl * ctrl)5176 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
5177 {
5178 struct nvme_ns *ns;
5179 int srcu_idx;
5180
5181 srcu_idx = srcu_read_lock(&ctrl->srcu);
5182 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5183 srcu_read_lock_held(&ctrl->srcu))
5184 blk_mark_disk_dead(ns->disk);
5185 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5186 }
5187 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
5188
nvme_unfreeze(struct nvme_ctrl * ctrl)5189 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5190 {
5191 struct nvme_ns *ns;
5192 int srcu_idx;
5193
5194 srcu_idx = srcu_read_lock(&ctrl->srcu);
5195 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5196 srcu_read_lock_held(&ctrl->srcu))
5197 blk_mq_unfreeze_queue_non_owner(ns->queue);
5198 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5199 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5200 }
5201 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5202
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)5203 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5204 {
5205 struct nvme_ns *ns;
5206 int srcu_idx;
5207
5208 srcu_idx = srcu_read_lock(&ctrl->srcu);
5209 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5210 srcu_read_lock_held(&ctrl->srcu)) {
5211 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5212 if (timeout <= 0)
5213 break;
5214 }
5215 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5216 return timeout;
5217 }
5218 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5219
nvme_wait_freeze(struct nvme_ctrl * ctrl)5220 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5221 {
5222 struct nvme_ns *ns;
5223 int srcu_idx;
5224
5225 srcu_idx = srcu_read_lock(&ctrl->srcu);
5226 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5227 srcu_read_lock_held(&ctrl->srcu))
5228 blk_mq_freeze_queue_wait(ns->queue);
5229 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5230 }
5231 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5232
nvme_start_freeze(struct nvme_ctrl * ctrl)5233 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5234 {
5235 struct nvme_ns *ns;
5236 int srcu_idx;
5237
5238 set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5239 srcu_idx = srcu_read_lock(&ctrl->srcu);
5240 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5241 srcu_read_lock_held(&ctrl->srcu))
5242 /*
5243 * Typical non_owner use case is from pci driver, in which
5244 * start_freeze is called from timeout work function, but
5245 * unfreeze is done in reset work context
5246 */
5247 blk_freeze_queue_start_non_owner(ns->queue);
5248 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5249 }
5250 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5251
nvme_quiesce_io_queues(struct nvme_ctrl * ctrl)5252 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5253 {
5254 if (!ctrl->tagset)
5255 return;
5256 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5257 blk_mq_quiesce_tagset(ctrl->tagset);
5258 else
5259 blk_mq_wait_quiesce_done(ctrl->tagset);
5260 }
5261 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5262
nvme_unquiesce_io_queues(struct nvme_ctrl * ctrl)5263 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5264 {
5265 if (!ctrl->tagset)
5266 return;
5267 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5268 blk_mq_unquiesce_tagset(ctrl->tagset);
5269 }
5270 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5271
nvme_quiesce_admin_queue(struct nvme_ctrl * ctrl)5272 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5273 {
5274 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5275 blk_mq_quiesce_queue(ctrl->admin_q);
5276 else
5277 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5278 }
5279 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5280
nvme_unquiesce_admin_queue(struct nvme_ctrl * ctrl)5281 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5282 {
5283 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5284 blk_mq_unquiesce_queue(ctrl->admin_q);
5285 }
5286 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5287
nvme_sync_io_queues(struct nvme_ctrl * ctrl)5288 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5289 {
5290 struct nvme_ns *ns;
5291 int srcu_idx;
5292
5293 srcu_idx = srcu_read_lock(&ctrl->srcu);
5294 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5295 srcu_read_lock_held(&ctrl->srcu))
5296 blk_sync_queue(ns->queue);
5297 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5298 }
5299 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5300
nvme_sync_queues(struct nvme_ctrl * ctrl)5301 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5302 {
5303 nvme_sync_io_queues(ctrl);
5304 if (ctrl->admin_q)
5305 blk_sync_queue(ctrl->admin_q);
5306 }
5307 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5308
nvme_ctrl_from_file(struct file * file)5309 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5310 {
5311 if (file->f_op != &nvme_dev_fops)
5312 return NULL;
5313 return file->private_data;
5314 }
5315 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5316
5317 /*
5318 * Check we didn't inadvertently grow the command structure sizes:
5319 */
_nvme_check_size(void)5320 static inline void _nvme_check_size(void)
5321 {
5322 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5323 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5324 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5325 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5326 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5327 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5328 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5329 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5330 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5331 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5332 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5333 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5334 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5335 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5336 NVME_IDENTIFY_DATA_SIZE);
5337 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5338 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5339 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5340 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5341 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5342 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5343 BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5344 BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5345 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5346 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5347 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5348 }
5349
5350
nvme_core_init(void)5351 static int __init nvme_core_init(void)
5352 {
5353 unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5354 int result = -ENOMEM;
5355
5356 _nvme_check_size();
5357
5358 nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5359 if (!nvme_wq)
5360 goto out;
5361
5362 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5363 if (!nvme_reset_wq)
5364 goto destroy_wq;
5365
5366 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5367 if (!nvme_delete_wq)
5368 goto destroy_reset_wq;
5369
5370 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5371 NVME_MINORS, "nvme");
5372 if (result < 0)
5373 goto destroy_delete_wq;
5374
5375 result = class_register(&nvme_class);
5376 if (result)
5377 goto unregister_chrdev;
5378
5379 result = class_register(&nvme_subsys_class);
5380 if (result)
5381 goto destroy_class;
5382
5383 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5384 "nvme-generic");
5385 if (result < 0)
5386 goto destroy_subsys_class;
5387
5388 result = class_register(&nvme_ns_chr_class);
5389 if (result)
5390 goto unregister_generic_ns;
5391
5392 result = nvme_init_auth();
5393 if (result)
5394 goto destroy_ns_chr;
5395 return 0;
5396
5397 destroy_ns_chr:
5398 class_unregister(&nvme_ns_chr_class);
5399 unregister_generic_ns:
5400 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5401 destroy_subsys_class:
5402 class_unregister(&nvme_subsys_class);
5403 destroy_class:
5404 class_unregister(&nvme_class);
5405 unregister_chrdev:
5406 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5407 destroy_delete_wq:
5408 destroy_workqueue(nvme_delete_wq);
5409 destroy_reset_wq:
5410 destroy_workqueue(nvme_reset_wq);
5411 destroy_wq:
5412 destroy_workqueue(nvme_wq);
5413 out:
5414 return result;
5415 }
5416
nvme_core_exit(void)5417 static void __exit nvme_core_exit(void)
5418 {
5419 nvme_exit_auth();
5420 class_unregister(&nvme_ns_chr_class);
5421 class_unregister(&nvme_subsys_class);
5422 class_unregister(&nvme_class);
5423 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5424 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5425 destroy_workqueue(nvme_delete_wq);
5426 destroy_workqueue(nvme_reset_wq);
5427 destroy_workqueue(nvme_wq);
5428 ida_destroy(&nvme_ns_chr_minor_ida);
5429 ida_destroy(&nvme_instance_ida);
5430 }
5431
5432 MODULE_LICENSE("GPL");
5433 MODULE_VERSION("1.0");
5434 MODULE_DESCRIPTION("NVMe host core framework");
5435 module_init(nvme_core_init);
5436 module_exit(nvme_core_exit);
5437