1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <linux/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 #include "fiemap.h"
74
75 struct btrfs_iget_args {
76 u64 ino;
77 struct btrfs_root *root;
78 };
79
80 struct btrfs_rename_ctx {
81 /* Output field. Stores the index number of the old directory entry. */
82 u64 index;
83 };
84
85 /*
86 * Used by data_reloc_print_warning_inode() to pass needed info for filename
87 * resolution and output of error message.
88 */
89 struct data_reloc_warn {
90 struct btrfs_path path;
91 struct btrfs_fs_info *fs_info;
92 u64 extent_item_size;
93 u64 logical;
94 int mirror_num;
95 };
96
97 /*
98 * For the file_extent_tree, we want to hold the inode lock when we lookup and
99 * update the disk_i_size, but lockdep will complain because our io_tree we hold
100 * the tree lock and get the inode lock when setting delalloc. These two things
101 * are unrelated, so make a class for the file_extent_tree so we don't get the
102 * two locking patterns mixed up.
103 */
104 static struct lock_class_key file_extent_tree_class;
105
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
112
113 static struct kmem_cache *btrfs_inode_cachep;
114
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
117
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 struct folio *locked_folio, u64 start,
120 u64 end, struct writeback_control *wbc,
121 bool pages_dirty);
122
data_reloc_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 u64 root, void *warn_ctx)
125 {
126 struct data_reloc_warn *warn = warn_ctx;
127 struct btrfs_fs_info *fs_info = warn->fs_info;
128 struct extent_buffer *eb;
129 struct btrfs_inode_item *inode_item;
130 struct inode_fs_paths *ipath = NULL;
131 struct btrfs_root *local_root;
132 struct btrfs_key key;
133 unsigned int nofs_flag;
134 u32 nlink;
135 int ret;
136
137 local_root = btrfs_get_fs_root(fs_info, root, true);
138 if (IS_ERR(local_root)) {
139 ret = PTR_ERR(local_root);
140 goto err;
141 }
142
143 /* This makes the path point to (inum INODE_ITEM ioff). */
144 key.objectid = inum;
145 key.type = BTRFS_INODE_ITEM_KEY;
146 key.offset = 0;
147
148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
149 if (ret) {
150 btrfs_put_root(local_root);
151 btrfs_release_path(&warn->path);
152 goto err;
153 }
154
155 eb = warn->path.nodes[0];
156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 nlink = btrfs_inode_nlink(eb, inode_item);
158 btrfs_release_path(&warn->path);
159
160 nofs_flag = memalloc_nofs_save();
161 ipath = init_ipath(4096, local_root, &warn->path);
162 memalloc_nofs_restore(nofs_flag);
163 if (IS_ERR(ipath)) {
164 btrfs_put_root(local_root);
165 ret = PTR_ERR(ipath);
166 ipath = NULL;
167 /*
168 * -ENOMEM, not a critical error, just output an generic error
169 * without filename.
170 */
171 btrfs_warn(fs_info,
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 warn->logical, warn->mirror_num, root, inum, offset);
174 return ret;
175 }
176 ret = paths_from_inode(inum, ipath);
177 if (ret < 0)
178 goto err;
179
180 /*
181 * We deliberately ignore the bit ipath might have been too small to
182 * hold all of the paths here
183 */
184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
185 btrfs_warn(fs_info,
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 warn->logical, warn->mirror_num, root, inum, offset,
188 fs_info->sectorsize, nlink,
189 (char *)(unsigned long)ipath->fspath->val[i]);
190 }
191
192 btrfs_put_root(local_root);
193 free_ipath(ipath);
194 return 0;
195
196 err:
197 btrfs_warn(fs_info,
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 warn->logical, warn->mirror_num, root, inum, offset, ret);
200
201 free_ipath(ipath);
202 return ret;
203 }
204
205 /*
206 * Do extra user-friendly error output (e.g. lookup all the affected files).
207 *
208 * Return true if we succeeded doing the backref lookup.
209 * Return false if such lookup failed, and has to fallback to the old error message.
210 */
print_data_reloc_error(const struct btrfs_inode * inode,u64 file_off,const u8 * csum,const u8 * csum_expected,int mirror_num)211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 const u8 *csum, const u8 *csum_expected,
213 int mirror_num)
214 {
215 struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 struct btrfs_path path = { 0 };
217 struct btrfs_key found_key = { 0 };
218 struct extent_buffer *eb;
219 struct btrfs_extent_item *ei;
220 const u32 csum_size = fs_info->csum_size;
221 u64 logical;
222 u64 flags;
223 u32 item_size;
224 int ret;
225
226 mutex_lock(&fs_info->reloc_mutex);
227 logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 mutex_unlock(&fs_info->reloc_mutex);
229
230 if (logical == U64_MAX) {
231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 CSUM_FMT_VALUE(csum_size, csum),
236 CSUM_FMT_VALUE(csum_size, csum_expected),
237 mirror_num);
238 return;
239 }
240
241 logical += file_off;
242 btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 btrfs_root_id(inode->root),
245 btrfs_ino(inode), file_off, logical,
246 CSUM_FMT_VALUE(csum_size, csum),
247 CSUM_FMT_VALUE(csum_size, csum_expected),
248 mirror_num);
249
250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
251 if (ret < 0) {
252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
253 logical, ret);
254 return;
255 }
256 eb = path.nodes[0];
257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 item_size = btrfs_item_size(eb, path.slots[0]);
259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 unsigned long ptr = 0;
261 u64 ref_root;
262 u8 ref_level;
263
264 while (true) {
265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 item_size, &ref_root,
267 &ref_level);
268 if (ret < 0) {
269 btrfs_warn_rl(fs_info,
270 "failed to resolve tree backref for logical %llu: %d",
271 logical, ret);
272 break;
273 }
274 if (ret > 0)
275 break;
276
277 btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
279 logical, mirror_num,
280 (ref_level ? "node" : "leaf"),
281 ref_level, ref_root);
282 }
283 btrfs_release_path(&path);
284 } else {
285 struct btrfs_backref_walk_ctx ctx = { 0 };
286 struct data_reloc_warn reloc_warn = { 0 };
287
288 btrfs_release_path(&path);
289
290 ctx.bytenr = found_key.objectid;
291 ctx.extent_item_pos = logical - found_key.objectid;
292 ctx.fs_info = fs_info;
293
294 reloc_warn.logical = logical;
295 reloc_warn.extent_item_size = found_key.offset;
296 reloc_warn.mirror_num = mirror_num;
297 reloc_warn.fs_info = fs_info;
298
299 iterate_extent_inodes(&ctx, true,
300 data_reloc_print_warning_inode, &reloc_warn);
301 }
302 }
303
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
306 {
307 struct btrfs_root *root = inode->root;
308 const u32 csum_size = root->fs_info->csum_size;
309
310 /* For data reloc tree, it's better to do a backref lookup instead. */
311 if (btrfs_is_data_reloc_root(root))
312 return print_data_reloc_error(inode, logical_start, csum,
313 csum_expected, mirror_num);
314
315 /* Output without objectid, which is more meaningful */
316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 btrfs_root_id(root), btrfs_ino(inode),
320 logical_start,
321 CSUM_FMT_VALUE(csum_size, csum),
322 CSUM_FMT_VALUE(csum_size, csum_expected),
323 mirror_num);
324 } else {
325 btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 btrfs_root_id(root), btrfs_ino(inode),
328 logical_start,
329 CSUM_FMT_VALUE(csum_size, csum),
330 CSUM_FMT_VALUE(csum_size, csum_expected),
331 mirror_num);
332 }
333 }
334
335 /*
336 * Lock inode i_rwsem based on arguments passed.
337 *
338 * ilock_flags can have the following bit set:
339 *
340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
342 * return -EAGAIN
343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
344 */
btrfs_inode_lock(struct btrfs_inode * inode,unsigned int ilock_flags)345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
346 {
347 if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 if (ilock_flags & BTRFS_ILOCK_TRY) {
349 if (!inode_trylock_shared(&inode->vfs_inode))
350 return -EAGAIN;
351 else
352 return 0;
353 }
354 inode_lock_shared(&inode->vfs_inode);
355 } else {
356 if (ilock_flags & BTRFS_ILOCK_TRY) {
357 if (!inode_trylock(&inode->vfs_inode))
358 return -EAGAIN;
359 else
360 return 0;
361 }
362 inode_lock(&inode->vfs_inode);
363 }
364 if (ilock_flags & BTRFS_ILOCK_MMAP)
365 down_write(&inode->i_mmap_lock);
366 return 0;
367 }
368
369 /*
370 * Unock inode i_rwsem.
371 *
372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373 * to decide whether the lock acquired is shared or exclusive.
374 */
btrfs_inode_unlock(struct btrfs_inode * inode,unsigned int ilock_flags)375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
376 {
377 if (ilock_flags & BTRFS_ILOCK_MMAP)
378 up_write(&inode->i_mmap_lock);
379 if (ilock_flags & BTRFS_ILOCK_SHARED)
380 inode_unlock_shared(&inode->vfs_inode);
381 else
382 inode_unlock(&inode->vfs_inode);
383 }
384
385 /*
386 * Cleanup all submitted ordered extents in specified range to handle errors
387 * from the btrfs_run_delalloc_range() callback.
388 *
389 * NOTE: caller must ensure that when an error happens, it can not call
390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392 * to be released, which we want to happen only when finishing the ordered
393 * extent (btrfs_finish_ordered_io()).
394 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,u64 offset,u64 bytes)395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 u64 offset, u64 bytes)
397 {
398 pgoff_t index = offset >> PAGE_SHIFT;
399 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT;
400 struct folio *folio;
401
402 while (index <= end_index) {
403 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
404 if (IS_ERR(folio)) {
405 index++;
406 continue;
407 }
408
409 index = folio_end(folio) >> PAGE_SHIFT;
410 /*
411 * Here we just clear all Ordered bits for every page in the
412 * range, then btrfs_mark_ordered_io_finished() will handle
413 * the ordered extent accounting for the range.
414 */
415 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
416 offset, bytes);
417 folio_put(folio);
418 }
419
420 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
421 }
422
423 static int btrfs_dirty_inode(struct btrfs_inode *inode);
424
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)425 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
426 struct btrfs_new_inode_args *args)
427 {
428 int ret;
429
430 if (args->default_acl) {
431 ret = __btrfs_set_acl(trans, args->inode, args->default_acl,
432 ACL_TYPE_DEFAULT);
433 if (ret)
434 return ret;
435 }
436 if (args->acl) {
437 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
438 if (ret)
439 return ret;
440 }
441 if (!args->default_acl && !args->acl)
442 cache_no_acl(args->inode);
443 return btrfs_xattr_security_init(trans, args->inode, args->dir,
444 &args->dentry->d_name);
445 }
446
447 /*
448 * this does all the hard work for inserting an inline extent into
449 * the btree. The caller should have done a btrfs_drop_extents so that
450 * no overlapping inline items exist in the btree
451 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)452 static int insert_inline_extent(struct btrfs_trans_handle *trans,
453 struct btrfs_path *path,
454 struct btrfs_inode *inode, bool extent_inserted,
455 size_t size, size_t compressed_size,
456 int compress_type,
457 struct folio *compressed_folio,
458 bool update_i_size)
459 {
460 struct btrfs_root *root = inode->root;
461 struct extent_buffer *leaf;
462 const u32 sectorsize = trans->fs_info->sectorsize;
463 char *kaddr;
464 unsigned long ptr;
465 struct btrfs_file_extent_item *ei;
466 int ret;
467 size_t cur_size = size;
468 u64 i_size;
469
470 /*
471 * The decompressed size must still be no larger than a sector. Under
472 * heavy race, we can have size == 0 passed in, but that shouldn't be a
473 * big deal and we can continue the insertion.
474 */
475 ASSERT(size <= sectorsize);
476
477 /*
478 * The compressed size also needs to be no larger than a sector.
479 * That's also why we only need one page as the parameter.
480 */
481 if (compressed_folio)
482 ASSERT(compressed_size <= sectorsize);
483 else
484 ASSERT(compressed_size == 0);
485
486 if (compressed_size && compressed_folio)
487 cur_size = compressed_size;
488
489 if (!extent_inserted) {
490 struct btrfs_key key;
491 size_t datasize;
492
493 key.objectid = btrfs_ino(inode);
494 key.type = BTRFS_EXTENT_DATA_KEY;
495 key.offset = 0;
496
497 datasize = btrfs_file_extent_calc_inline_size(cur_size);
498 ret = btrfs_insert_empty_item(trans, root, path, &key,
499 datasize);
500 if (ret)
501 goto fail;
502 }
503 leaf = path->nodes[0];
504 ei = btrfs_item_ptr(leaf, path->slots[0],
505 struct btrfs_file_extent_item);
506 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
507 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
508 btrfs_set_file_extent_encryption(leaf, ei, 0);
509 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
510 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
511 ptr = btrfs_file_extent_inline_start(ei);
512
513 if (compress_type != BTRFS_COMPRESS_NONE) {
514 kaddr = kmap_local_folio(compressed_folio, 0);
515 write_extent_buffer(leaf, kaddr, ptr, compressed_size);
516 kunmap_local(kaddr);
517
518 btrfs_set_file_extent_compression(leaf, ei,
519 compress_type);
520 } else {
521 struct folio *folio;
522
523 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0);
524 ASSERT(!IS_ERR(folio));
525 btrfs_set_file_extent_compression(leaf, ei, 0);
526 kaddr = kmap_local_folio(folio, 0);
527 write_extent_buffer(leaf, kaddr, ptr, size);
528 kunmap_local(kaddr);
529 folio_put(folio);
530 }
531 btrfs_release_path(path);
532
533 /*
534 * We align size to sectorsize for inline extents just for simplicity
535 * sake.
536 */
537 ret = btrfs_inode_set_file_extent_range(inode, 0,
538 ALIGN(size, root->fs_info->sectorsize));
539 if (ret)
540 goto fail;
541
542 /*
543 * We're an inline extent, so nobody can extend the file past i_size
544 * without locking a page we already have locked.
545 *
546 * We must do any i_size and inode updates before we unlock the pages.
547 * Otherwise we could end up racing with unlink.
548 */
549 i_size = i_size_read(&inode->vfs_inode);
550 if (update_i_size && size > i_size) {
551 i_size_write(&inode->vfs_inode, size);
552 i_size = size;
553 }
554 inode->disk_i_size = i_size;
555
556 fail:
557 return ret;
558 }
559
can_cow_file_range_inline(struct btrfs_inode * inode,u64 offset,u64 size,size_t compressed_size)560 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
561 u64 offset, u64 size,
562 size_t compressed_size)
563 {
564 struct btrfs_fs_info *fs_info = inode->root->fs_info;
565 u64 data_len = (compressed_size ?: size);
566
567 /* Inline extents must start at offset 0. */
568 if (offset != 0)
569 return false;
570
571 /* Inline extents are limited to sectorsize. */
572 if (size > fs_info->sectorsize)
573 return false;
574
575 /* We do not allow a non-compressed extent to be as large as block size. */
576 if (data_len >= fs_info->sectorsize)
577 return false;
578
579 /* We cannot exceed the maximum inline data size. */
580 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
581 return false;
582
583 /* We cannot exceed the user specified max_inline size. */
584 if (data_len > fs_info->max_inline)
585 return false;
586
587 /* Inline extents must be the entirety of the file. */
588 if (size < i_size_read(&inode->vfs_inode))
589 return false;
590
591 return true;
592 }
593
594 /*
595 * conditionally insert an inline extent into the file. This
596 * does the checks required to make sure the data is small enough
597 * to fit as an inline extent.
598 *
599 * If being used directly, you must have already checked we're allowed to cow
600 * the range by getting true from can_cow_file_range_inline().
601 */
__cow_file_range_inline(struct btrfs_inode * inode,u64 size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)602 static noinline int __cow_file_range_inline(struct btrfs_inode *inode,
603 u64 size, size_t compressed_size,
604 int compress_type,
605 struct folio *compressed_folio,
606 bool update_i_size)
607 {
608 struct btrfs_drop_extents_args drop_args = { 0 };
609 struct btrfs_root *root = inode->root;
610 struct btrfs_fs_info *fs_info = root->fs_info;
611 struct btrfs_trans_handle *trans;
612 u64 data_len = (compressed_size ?: size);
613 int ret;
614 struct btrfs_path *path;
615
616 path = btrfs_alloc_path();
617 if (!path)
618 return -ENOMEM;
619
620 trans = btrfs_join_transaction(root);
621 if (IS_ERR(trans)) {
622 btrfs_free_path(path);
623 return PTR_ERR(trans);
624 }
625 trans->block_rsv = &inode->block_rsv;
626
627 drop_args.path = path;
628 drop_args.start = 0;
629 drop_args.end = fs_info->sectorsize;
630 drop_args.drop_cache = true;
631 drop_args.replace_extent = true;
632 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
633 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
634 if (ret) {
635 btrfs_abort_transaction(trans, ret);
636 goto out;
637 }
638
639 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
640 size, compressed_size, compress_type,
641 compressed_folio, update_i_size);
642 if (ret && ret != -ENOSPC) {
643 btrfs_abort_transaction(trans, ret);
644 goto out;
645 } else if (ret == -ENOSPC) {
646 ret = 1;
647 goto out;
648 }
649
650 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
651 ret = btrfs_update_inode(trans, inode);
652 if (ret && ret != -ENOSPC) {
653 btrfs_abort_transaction(trans, ret);
654 goto out;
655 } else if (ret == -ENOSPC) {
656 ret = 1;
657 goto out;
658 }
659
660 btrfs_set_inode_full_sync(inode);
661 out:
662 /*
663 * Don't forget to free the reserved space, as for inlined extent
664 * it won't count as data extent, free them directly here.
665 * And at reserve time, it's always aligned to page size, so
666 * just free one page here.
667 */
668 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL);
669 btrfs_free_path(path);
670 btrfs_end_transaction(trans);
671 return ret;
672 }
673
cow_file_range_inline(struct btrfs_inode * inode,struct folio * locked_folio,u64 offset,u64 end,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)674 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
675 struct folio *locked_folio,
676 u64 offset, u64 end,
677 size_t compressed_size,
678 int compress_type,
679 struct folio *compressed_folio,
680 bool update_i_size)
681 {
682 struct extent_state *cached = NULL;
683 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
684 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
685 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
686 int ret;
687
688 if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
689 return 1;
690
691 btrfs_lock_extent(&inode->io_tree, offset, end, &cached);
692 ret = __cow_file_range_inline(inode, size, compressed_size,
693 compress_type, compressed_folio,
694 update_i_size);
695 if (ret > 0) {
696 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached);
697 return ret;
698 }
699
700 /*
701 * In the successful case (ret == 0 here), cow_file_range will return 1.
702 *
703 * Quite a bit further up the callstack in extent_writepage(), ret == 1
704 * is treated as a short circuited success and does not unlock the folio,
705 * so we must do it here.
706 *
707 * In the failure case, the locked_folio does get unlocked by
708 * btrfs_folio_end_all_writers, which asserts that it is still locked
709 * at that point, so we must *not* unlock it here.
710 *
711 * The other two callsites in compress_file_range do not have a
712 * locked_folio, so they are not relevant to this logic.
713 */
714 if (ret == 0)
715 locked_folio = NULL;
716
717 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
718 clear_flags, PAGE_UNLOCK |
719 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
720 return ret;
721 }
722
723 struct async_extent {
724 u64 start;
725 u64 ram_size;
726 u64 compressed_size;
727 struct folio **folios;
728 unsigned long nr_folios;
729 int compress_type;
730 struct list_head list;
731 };
732
733 struct async_chunk {
734 struct btrfs_inode *inode;
735 struct folio *locked_folio;
736 u64 start;
737 u64 end;
738 blk_opf_t write_flags;
739 struct list_head extents;
740 struct cgroup_subsys_state *blkcg_css;
741 struct btrfs_work work;
742 struct async_cow *async_cow;
743 };
744
745 struct async_cow {
746 atomic_t num_chunks;
747 struct async_chunk chunks[];
748 };
749
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct folio ** folios,unsigned long nr_folios,int compress_type)750 static noinline int add_async_extent(struct async_chunk *cow,
751 u64 start, u64 ram_size,
752 u64 compressed_size,
753 struct folio **folios,
754 unsigned long nr_folios,
755 int compress_type)
756 {
757 struct async_extent *async_extent;
758
759 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
760 if (!async_extent)
761 return -ENOMEM;
762 async_extent->start = start;
763 async_extent->ram_size = ram_size;
764 async_extent->compressed_size = compressed_size;
765 async_extent->folios = folios;
766 async_extent->nr_folios = nr_folios;
767 async_extent->compress_type = compress_type;
768 list_add_tail(&async_extent->list, &cow->extents);
769 return 0;
770 }
771
772 /*
773 * Check if the inode needs to be submitted to compression, based on mount
774 * options, defragmentation, properties or heuristics.
775 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)776 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
777 u64 end)
778 {
779 struct btrfs_fs_info *fs_info = inode->root->fs_info;
780
781 if (!btrfs_inode_can_compress(inode)) {
782 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode));
783 return 0;
784 }
785
786 /* Defrag ioctl takes precedence over mount options and properties. */
787 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS)
788 return 0;
789 if (BTRFS_COMPRESS_NONE < inode->defrag_compress &&
790 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES)
791 return 1;
792 /* force compress */
793 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
794 return 1;
795 /* bad compression ratios */
796 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
797 return 0;
798 if (btrfs_test_opt(fs_info, COMPRESS) ||
799 inode->flags & BTRFS_INODE_COMPRESS ||
800 inode->prop_compress)
801 return btrfs_compress_heuristic(inode, start, end);
802 return 0;
803 }
804
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)805 static inline void inode_should_defrag(struct btrfs_inode *inode,
806 u64 start, u64 end, u64 num_bytes, u32 small_write)
807 {
808 /* If this is a small write inside eof, kick off a defrag */
809 if (num_bytes < small_write &&
810 (start > 0 || end + 1 < inode->disk_i_size))
811 btrfs_add_inode_defrag(inode, small_write);
812 }
813
extent_range_clear_dirty_for_io(struct btrfs_inode * inode,u64 start,u64 end)814 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end)
815 {
816 const pgoff_t end_index = end >> PAGE_SHIFT;
817 struct folio *folio;
818 int ret = 0;
819
820 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) {
821 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
822 if (IS_ERR(folio)) {
823 if (!ret)
824 ret = PTR_ERR(folio);
825 continue;
826 }
827 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start,
828 end + 1 - start);
829 folio_put(folio);
830 }
831 return ret;
832 }
833
834 /*
835 * Work queue call back to started compression on a file and pages.
836 *
837 * This is done inside an ordered work queue, and the compression is spread
838 * across many cpus. The actual IO submission is step two, and the ordered work
839 * queue takes care of making sure that happens in the same order things were
840 * put onto the queue by writepages and friends.
841 *
842 * If this code finds it can't get good compression, it puts an entry onto the
843 * work queue to write the uncompressed bytes. This makes sure that both
844 * compressed inodes and uncompressed inodes are written in the same order that
845 * the flusher thread sent them down.
846 */
compress_file_range(struct btrfs_work * work)847 static void compress_file_range(struct btrfs_work *work)
848 {
849 struct async_chunk *async_chunk =
850 container_of(work, struct async_chunk, work);
851 struct btrfs_inode *inode = async_chunk->inode;
852 struct btrfs_fs_info *fs_info = inode->root->fs_info;
853 struct address_space *mapping = inode->vfs_inode.i_mapping;
854 u64 blocksize = fs_info->sectorsize;
855 u64 start = async_chunk->start;
856 u64 end = async_chunk->end;
857 u64 actual_end;
858 u64 i_size;
859 int ret = 0;
860 struct folio **folios;
861 unsigned long nr_folios;
862 unsigned long total_compressed = 0;
863 unsigned long total_in = 0;
864 unsigned int poff;
865 int i;
866 int compress_type = fs_info->compress_type;
867 int compress_level = fs_info->compress_level;
868
869 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
870
871 /*
872 * We need to call clear_page_dirty_for_io on each page in the range.
873 * Otherwise applications with the file mmap'd can wander in and change
874 * the page contents while we are compressing them.
875 */
876 ret = extent_range_clear_dirty_for_io(inode, start, end);
877
878 /*
879 * All the folios should have been locked thus no failure.
880 *
881 * And even if some folios are missing, btrfs_compress_folios()
882 * would handle them correctly, so here just do an ASSERT() check for
883 * early logic errors.
884 */
885 ASSERT(ret == 0);
886
887 /*
888 * We need to save i_size before now because it could change in between
889 * us evaluating the size and assigning it. This is because we lock and
890 * unlock the page in truncate and fallocate, and then modify the i_size
891 * later on.
892 *
893 * The barriers are to emulate READ_ONCE, remove that once i_size_read
894 * does that for us.
895 */
896 barrier();
897 i_size = i_size_read(&inode->vfs_inode);
898 barrier();
899 actual_end = min_t(u64, i_size, end + 1);
900 again:
901 folios = NULL;
902 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
903 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
904
905 /*
906 * we don't want to send crud past the end of i_size through
907 * compression, that's just a waste of CPU time. So, if the
908 * end of the file is before the start of our current
909 * requested range of bytes, we bail out to the uncompressed
910 * cleanup code that can deal with all of this.
911 *
912 * It isn't really the fastest way to fix things, but this is a
913 * very uncommon corner.
914 */
915 if (actual_end <= start)
916 goto cleanup_and_bail_uncompressed;
917
918 total_compressed = actual_end - start;
919
920 /*
921 * Skip compression for a small file range(<=blocksize) that
922 * isn't an inline extent, since it doesn't save disk space at all.
923 */
924 if (total_compressed <= blocksize &&
925 (start > 0 || end + 1 < inode->disk_i_size))
926 goto cleanup_and_bail_uncompressed;
927
928 total_compressed = min_t(unsigned long, total_compressed,
929 BTRFS_MAX_UNCOMPRESSED);
930 total_in = 0;
931 ret = 0;
932
933 /*
934 * We do compression for mount -o compress and when the inode has not
935 * been flagged as NOCOMPRESS. This flag can change at any time if we
936 * discover bad compression ratios.
937 */
938 if (!inode_need_compress(inode, start, end))
939 goto cleanup_and_bail_uncompressed;
940
941 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
942 if (!folios) {
943 /*
944 * Memory allocation failure is not a fatal error, we can fall
945 * back to uncompressed code.
946 */
947 goto cleanup_and_bail_uncompressed;
948 }
949
950 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) {
951 compress_type = inode->defrag_compress;
952 compress_level = inode->defrag_compress_level;
953 } else if (inode->prop_compress) {
954 compress_type = inode->prop_compress;
955 }
956
957 /* Compression level is applied here. */
958 ret = btrfs_compress_folios(compress_type, compress_level,
959 mapping, start, folios, &nr_folios, &total_in,
960 &total_compressed);
961 if (ret)
962 goto mark_incompressible;
963
964 /*
965 * Zero the tail end of the last page, as we might be sending it down
966 * to disk.
967 */
968 poff = offset_in_page(total_compressed);
969 if (poff)
970 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
971
972 /*
973 * Try to create an inline extent.
974 *
975 * If we didn't compress the entire range, try to create an uncompressed
976 * inline extent, else a compressed one.
977 *
978 * Check cow_file_range() for why we don't even try to create inline
979 * extent for the subpage case.
980 */
981 if (total_in < actual_end)
982 ret = cow_file_range_inline(inode, NULL, start, end, 0,
983 BTRFS_COMPRESS_NONE, NULL, false);
984 else
985 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
986 compress_type, folios[0], false);
987 if (ret <= 0) {
988 if (ret < 0)
989 mapping_set_error(mapping, -EIO);
990 goto free_pages;
991 }
992
993 /*
994 * We aren't doing an inline extent. Round the compressed size up to a
995 * block size boundary so the allocator does sane things.
996 */
997 total_compressed = ALIGN(total_compressed, blocksize);
998
999 /*
1000 * One last check to make sure the compression is really a win, compare
1001 * the page count read with the blocks on disk, compression must free at
1002 * least one sector.
1003 */
1004 total_in = round_up(total_in, fs_info->sectorsize);
1005 if (total_compressed + blocksize > total_in)
1006 goto mark_incompressible;
1007
1008 /*
1009 * The async work queues will take care of doing actual allocation on
1010 * disk for these compressed pages, and will submit the bios.
1011 */
1012 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1013 nr_folios, compress_type);
1014 BUG_ON(ret);
1015 if (start + total_in < end) {
1016 start += total_in;
1017 cond_resched();
1018 goto again;
1019 }
1020 return;
1021
1022 mark_incompressible:
1023 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1024 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1025 cleanup_and_bail_uncompressed:
1026 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1027 BTRFS_COMPRESS_NONE);
1028 BUG_ON(ret);
1029 free_pages:
1030 if (folios) {
1031 for (i = 0; i < nr_folios; i++) {
1032 WARN_ON(folios[i]->mapping);
1033 btrfs_free_compr_folio(folios[i]);
1034 }
1035 kfree(folios);
1036 }
1037 }
1038
free_async_extent_pages(struct async_extent * async_extent)1039 static void free_async_extent_pages(struct async_extent *async_extent)
1040 {
1041 int i;
1042
1043 if (!async_extent->folios)
1044 return;
1045
1046 for (i = 0; i < async_extent->nr_folios; i++) {
1047 WARN_ON(async_extent->folios[i]->mapping);
1048 btrfs_free_compr_folio(async_extent->folios[i]);
1049 }
1050 kfree(async_extent->folios);
1051 async_extent->nr_folios = 0;
1052 async_extent->folios = NULL;
1053 }
1054
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct folio * locked_folio)1055 static void submit_uncompressed_range(struct btrfs_inode *inode,
1056 struct async_extent *async_extent,
1057 struct folio *locked_folio)
1058 {
1059 u64 start = async_extent->start;
1060 u64 end = async_extent->start + async_extent->ram_size - 1;
1061 int ret;
1062 struct writeback_control wbc = {
1063 .sync_mode = WB_SYNC_ALL,
1064 .range_start = start,
1065 .range_end = end,
1066 .no_cgroup_owner = 1,
1067 };
1068
1069 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1070 ret = run_delalloc_cow(inode, locked_folio, start, end,
1071 &wbc, false);
1072 wbc_detach_inode(&wbc);
1073 if (ret < 0) {
1074 if (locked_folio)
1075 btrfs_folio_end_lock(inode->root->fs_info, locked_folio,
1076 start, async_extent->ram_size);
1077 btrfs_err_rl(inode->root->fs_info,
1078 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
1079 __func__, btrfs_root_id(inode->root),
1080 btrfs_ino(inode), start, async_extent->ram_size, ret);
1081 }
1082 }
1083
submit_one_async_extent(struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)1084 static void submit_one_async_extent(struct async_chunk *async_chunk,
1085 struct async_extent *async_extent,
1086 u64 *alloc_hint)
1087 {
1088 struct btrfs_inode *inode = async_chunk->inode;
1089 struct extent_io_tree *io_tree = &inode->io_tree;
1090 struct btrfs_root *root = inode->root;
1091 struct btrfs_fs_info *fs_info = root->fs_info;
1092 struct btrfs_ordered_extent *ordered;
1093 struct btrfs_file_extent file_extent;
1094 struct btrfs_key ins;
1095 struct folio *locked_folio = NULL;
1096 struct extent_state *cached = NULL;
1097 struct extent_map *em;
1098 int ret = 0;
1099 bool free_pages = false;
1100 u64 start = async_extent->start;
1101 u64 end = async_extent->start + async_extent->ram_size - 1;
1102
1103 if (async_chunk->blkcg_css)
1104 kthread_associate_blkcg(async_chunk->blkcg_css);
1105
1106 /*
1107 * If async_chunk->locked_folio is in the async_extent range, we need to
1108 * handle it.
1109 */
1110 if (async_chunk->locked_folio) {
1111 u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1112 u64 locked_folio_end = locked_folio_start +
1113 folio_size(async_chunk->locked_folio) - 1;
1114
1115 if (!(start >= locked_folio_end || end <= locked_folio_start))
1116 locked_folio = async_chunk->locked_folio;
1117 }
1118
1119 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1120 ASSERT(!async_extent->folios);
1121 ASSERT(async_extent->nr_folios == 0);
1122 submit_uncompressed_range(inode, async_extent, locked_folio);
1123 free_pages = true;
1124 goto done;
1125 }
1126
1127 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1128 async_extent->compressed_size,
1129 async_extent->compressed_size,
1130 0, *alloc_hint, &ins, 1, 1);
1131 if (ret) {
1132 /*
1133 * We can't reserve contiguous space for the compressed size.
1134 * Unlikely, but it's possible that we could have enough
1135 * non-contiguous space for the uncompressed size instead. So
1136 * fall back to uncompressed.
1137 */
1138 submit_uncompressed_range(inode, async_extent, locked_folio);
1139 free_pages = true;
1140 goto done;
1141 }
1142
1143 btrfs_lock_extent(io_tree, start, end, &cached);
1144
1145 /* Here we're doing allocation and writeback of the compressed pages */
1146 file_extent.disk_bytenr = ins.objectid;
1147 file_extent.disk_num_bytes = ins.offset;
1148 file_extent.ram_bytes = async_extent->ram_size;
1149 file_extent.num_bytes = async_extent->ram_size;
1150 file_extent.offset = 0;
1151 file_extent.compression = async_extent->compress_type;
1152
1153 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1154 if (IS_ERR(em)) {
1155 ret = PTR_ERR(em);
1156 goto out_free_reserve;
1157 }
1158 btrfs_free_extent_map(em);
1159
1160 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1161 1U << BTRFS_ORDERED_COMPRESSED);
1162 if (IS_ERR(ordered)) {
1163 btrfs_drop_extent_map_range(inode, start, end, false);
1164 ret = PTR_ERR(ordered);
1165 goto out_free_reserve;
1166 }
1167 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1168
1169 /* Clear dirty, set writeback and unlock the pages. */
1170 extent_clear_unlock_delalloc(inode, start, end,
1171 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1172 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1173 btrfs_submit_compressed_write(ordered,
1174 async_extent->folios, /* compressed_folios */
1175 async_extent->nr_folios,
1176 async_chunk->write_flags, true);
1177 *alloc_hint = ins.objectid + ins.offset;
1178 done:
1179 if (async_chunk->blkcg_css)
1180 kthread_associate_blkcg(NULL);
1181 if (free_pages)
1182 free_async_extent_pages(async_extent);
1183 kfree(async_extent);
1184 return;
1185
1186 out_free_reserve:
1187 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1188 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1189 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1190 extent_clear_unlock_delalloc(inode, start, end,
1191 NULL, &cached,
1192 EXTENT_LOCKED | EXTENT_DELALLOC |
1193 EXTENT_DELALLOC_NEW |
1194 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1195 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1196 PAGE_END_WRITEBACK);
1197 free_async_extent_pages(async_extent);
1198 if (async_chunk->blkcg_css)
1199 kthread_associate_blkcg(NULL);
1200 btrfs_debug(fs_info,
1201 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1202 btrfs_root_id(root), btrfs_ino(inode), start,
1203 async_extent->ram_size, ret);
1204 kfree(async_extent);
1205 }
1206
btrfs_get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1207 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1208 u64 num_bytes)
1209 {
1210 struct extent_map_tree *em_tree = &inode->extent_tree;
1211 struct extent_map *em;
1212 u64 alloc_hint = 0;
1213
1214 read_lock(&em_tree->lock);
1215 em = btrfs_search_extent_mapping(em_tree, start, num_bytes);
1216 if (em) {
1217 /*
1218 * if block start isn't an actual block number then find the
1219 * first block in this inode and use that as a hint. If that
1220 * block is also bogus then just don't worry about it.
1221 */
1222 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1223 btrfs_free_extent_map(em);
1224 em = btrfs_search_extent_mapping(em_tree, 0, 0);
1225 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1226 alloc_hint = btrfs_extent_map_block_start(em);
1227 if (em)
1228 btrfs_free_extent_map(em);
1229 } else {
1230 alloc_hint = btrfs_extent_map_block_start(em);
1231 btrfs_free_extent_map(em);
1232 }
1233 }
1234 read_unlock(&em_tree->lock);
1235
1236 return alloc_hint;
1237 }
1238
1239 /*
1240 * when extent_io.c finds a delayed allocation range in the file,
1241 * the call backs end up in this code. The basic idea is to
1242 * allocate extents on disk for the range, and create ordered data structs
1243 * in ram to track those extents.
1244 *
1245 * locked_folio is the folio that writepage had locked already. We use
1246 * it to make sure we don't do extra locks or unlocks.
1247 *
1248 * When this function fails, it unlocks all pages except @locked_folio.
1249 *
1250 * When this function successfully creates an inline extent, it returns 1 and
1251 * unlocks all pages including locked_folio and starts I/O on them.
1252 * (In reality inline extents are limited to a single page, so locked_folio is
1253 * the only page handled anyway).
1254 *
1255 * When this function succeed and creates a normal extent, the page locking
1256 * status depends on the passed in flags:
1257 *
1258 * - If @keep_locked is set, all pages are kept locked.
1259 * - Else all pages except for @locked_folio are unlocked.
1260 *
1261 * When a failure happens in the second or later iteration of the
1262 * while-loop, the ordered extents created in previous iterations are cleaned up.
1263 */
cow_file_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,u64 * done_offset,bool keep_locked,bool no_inline)1264 static noinline int cow_file_range(struct btrfs_inode *inode,
1265 struct folio *locked_folio, u64 start,
1266 u64 end, u64 *done_offset,
1267 bool keep_locked, bool no_inline)
1268 {
1269 struct btrfs_root *root = inode->root;
1270 struct btrfs_fs_info *fs_info = root->fs_info;
1271 struct extent_state *cached = NULL;
1272 u64 alloc_hint = 0;
1273 u64 orig_start = start;
1274 u64 num_bytes;
1275 u64 cur_alloc_size = 0;
1276 u64 min_alloc_size;
1277 u64 blocksize = fs_info->sectorsize;
1278 struct btrfs_key ins;
1279 struct extent_map *em;
1280 unsigned clear_bits;
1281 unsigned long page_ops;
1282 int ret = 0;
1283
1284 if (btrfs_is_free_space_inode(inode)) {
1285 ret = -EINVAL;
1286 goto out_unlock;
1287 }
1288
1289 num_bytes = ALIGN(end - start + 1, blocksize);
1290 num_bytes = max(blocksize, num_bytes);
1291 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1292
1293 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1294
1295 if (!no_inline) {
1296 /* lets try to make an inline extent */
1297 ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1298 BTRFS_COMPRESS_NONE, NULL, false);
1299 if (ret <= 0) {
1300 /*
1301 * We succeeded, return 1 so the caller knows we're done
1302 * with this page and already handled the IO.
1303 *
1304 * If there was an error then cow_file_range_inline() has
1305 * already done the cleanup.
1306 */
1307 if (ret == 0)
1308 ret = 1;
1309 goto done;
1310 }
1311 }
1312
1313 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1314
1315 /*
1316 * We're not doing compressed IO, don't unlock the first page (which
1317 * the caller expects to stay locked), don't clear any dirty bits and
1318 * don't set any writeback bits.
1319 *
1320 * Do set the Ordered (Private2) bit so we know this page was properly
1321 * setup for writepage.
1322 */
1323 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1324 page_ops |= PAGE_SET_ORDERED;
1325
1326 /*
1327 * Relocation relies on the relocated extents to have exactly the same
1328 * size as the original extents. Normally writeback for relocation data
1329 * extents follows a NOCOW path because relocation preallocates the
1330 * extents. However, due to an operation such as scrub turning a block
1331 * group to RO mode, it may fallback to COW mode, so we must make sure
1332 * an extent allocated during COW has exactly the requested size and can
1333 * not be split into smaller extents, otherwise relocation breaks and
1334 * fails during the stage where it updates the bytenr of file extent
1335 * items.
1336 */
1337 if (btrfs_is_data_reloc_root(root))
1338 min_alloc_size = num_bytes;
1339 else
1340 min_alloc_size = fs_info->sectorsize;
1341
1342 while (num_bytes > 0) {
1343 struct btrfs_ordered_extent *ordered;
1344 struct btrfs_file_extent file_extent;
1345
1346 ret = btrfs_reserve_extent(root, num_bytes, num_bytes,
1347 min_alloc_size, 0, alloc_hint,
1348 &ins, 1, 1);
1349 if (ret == -EAGAIN) {
1350 /*
1351 * btrfs_reserve_extent only returns -EAGAIN for zoned
1352 * file systems, which is an indication that there are
1353 * no active zones to allocate from at the moment.
1354 *
1355 * If this is the first loop iteration, wait for at
1356 * least one zone to finish before retrying the
1357 * allocation. Otherwise ask the caller to write out
1358 * the already allocated blocks before coming back to
1359 * us, or return -ENOSPC if it can't handle retries.
1360 */
1361 ASSERT(btrfs_is_zoned(fs_info));
1362 if (start == orig_start) {
1363 wait_on_bit_io(&inode->root->fs_info->flags,
1364 BTRFS_FS_NEED_ZONE_FINISH,
1365 TASK_UNINTERRUPTIBLE);
1366 continue;
1367 }
1368 if (done_offset) {
1369 /*
1370 * Move @end to the end of the processed range,
1371 * and exit the loop to unlock the processed extents.
1372 */
1373 end = start - 1;
1374 ret = 0;
1375 break;
1376 }
1377 ret = -ENOSPC;
1378 }
1379 if (ret < 0)
1380 goto out_unlock;
1381 cur_alloc_size = ins.offset;
1382
1383 file_extent.disk_bytenr = ins.objectid;
1384 file_extent.disk_num_bytes = ins.offset;
1385 file_extent.num_bytes = ins.offset;
1386 file_extent.ram_bytes = ins.offset;
1387 file_extent.offset = 0;
1388 file_extent.compression = BTRFS_COMPRESS_NONE;
1389
1390 /*
1391 * Locked range will be released either during error clean up or
1392 * after the whole range is finished.
1393 */
1394 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1,
1395 &cached);
1396
1397 em = btrfs_create_io_em(inode, start, &file_extent,
1398 BTRFS_ORDERED_REGULAR);
1399 if (IS_ERR(em)) {
1400 btrfs_unlock_extent(&inode->io_tree, start,
1401 start + cur_alloc_size - 1, &cached);
1402 ret = PTR_ERR(em);
1403 goto out_reserve;
1404 }
1405 btrfs_free_extent_map(em);
1406
1407 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1408 1U << BTRFS_ORDERED_REGULAR);
1409 if (IS_ERR(ordered)) {
1410 btrfs_unlock_extent(&inode->io_tree, start,
1411 start + cur_alloc_size - 1, &cached);
1412 ret = PTR_ERR(ordered);
1413 goto out_drop_extent_cache;
1414 }
1415
1416 if (btrfs_is_data_reloc_root(root)) {
1417 ret = btrfs_reloc_clone_csums(ordered);
1418
1419 /*
1420 * Only drop cache here, and process as normal.
1421 *
1422 * We must not allow extent_clear_unlock_delalloc()
1423 * at out_unlock label to free meta of this ordered
1424 * extent, as its meta should be freed by
1425 * btrfs_finish_ordered_io().
1426 *
1427 * So we must continue until @start is increased to
1428 * skip current ordered extent.
1429 */
1430 if (ret)
1431 btrfs_drop_extent_map_range(inode, start,
1432 start + cur_alloc_size - 1,
1433 false);
1434 }
1435 btrfs_put_ordered_extent(ordered);
1436
1437 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1438
1439 if (num_bytes < cur_alloc_size)
1440 num_bytes = 0;
1441 else
1442 num_bytes -= cur_alloc_size;
1443 alloc_hint = ins.objectid + ins.offset;
1444 start += cur_alloc_size;
1445 cur_alloc_size = 0;
1446
1447 /*
1448 * btrfs_reloc_clone_csums() error, since start is increased
1449 * extent_clear_unlock_delalloc() at out_unlock label won't
1450 * free metadata of current ordered extent, we're OK to exit.
1451 */
1452 if (ret)
1453 goto out_unlock;
1454 }
1455 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached,
1456 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops);
1457 done:
1458 if (done_offset)
1459 *done_offset = end;
1460 return ret;
1461
1462 out_drop_extent_cache:
1463 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false);
1464 out_reserve:
1465 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1466 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1467 out_unlock:
1468 /*
1469 * Now, we have three regions to clean up:
1470 *
1471 * |-------(1)----|---(2)---|-------------(3)----------|
1472 * `- orig_start `- start `- start + cur_alloc_size `- end
1473 *
1474 * We process each region below.
1475 */
1476
1477 /*
1478 * For the range (1). We have already instantiated the ordered extents
1479 * for this region, thus we need to cleanup those ordered extents.
1480 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV
1481 * are also handled by the ordered extents cleanup.
1482 *
1483 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and
1484 * finish the writeback of the involved folios, which will be never submitted.
1485 */
1486 if (orig_start < start) {
1487 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC;
1488 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1489
1490 if (!locked_folio)
1491 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1492
1493 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start);
1494 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1495 locked_folio, NULL, clear_bits, page_ops);
1496 }
1497
1498 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1499 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1500 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1501
1502 /*
1503 * For the range (2). If we reserved an extent for our delalloc range
1504 * (or a subrange) and failed to create the respective ordered extent,
1505 * then it means that when we reserved the extent we decremented the
1506 * extent's size from the data space_info's bytes_may_use counter and
1507 * incremented the space_info's bytes_reserved counter by the same
1508 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1509 * to decrement again the data space_info's bytes_may_use counter,
1510 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1511 */
1512 if (cur_alloc_size) {
1513 extent_clear_unlock_delalloc(inode, start,
1514 start + cur_alloc_size - 1,
1515 locked_folio, &cached, clear_bits,
1516 page_ops);
1517 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1518 }
1519
1520 /*
1521 * For the range (3). We never touched the region. In addition to the
1522 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1523 * space_info's bytes_may_use counter, reserved in
1524 * btrfs_check_data_free_space().
1525 */
1526 if (start + cur_alloc_size < end) {
1527 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1528 extent_clear_unlock_delalloc(inode, start + cur_alloc_size,
1529 end, locked_folio,
1530 &cached, clear_bits, page_ops);
1531 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size,
1532 end - start - cur_alloc_size + 1, NULL);
1533 }
1534 btrfs_err_rl(fs_info,
1535 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
1536 __func__, btrfs_root_id(inode->root),
1537 btrfs_ino(inode), orig_start, end + 1 - orig_start, ret);
1538 return ret;
1539 }
1540
1541 /*
1542 * Phase two of compressed writeback. This is the ordered portion of the code,
1543 * which only gets called in the order the work was queued. We walk all the
1544 * async extents created by compress_file_range and send them down to the disk.
1545 *
1546 * If called with @do_free == true then it'll try to finish the work and free
1547 * the work struct eventually.
1548 */
submit_compressed_extents(struct btrfs_work * work,bool do_free)1549 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1550 {
1551 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1552 work);
1553 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1554 struct async_extent *async_extent;
1555 unsigned long nr_pages;
1556 u64 alloc_hint = 0;
1557
1558 if (do_free) {
1559 struct async_cow *async_cow;
1560
1561 btrfs_add_delayed_iput(async_chunk->inode);
1562 if (async_chunk->blkcg_css)
1563 css_put(async_chunk->blkcg_css);
1564
1565 async_cow = async_chunk->async_cow;
1566 if (atomic_dec_and_test(&async_cow->num_chunks))
1567 kvfree(async_cow);
1568 return;
1569 }
1570
1571 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1572 PAGE_SHIFT;
1573
1574 while (!list_empty(&async_chunk->extents)) {
1575 async_extent = list_first_entry(&async_chunk->extents,
1576 struct async_extent, list);
1577 list_del(&async_extent->list);
1578 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1579 }
1580
1581 /* atomic_sub_return implies a barrier */
1582 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1583 5 * SZ_1M)
1584 cond_wake_up_nomb(&fs_info->async_submit_wait);
1585 }
1586
run_delalloc_compressed(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)1587 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1588 struct folio *locked_folio, u64 start,
1589 u64 end, struct writeback_control *wbc)
1590 {
1591 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1592 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1593 struct async_cow *ctx;
1594 struct async_chunk *async_chunk;
1595 unsigned long nr_pages;
1596 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1597 int i;
1598 unsigned nofs_flag;
1599 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1600
1601 nofs_flag = memalloc_nofs_save();
1602 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1603 memalloc_nofs_restore(nofs_flag);
1604 if (!ctx)
1605 return false;
1606
1607 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1608
1609 async_chunk = ctx->chunks;
1610 atomic_set(&ctx->num_chunks, num_chunks);
1611
1612 for (i = 0; i < num_chunks; i++) {
1613 u64 cur_end = min(end, start + SZ_512K - 1);
1614
1615 /*
1616 * igrab is called higher up in the call chain, take only the
1617 * lightweight reference for the callback lifetime
1618 */
1619 ihold(&inode->vfs_inode);
1620 async_chunk[i].async_cow = ctx;
1621 async_chunk[i].inode = inode;
1622 async_chunk[i].start = start;
1623 async_chunk[i].end = cur_end;
1624 async_chunk[i].write_flags = write_flags;
1625 INIT_LIST_HEAD(&async_chunk[i].extents);
1626
1627 /*
1628 * The locked_folio comes all the way from writepage and its
1629 * the original folio we were actually given. As we spread
1630 * this large delalloc region across multiple async_chunk
1631 * structs, only the first struct needs a pointer to
1632 * locked_folio.
1633 *
1634 * This way we don't need racey decisions about who is supposed
1635 * to unlock it.
1636 */
1637 if (locked_folio) {
1638 /*
1639 * Depending on the compressibility, the pages might or
1640 * might not go through async. We want all of them to
1641 * be accounted against wbc once. Let's do it here
1642 * before the paths diverge. wbc accounting is used
1643 * only for foreign writeback detection and doesn't
1644 * need full accuracy. Just account the whole thing
1645 * against the first page.
1646 */
1647 wbc_account_cgroup_owner(wbc, locked_folio,
1648 cur_end - start);
1649 async_chunk[i].locked_folio = locked_folio;
1650 locked_folio = NULL;
1651 } else {
1652 async_chunk[i].locked_folio = NULL;
1653 }
1654
1655 if (blkcg_css != blkcg_root_css) {
1656 css_get(blkcg_css);
1657 async_chunk[i].blkcg_css = blkcg_css;
1658 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1659 } else {
1660 async_chunk[i].blkcg_css = NULL;
1661 }
1662
1663 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1664 submit_compressed_extents);
1665
1666 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1667 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1668
1669 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1670
1671 start = cur_end + 1;
1672 }
1673 return true;
1674 }
1675
1676 /*
1677 * Run the delalloc range from start to end, and write back any dirty pages
1678 * covered by the range.
1679 */
run_delalloc_cow(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)1680 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1681 struct folio *locked_folio, u64 start,
1682 u64 end, struct writeback_control *wbc,
1683 bool pages_dirty)
1684 {
1685 u64 done_offset = end;
1686 int ret;
1687
1688 while (start <= end) {
1689 ret = cow_file_range(inode, locked_folio, start, end,
1690 &done_offset, true, false);
1691 if (ret)
1692 return ret;
1693 extent_write_locked_range(&inode->vfs_inode, locked_folio,
1694 start, done_offset, wbc, pages_dirty);
1695 start = done_offset + 1;
1696 }
1697
1698 return 1;
1699 }
1700
fallback_to_cow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)1701 static int fallback_to_cow(struct btrfs_inode *inode,
1702 struct folio *locked_folio, const u64 start,
1703 const u64 end)
1704 {
1705 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1706 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1707 const u64 range_bytes = end + 1 - start;
1708 struct extent_io_tree *io_tree = &inode->io_tree;
1709 struct extent_state *cached_state = NULL;
1710 u64 range_start = start;
1711 u64 count;
1712 int ret;
1713
1714 /*
1715 * If EXTENT_NORESERVE is set it means that when the buffered write was
1716 * made we had not enough available data space and therefore we did not
1717 * reserve data space for it, since we though we could do NOCOW for the
1718 * respective file range (either there is prealloc extent or the inode
1719 * has the NOCOW bit set).
1720 *
1721 * However when we need to fallback to COW mode (because for example the
1722 * block group for the corresponding extent was turned to RO mode by a
1723 * scrub or relocation) we need to do the following:
1724 *
1725 * 1) We increment the bytes_may_use counter of the data space info.
1726 * If COW succeeds, it allocates a new data extent and after doing
1727 * that it decrements the space info's bytes_may_use counter and
1728 * increments its bytes_reserved counter by the same amount (we do
1729 * this at btrfs_add_reserved_bytes()). So we need to increment the
1730 * bytes_may_use counter to compensate (when space is reserved at
1731 * buffered write time, the bytes_may_use counter is incremented);
1732 *
1733 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1734 * that if the COW path fails for any reason, it decrements (through
1735 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1736 * data space info, which we incremented in the step above.
1737 *
1738 * If we need to fallback to cow and the inode corresponds to a free
1739 * space cache inode or an inode of the data relocation tree, we must
1740 * also increment bytes_may_use of the data space_info for the same
1741 * reason. Space caches and relocated data extents always get a prealloc
1742 * extent for them, however scrub or balance may have set the block
1743 * group that contains that extent to RO mode and therefore force COW
1744 * when starting writeback.
1745 */
1746 btrfs_lock_extent(io_tree, start, end, &cached_state);
1747 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes,
1748 EXTENT_NORESERVE, 0, NULL);
1749 if (count > 0 || is_space_ino || is_reloc_ino) {
1750 u64 bytes = count;
1751 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1752 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1753
1754 if (is_space_ino || is_reloc_ino)
1755 bytes = range_bytes;
1756
1757 spin_lock(&sinfo->lock);
1758 btrfs_space_info_update_bytes_may_use(sinfo, bytes);
1759 spin_unlock(&sinfo->lock);
1760
1761 if (count > 0)
1762 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1763 &cached_state);
1764 }
1765 btrfs_unlock_extent(io_tree, start, end, &cached_state);
1766
1767 /*
1768 * Don't try to create inline extents, as a mix of inline extent that
1769 * is written out and unlocked directly and a normal NOCOW extent
1770 * doesn't work.
1771 */
1772 ret = cow_file_range(inode, locked_folio, start, end, NULL, false,
1773 true);
1774 ASSERT(ret != 1);
1775 return ret;
1776 }
1777
1778 struct can_nocow_file_extent_args {
1779 /* Input fields. */
1780
1781 /* Start file offset of the range we want to NOCOW. */
1782 u64 start;
1783 /* End file offset (inclusive) of the range we want to NOCOW. */
1784 u64 end;
1785 bool writeback_path;
1786 /*
1787 * Free the path passed to can_nocow_file_extent() once it's not needed
1788 * anymore.
1789 */
1790 bool free_path;
1791
1792 /*
1793 * Output fields. Only set when can_nocow_file_extent() returns 1.
1794 * The expected file extent for the NOCOW write.
1795 */
1796 struct btrfs_file_extent file_extent;
1797 };
1798
1799 /*
1800 * Check if we can NOCOW the file extent that the path points to.
1801 * This function may return with the path released, so the caller should check
1802 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1803 *
1804 * Returns: < 0 on error
1805 * 0 if we can not NOCOW
1806 * 1 if we can NOCOW
1807 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1808 static int can_nocow_file_extent(struct btrfs_path *path,
1809 struct btrfs_key *key,
1810 struct btrfs_inode *inode,
1811 struct can_nocow_file_extent_args *args)
1812 {
1813 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1814 struct extent_buffer *leaf = path->nodes[0];
1815 struct btrfs_root *root = inode->root;
1816 struct btrfs_file_extent_item *fi;
1817 struct btrfs_root *csum_root;
1818 u64 io_start;
1819 u64 extent_end;
1820 u8 extent_type;
1821 int can_nocow = 0;
1822 int ret = 0;
1823 bool nowait = path->nowait;
1824
1825 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1826 extent_type = btrfs_file_extent_type(leaf, fi);
1827
1828 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1829 goto out;
1830
1831 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1832 extent_type == BTRFS_FILE_EXTENT_REG)
1833 goto out;
1834
1835 /*
1836 * If the extent was created before the generation where the last snapshot
1837 * for its subvolume was created, then this implies the extent is shared,
1838 * hence we must COW.
1839 */
1840 if (btrfs_file_extent_generation(leaf, fi) <=
1841 btrfs_root_last_snapshot(&root->root_item))
1842 goto out;
1843
1844 /* An explicit hole, must COW. */
1845 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1846 goto out;
1847
1848 /* Compressed/encrypted/encoded extents must be COWed. */
1849 if (btrfs_file_extent_compression(leaf, fi) ||
1850 btrfs_file_extent_encryption(leaf, fi) ||
1851 btrfs_file_extent_other_encoding(leaf, fi))
1852 goto out;
1853
1854 extent_end = btrfs_file_extent_end(path);
1855
1856 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1857 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1858 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1859 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1860 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1861
1862 /*
1863 * The following checks can be expensive, as they need to take other
1864 * locks and do btree or rbtree searches, so release the path to avoid
1865 * blocking other tasks for too long.
1866 */
1867 btrfs_release_path(path);
1868
1869 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset,
1870 args->file_extent.disk_bytenr, path);
1871 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1872 if (ret != 0)
1873 goto out;
1874
1875 if (args->free_path) {
1876 /*
1877 * We don't need the path anymore, plus through the
1878 * btrfs_lookup_csums_list() call below we will end up allocating
1879 * another path. So free the path to avoid unnecessary extra
1880 * memory usage.
1881 */
1882 btrfs_free_path(path);
1883 path = NULL;
1884 }
1885
1886 /* If there are pending snapshots for this root, we must COW. */
1887 if (args->writeback_path && !is_freespace_inode &&
1888 atomic_read(&root->snapshot_force_cow))
1889 goto out;
1890
1891 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1892 args->file_extent.offset += args->start - key->offset;
1893 io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1894
1895 /*
1896 * Force COW if csums exist in the range. This ensures that csums for a
1897 * given extent are either valid or do not exist.
1898 */
1899
1900 csum_root = btrfs_csum_root(root->fs_info, io_start);
1901 ret = btrfs_lookup_csums_list(csum_root, io_start,
1902 io_start + args->file_extent.num_bytes - 1,
1903 NULL, nowait);
1904 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1905 if (ret != 0)
1906 goto out;
1907
1908 can_nocow = 1;
1909 out:
1910 if (args->free_path && path)
1911 btrfs_free_path(path);
1912
1913 return ret < 0 ? ret : can_nocow;
1914 }
1915
1916 /*
1917 * Cleanup the dirty folios which will never be submitted due to error.
1918 *
1919 * When running a delalloc range, we may need to split the ranges (due to
1920 * fragmentation or NOCOW). If we hit an error in the later part, we will error
1921 * out and previously successfully executed range will never be submitted, thus
1922 * we have to cleanup those folios by clearing their dirty flag, starting and
1923 * finishing the writeback.
1924 */
cleanup_dirty_folios(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,int error)1925 static void cleanup_dirty_folios(struct btrfs_inode *inode,
1926 struct folio *locked_folio,
1927 u64 start, u64 end, int error)
1928 {
1929 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1930 struct address_space *mapping = inode->vfs_inode.i_mapping;
1931 pgoff_t start_index = start >> PAGE_SHIFT;
1932 pgoff_t end_index = end >> PAGE_SHIFT;
1933 u32 len;
1934
1935 ASSERT(end + 1 - start < U32_MAX);
1936 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
1937 IS_ALIGNED(end + 1, fs_info->sectorsize));
1938 len = end + 1 - start;
1939
1940 /*
1941 * Handle the locked folio first.
1942 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case.
1943 */
1944 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len);
1945
1946 for (pgoff_t index = start_index; index <= end_index; index++) {
1947 struct folio *folio;
1948
1949 /* Already handled at the beginning. */
1950 if (index == locked_folio->index)
1951 continue;
1952 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS);
1953 /* Cache already dropped, no need to do any cleanup. */
1954 if (IS_ERR(folio))
1955 continue;
1956 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len);
1957 folio_unlock(folio);
1958 folio_put(folio);
1959 }
1960 mapping_set_error(mapping, error);
1961 }
1962
nocow_one_range(struct btrfs_inode * inode,struct folio * locked_folio,struct extent_state ** cached,struct can_nocow_file_extent_args * nocow_args,u64 file_pos,bool is_prealloc)1963 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio,
1964 struct extent_state **cached,
1965 struct can_nocow_file_extent_args *nocow_args,
1966 u64 file_pos, bool is_prealloc)
1967 {
1968 struct btrfs_ordered_extent *ordered;
1969 u64 len = nocow_args->file_extent.num_bytes;
1970 u64 end = file_pos + len - 1;
1971 int ret = 0;
1972
1973 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached);
1974
1975 if (is_prealloc) {
1976 struct extent_map *em;
1977
1978 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent,
1979 BTRFS_ORDERED_PREALLOC);
1980 if (IS_ERR(em)) {
1981 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached);
1982 return PTR_ERR(em);
1983 }
1984 btrfs_free_extent_map(em);
1985 }
1986
1987 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent,
1988 is_prealloc
1989 ? (1U << BTRFS_ORDERED_PREALLOC)
1990 : (1U << BTRFS_ORDERED_NOCOW));
1991 if (IS_ERR(ordered)) {
1992 if (is_prealloc)
1993 btrfs_drop_extent_map_range(inode, file_pos, end, false);
1994 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached);
1995 return PTR_ERR(ordered);
1996 }
1997
1998 if (btrfs_is_data_reloc_root(inode->root))
1999 /*
2000 * Errors are handled later, as we must prevent
2001 * extent_clear_unlock_delalloc() in error handler from freeing
2002 * metadata of the created ordered extent.
2003 */
2004 ret = btrfs_reloc_clone_csums(ordered);
2005 btrfs_put_ordered_extent(ordered);
2006
2007 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
2008 EXTENT_LOCKED | EXTENT_DELALLOC |
2009 EXTENT_CLEAR_DATA_RESV,
2010 PAGE_UNLOCK | PAGE_SET_ORDERED);
2011 /*
2012 * On error, we need to cleanup the ordered extents we created.
2013 *
2014 * We do not clear the folio Dirty flags because they are set and
2015 * cleaered by the caller.
2016 */
2017 if (ret < 0)
2018 btrfs_cleanup_ordered_extents(inode, file_pos, len);
2019 return ret;
2020 }
2021
2022 /*
2023 * when nowcow writeback call back. This checks for snapshots or COW copies
2024 * of the extents that exist in the file, and COWs the file as required.
2025 *
2026 * If no cow copies or snapshots exist, we write directly to the existing
2027 * blocks on disk
2028 */
run_delalloc_nocow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)2029 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2030 struct folio *locked_folio,
2031 const u64 start, const u64 end)
2032 {
2033 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2034 struct btrfs_root *root = inode->root;
2035 struct btrfs_path *path;
2036 u64 cow_start = (u64)-1;
2037 /*
2038 * If not 0, represents the inclusive end of the last fallback_to_cow()
2039 * range. Only for error handling.
2040 */
2041 u64 cow_end = 0;
2042 u64 cur_offset = start;
2043 int ret;
2044 bool check_prev = true;
2045 u64 ino = btrfs_ino(inode);
2046 struct can_nocow_file_extent_args nocow_args = { 0 };
2047
2048 /*
2049 * Normally on a zoned device we're only doing COW writes, but in case
2050 * of relocation on a zoned filesystem serializes I/O so that we're only
2051 * writing sequentially and can end up here as well.
2052 */
2053 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2054
2055 path = btrfs_alloc_path();
2056 if (!path) {
2057 ret = -ENOMEM;
2058 goto error;
2059 }
2060
2061 nocow_args.end = end;
2062 nocow_args.writeback_path = true;
2063
2064 while (cur_offset <= end) {
2065 struct btrfs_block_group *nocow_bg = NULL;
2066 struct btrfs_key found_key;
2067 struct btrfs_file_extent_item *fi;
2068 struct extent_buffer *leaf;
2069 struct extent_state *cached_state = NULL;
2070 u64 extent_end;
2071 int extent_type;
2072
2073 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2074 cur_offset, 0);
2075 if (ret < 0)
2076 goto error;
2077
2078 /*
2079 * If there is no extent for our range when doing the initial
2080 * search, then go back to the previous slot as it will be the
2081 * one containing the search offset
2082 */
2083 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2084 leaf = path->nodes[0];
2085 btrfs_item_key_to_cpu(leaf, &found_key,
2086 path->slots[0] - 1);
2087 if (found_key.objectid == ino &&
2088 found_key.type == BTRFS_EXTENT_DATA_KEY)
2089 path->slots[0]--;
2090 }
2091 check_prev = false;
2092 next_slot:
2093 /* Go to next leaf if we have exhausted the current one */
2094 leaf = path->nodes[0];
2095 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2096 ret = btrfs_next_leaf(root, path);
2097 if (ret < 0)
2098 goto error;
2099 if (ret > 0)
2100 break;
2101 leaf = path->nodes[0];
2102 }
2103
2104 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2105
2106 /* Didn't find anything for our INO */
2107 if (found_key.objectid > ino)
2108 break;
2109 /*
2110 * Keep searching until we find an EXTENT_ITEM or there are no
2111 * more extents for this inode
2112 */
2113 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2114 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2115 path->slots[0]++;
2116 goto next_slot;
2117 }
2118
2119 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2120 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2121 found_key.offset > end)
2122 break;
2123
2124 /*
2125 * If the found extent starts after requested offset, then
2126 * adjust cur_offset to be right before this extent begins.
2127 */
2128 if (found_key.offset > cur_offset) {
2129 if (cow_start == (u64)-1)
2130 cow_start = cur_offset;
2131 cur_offset = found_key.offset;
2132 goto next_slot;
2133 }
2134
2135 /*
2136 * Found extent which begins before our range and potentially
2137 * intersect it
2138 */
2139 fi = btrfs_item_ptr(leaf, path->slots[0],
2140 struct btrfs_file_extent_item);
2141 extent_type = btrfs_file_extent_type(leaf, fi);
2142 /* If this is triggered then we have a memory corruption. */
2143 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2144 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2145 ret = -EUCLEAN;
2146 goto error;
2147 }
2148 extent_end = btrfs_file_extent_end(path);
2149
2150 /*
2151 * If the extent we got ends before our current offset, skip to
2152 * the next extent.
2153 */
2154 if (extent_end <= cur_offset) {
2155 path->slots[0]++;
2156 goto next_slot;
2157 }
2158
2159 nocow_args.start = cur_offset;
2160 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2161 if (ret < 0)
2162 goto error;
2163 if (ret == 0)
2164 goto must_cow;
2165
2166 ret = 0;
2167 nocow_bg = btrfs_inc_nocow_writers(fs_info,
2168 nocow_args.file_extent.disk_bytenr +
2169 nocow_args.file_extent.offset);
2170 if (!nocow_bg) {
2171 must_cow:
2172 /*
2173 * If we can't perform NOCOW writeback for the range,
2174 * then record the beginning of the range that needs to
2175 * be COWed. It will be written out before the next
2176 * NOCOW range if we find one, or when exiting this
2177 * loop.
2178 */
2179 if (cow_start == (u64)-1)
2180 cow_start = cur_offset;
2181 cur_offset = extent_end;
2182 if (cur_offset > end)
2183 break;
2184 if (!path->nodes[0])
2185 continue;
2186 path->slots[0]++;
2187 goto next_slot;
2188 }
2189
2190 /*
2191 * COW range from cow_start to found_key.offset - 1. As the key
2192 * will contain the beginning of the first extent that can be
2193 * NOCOW, following one which needs to be COW'ed
2194 */
2195 if (cow_start != (u64)-1) {
2196 ret = fallback_to_cow(inode, locked_folio, cow_start,
2197 found_key.offset - 1);
2198 if (ret) {
2199 cow_end = found_key.offset - 1;
2200 btrfs_dec_nocow_writers(nocow_bg);
2201 goto error;
2202 }
2203 cow_start = (u64)-1;
2204 }
2205
2206 ret = nocow_one_range(inode, locked_folio, &cached_state,
2207 &nocow_args, cur_offset,
2208 extent_type == BTRFS_FILE_EXTENT_PREALLOC);
2209 btrfs_dec_nocow_writers(nocow_bg);
2210 if (ret < 0)
2211 goto error;
2212 cur_offset = extent_end;
2213 }
2214 btrfs_release_path(path);
2215
2216 if (cur_offset <= end && cow_start == (u64)-1)
2217 cow_start = cur_offset;
2218
2219 if (cow_start != (u64)-1) {
2220 ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2221 if (ret) {
2222 cow_end = end;
2223 goto error;
2224 }
2225 cow_start = (u64)-1;
2226 }
2227
2228 btrfs_free_path(path);
2229 return 0;
2230
2231 error:
2232 /*
2233 * There are several error cases:
2234 *
2235 * 1) Failed without falling back to COW
2236 * start cur_offset end
2237 * |/////////////| |
2238 *
2239 * In this case, cow_start should be (u64)-1.
2240 *
2241 * For range [start, cur_offset) the folios are already unlocked (except
2242 * @locked_folio), EXTENT_DELALLOC already removed.
2243 * Need to clear the dirty flags and finish the ordered extents.
2244 *
2245 * 2) Failed with error before calling fallback_to_cow()
2246 *
2247 * start cow_start end
2248 * |/////////////| |
2249 *
2250 * In this case, only @cow_start is set, @cur_offset is between
2251 * [cow_start, end)
2252 *
2253 * It's mostly the same as case 1), just replace @cur_offset with
2254 * @cow_start.
2255 *
2256 * 3) Failed with error from fallback_to_cow()
2257 *
2258 * start cow_start cow_end end
2259 * |/////////////|-----------| |
2260 *
2261 * In this case, both @cow_start and @cow_end is set.
2262 *
2263 * For range [start, cow_start) it's the same as case 1).
2264 * But for range [cow_start, cow_end), all the cleanup is handled by
2265 * cow_file_range(), we should not touch anything in that range.
2266 *
2267 * So for all above cases, if @cow_start is set, cleanup ordered extents
2268 * for range [start, @cow_start), other wise cleanup range [start, @cur_offset).
2269 */
2270 if (cow_start != (u64)-1)
2271 cur_offset = cow_start;
2272
2273 if (cur_offset > start) {
2274 btrfs_cleanup_ordered_extents(inode, start, cur_offset - start);
2275 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret);
2276 }
2277
2278 /*
2279 * If an error happened while a COW region is outstanding, cur_offset
2280 * needs to be reset to @cow_end + 1 to skip the COW range, as
2281 * cow_file_range() will do the proper cleanup at error.
2282 */
2283 if (cow_end)
2284 cur_offset = cow_end + 1;
2285
2286 /*
2287 * We need to lock the extent here because we're clearing DELALLOC and
2288 * we're not locked at this point.
2289 */
2290 if (cur_offset < end) {
2291 struct extent_state *cached = NULL;
2292
2293 btrfs_lock_extent(&inode->io_tree, cur_offset, end, &cached);
2294 extent_clear_unlock_delalloc(inode, cur_offset, end,
2295 locked_folio, &cached,
2296 EXTENT_LOCKED | EXTENT_DELALLOC |
2297 EXTENT_DEFRAG |
2298 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2299 PAGE_START_WRITEBACK |
2300 PAGE_END_WRITEBACK);
2301 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2302 }
2303 btrfs_free_path(path);
2304 btrfs_err_rl(fs_info,
2305 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
2306 __func__, btrfs_root_id(inode->root),
2307 btrfs_ino(inode), start, end + 1 - start, ret);
2308 return ret;
2309 }
2310
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2311 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2312 {
2313 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2314 if (inode->defrag_bytes &&
2315 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2316 return false;
2317 return true;
2318 }
2319 return false;
2320 }
2321
2322 /*
2323 * Function to process delayed allocation (create CoW) for ranges which are
2324 * being touched for the first time.
2325 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)2326 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2327 u64 start, u64 end, struct writeback_control *wbc)
2328 {
2329 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2330 int ret;
2331
2332 /*
2333 * The range must cover part of the @locked_folio, or a return of 1
2334 * can confuse the caller.
2335 */
2336 ASSERT(!(end <= folio_pos(locked_folio) || start >= folio_end(locked_folio)));
2337
2338 if (should_nocow(inode, start, end)) {
2339 ret = run_delalloc_nocow(inode, locked_folio, start, end);
2340 return ret;
2341 }
2342
2343 if (btrfs_inode_can_compress(inode) &&
2344 inode_need_compress(inode, start, end) &&
2345 run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2346 return 1;
2347
2348 if (zoned)
2349 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2350 true);
2351 else
2352 ret = cow_file_range(inode, locked_folio, start, end, NULL,
2353 false, false);
2354 return ret;
2355 }
2356
btrfs_split_delalloc_extent(struct btrfs_inode * inode,struct extent_state * orig,u64 split)2357 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2358 struct extent_state *orig, u64 split)
2359 {
2360 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2361 u64 size;
2362
2363 lockdep_assert_held(&inode->io_tree.lock);
2364
2365 /* not delalloc, ignore it */
2366 if (!(orig->state & EXTENT_DELALLOC))
2367 return;
2368
2369 size = orig->end - orig->start + 1;
2370 if (size > fs_info->max_extent_size) {
2371 u32 num_extents;
2372 u64 new_size;
2373
2374 /*
2375 * See the explanation in btrfs_merge_delalloc_extent, the same
2376 * applies here, just in reverse.
2377 */
2378 new_size = orig->end - split + 1;
2379 num_extents = count_max_extents(fs_info, new_size);
2380 new_size = split - orig->start;
2381 num_extents += count_max_extents(fs_info, new_size);
2382 if (count_max_extents(fs_info, size) >= num_extents)
2383 return;
2384 }
2385
2386 spin_lock(&inode->lock);
2387 btrfs_mod_outstanding_extents(inode, 1);
2388 spin_unlock(&inode->lock);
2389 }
2390
2391 /*
2392 * Handle merged delayed allocation extents so we can keep track of new extents
2393 * that are just merged onto old extents, such as when we are doing sequential
2394 * writes, so we can properly account for the metadata space we'll need.
2395 */
btrfs_merge_delalloc_extent(struct btrfs_inode * inode,struct extent_state * new,struct extent_state * other)2396 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2397 struct extent_state *other)
2398 {
2399 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2400 u64 new_size, old_size;
2401 u32 num_extents;
2402
2403 lockdep_assert_held(&inode->io_tree.lock);
2404
2405 /* not delalloc, ignore it */
2406 if (!(other->state & EXTENT_DELALLOC))
2407 return;
2408
2409 if (new->start > other->start)
2410 new_size = new->end - other->start + 1;
2411 else
2412 new_size = other->end - new->start + 1;
2413
2414 /* we're not bigger than the max, unreserve the space and go */
2415 if (new_size <= fs_info->max_extent_size) {
2416 spin_lock(&inode->lock);
2417 btrfs_mod_outstanding_extents(inode, -1);
2418 spin_unlock(&inode->lock);
2419 return;
2420 }
2421
2422 /*
2423 * We have to add up either side to figure out how many extents were
2424 * accounted for before we merged into one big extent. If the number of
2425 * extents we accounted for is <= the amount we need for the new range
2426 * then we can return, otherwise drop. Think of it like this
2427 *
2428 * [ 4k][MAX_SIZE]
2429 *
2430 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2431 * need 2 outstanding extents, on one side we have 1 and the other side
2432 * we have 1 so they are == and we can return. But in this case
2433 *
2434 * [MAX_SIZE+4k][MAX_SIZE+4k]
2435 *
2436 * Each range on their own accounts for 2 extents, but merged together
2437 * they are only 3 extents worth of accounting, so we need to drop in
2438 * this case.
2439 */
2440 old_size = other->end - other->start + 1;
2441 num_extents = count_max_extents(fs_info, old_size);
2442 old_size = new->end - new->start + 1;
2443 num_extents += count_max_extents(fs_info, old_size);
2444 if (count_max_extents(fs_info, new_size) >= num_extents)
2445 return;
2446
2447 spin_lock(&inode->lock);
2448 btrfs_mod_outstanding_extents(inode, -1);
2449 spin_unlock(&inode->lock);
2450 }
2451
btrfs_add_delalloc_inode(struct btrfs_inode * inode)2452 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2453 {
2454 struct btrfs_root *root = inode->root;
2455 struct btrfs_fs_info *fs_info = root->fs_info;
2456
2457 spin_lock(&root->delalloc_lock);
2458 ASSERT(list_empty(&inode->delalloc_inodes));
2459 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2460 root->nr_delalloc_inodes++;
2461 if (root->nr_delalloc_inodes == 1) {
2462 spin_lock(&fs_info->delalloc_root_lock);
2463 ASSERT(list_empty(&root->delalloc_root));
2464 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2465 spin_unlock(&fs_info->delalloc_root_lock);
2466 }
2467 spin_unlock(&root->delalloc_lock);
2468 }
2469
btrfs_del_delalloc_inode(struct btrfs_inode * inode)2470 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2471 {
2472 struct btrfs_root *root = inode->root;
2473 struct btrfs_fs_info *fs_info = root->fs_info;
2474
2475 lockdep_assert_held(&root->delalloc_lock);
2476
2477 /*
2478 * We may be called after the inode was already deleted from the list,
2479 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2480 * and then later through btrfs_clear_delalloc_extent() while the inode
2481 * still has ->delalloc_bytes > 0.
2482 */
2483 if (!list_empty(&inode->delalloc_inodes)) {
2484 list_del_init(&inode->delalloc_inodes);
2485 root->nr_delalloc_inodes--;
2486 if (!root->nr_delalloc_inodes) {
2487 ASSERT(list_empty(&root->delalloc_inodes));
2488 spin_lock(&fs_info->delalloc_root_lock);
2489 ASSERT(!list_empty(&root->delalloc_root));
2490 list_del_init(&root->delalloc_root);
2491 spin_unlock(&fs_info->delalloc_root_lock);
2492 }
2493 }
2494 }
2495
2496 /*
2497 * Properly track delayed allocation bytes in the inode and to maintain the
2498 * list of inodes that have pending delalloc work to be done.
2499 */
btrfs_set_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2500 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2501 u32 bits)
2502 {
2503 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2504
2505 lockdep_assert_held(&inode->io_tree.lock);
2506
2507 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2508 WARN_ON(1);
2509 /*
2510 * set_bit and clear bit hooks normally require _irqsave/restore
2511 * but in this case, we are only testing for the DELALLOC
2512 * bit, which is only set or cleared with irqs on
2513 */
2514 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2515 u64 len = state->end + 1 - state->start;
2516 u64 prev_delalloc_bytes;
2517 u32 num_extents = count_max_extents(fs_info, len);
2518
2519 spin_lock(&inode->lock);
2520 btrfs_mod_outstanding_extents(inode, num_extents);
2521 spin_unlock(&inode->lock);
2522
2523 /* For sanity tests */
2524 if (btrfs_is_testing(fs_info))
2525 return;
2526
2527 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2528 fs_info->delalloc_batch);
2529 spin_lock(&inode->lock);
2530 prev_delalloc_bytes = inode->delalloc_bytes;
2531 inode->delalloc_bytes += len;
2532 if (bits & EXTENT_DEFRAG)
2533 inode->defrag_bytes += len;
2534 spin_unlock(&inode->lock);
2535
2536 /*
2537 * We don't need to be under the protection of the inode's lock,
2538 * because we are called while holding the inode's io_tree lock
2539 * and are therefore protected against concurrent calls of this
2540 * function and btrfs_clear_delalloc_extent().
2541 */
2542 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2543 btrfs_add_delalloc_inode(inode);
2544 }
2545
2546 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2547 (bits & EXTENT_DELALLOC_NEW)) {
2548 spin_lock(&inode->lock);
2549 inode->new_delalloc_bytes += state->end + 1 - state->start;
2550 spin_unlock(&inode->lock);
2551 }
2552 }
2553
2554 /*
2555 * Once a range is no longer delalloc this function ensures that proper
2556 * accounting happens.
2557 */
btrfs_clear_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2558 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2559 struct extent_state *state, u32 bits)
2560 {
2561 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2562 u64 len = state->end + 1 - state->start;
2563 u32 num_extents = count_max_extents(fs_info, len);
2564
2565 lockdep_assert_held(&inode->io_tree.lock);
2566
2567 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2568 spin_lock(&inode->lock);
2569 inode->defrag_bytes -= len;
2570 spin_unlock(&inode->lock);
2571 }
2572
2573 /*
2574 * set_bit and clear bit hooks normally require _irqsave/restore
2575 * but in this case, we are only testing for the DELALLOC
2576 * bit, which is only set or cleared with irqs on
2577 */
2578 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2579 struct btrfs_root *root = inode->root;
2580 u64 new_delalloc_bytes;
2581
2582 spin_lock(&inode->lock);
2583 btrfs_mod_outstanding_extents(inode, -num_extents);
2584 spin_unlock(&inode->lock);
2585
2586 /*
2587 * We don't reserve metadata space for space cache inodes so we
2588 * don't need to call delalloc_release_metadata if there is an
2589 * error.
2590 */
2591 if (bits & EXTENT_CLEAR_META_RESV &&
2592 root != fs_info->tree_root)
2593 btrfs_delalloc_release_metadata(inode, len, true);
2594
2595 /* For sanity tests. */
2596 if (btrfs_is_testing(fs_info))
2597 return;
2598
2599 if (!btrfs_is_data_reloc_root(root) &&
2600 !btrfs_is_free_space_inode(inode) &&
2601 !(state->state & EXTENT_NORESERVE) &&
2602 (bits & EXTENT_CLEAR_DATA_RESV))
2603 btrfs_free_reserved_data_space_noquota(inode, len);
2604
2605 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2606 fs_info->delalloc_batch);
2607 spin_lock(&inode->lock);
2608 inode->delalloc_bytes -= len;
2609 new_delalloc_bytes = inode->delalloc_bytes;
2610 spin_unlock(&inode->lock);
2611
2612 /*
2613 * We don't need to be under the protection of the inode's lock,
2614 * because we are called while holding the inode's io_tree lock
2615 * and are therefore protected against concurrent calls of this
2616 * function and btrfs_set_delalloc_extent().
2617 */
2618 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2619 spin_lock(&root->delalloc_lock);
2620 btrfs_del_delalloc_inode(inode);
2621 spin_unlock(&root->delalloc_lock);
2622 }
2623 }
2624
2625 if ((state->state & EXTENT_DELALLOC_NEW) &&
2626 (bits & EXTENT_DELALLOC_NEW)) {
2627 spin_lock(&inode->lock);
2628 ASSERT(inode->new_delalloc_bytes >= len);
2629 inode->new_delalloc_bytes -= len;
2630 if (bits & EXTENT_ADD_INODE_BYTES)
2631 inode_add_bytes(&inode->vfs_inode, len);
2632 spin_unlock(&inode->lock);
2633 }
2634 }
2635
2636 /*
2637 * given a list of ordered sums record them in the inode. This happens
2638 * at IO completion time based on sums calculated at bio submission time.
2639 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2640 static int add_pending_csums(struct btrfs_trans_handle *trans,
2641 struct list_head *list)
2642 {
2643 struct btrfs_ordered_sum *sum;
2644 struct btrfs_root *csum_root = NULL;
2645 int ret;
2646
2647 list_for_each_entry(sum, list, list) {
2648 trans->adding_csums = true;
2649 if (!csum_root)
2650 csum_root = btrfs_csum_root(trans->fs_info,
2651 sum->logical);
2652 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2653 trans->adding_csums = false;
2654 if (ret)
2655 return ret;
2656 }
2657 return 0;
2658 }
2659
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2660 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2661 const u64 start,
2662 const u64 len,
2663 struct extent_state **cached_state)
2664 {
2665 u64 search_start = start;
2666 const u64 end = start + len - 1;
2667
2668 while (search_start < end) {
2669 const u64 search_len = end - search_start + 1;
2670 struct extent_map *em;
2671 u64 em_len;
2672 int ret = 0;
2673
2674 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2675 if (IS_ERR(em))
2676 return PTR_ERR(em);
2677
2678 if (em->disk_bytenr != EXTENT_MAP_HOLE)
2679 goto next;
2680
2681 em_len = em->len;
2682 if (em->start < search_start)
2683 em_len -= search_start - em->start;
2684 if (em_len > search_len)
2685 em_len = search_len;
2686
2687 ret = btrfs_set_extent_bit(&inode->io_tree, search_start,
2688 search_start + em_len - 1,
2689 EXTENT_DELALLOC_NEW, cached_state);
2690 next:
2691 search_start = btrfs_extent_map_end(em);
2692 btrfs_free_extent_map(em);
2693 if (ret)
2694 return ret;
2695 }
2696 return 0;
2697 }
2698
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2699 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2700 unsigned int extra_bits,
2701 struct extent_state **cached_state)
2702 {
2703 WARN_ON(PAGE_ALIGNED(end));
2704
2705 if (start >= i_size_read(&inode->vfs_inode) &&
2706 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2707 /*
2708 * There can't be any extents following eof in this case so just
2709 * set the delalloc new bit for the range directly.
2710 */
2711 extra_bits |= EXTENT_DELALLOC_NEW;
2712 } else {
2713 int ret;
2714
2715 ret = btrfs_find_new_delalloc_bytes(inode, start,
2716 end + 1 - start,
2717 cached_state);
2718 if (ret)
2719 return ret;
2720 }
2721
2722 return btrfs_set_extent_bit(&inode->io_tree, start, end,
2723 EXTENT_DELALLOC | extra_bits, cached_state);
2724 }
2725
2726 /* see btrfs_writepage_start_hook for details on why this is required */
2727 struct btrfs_writepage_fixup {
2728 struct folio *folio;
2729 struct btrfs_inode *inode;
2730 struct btrfs_work work;
2731 };
2732
btrfs_writepage_fixup_worker(struct btrfs_work * work)2733 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2734 {
2735 struct btrfs_writepage_fixup *fixup =
2736 container_of(work, struct btrfs_writepage_fixup, work);
2737 struct btrfs_ordered_extent *ordered;
2738 struct extent_state *cached_state = NULL;
2739 struct extent_changeset *data_reserved = NULL;
2740 struct folio *folio = fixup->folio;
2741 struct btrfs_inode *inode = fixup->inode;
2742 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2743 u64 page_start = folio_pos(folio);
2744 u64 page_end = folio_end(folio) - 1;
2745 int ret = 0;
2746 bool free_delalloc_space = true;
2747
2748 /*
2749 * This is similar to page_mkwrite, we need to reserve the space before
2750 * we take the folio lock.
2751 */
2752 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2753 folio_size(folio));
2754 again:
2755 folio_lock(folio);
2756
2757 /*
2758 * Before we queued this fixup, we took a reference on the folio.
2759 * folio->mapping may go NULL, but it shouldn't be moved to a different
2760 * address space.
2761 */
2762 if (!folio->mapping || !folio_test_dirty(folio) ||
2763 !folio_test_checked(folio)) {
2764 /*
2765 * Unfortunately this is a little tricky, either
2766 *
2767 * 1) We got here and our folio had already been dealt with and
2768 * we reserved our space, thus ret == 0, so we need to just
2769 * drop our space reservation and bail. This can happen the
2770 * first time we come into the fixup worker, or could happen
2771 * while waiting for the ordered extent.
2772 * 2) Our folio was already dealt with, but we happened to get an
2773 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2774 * this case we obviously don't have anything to release, but
2775 * because the folio was already dealt with we don't want to
2776 * mark the folio with an error, so make sure we're resetting
2777 * ret to 0. This is why we have this check _before_ the ret
2778 * check, because we do not want to have a surprise ENOSPC
2779 * when the folio was already properly dealt with.
2780 */
2781 if (!ret) {
2782 btrfs_delalloc_release_extents(inode, folio_size(folio));
2783 btrfs_delalloc_release_space(inode, data_reserved,
2784 page_start, folio_size(folio),
2785 true);
2786 }
2787 ret = 0;
2788 goto out_page;
2789 }
2790
2791 /*
2792 * We can't mess with the folio state unless it is locked, so now that
2793 * it is locked bail if we failed to make our space reservation.
2794 */
2795 if (ret)
2796 goto out_page;
2797
2798 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2799
2800 /* already ordered? We're done */
2801 if (folio_test_ordered(folio))
2802 goto out_reserved;
2803
2804 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2805 if (ordered) {
2806 btrfs_unlock_extent(&inode->io_tree, page_start, page_end,
2807 &cached_state);
2808 folio_unlock(folio);
2809 btrfs_start_ordered_extent(ordered);
2810 btrfs_put_ordered_extent(ordered);
2811 goto again;
2812 }
2813
2814 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2815 &cached_state);
2816 if (ret)
2817 goto out_reserved;
2818
2819 /*
2820 * Everything went as planned, we're now the owner of a dirty page with
2821 * delayed allocation bits set and space reserved for our COW
2822 * destination.
2823 *
2824 * The page was dirty when we started, nothing should have cleaned it.
2825 */
2826 BUG_ON(!folio_test_dirty(folio));
2827 free_delalloc_space = false;
2828 out_reserved:
2829 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2830 if (free_delalloc_space)
2831 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2832 PAGE_SIZE, true);
2833 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2834 out_page:
2835 if (ret) {
2836 /*
2837 * We hit ENOSPC or other errors. Update the mapping and page
2838 * to reflect the errors and clean the page.
2839 */
2840 mapping_set_error(folio->mapping, ret);
2841 btrfs_mark_ordered_io_finished(inode, folio, page_start,
2842 folio_size(folio), !ret);
2843 folio_clear_dirty_for_io(folio);
2844 }
2845 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2846 folio_unlock(folio);
2847 folio_put(folio);
2848 kfree(fixup);
2849 extent_changeset_free(data_reserved);
2850 /*
2851 * As a precaution, do a delayed iput in case it would be the last iput
2852 * that could need flushing space. Recursing back to fixup worker would
2853 * deadlock.
2854 */
2855 btrfs_add_delayed_iput(inode);
2856 }
2857
2858 /*
2859 * There are a few paths in the higher layers of the kernel that directly
2860 * set the folio dirty bit without asking the filesystem if it is a
2861 * good idea. This causes problems because we want to make sure COW
2862 * properly happens and the data=ordered rules are followed.
2863 *
2864 * In our case any range that doesn't have the ORDERED bit set
2865 * hasn't been properly setup for IO. We kick off an async process
2866 * to fix it up. The async helper will wait for ordered extents, set
2867 * the delalloc bit and make it safe to write the folio.
2868 */
btrfs_writepage_cow_fixup(struct folio * folio)2869 int btrfs_writepage_cow_fixup(struct folio *folio)
2870 {
2871 struct inode *inode = folio->mapping->host;
2872 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2873 struct btrfs_writepage_fixup *fixup;
2874
2875 /* This folio has ordered extent covering it already */
2876 if (folio_test_ordered(folio))
2877 return 0;
2878
2879 /*
2880 * For experimental build, we error out instead of EAGAIN.
2881 *
2882 * We should not hit such out-of-band dirty folios anymore.
2883 */
2884 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) {
2885 DEBUG_WARN();
2886 btrfs_err_rl(fs_info,
2887 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
2888 btrfs_root_id(BTRFS_I(inode)->root),
2889 btrfs_ino(BTRFS_I(inode)),
2890 folio_pos(folio));
2891 return -EUCLEAN;
2892 }
2893
2894 /*
2895 * folio_checked is set below when we create a fixup worker for this
2896 * folio, don't try to create another one if we're already
2897 * folio_test_checked.
2898 *
2899 * The extent_io writepage code will redirty the foio if we send back
2900 * EAGAIN.
2901 */
2902 if (folio_test_checked(folio))
2903 return -EAGAIN;
2904
2905 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2906 if (!fixup)
2907 return -EAGAIN;
2908
2909 /*
2910 * We are already holding a reference to this inode from
2911 * write_cache_pages. We need to hold it because the space reservation
2912 * takes place outside of the folio lock, and we can't trust
2913 * folio->mapping outside of the folio lock.
2914 */
2915 ihold(inode);
2916 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2917 folio_get(folio);
2918 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2919 fixup->folio = folio;
2920 fixup->inode = BTRFS_I(inode);
2921 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2922
2923 return -EAGAIN;
2924 }
2925
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2926 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2927 struct btrfs_inode *inode, u64 file_pos,
2928 struct btrfs_file_extent_item *stack_fi,
2929 const bool update_inode_bytes,
2930 u64 qgroup_reserved)
2931 {
2932 struct btrfs_root *root = inode->root;
2933 const u64 sectorsize = root->fs_info->sectorsize;
2934 BTRFS_PATH_AUTO_FREE(path);
2935 struct extent_buffer *leaf;
2936 struct btrfs_key ins;
2937 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2938 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2939 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2940 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2941 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2942 struct btrfs_drop_extents_args drop_args = { 0 };
2943 int ret;
2944
2945 path = btrfs_alloc_path();
2946 if (!path)
2947 return -ENOMEM;
2948
2949 /*
2950 * we may be replacing one extent in the tree with another.
2951 * The new extent is pinned in the extent map, and we don't want
2952 * to drop it from the cache until it is completely in the btree.
2953 *
2954 * So, tell btrfs_drop_extents to leave this extent in the cache.
2955 * the caller is expected to unpin it and allow it to be merged
2956 * with the others.
2957 */
2958 drop_args.path = path;
2959 drop_args.start = file_pos;
2960 drop_args.end = file_pos + num_bytes;
2961 drop_args.replace_extent = true;
2962 drop_args.extent_item_size = sizeof(*stack_fi);
2963 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2964 if (ret)
2965 goto out;
2966
2967 if (!drop_args.extent_inserted) {
2968 ins.objectid = btrfs_ino(inode);
2969 ins.type = BTRFS_EXTENT_DATA_KEY;
2970 ins.offset = file_pos;
2971
2972 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2973 sizeof(*stack_fi));
2974 if (ret)
2975 goto out;
2976 }
2977 leaf = path->nodes[0];
2978 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2979 write_extent_buffer(leaf, stack_fi,
2980 btrfs_item_ptr_offset(leaf, path->slots[0]),
2981 sizeof(struct btrfs_file_extent_item));
2982
2983 btrfs_release_path(path);
2984
2985 /*
2986 * If we dropped an inline extent here, we know the range where it is
2987 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2988 * number of bytes only for that range containing the inline extent.
2989 * The remaining of the range will be processed when clearning the
2990 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2991 */
2992 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2993 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2994
2995 inline_size = drop_args.bytes_found - inline_size;
2996 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2997 drop_args.bytes_found -= inline_size;
2998 num_bytes -= sectorsize;
2999 }
3000
3001 if (update_inode_bytes)
3002 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3003
3004 ins.objectid = disk_bytenr;
3005 ins.type = BTRFS_EXTENT_ITEM_KEY;
3006 ins.offset = disk_num_bytes;
3007
3008 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3009 if (ret)
3010 goto out;
3011
3012 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3013 file_pos - offset,
3014 qgroup_reserved, &ins);
3015 out:
3016 return ret;
3017 }
3018
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3019 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3020 u64 start, u64 len)
3021 {
3022 struct btrfs_block_group *cache;
3023
3024 cache = btrfs_lookup_block_group(fs_info, start);
3025 ASSERT(cache);
3026
3027 spin_lock(&cache->lock);
3028 cache->delalloc_bytes -= len;
3029 spin_unlock(&cache->lock);
3030
3031 btrfs_put_block_group(cache);
3032 }
3033
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)3034 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3035 struct btrfs_ordered_extent *oe)
3036 {
3037 struct btrfs_file_extent_item stack_fi;
3038 bool update_inode_bytes;
3039 u64 num_bytes = oe->num_bytes;
3040 u64 ram_bytes = oe->ram_bytes;
3041
3042 memset(&stack_fi, 0, sizeof(stack_fi));
3043 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3044 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3045 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3046 oe->disk_num_bytes);
3047 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3048 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3049 num_bytes = oe->truncated_len;
3050 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3051 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3052 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3053 /* Encryption and other encoding is reserved and all 0 */
3054
3055 /*
3056 * For delalloc, when completing an ordered extent we update the inode's
3057 * bytes when clearing the range in the inode's io tree, so pass false
3058 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3059 * except if the ordered extent was truncated.
3060 */
3061 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3062 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3063 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3064
3065 return insert_reserved_file_extent(trans, oe->inode,
3066 oe->file_offset, &stack_fi,
3067 update_inode_bytes, oe->qgroup_rsv);
3068 }
3069
3070 /*
3071 * As ordered data IO finishes, this gets called so we can finish
3072 * an ordered extent if the range of bytes in the file it covers are
3073 * fully written.
3074 */
btrfs_finish_one_ordered(struct btrfs_ordered_extent * ordered_extent)3075 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3076 {
3077 struct btrfs_inode *inode = ordered_extent->inode;
3078 struct btrfs_root *root = inode->root;
3079 struct btrfs_fs_info *fs_info = root->fs_info;
3080 struct btrfs_trans_handle *trans = NULL;
3081 struct extent_io_tree *io_tree = &inode->io_tree;
3082 struct extent_state *cached_state = NULL;
3083 u64 start, end;
3084 int compress_type = 0;
3085 int ret = 0;
3086 u64 logical_len = ordered_extent->num_bytes;
3087 bool freespace_inode;
3088 bool truncated = false;
3089 bool clear_reserved_extent = true;
3090 unsigned int clear_bits = EXTENT_DEFRAG;
3091
3092 start = ordered_extent->file_offset;
3093 end = start + ordered_extent->num_bytes - 1;
3094
3095 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3096 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3097 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3098 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3099 clear_bits |= EXTENT_DELALLOC_NEW;
3100
3101 freespace_inode = btrfs_is_free_space_inode(inode);
3102 if (!freespace_inode)
3103 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3104
3105 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3106 ret = -EIO;
3107 goto out;
3108 }
3109
3110 if (btrfs_is_zoned(fs_info))
3111 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3112 ordered_extent->disk_num_bytes);
3113
3114 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3115 truncated = true;
3116 logical_len = ordered_extent->truncated_len;
3117 /* Truncated the entire extent, don't bother adding */
3118 if (!logical_len)
3119 goto out;
3120 }
3121
3122 /*
3123 * If it's a COW write we need to lock the extent range as we will be
3124 * inserting/replacing file extent items and unpinning an extent map.
3125 * This must be taken before joining a transaction, as it's a higher
3126 * level lock (like the inode's VFS lock), otherwise we can run into an
3127 * ABBA deadlock with other tasks (transactions work like a lock,
3128 * depending on their current state).
3129 */
3130 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3131 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED;
3132 btrfs_lock_extent_bits(io_tree, start, end,
3133 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED,
3134 &cached_state);
3135 }
3136
3137 if (freespace_inode)
3138 trans = btrfs_join_transaction_spacecache(root);
3139 else
3140 trans = btrfs_join_transaction(root);
3141 if (IS_ERR(trans)) {
3142 ret = PTR_ERR(trans);
3143 trans = NULL;
3144 goto out;
3145 }
3146
3147 trans->block_rsv = &inode->block_rsv;
3148
3149 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3150 if (ret) {
3151 btrfs_abort_transaction(trans, ret);
3152 goto out;
3153 }
3154
3155 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3156 /* Logic error */
3157 ASSERT(list_empty(&ordered_extent->list));
3158 if (!list_empty(&ordered_extent->list)) {
3159 ret = -EINVAL;
3160 btrfs_abort_transaction(trans, ret);
3161 goto out;
3162 }
3163
3164 btrfs_inode_safe_disk_i_size_write(inode, 0);
3165 ret = btrfs_update_inode_fallback(trans, inode);
3166 if (ret) {
3167 /* -ENOMEM or corruption */
3168 btrfs_abort_transaction(trans, ret);
3169 }
3170 goto out;
3171 }
3172
3173 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3174 compress_type = ordered_extent->compress_type;
3175 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3176 BUG_ON(compress_type);
3177 ret = btrfs_mark_extent_written(trans, inode,
3178 ordered_extent->file_offset,
3179 ordered_extent->file_offset +
3180 logical_len);
3181 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3182 ordered_extent->disk_num_bytes);
3183 } else {
3184 BUG_ON(root == fs_info->tree_root);
3185 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3186 if (!ret) {
3187 clear_reserved_extent = false;
3188 btrfs_release_delalloc_bytes(fs_info,
3189 ordered_extent->disk_bytenr,
3190 ordered_extent->disk_num_bytes);
3191 }
3192 }
3193 if (ret < 0) {
3194 btrfs_abort_transaction(trans, ret);
3195 goto out;
3196 }
3197
3198 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset,
3199 ordered_extent->num_bytes, trans->transid);
3200 if (ret < 0) {
3201 btrfs_abort_transaction(trans, ret);
3202 goto out;
3203 }
3204
3205 ret = add_pending_csums(trans, &ordered_extent->list);
3206 if (ret) {
3207 btrfs_abort_transaction(trans, ret);
3208 goto out;
3209 }
3210
3211 /*
3212 * If this is a new delalloc range, clear its new delalloc flag to
3213 * update the inode's number of bytes. This needs to be done first
3214 * before updating the inode item.
3215 */
3216 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3217 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3218 btrfs_clear_extent_bit(&inode->io_tree, start, end,
3219 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3220 &cached_state);
3221
3222 btrfs_inode_safe_disk_i_size_write(inode, 0);
3223 ret = btrfs_update_inode_fallback(trans, inode);
3224 if (ret) { /* -ENOMEM or corruption */
3225 btrfs_abort_transaction(trans, ret);
3226 goto out;
3227 }
3228 out:
3229 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3230 &cached_state);
3231
3232 if (trans)
3233 btrfs_end_transaction(trans);
3234
3235 if (ret || truncated) {
3236 /*
3237 * If we failed to finish this ordered extent for any reason we
3238 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3239 * extent, and mark the inode with the error if it wasn't
3240 * already set. Any error during writeback would have already
3241 * set the mapping error, so we need to set it if we're the ones
3242 * marking this ordered extent as failed.
3243 */
3244 if (ret)
3245 btrfs_mark_ordered_extent_error(ordered_extent);
3246
3247 /*
3248 * Drop extent maps for the part of the extent we didn't write.
3249 *
3250 * We have an exception here for the free_space_inode, this is
3251 * because when we do btrfs_get_extent() on the free space inode
3252 * we will search the commit root. If this is a new block group
3253 * we won't find anything, and we will trip over the assert in
3254 * writepage where we do ASSERT(em->block_start !=
3255 * EXTENT_MAP_HOLE).
3256 *
3257 * Theoretically we could also skip this for any NOCOW extent as
3258 * we don't mess with the extent map tree in the NOCOW case, but
3259 * for now simply skip this if we are the free space inode.
3260 */
3261 if (!btrfs_is_free_space_inode(inode)) {
3262 u64 unwritten_start = start;
3263
3264 if (truncated)
3265 unwritten_start += logical_len;
3266
3267 btrfs_drop_extent_map_range(inode, unwritten_start,
3268 end, false);
3269 }
3270
3271 /*
3272 * If the ordered extent had an IOERR or something else went
3273 * wrong we need to return the space for this ordered extent
3274 * back to the allocator. We only free the extent in the
3275 * truncated case if we didn't write out the extent at all.
3276 *
3277 * If we made it past insert_reserved_file_extent before we
3278 * errored out then we don't need to do this as the accounting
3279 * has already been done.
3280 */
3281 if ((ret || !logical_len) &&
3282 clear_reserved_extent &&
3283 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3284 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3285 /*
3286 * Discard the range before returning it back to the
3287 * free space pool
3288 */
3289 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3290 btrfs_discard_extent(fs_info,
3291 ordered_extent->disk_bytenr,
3292 ordered_extent->disk_num_bytes,
3293 NULL);
3294 btrfs_free_reserved_extent(fs_info,
3295 ordered_extent->disk_bytenr,
3296 ordered_extent->disk_num_bytes, true);
3297 /*
3298 * Actually free the qgroup rsv which was released when
3299 * the ordered extent was created.
3300 */
3301 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3302 ordered_extent->qgroup_rsv,
3303 BTRFS_QGROUP_RSV_DATA);
3304 }
3305 }
3306
3307 /*
3308 * This needs to be done to make sure anybody waiting knows we are done
3309 * updating everything for this ordered extent.
3310 */
3311 btrfs_remove_ordered_extent(inode, ordered_extent);
3312
3313 /* once for us */
3314 btrfs_put_ordered_extent(ordered_extent);
3315 /* once for the tree */
3316 btrfs_put_ordered_extent(ordered_extent);
3317
3318 return ret;
3319 }
3320
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered)3321 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3322 {
3323 if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3324 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3325 list_empty(&ordered->bioc_list))
3326 btrfs_finish_ordered_zoned(ordered);
3327 return btrfs_finish_one_ordered(ordered);
3328 }
3329
3330 /*
3331 * Verify the checksum for a single sector without any extra action that depend
3332 * on the type of I/O.
3333 *
3334 * @kaddr must be a properly kmapped address.
3335 */
btrfs_check_sector_csum(struct btrfs_fs_info * fs_info,void * kaddr,u8 * csum,const u8 * const csum_expected)3336 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, void *kaddr, u8 *csum,
3337 const u8 * const csum_expected)
3338 {
3339 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3340
3341 shash->tfm = fs_info->csum_shash;
3342 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3343
3344 if (memcmp(csum, csum_expected, fs_info->csum_size))
3345 return -EIO;
3346 return 0;
3347 }
3348
3349 /*
3350 * Verify the checksum of a single data sector.
3351 *
3352 * @bbio: btrfs_io_bio which contains the csum
3353 * @dev: device the sector is on
3354 * @bio_offset: offset to the beginning of the bio (in bytes)
3355 * @bv: bio_vec to check
3356 *
3357 * Check if the checksum on a data block is valid. When a checksum mismatch is
3358 * detected, report the error and fill the corrupted range with zero.
3359 *
3360 * Return %true if the sector is ok or had no checksum to start with, else %false.
3361 */
btrfs_data_csum_ok(struct btrfs_bio * bbio,struct btrfs_device * dev,u32 bio_offset,struct bio_vec * bv)3362 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3363 u32 bio_offset, struct bio_vec *bv)
3364 {
3365 struct btrfs_inode *inode = bbio->inode;
3366 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3367 u64 file_offset = bbio->file_offset + bio_offset;
3368 u64 end = file_offset + bv->bv_len - 1;
3369 u8 *csum_expected;
3370 u8 csum[BTRFS_CSUM_SIZE];
3371 void *kaddr;
3372
3373 ASSERT(bv->bv_len == fs_info->sectorsize);
3374
3375 if (!bbio->csum)
3376 return true;
3377
3378 if (btrfs_is_data_reloc_root(inode->root) &&
3379 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3380 NULL)) {
3381 /* Skip the range without csum for data reloc inode */
3382 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end,
3383 EXTENT_NODATASUM, NULL);
3384 return true;
3385 }
3386
3387 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3388 fs_info->csum_size;
3389 kaddr = bvec_kmap_local(bv);
3390 if (btrfs_check_sector_csum(fs_info, kaddr, csum, csum_expected)) {
3391 kunmap_local(kaddr);
3392 goto zeroit;
3393 }
3394 kunmap_local(kaddr);
3395 return true;
3396
3397 zeroit:
3398 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3399 bbio->mirror_num);
3400 if (dev)
3401 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3402 memzero_bvec(bv);
3403 return false;
3404 }
3405
3406 /*
3407 * Perform a delayed iput on @inode.
3408 *
3409 * @inode: The inode we want to perform iput on
3410 *
3411 * This function uses the generic vfs_inode::i_count to track whether we should
3412 * just decrement it (in case it's > 1) or if this is the last iput then link
3413 * the inode to the delayed iput machinery. Delayed iputs are processed at
3414 * transaction commit time/superblock commit/cleaner kthread.
3415 */
btrfs_add_delayed_iput(struct btrfs_inode * inode)3416 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3417 {
3418 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3419 unsigned long flags;
3420
3421 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3422 return;
3423
3424 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state));
3425 atomic_inc(&fs_info->nr_delayed_iputs);
3426 /*
3427 * Need to be irq safe here because we can be called from either an irq
3428 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3429 * context.
3430 */
3431 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3432 ASSERT(list_empty(&inode->delayed_iput));
3433 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3434 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3435 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3436 wake_up_process(fs_info->cleaner_kthread);
3437 }
3438
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3439 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3440 struct btrfs_inode *inode)
3441 {
3442 list_del_init(&inode->delayed_iput);
3443 spin_unlock_irq(&fs_info->delayed_iput_lock);
3444 iput(&inode->vfs_inode);
3445 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3446 wake_up(&fs_info->delayed_iputs_wait);
3447 spin_lock_irq(&fs_info->delayed_iput_lock);
3448 }
3449
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3450 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3451 struct btrfs_inode *inode)
3452 {
3453 if (!list_empty(&inode->delayed_iput)) {
3454 spin_lock_irq(&fs_info->delayed_iput_lock);
3455 if (!list_empty(&inode->delayed_iput))
3456 run_delayed_iput_locked(fs_info, inode);
3457 spin_unlock_irq(&fs_info->delayed_iput_lock);
3458 }
3459 }
3460
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3461 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3462 {
3463 /*
3464 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3465 * calls btrfs_add_delayed_iput() and that needs to lock
3466 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3467 * prevent a deadlock.
3468 */
3469 spin_lock_irq(&fs_info->delayed_iput_lock);
3470 while (!list_empty(&fs_info->delayed_iputs)) {
3471 struct btrfs_inode *inode;
3472
3473 inode = list_first_entry(&fs_info->delayed_iputs,
3474 struct btrfs_inode, delayed_iput);
3475 run_delayed_iput_locked(fs_info, inode);
3476 if (need_resched()) {
3477 spin_unlock_irq(&fs_info->delayed_iput_lock);
3478 cond_resched();
3479 spin_lock_irq(&fs_info->delayed_iput_lock);
3480 }
3481 }
3482 spin_unlock_irq(&fs_info->delayed_iput_lock);
3483 }
3484
3485 /*
3486 * Wait for flushing all delayed iputs
3487 *
3488 * @fs_info: the filesystem
3489 *
3490 * This will wait on any delayed iputs that are currently running with KILLABLE
3491 * set. Once they are all done running we will return, unless we are killed in
3492 * which case we return EINTR. This helps in user operations like fallocate etc
3493 * that might get blocked on the iputs.
3494 *
3495 * Return EINTR if we were killed, 0 if nothing's pending
3496 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3497 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3498 {
3499 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3500 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3501 if (ret)
3502 return -EINTR;
3503 return 0;
3504 }
3505
3506 /*
3507 * This creates an orphan entry for the given inode in case something goes wrong
3508 * in the middle of an unlink.
3509 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3510 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3511 struct btrfs_inode *inode)
3512 {
3513 int ret;
3514
3515 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3516 if (ret && ret != -EEXIST) {
3517 btrfs_abort_transaction(trans, ret);
3518 return ret;
3519 }
3520
3521 return 0;
3522 }
3523
3524 /*
3525 * We have done the delete so we can go ahead and remove the orphan item for
3526 * this particular inode.
3527 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3528 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3529 struct btrfs_inode *inode)
3530 {
3531 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3532 }
3533
3534 /*
3535 * this cleans up any orphans that may be left on the list from the last use
3536 * of this root.
3537 */
btrfs_orphan_cleanup(struct btrfs_root * root)3538 int btrfs_orphan_cleanup(struct btrfs_root *root)
3539 {
3540 struct btrfs_fs_info *fs_info = root->fs_info;
3541 BTRFS_PATH_AUTO_FREE(path);
3542 struct extent_buffer *leaf;
3543 struct btrfs_key key, found_key;
3544 struct btrfs_trans_handle *trans;
3545 u64 last_objectid = 0;
3546 int ret = 0, nr_unlink = 0;
3547
3548 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3549 return 0;
3550
3551 path = btrfs_alloc_path();
3552 if (!path) {
3553 ret = -ENOMEM;
3554 goto out;
3555 }
3556 path->reada = READA_BACK;
3557
3558 key.objectid = BTRFS_ORPHAN_OBJECTID;
3559 key.type = BTRFS_ORPHAN_ITEM_KEY;
3560 key.offset = (u64)-1;
3561
3562 while (1) {
3563 struct btrfs_inode *inode;
3564
3565 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3566 if (ret < 0)
3567 goto out;
3568
3569 /*
3570 * if ret == 0 means we found what we were searching for, which
3571 * is weird, but possible, so only screw with path if we didn't
3572 * find the key and see if we have stuff that matches
3573 */
3574 if (ret > 0) {
3575 ret = 0;
3576 if (path->slots[0] == 0)
3577 break;
3578 path->slots[0]--;
3579 }
3580
3581 /* pull out the item */
3582 leaf = path->nodes[0];
3583 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3584
3585 /* make sure the item matches what we want */
3586 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3587 break;
3588 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3589 break;
3590
3591 /* release the path since we're done with it */
3592 btrfs_release_path(path);
3593
3594 /*
3595 * this is where we are basically btrfs_lookup, without the
3596 * crossing root thing. we store the inode number in the
3597 * offset of the orphan item.
3598 */
3599
3600 if (found_key.offset == last_objectid) {
3601 /*
3602 * We found the same inode as before. This means we were
3603 * not able to remove its items via eviction triggered
3604 * by an iput(). A transaction abort may have happened,
3605 * due to -ENOSPC for example, so try to grab the error
3606 * that lead to a transaction abort, if any.
3607 */
3608 btrfs_err(fs_info,
3609 "Error removing orphan entry, stopping orphan cleanup");
3610 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3611 goto out;
3612 }
3613
3614 last_objectid = found_key.offset;
3615
3616 found_key.objectid = found_key.offset;
3617 found_key.type = BTRFS_INODE_ITEM_KEY;
3618 found_key.offset = 0;
3619 inode = btrfs_iget(last_objectid, root);
3620 if (IS_ERR(inode)) {
3621 ret = PTR_ERR(inode);
3622 inode = NULL;
3623 if (ret != -ENOENT)
3624 goto out;
3625 }
3626
3627 if (!inode && root == fs_info->tree_root) {
3628 struct btrfs_root *dead_root;
3629 int is_dead_root = 0;
3630
3631 /*
3632 * This is an orphan in the tree root. Currently these
3633 * could come from 2 sources:
3634 * a) a root (snapshot/subvolume) deletion in progress
3635 * b) a free space cache inode
3636 * We need to distinguish those two, as the orphan item
3637 * for a root must not get deleted before the deletion
3638 * of the snapshot/subvolume's tree completes.
3639 *
3640 * btrfs_find_orphan_roots() ran before us, which has
3641 * found all deleted roots and loaded them into
3642 * fs_info->fs_roots_radix. So here we can find if an
3643 * orphan item corresponds to a deleted root by looking
3644 * up the root from that radix tree.
3645 */
3646
3647 spin_lock(&fs_info->fs_roots_radix_lock);
3648 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3649 (unsigned long)found_key.objectid);
3650 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3651 is_dead_root = 1;
3652 spin_unlock(&fs_info->fs_roots_radix_lock);
3653
3654 if (is_dead_root) {
3655 /* prevent this orphan from being found again */
3656 key.offset = found_key.objectid - 1;
3657 continue;
3658 }
3659
3660 }
3661
3662 /*
3663 * If we have an inode with links, there are a couple of
3664 * possibilities:
3665 *
3666 * 1. We were halfway through creating fsverity metadata for the
3667 * file. In that case, the orphan item represents incomplete
3668 * fsverity metadata which must be cleaned up with
3669 * btrfs_drop_verity_items and deleting the orphan item.
3670
3671 * 2. Old kernels (before v3.12) used to create an
3672 * orphan item for truncate indicating that there were possibly
3673 * extent items past i_size that needed to be deleted. In v3.12,
3674 * truncate was changed to update i_size in sync with the extent
3675 * items, but the (useless) orphan item was still created. Since
3676 * v4.18, we don't create the orphan item for truncate at all.
3677 *
3678 * So, this item could mean that we need to do a truncate, but
3679 * only if this filesystem was last used on a pre-v3.12 kernel
3680 * and was not cleanly unmounted. The odds of that are quite
3681 * slim, and it's a pain to do the truncate now, so just delete
3682 * the orphan item.
3683 *
3684 * It's also possible that this orphan item was supposed to be
3685 * deleted but wasn't. The inode number may have been reused,
3686 * but either way, we can delete the orphan item.
3687 */
3688 if (!inode || inode->vfs_inode.i_nlink) {
3689 if (inode) {
3690 ret = btrfs_drop_verity_items(inode);
3691 iput(&inode->vfs_inode);
3692 inode = NULL;
3693 if (ret)
3694 goto out;
3695 }
3696 trans = btrfs_start_transaction(root, 1);
3697 if (IS_ERR(trans)) {
3698 ret = PTR_ERR(trans);
3699 goto out;
3700 }
3701 btrfs_debug(fs_info, "auto deleting %Lu",
3702 found_key.objectid);
3703 ret = btrfs_del_orphan_item(trans, root,
3704 found_key.objectid);
3705 btrfs_end_transaction(trans);
3706 if (ret)
3707 goto out;
3708 continue;
3709 }
3710
3711 nr_unlink++;
3712
3713 /* this will do delete_inode and everything for us */
3714 iput(&inode->vfs_inode);
3715 }
3716 /* release the path since we're done with it */
3717 btrfs_release_path(path);
3718
3719 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3720 trans = btrfs_join_transaction(root);
3721 if (!IS_ERR(trans))
3722 btrfs_end_transaction(trans);
3723 }
3724
3725 if (nr_unlink)
3726 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3727
3728 out:
3729 if (ret)
3730 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3731 return ret;
3732 }
3733
3734 /*
3735 * Look ahead in the leaf for xattrs. If we don't find any then we know there
3736 * can't be any ACLs.
3737 *
3738 * @leaf: the eb leaf where to search
3739 * @slot: the slot the inode is in
3740 * @objectid: the objectid of the inode
3741 *
3742 * Return true if there is xattr/ACL, false otherwise.
3743 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3744 static noinline bool acls_after_inode_item(struct extent_buffer *leaf,
3745 int slot, u64 objectid,
3746 int *first_xattr_slot)
3747 {
3748 u32 nritems = btrfs_header_nritems(leaf);
3749 struct btrfs_key found_key;
3750 static u64 xattr_access = 0;
3751 static u64 xattr_default = 0;
3752 int scanned = 0;
3753
3754 if (!xattr_access) {
3755 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3756 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3757 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3758 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3759 }
3760
3761 slot++;
3762 *first_xattr_slot = -1;
3763 while (slot < nritems) {
3764 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3765
3766 /* We found a different objectid, there must be no ACLs. */
3767 if (found_key.objectid != objectid)
3768 return false;
3769
3770 /* We found an xattr, assume we've got an ACL. */
3771 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3772 if (*first_xattr_slot == -1)
3773 *first_xattr_slot = slot;
3774 if (found_key.offset == xattr_access ||
3775 found_key.offset == xattr_default)
3776 return true;
3777 }
3778
3779 /*
3780 * We found a key greater than an xattr key, there can't be any
3781 * ACLs later on.
3782 */
3783 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3784 return false;
3785
3786 slot++;
3787 scanned++;
3788
3789 /*
3790 * The item order goes like:
3791 * - inode
3792 * - inode backrefs
3793 * - xattrs
3794 * - extents,
3795 *
3796 * so if there are lots of hard links to an inode there can be
3797 * a lot of backrefs. Don't waste time searching too hard,
3798 * this is just an optimization.
3799 */
3800 if (scanned >= 8)
3801 break;
3802 }
3803 /*
3804 * We hit the end of the leaf before we found an xattr or something
3805 * larger than an xattr. We have to assume the inode has ACLs.
3806 */
3807 if (*first_xattr_slot == -1)
3808 *first_xattr_slot = slot;
3809 return true;
3810 }
3811
btrfs_init_file_extent_tree(struct btrfs_inode * inode)3812 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3813 {
3814 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3815
3816 if (WARN_ON_ONCE(inode->file_extent_tree))
3817 return 0;
3818 if (btrfs_fs_incompat(fs_info, NO_HOLES))
3819 return 0;
3820 if (!S_ISREG(inode->vfs_inode.i_mode))
3821 return 0;
3822 if (btrfs_is_free_space_inode(inode))
3823 return 0;
3824
3825 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3826 if (!inode->file_extent_tree)
3827 return -ENOMEM;
3828
3829 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree,
3830 IO_TREE_INODE_FILE_EXTENT);
3831 /* Lockdep class is set only for the file extent tree. */
3832 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3833
3834 return 0;
3835 }
3836
btrfs_add_inode_to_root(struct btrfs_inode * inode,bool prealloc)3837 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
3838 {
3839 struct btrfs_root *root = inode->root;
3840 struct btrfs_inode *existing;
3841 const u64 ino = btrfs_ino(inode);
3842 int ret;
3843
3844 if (inode_unhashed(&inode->vfs_inode))
3845 return 0;
3846
3847 if (prealloc) {
3848 ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
3849 if (ret)
3850 return ret;
3851 }
3852
3853 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
3854
3855 if (xa_is_err(existing)) {
3856 ret = xa_err(existing);
3857 ASSERT(ret != -EINVAL);
3858 ASSERT(ret != -ENOMEM);
3859 return ret;
3860 } else if (existing) {
3861 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
3862 }
3863
3864 return 0;
3865 }
3866
3867 /*
3868 * Read a locked inode from the btree into the in-memory inode and add it to
3869 * its root list/tree.
3870 *
3871 * On failure clean up the inode.
3872 */
btrfs_read_locked_inode(struct btrfs_inode * inode,struct btrfs_path * path)3873 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path)
3874 {
3875 struct btrfs_root *root = inode->root;
3876 struct btrfs_fs_info *fs_info = root->fs_info;
3877 struct extent_buffer *leaf;
3878 struct btrfs_inode_item *inode_item;
3879 struct inode *vfs_inode = &inode->vfs_inode;
3880 struct btrfs_key location;
3881 unsigned long ptr;
3882 int maybe_acls;
3883 u32 rdev;
3884 int ret;
3885 bool filled = false;
3886 int first_xattr_slot;
3887
3888 ret = btrfs_init_file_extent_tree(inode);
3889 if (ret)
3890 goto out;
3891
3892 ret = btrfs_fill_inode(inode, &rdev);
3893 if (!ret)
3894 filled = true;
3895
3896 ASSERT(path);
3897
3898 btrfs_get_inode_key(inode, &location);
3899
3900 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3901 if (ret) {
3902 /*
3903 * ret > 0 can come from btrfs_search_slot called by
3904 * btrfs_lookup_inode(), this means the inode was not found.
3905 */
3906 if (ret > 0)
3907 ret = -ENOENT;
3908 goto out;
3909 }
3910
3911 leaf = path->nodes[0];
3912
3913 if (filled)
3914 goto cache_index;
3915
3916 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3917 struct btrfs_inode_item);
3918 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3919 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item));
3920 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item));
3921 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item));
3922 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3923 btrfs_inode_set_file_extent_range(inode, 0,
3924 round_up(i_size_read(vfs_inode), fs_info->sectorsize));
3925
3926 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3927 btrfs_timespec_nsec(leaf, &inode_item->atime));
3928
3929 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3930 btrfs_timespec_nsec(leaf, &inode_item->mtime));
3931
3932 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3933 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3934
3935 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3936 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3937
3938 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item));
3939 inode->generation = btrfs_inode_generation(leaf, inode_item);
3940 inode->last_trans = btrfs_inode_transid(leaf, inode_item);
3941
3942 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item));
3943 vfs_inode->i_generation = inode->generation;
3944 vfs_inode->i_rdev = 0;
3945 rdev = btrfs_inode_rdev(leaf, inode_item);
3946
3947 if (S_ISDIR(vfs_inode->i_mode))
3948 inode->index_cnt = (u64)-1;
3949
3950 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3951 &inode->flags, &inode->ro_flags);
3952 btrfs_update_inode_mapping_flags(inode);
3953 btrfs_set_inode_mapping_order(inode);
3954
3955 cache_index:
3956 /*
3957 * If we were modified in the current generation and evicted from memory
3958 * and then re-read we need to do a full sync since we don't have any
3959 * idea about which extents were modified before we were evicted from
3960 * cache.
3961 *
3962 * This is required for both inode re-read from disk and delayed inode
3963 * in the delayed_nodes xarray.
3964 */
3965 if (inode->last_trans == btrfs_get_fs_generation(fs_info))
3966 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3967
3968 /*
3969 * We don't persist the id of the transaction where an unlink operation
3970 * against the inode was last made. So here we assume the inode might
3971 * have been evicted, and therefore the exact value of last_unlink_trans
3972 * lost, and set it to last_trans to avoid metadata inconsistencies
3973 * between the inode and its parent if the inode is fsync'ed and the log
3974 * replayed. For example, in the scenario:
3975 *
3976 * touch mydir/foo
3977 * ln mydir/foo mydir/bar
3978 * sync
3979 * unlink mydir/bar
3980 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3981 * xfs_io -c fsync mydir/foo
3982 * <power failure>
3983 * mount fs, triggers fsync log replay
3984 *
3985 * We must make sure that when we fsync our inode foo we also log its
3986 * parent inode, otherwise after log replay the parent still has the
3987 * dentry with the "bar" name but our inode foo has a link count of 1
3988 * and doesn't have an inode ref with the name "bar" anymore.
3989 *
3990 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3991 * but it guarantees correctness at the expense of occasional full
3992 * transaction commits on fsync if our inode is a directory, or if our
3993 * inode is not a directory, logging its parent unnecessarily.
3994 */
3995 inode->last_unlink_trans = inode->last_trans;
3996
3997 /*
3998 * Same logic as for last_unlink_trans. We don't persist the generation
3999 * of the last transaction where this inode was used for a reflink
4000 * operation, so after eviction and reloading the inode we must be
4001 * pessimistic and assume the last transaction that modified the inode.
4002 */
4003 inode->last_reflink_trans = inode->last_trans;
4004
4005 path->slots[0]++;
4006 if (vfs_inode->i_nlink != 1 ||
4007 path->slots[0] >= btrfs_header_nritems(leaf))
4008 goto cache_acl;
4009
4010 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4011 if (location.objectid != btrfs_ino(inode))
4012 goto cache_acl;
4013
4014 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4015 if (location.type == BTRFS_INODE_REF_KEY) {
4016 struct btrfs_inode_ref *ref;
4017
4018 ref = (struct btrfs_inode_ref *)ptr;
4019 inode->dir_index = btrfs_inode_ref_index(leaf, ref);
4020 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4021 struct btrfs_inode_extref *extref;
4022
4023 extref = (struct btrfs_inode_extref *)ptr;
4024 inode->dir_index = btrfs_inode_extref_index(leaf, extref);
4025 }
4026 cache_acl:
4027 /*
4028 * try to precache a NULL acl entry for files that don't have
4029 * any xattrs or acls
4030 */
4031 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4032 btrfs_ino(inode), &first_xattr_slot);
4033 if (first_xattr_slot != -1) {
4034 path->slots[0] = first_xattr_slot;
4035 ret = btrfs_load_inode_props(inode, path);
4036 if (ret)
4037 btrfs_err(fs_info,
4038 "error loading props for ino %llu (root %llu): %d",
4039 btrfs_ino(inode), btrfs_root_id(root), ret);
4040 }
4041
4042 if (!maybe_acls)
4043 cache_no_acl(vfs_inode);
4044
4045 switch (vfs_inode->i_mode & S_IFMT) {
4046 case S_IFREG:
4047 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4048 vfs_inode->i_fop = &btrfs_file_operations;
4049 vfs_inode->i_op = &btrfs_file_inode_operations;
4050 break;
4051 case S_IFDIR:
4052 vfs_inode->i_fop = &btrfs_dir_file_operations;
4053 vfs_inode->i_op = &btrfs_dir_inode_operations;
4054 break;
4055 case S_IFLNK:
4056 vfs_inode->i_op = &btrfs_symlink_inode_operations;
4057 inode_nohighmem(vfs_inode);
4058 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4059 break;
4060 default:
4061 vfs_inode->i_op = &btrfs_special_inode_operations;
4062 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev);
4063 break;
4064 }
4065
4066 btrfs_sync_inode_flags_to_i_flags(inode);
4067
4068 ret = btrfs_add_inode_to_root(inode, true);
4069 if (ret)
4070 goto out;
4071
4072 return 0;
4073 out:
4074 iget_failed(vfs_inode);
4075 return ret;
4076 }
4077
4078 /*
4079 * given a leaf and an inode, copy the inode fields into the leaf
4080 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4081 static void fill_inode_item(struct btrfs_trans_handle *trans,
4082 struct extent_buffer *leaf,
4083 struct btrfs_inode_item *item,
4084 struct inode *inode)
4085 {
4086 u64 flags;
4087
4088 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
4089 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
4090 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
4091 btrfs_set_inode_mode(leaf, item, inode->i_mode);
4092 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
4093
4094 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode));
4095 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode));
4096
4097 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode));
4098 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode));
4099
4100 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode));
4101 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode));
4102
4103 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec);
4104 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4105
4106 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
4107 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
4108 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode));
4109 btrfs_set_inode_transid(leaf, item, trans->transid);
4110 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
4111 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4112 BTRFS_I(inode)->ro_flags);
4113 btrfs_set_inode_flags(leaf, item, flags);
4114 btrfs_set_inode_block_group(leaf, item, 0);
4115 }
4116
4117 /*
4118 * copy everything in the in-memory inode into the btree.
4119 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4120 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4121 struct btrfs_inode *inode)
4122 {
4123 struct btrfs_inode_item *inode_item;
4124 BTRFS_PATH_AUTO_FREE(path);
4125 struct extent_buffer *leaf;
4126 struct btrfs_key key;
4127 int ret;
4128
4129 path = btrfs_alloc_path();
4130 if (!path)
4131 return -ENOMEM;
4132
4133 btrfs_get_inode_key(inode, &key);
4134 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4135 if (ret) {
4136 if (ret > 0)
4137 ret = -ENOENT;
4138 return ret;
4139 }
4140
4141 leaf = path->nodes[0];
4142 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4143 struct btrfs_inode_item);
4144
4145 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4146 btrfs_set_inode_last_trans(trans, inode);
4147 return 0;
4148 }
4149
4150 /*
4151 * copy everything in the in-memory inode into the btree.
4152 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4153 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4154 struct btrfs_inode *inode)
4155 {
4156 struct btrfs_root *root = inode->root;
4157 struct btrfs_fs_info *fs_info = root->fs_info;
4158 int ret;
4159
4160 /*
4161 * If the inode is a free space inode, we can deadlock during commit
4162 * if we put it into the delayed code.
4163 *
4164 * The data relocation inode should also be directly updated
4165 * without delay
4166 */
4167 if (!btrfs_is_free_space_inode(inode)
4168 && !btrfs_is_data_reloc_root(root)
4169 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4170 btrfs_update_root_times(trans, root);
4171
4172 ret = btrfs_delayed_update_inode(trans, inode);
4173 if (!ret)
4174 btrfs_set_inode_last_trans(trans, inode);
4175 return ret;
4176 }
4177
4178 return btrfs_update_inode_item(trans, inode);
4179 }
4180
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4181 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4182 struct btrfs_inode *inode)
4183 {
4184 int ret;
4185
4186 ret = btrfs_update_inode(trans, inode);
4187 if (ret == -ENOSPC)
4188 return btrfs_update_inode_item(trans, inode);
4189 return ret;
4190 }
4191
4192 /*
4193 * unlink helper that gets used here in inode.c and in the tree logging
4194 * recovery code. It remove a link in a directory with a given name, and
4195 * also drops the back refs in the inode to the directory
4196 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name,struct btrfs_rename_ctx * rename_ctx)4197 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4198 struct btrfs_inode *dir,
4199 struct btrfs_inode *inode,
4200 const struct fscrypt_str *name,
4201 struct btrfs_rename_ctx *rename_ctx)
4202 {
4203 struct btrfs_root *root = dir->root;
4204 struct btrfs_fs_info *fs_info = root->fs_info;
4205 struct btrfs_path *path;
4206 int ret = 0;
4207 struct btrfs_dir_item *di;
4208 u64 index;
4209 u64 ino = btrfs_ino(inode);
4210 u64 dir_ino = btrfs_ino(dir);
4211
4212 path = btrfs_alloc_path();
4213 if (!path)
4214 return -ENOMEM;
4215
4216 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4217 if (IS_ERR_OR_NULL(di)) {
4218 btrfs_free_path(path);
4219 return di ? PTR_ERR(di) : -ENOENT;
4220 }
4221 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4222 /*
4223 * Down the call chains below we'll also need to allocate a path, so no
4224 * need to hold on to this one for longer than necessary.
4225 */
4226 btrfs_free_path(path);
4227 if (ret)
4228 return ret;
4229
4230 /*
4231 * If we don't have dir index, we have to get it by looking up
4232 * the inode ref, since we get the inode ref, remove it directly,
4233 * it is unnecessary to do delayed deletion.
4234 *
4235 * But if we have dir index, needn't search inode ref to get it.
4236 * Since the inode ref is close to the inode item, it is better
4237 * that we delay to delete it, and just do this deletion when
4238 * we update the inode item.
4239 */
4240 if (inode->dir_index) {
4241 ret = btrfs_delayed_delete_inode_ref(inode);
4242 if (!ret) {
4243 index = inode->dir_index;
4244 goto skip_backref;
4245 }
4246 }
4247
4248 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4249 if (ret) {
4250 btrfs_crit(fs_info,
4251 "failed to delete reference to %.*s, root %llu inode %llu parent %llu",
4252 name->len, name->name, btrfs_root_id(root), ino, dir_ino);
4253 btrfs_abort_transaction(trans, ret);
4254 return ret;
4255 }
4256 skip_backref:
4257 if (rename_ctx)
4258 rename_ctx->index = index;
4259
4260 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4261 if (ret) {
4262 btrfs_abort_transaction(trans, ret);
4263 return ret;
4264 }
4265
4266 /*
4267 * If we are in a rename context, we don't need to update anything in the
4268 * log. That will be done later during the rename by btrfs_log_new_name().
4269 * Besides that, doing it here would only cause extra unnecessary btree
4270 * operations on the log tree, increasing latency for applications.
4271 */
4272 if (!rename_ctx) {
4273 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4274 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4275 }
4276
4277 /*
4278 * If we have a pending delayed iput we could end up with the final iput
4279 * being run in btrfs-cleaner context. If we have enough of these built
4280 * up we can end up burning a lot of time in btrfs-cleaner without any
4281 * way to throttle the unlinks. Since we're currently holding a ref on
4282 * the inode we can run the delayed iput here without any issues as the
4283 * final iput won't be done until after we drop the ref we're currently
4284 * holding.
4285 */
4286 btrfs_run_delayed_iput(fs_info, inode);
4287
4288 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4289 inode_inc_iversion(&inode->vfs_inode);
4290 inode_set_ctime_current(&inode->vfs_inode);
4291 inode_inc_iversion(&dir->vfs_inode);
4292 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4293
4294 return btrfs_update_inode(trans, dir);
4295 }
4296
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)4297 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4298 struct btrfs_inode *dir, struct btrfs_inode *inode,
4299 const struct fscrypt_str *name)
4300 {
4301 int ret;
4302
4303 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4304 if (!ret) {
4305 drop_nlink(&inode->vfs_inode);
4306 ret = btrfs_update_inode(trans, inode);
4307 }
4308 return ret;
4309 }
4310
4311 /*
4312 * helper to start transaction for unlink and rmdir.
4313 *
4314 * unlink and rmdir are special in btrfs, they do not always free space, so
4315 * if we cannot make our reservations the normal way try and see if there is
4316 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4317 * allow the unlink to occur.
4318 */
__unlink_start_trans(struct btrfs_inode * dir)4319 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4320 {
4321 struct btrfs_root *root = dir->root;
4322
4323 return btrfs_start_transaction_fallback_global_rsv(root,
4324 BTRFS_UNLINK_METADATA_UNITS);
4325 }
4326
btrfs_unlink(struct inode * dir,struct dentry * dentry)4327 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4328 {
4329 struct btrfs_trans_handle *trans;
4330 struct inode *inode = d_inode(dentry);
4331 int ret;
4332 struct fscrypt_name fname;
4333
4334 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4335 if (ret)
4336 return ret;
4337
4338 /* This needs to handle no-key deletions later on */
4339
4340 trans = __unlink_start_trans(BTRFS_I(dir));
4341 if (IS_ERR(trans)) {
4342 ret = PTR_ERR(trans);
4343 goto fscrypt_free;
4344 }
4345
4346 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4347 false);
4348
4349 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4350 &fname.disk_name);
4351 if (ret)
4352 goto end_trans;
4353
4354 if (inode->i_nlink == 0) {
4355 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4356 if (ret)
4357 goto end_trans;
4358 }
4359
4360 end_trans:
4361 btrfs_end_transaction(trans);
4362 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4363 fscrypt_free:
4364 fscrypt_free_filename(&fname);
4365 return ret;
4366 }
4367
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry)4368 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4369 struct btrfs_inode *dir, struct dentry *dentry)
4370 {
4371 struct btrfs_root *root = dir->root;
4372 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4373 struct btrfs_path *path;
4374 struct extent_buffer *leaf;
4375 struct btrfs_dir_item *di;
4376 struct btrfs_key key;
4377 u64 index;
4378 int ret;
4379 u64 objectid;
4380 u64 dir_ino = btrfs_ino(dir);
4381 struct fscrypt_name fname;
4382
4383 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4384 if (ret)
4385 return ret;
4386
4387 /* This needs to handle no-key deletions later on */
4388
4389 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4390 objectid = btrfs_root_id(inode->root);
4391 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4392 objectid = inode->ref_root_id;
4393 } else {
4394 WARN_ON(1);
4395 fscrypt_free_filename(&fname);
4396 return -EINVAL;
4397 }
4398
4399 path = btrfs_alloc_path();
4400 if (!path) {
4401 ret = -ENOMEM;
4402 goto out;
4403 }
4404
4405 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4406 &fname.disk_name, -1);
4407 if (IS_ERR_OR_NULL(di)) {
4408 ret = di ? PTR_ERR(di) : -ENOENT;
4409 goto out;
4410 }
4411
4412 leaf = path->nodes[0];
4413 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4414 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4415 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4416 if (ret) {
4417 btrfs_abort_transaction(trans, ret);
4418 goto out;
4419 }
4420 btrfs_release_path(path);
4421
4422 /*
4423 * This is a placeholder inode for a subvolume we didn't have a
4424 * reference to at the time of the snapshot creation. In the meantime
4425 * we could have renamed the real subvol link into our snapshot, so
4426 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4427 * Instead simply lookup the dir_index_item for this entry so we can
4428 * remove it. Otherwise we know we have a ref to the root and we can
4429 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4430 */
4431 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4432 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4433 if (IS_ERR(di)) {
4434 ret = PTR_ERR(di);
4435 btrfs_abort_transaction(trans, ret);
4436 goto out;
4437 }
4438
4439 leaf = path->nodes[0];
4440 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4441 index = key.offset;
4442 btrfs_release_path(path);
4443 } else {
4444 ret = btrfs_del_root_ref(trans, objectid,
4445 btrfs_root_id(root), dir_ino,
4446 &index, &fname.disk_name);
4447 if (ret) {
4448 btrfs_abort_transaction(trans, ret);
4449 goto out;
4450 }
4451 }
4452
4453 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4454 if (ret) {
4455 btrfs_abort_transaction(trans, ret);
4456 goto out;
4457 }
4458
4459 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4460 inode_inc_iversion(&dir->vfs_inode);
4461 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4462 ret = btrfs_update_inode_fallback(trans, dir);
4463 if (ret)
4464 btrfs_abort_transaction(trans, ret);
4465 out:
4466 btrfs_free_path(path);
4467 fscrypt_free_filename(&fname);
4468 return ret;
4469 }
4470
4471 /*
4472 * Helper to check if the subvolume references other subvolumes or if it's
4473 * default.
4474 */
may_destroy_subvol(struct btrfs_root * root)4475 static noinline int may_destroy_subvol(struct btrfs_root *root)
4476 {
4477 struct btrfs_fs_info *fs_info = root->fs_info;
4478 BTRFS_PATH_AUTO_FREE(path);
4479 struct btrfs_dir_item *di;
4480 struct btrfs_key key;
4481 struct fscrypt_str name = FSTR_INIT("default", 7);
4482 u64 dir_id;
4483 int ret;
4484
4485 path = btrfs_alloc_path();
4486 if (!path)
4487 return -ENOMEM;
4488
4489 /* Make sure this root isn't set as the default subvol */
4490 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4491 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4492 dir_id, &name, 0);
4493 if (di && !IS_ERR(di)) {
4494 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4495 if (key.objectid == btrfs_root_id(root)) {
4496 ret = -EPERM;
4497 btrfs_err(fs_info,
4498 "deleting default subvolume %llu is not allowed",
4499 key.objectid);
4500 return ret;
4501 }
4502 btrfs_release_path(path);
4503 }
4504
4505 key.objectid = btrfs_root_id(root);
4506 key.type = BTRFS_ROOT_REF_KEY;
4507 key.offset = (u64)-1;
4508
4509 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4510 if (ret < 0)
4511 return ret;
4512 if (ret == 0) {
4513 /*
4514 * Key with offset -1 found, there would have to exist a root
4515 * with such id, but this is out of valid range.
4516 */
4517 return -EUCLEAN;
4518 }
4519
4520 ret = 0;
4521 if (path->slots[0] > 0) {
4522 path->slots[0]--;
4523 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4524 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4525 ret = -ENOTEMPTY;
4526 }
4527
4528 return ret;
4529 }
4530
4531 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4532 static void btrfs_prune_dentries(struct btrfs_root *root)
4533 {
4534 struct btrfs_fs_info *fs_info = root->fs_info;
4535 struct btrfs_inode *inode;
4536 u64 min_ino = 0;
4537
4538 if (!BTRFS_FS_ERROR(fs_info))
4539 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4540
4541 inode = btrfs_find_first_inode(root, min_ino);
4542 while (inode) {
4543 if (atomic_read(&inode->vfs_inode.i_count) > 1)
4544 d_prune_aliases(&inode->vfs_inode);
4545
4546 min_ino = btrfs_ino(inode) + 1;
4547 /*
4548 * btrfs_drop_inode() will have it removed from the inode
4549 * cache when its usage count hits zero.
4550 */
4551 iput(&inode->vfs_inode);
4552 cond_resched();
4553 inode = btrfs_find_first_inode(root, min_ino);
4554 }
4555 }
4556
btrfs_delete_subvolume(struct btrfs_inode * dir,struct dentry * dentry)4557 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4558 {
4559 struct btrfs_root *root = dir->root;
4560 struct btrfs_fs_info *fs_info = root->fs_info;
4561 struct inode *inode = d_inode(dentry);
4562 struct btrfs_root *dest = BTRFS_I(inode)->root;
4563 struct btrfs_trans_handle *trans;
4564 struct btrfs_block_rsv block_rsv;
4565 u64 root_flags;
4566 u64 qgroup_reserved = 0;
4567 int ret;
4568
4569 down_write(&fs_info->subvol_sem);
4570
4571 /*
4572 * Don't allow to delete a subvolume with send in progress. This is
4573 * inside the inode lock so the error handling that has to drop the bit
4574 * again is not run concurrently.
4575 */
4576 spin_lock(&dest->root_item_lock);
4577 if (dest->send_in_progress) {
4578 spin_unlock(&dest->root_item_lock);
4579 btrfs_warn(fs_info,
4580 "attempt to delete subvolume %llu during send",
4581 btrfs_root_id(dest));
4582 ret = -EPERM;
4583 goto out_up_write;
4584 }
4585 if (atomic_read(&dest->nr_swapfiles)) {
4586 spin_unlock(&dest->root_item_lock);
4587 btrfs_warn(fs_info,
4588 "attempt to delete subvolume %llu with active swapfile",
4589 btrfs_root_id(root));
4590 ret = -EPERM;
4591 goto out_up_write;
4592 }
4593 root_flags = btrfs_root_flags(&dest->root_item);
4594 btrfs_set_root_flags(&dest->root_item,
4595 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4596 spin_unlock(&dest->root_item_lock);
4597
4598 ret = may_destroy_subvol(dest);
4599 if (ret)
4600 goto out_undead;
4601
4602 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4603 /*
4604 * One for dir inode,
4605 * two for dir entries,
4606 * two for root ref/backref.
4607 */
4608 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4609 if (ret)
4610 goto out_undead;
4611 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4612
4613 trans = btrfs_start_transaction(root, 0);
4614 if (IS_ERR(trans)) {
4615 ret = PTR_ERR(trans);
4616 goto out_release;
4617 }
4618 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4619 qgroup_reserved = 0;
4620 trans->block_rsv = &block_rsv;
4621 trans->bytes_reserved = block_rsv.size;
4622
4623 btrfs_record_snapshot_destroy(trans, dir);
4624
4625 ret = btrfs_unlink_subvol(trans, dir, dentry);
4626 if (ret) {
4627 btrfs_abort_transaction(trans, ret);
4628 goto out_end_trans;
4629 }
4630
4631 ret = btrfs_record_root_in_trans(trans, dest);
4632 if (ret) {
4633 btrfs_abort_transaction(trans, ret);
4634 goto out_end_trans;
4635 }
4636
4637 memset(&dest->root_item.drop_progress, 0,
4638 sizeof(dest->root_item.drop_progress));
4639 btrfs_set_root_drop_level(&dest->root_item, 0);
4640 btrfs_set_root_refs(&dest->root_item, 0);
4641
4642 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4643 ret = btrfs_insert_orphan_item(trans,
4644 fs_info->tree_root,
4645 btrfs_root_id(dest));
4646 if (ret) {
4647 btrfs_abort_transaction(trans, ret);
4648 goto out_end_trans;
4649 }
4650 }
4651
4652 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4653 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4654 if (ret && ret != -ENOENT) {
4655 btrfs_abort_transaction(trans, ret);
4656 goto out_end_trans;
4657 }
4658 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4659 ret = btrfs_uuid_tree_remove(trans,
4660 dest->root_item.received_uuid,
4661 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4662 btrfs_root_id(dest));
4663 if (ret && ret != -ENOENT) {
4664 btrfs_abort_transaction(trans, ret);
4665 goto out_end_trans;
4666 }
4667 }
4668
4669 free_anon_bdev(dest->anon_dev);
4670 dest->anon_dev = 0;
4671 out_end_trans:
4672 trans->block_rsv = NULL;
4673 trans->bytes_reserved = 0;
4674 ret = btrfs_end_transaction(trans);
4675 inode->i_flags |= S_DEAD;
4676 out_release:
4677 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4678 if (qgroup_reserved)
4679 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4680 out_undead:
4681 if (ret) {
4682 spin_lock(&dest->root_item_lock);
4683 root_flags = btrfs_root_flags(&dest->root_item);
4684 btrfs_set_root_flags(&dest->root_item,
4685 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4686 spin_unlock(&dest->root_item_lock);
4687 }
4688 out_up_write:
4689 up_write(&fs_info->subvol_sem);
4690 if (!ret) {
4691 d_invalidate(dentry);
4692 btrfs_prune_dentries(dest);
4693 ASSERT(dest->send_in_progress == 0);
4694 }
4695
4696 return ret;
4697 }
4698
btrfs_rmdir(struct inode * vfs_dir,struct dentry * dentry)4699 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry)
4700 {
4701 struct btrfs_inode *dir = BTRFS_I(vfs_dir);
4702 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4703 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4704 int ret = 0;
4705 struct btrfs_trans_handle *trans;
4706 struct fscrypt_name fname;
4707
4708 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE)
4709 return -ENOTEMPTY;
4710 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4711 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4712 btrfs_err(fs_info,
4713 "extent tree v2 doesn't support snapshot deletion yet");
4714 return -EOPNOTSUPP;
4715 }
4716 return btrfs_delete_subvolume(dir, dentry);
4717 }
4718
4719 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname);
4720 if (ret)
4721 return ret;
4722
4723 /* This needs to handle no-key deletions later on */
4724
4725 trans = __unlink_start_trans(dir);
4726 if (IS_ERR(trans)) {
4727 ret = PTR_ERR(trans);
4728 goto out_notrans;
4729 }
4730
4731 /*
4732 * Propagate the last_unlink_trans value of the deleted dir to its
4733 * parent directory. This is to prevent an unrecoverable log tree in the
4734 * case we do something like this:
4735 * 1) create dir foo
4736 * 2) create snapshot under dir foo
4737 * 3) delete the snapshot
4738 * 4) rmdir foo
4739 * 5) mkdir foo
4740 * 6) fsync foo or some file inside foo
4741 *
4742 * This is because we can't unlink other roots when replaying the dir
4743 * deletes for directory foo.
4744 */
4745 if (inode->last_unlink_trans >= trans->transid)
4746 btrfs_record_snapshot_destroy(trans, dir);
4747
4748 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4749 ret = btrfs_unlink_subvol(trans, dir, dentry);
4750 goto out;
4751 }
4752
4753 ret = btrfs_orphan_add(trans, inode);
4754 if (ret)
4755 goto out;
4756
4757 /* now the directory is empty */
4758 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name);
4759 if (!ret)
4760 btrfs_i_size_write(inode, 0);
4761 out:
4762 btrfs_end_transaction(trans);
4763 out_notrans:
4764 btrfs_btree_balance_dirty(fs_info);
4765 fscrypt_free_filename(&fname);
4766
4767 return ret;
4768 }
4769
is_inside_block(u64 bytenr,u64 blockstart,u32 blocksize)4770 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize)
4771 {
4772 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u",
4773 blockstart, blocksize);
4774
4775 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1)
4776 return true;
4777 return false;
4778 }
4779
truncate_block_zero_beyond_eof(struct btrfs_inode * inode,u64 start)4780 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start)
4781 {
4782 const pgoff_t index = (start >> PAGE_SHIFT);
4783 struct address_space *mapping = inode->vfs_inode.i_mapping;
4784 struct folio *folio;
4785 u64 zero_start;
4786 u64 zero_end;
4787 int ret = 0;
4788
4789 again:
4790 folio = filemap_lock_folio(mapping, index);
4791 /* No folio present. */
4792 if (IS_ERR(folio))
4793 return 0;
4794
4795 if (!folio_test_uptodate(folio)) {
4796 ret = btrfs_read_folio(NULL, folio);
4797 folio_lock(folio);
4798 if (folio->mapping != mapping) {
4799 folio_unlock(folio);
4800 folio_put(folio);
4801 goto again;
4802 }
4803 if (!folio_test_uptodate(folio)) {
4804 ret = -EIO;
4805 goto out_unlock;
4806 }
4807 }
4808 folio_wait_writeback(folio);
4809
4810 /*
4811 * We do not need to lock extents nor wait for OE, as it's already
4812 * beyond EOF.
4813 */
4814
4815 zero_start = max_t(u64, folio_pos(folio), start);
4816 zero_end = folio_end(folio);
4817 folio_zero_range(folio, zero_start - folio_pos(folio),
4818 zero_end - zero_start);
4819
4820 out_unlock:
4821 folio_unlock(folio);
4822 folio_put(folio);
4823 return ret;
4824 }
4825
4826 /*
4827 * Handle the truncation of a fs block.
4828 *
4829 * @inode - inode that we're zeroing
4830 * @offset - the file offset of the block to truncate
4831 * The value must be inside [@start, @end], and the function will do
4832 * extra checks if the block that covers @offset needs to be zeroed.
4833 * @start - the start file offset of the range we want to zero
4834 * @end - the end (inclusive) file offset of the range we want to zero.
4835 *
4836 * If the range is not block aligned, read out the folio that covers @offset,
4837 * and if needed zero blocks that are inside the folio and covered by [@start, @end).
4838 * If @start or @end + 1 lands inside a block, that block will be marked dirty
4839 * for writeback.
4840 *
4841 * This is utilized by hole punch, zero range, file expansion.
4842 */
btrfs_truncate_block(struct btrfs_inode * inode,u64 offset,u64 start,u64 end)4843 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end)
4844 {
4845 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4846 struct address_space *mapping = inode->vfs_inode.i_mapping;
4847 struct extent_io_tree *io_tree = &inode->io_tree;
4848 struct btrfs_ordered_extent *ordered;
4849 struct extent_state *cached_state = NULL;
4850 struct extent_changeset *data_reserved = NULL;
4851 bool only_release_metadata = false;
4852 u32 blocksize = fs_info->sectorsize;
4853 pgoff_t index = (offset >> PAGE_SHIFT);
4854 struct folio *folio;
4855 gfp_t mask = btrfs_alloc_write_mask(mapping);
4856 int ret = 0;
4857 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize),
4858 blocksize);
4859 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize),
4860 blocksize);
4861 bool need_truncate_head = false;
4862 bool need_truncate_tail = false;
4863 u64 zero_start;
4864 u64 zero_end;
4865 u64 block_start;
4866 u64 block_end;
4867
4868 /* @offset should be inside the range. */
4869 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu",
4870 offset, start, end);
4871
4872 /* The range is aligned at both ends. */
4873 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) {
4874 /*
4875 * For block size < page size case, we may have polluted blocks
4876 * beyond EOF. So we also need to zero them out.
4877 */
4878 if (end == (u64)-1 && blocksize < PAGE_SIZE)
4879 ret = truncate_block_zero_beyond_eof(inode, start);
4880 goto out;
4881 }
4882
4883 /*
4884 * @offset may not be inside the head nor tail block. In that case we
4885 * don't need to do anything.
4886 */
4887 if (!in_head_block && !in_tail_block)
4888 goto out;
4889
4890 /*
4891 * Skip the truncatioin if the range in the target block is already aligned.
4892 * The seemingly complex check will also handle the same block case.
4893 */
4894 if (in_head_block && !IS_ALIGNED(start, blocksize))
4895 need_truncate_head = true;
4896 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize))
4897 need_truncate_tail = true;
4898 if (!need_truncate_head && !need_truncate_tail)
4899 goto out;
4900
4901 block_start = round_down(offset, blocksize);
4902 block_end = block_start + blocksize - 1;
4903
4904 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4905 blocksize, false);
4906 if (ret < 0) {
4907 size_t write_bytes = blocksize;
4908
4909 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4910 /* For nocow case, no need to reserve data space. */
4911 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u",
4912 write_bytes, blocksize);
4913 only_release_metadata = true;
4914 } else {
4915 goto out;
4916 }
4917 }
4918 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4919 if (ret < 0) {
4920 if (!only_release_metadata)
4921 btrfs_free_reserved_data_space(inode, data_reserved,
4922 block_start, blocksize);
4923 goto out;
4924 }
4925 again:
4926 folio = __filemap_get_folio(mapping, index,
4927 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4928 if (IS_ERR(folio)) {
4929 if (only_release_metadata)
4930 btrfs_delalloc_release_metadata(inode, blocksize, true);
4931 else
4932 btrfs_delalloc_release_space(inode, data_reserved,
4933 block_start, blocksize, true);
4934 btrfs_delalloc_release_extents(inode, blocksize);
4935 ret = PTR_ERR(folio);
4936 goto out;
4937 }
4938
4939 if (!folio_test_uptodate(folio)) {
4940 ret = btrfs_read_folio(NULL, folio);
4941 folio_lock(folio);
4942 if (folio->mapping != mapping) {
4943 folio_unlock(folio);
4944 folio_put(folio);
4945 goto again;
4946 }
4947 if (!folio_test_uptodate(folio)) {
4948 ret = -EIO;
4949 goto out_unlock;
4950 }
4951 }
4952
4953 /*
4954 * We unlock the page after the io is completed and then re-lock it
4955 * above. release_folio() could have come in between that and cleared
4956 * folio private, but left the page in the mapping. Set the page mapped
4957 * here to make sure it's properly set for the subpage stuff.
4958 */
4959 ret = set_folio_extent_mapped(folio);
4960 if (ret < 0)
4961 goto out_unlock;
4962
4963 folio_wait_writeback(folio);
4964
4965 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state);
4966
4967 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4968 if (ordered) {
4969 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
4970 folio_unlock(folio);
4971 folio_put(folio);
4972 btrfs_start_ordered_extent(ordered);
4973 btrfs_put_ordered_extent(ordered);
4974 goto again;
4975 }
4976
4977 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end,
4978 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4979 &cached_state);
4980
4981 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4982 &cached_state);
4983 if (ret) {
4984 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
4985 goto out_unlock;
4986 }
4987
4988 if (end == (u64)-1) {
4989 /*
4990 * We're truncating beyond EOF, the remaining blocks normally are
4991 * already holes thus no need to zero again, but it's possible for
4992 * fs block size < page size cases to have memory mapped writes
4993 * to pollute ranges beyond EOF.
4994 *
4995 * In that case although such polluted blocks beyond EOF will
4996 * not reach disk, it still affects our page caches.
4997 */
4998 zero_start = max_t(u64, folio_pos(folio), start);
4999 zero_end = min_t(u64, folio_end(folio) - 1, end);
5000 } else {
5001 zero_start = max_t(u64, block_start, start);
5002 zero_end = min_t(u64, block_end, end);
5003 }
5004 folio_zero_range(folio, zero_start - folio_pos(folio),
5005 zero_end - zero_start + 1);
5006
5007 btrfs_folio_clear_checked(fs_info, folio, block_start,
5008 block_end + 1 - block_start);
5009 btrfs_folio_set_dirty(fs_info, folio, block_start,
5010 block_end + 1 - block_start);
5011
5012 if (only_release_metadata)
5013 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end,
5014 EXTENT_NORESERVE, &cached_state);
5015
5016 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5017
5018 out_unlock:
5019 if (ret) {
5020 if (only_release_metadata)
5021 btrfs_delalloc_release_metadata(inode, blocksize, true);
5022 else
5023 btrfs_delalloc_release_space(inode, data_reserved,
5024 block_start, blocksize, true);
5025 }
5026 btrfs_delalloc_release_extents(inode, blocksize);
5027 folio_unlock(folio);
5028 folio_put(folio);
5029 out:
5030 if (only_release_metadata)
5031 btrfs_check_nocow_unlock(inode);
5032 extent_changeset_free(data_reserved);
5033 return ret;
5034 }
5035
maybe_insert_hole(struct btrfs_inode * inode,u64 offset,u64 len)5036 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
5037 {
5038 struct btrfs_root *root = inode->root;
5039 struct btrfs_fs_info *fs_info = root->fs_info;
5040 struct btrfs_trans_handle *trans;
5041 struct btrfs_drop_extents_args drop_args = { 0 };
5042 int ret;
5043
5044 /*
5045 * If NO_HOLES is enabled, we don't need to do anything.
5046 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5047 * or btrfs_update_inode() will be called, which guarantee that the next
5048 * fsync will know this inode was changed and needs to be logged.
5049 */
5050 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5051 return 0;
5052
5053 /*
5054 * 1 - for the one we're dropping
5055 * 1 - for the one we're adding
5056 * 1 - for updating the inode.
5057 */
5058 trans = btrfs_start_transaction(root, 3);
5059 if (IS_ERR(trans))
5060 return PTR_ERR(trans);
5061
5062 drop_args.start = offset;
5063 drop_args.end = offset + len;
5064 drop_args.drop_cache = true;
5065
5066 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5067 if (ret) {
5068 btrfs_abort_transaction(trans, ret);
5069 btrfs_end_transaction(trans);
5070 return ret;
5071 }
5072
5073 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
5074 if (ret) {
5075 btrfs_abort_transaction(trans, ret);
5076 } else {
5077 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5078 btrfs_update_inode(trans, inode);
5079 }
5080 btrfs_end_transaction(trans);
5081 return ret;
5082 }
5083
5084 /*
5085 * This function puts in dummy file extents for the area we're creating a hole
5086 * for. So if we are truncating this file to a larger size we need to insert
5087 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5088 * the range between oldsize and size
5089 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)5090 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5091 {
5092 struct btrfs_root *root = inode->root;
5093 struct btrfs_fs_info *fs_info = root->fs_info;
5094 struct extent_io_tree *io_tree = &inode->io_tree;
5095 struct extent_map *em = NULL;
5096 struct extent_state *cached_state = NULL;
5097 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5098 u64 block_end = ALIGN(size, fs_info->sectorsize);
5099 u64 last_byte;
5100 u64 cur_offset;
5101 u64 hole_size;
5102 int ret = 0;
5103
5104 /*
5105 * If our size started in the middle of a block we need to zero out the
5106 * rest of the block before we expand the i_size, otherwise we could
5107 * expose stale data.
5108 */
5109 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1);
5110 if (ret)
5111 return ret;
5112
5113 if (size <= hole_start)
5114 return 0;
5115
5116 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5117 &cached_state);
5118 cur_offset = hole_start;
5119 while (1) {
5120 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
5121 if (IS_ERR(em)) {
5122 ret = PTR_ERR(em);
5123 em = NULL;
5124 break;
5125 }
5126 last_byte = min(btrfs_extent_map_end(em), block_end);
5127 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5128 hole_size = last_byte - cur_offset;
5129
5130 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
5131 struct extent_map *hole_em;
5132
5133 ret = maybe_insert_hole(inode, cur_offset, hole_size);
5134 if (ret)
5135 break;
5136
5137 ret = btrfs_inode_set_file_extent_range(inode,
5138 cur_offset, hole_size);
5139 if (ret)
5140 break;
5141
5142 hole_em = btrfs_alloc_extent_map();
5143 if (!hole_em) {
5144 btrfs_drop_extent_map_range(inode, cur_offset,
5145 cur_offset + hole_size - 1,
5146 false);
5147 btrfs_set_inode_full_sync(inode);
5148 goto next;
5149 }
5150 hole_em->start = cur_offset;
5151 hole_em->len = hole_size;
5152
5153 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
5154 hole_em->disk_num_bytes = 0;
5155 hole_em->ram_bytes = hole_size;
5156 hole_em->generation = btrfs_get_fs_generation(fs_info);
5157
5158 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
5159 btrfs_free_extent_map(hole_em);
5160 } else {
5161 ret = btrfs_inode_set_file_extent_range(inode,
5162 cur_offset, hole_size);
5163 if (ret)
5164 break;
5165 }
5166 next:
5167 btrfs_free_extent_map(em);
5168 em = NULL;
5169 cur_offset = last_byte;
5170 if (cur_offset >= block_end)
5171 break;
5172 }
5173 btrfs_free_extent_map(em);
5174 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5175 return ret;
5176 }
5177
btrfs_setsize(struct inode * inode,struct iattr * attr)5178 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5179 {
5180 struct btrfs_root *root = BTRFS_I(inode)->root;
5181 struct btrfs_trans_handle *trans;
5182 loff_t oldsize = i_size_read(inode);
5183 loff_t newsize = attr->ia_size;
5184 int mask = attr->ia_valid;
5185 int ret;
5186
5187 /*
5188 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5189 * special case where we need to update the times despite not having
5190 * these flags set. For all other operations the VFS set these flags
5191 * explicitly if it wants a timestamp update.
5192 */
5193 if (newsize != oldsize) {
5194 inode_inc_iversion(inode);
5195 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5196 inode_set_mtime_to_ts(inode,
5197 inode_set_ctime_current(inode));
5198 }
5199 }
5200
5201 if (newsize > oldsize) {
5202 /*
5203 * Don't do an expanding truncate while snapshotting is ongoing.
5204 * This is to ensure the snapshot captures a fully consistent
5205 * state of this file - if the snapshot captures this expanding
5206 * truncation, it must capture all writes that happened before
5207 * this truncation.
5208 */
5209 btrfs_drew_write_lock(&root->snapshot_lock);
5210 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5211 if (ret) {
5212 btrfs_drew_write_unlock(&root->snapshot_lock);
5213 return ret;
5214 }
5215
5216 trans = btrfs_start_transaction(root, 1);
5217 if (IS_ERR(trans)) {
5218 btrfs_drew_write_unlock(&root->snapshot_lock);
5219 return PTR_ERR(trans);
5220 }
5221
5222 i_size_write(inode, newsize);
5223 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5224 pagecache_isize_extended(inode, oldsize, newsize);
5225 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5226 btrfs_drew_write_unlock(&root->snapshot_lock);
5227 btrfs_end_transaction(trans);
5228 } else {
5229 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5230
5231 if (btrfs_is_zoned(fs_info)) {
5232 ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5233 ALIGN(newsize, fs_info->sectorsize),
5234 (u64)-1);
5235 if (ret)
5236 return ret;
5237 }
5238
5239 /*
5240 * We're truncating a file that used to have good data down to
5241 * zero. Make sure any new writes to the file get on disk
5242 * on close.
5243 */
5244 if (newsize == 0)
5245 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5246 &BTRFS_I(inode)->runtime_flags);
5247
5248 truncate_setsize(inode, newsize);
5249
5250 inode_dio_wait(inode);
5251
5252 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5253 if (ret && inode->i_nlink) {
5254 int ret2;
5255
5256 /*
5257 * Truncate failed, so fix up the in-memory size. We
5258 * adjusted disk_i_size down as we removed extents, so
5259 * wait for disk_i_size to be stable and then update the
5260 * in-memory size to match.
5261 */
5262 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5263 if (ret2)
5264 return ret2;
5265 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5266 }
5267 }
5268
5269 return ret;
5270 }
5271
btrfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5272 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5273 struct iattr *attr)
5274 {
5275 struct inode *inode = d_inode(dentry);
5276 struct btrfs_root *root = BTRFS_I(inode)->root;
5277 int ret;
5278
5279 if (btrfs_root_readonly(root))
5280 return -EROFS;
5281
5282 ret = setattr_prepare(idmap, dentry, attr);
5283 if (ret)
5284 return ret;
5285
5286 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5287 ret = btrfs_setsize(inode, attr);
5288 if (ret)
5289 return ret;
5290 }
5291
5292 if (attr->ia_valid) {
5293 setattr_copy(idmap, inode, attr);
5294 inode_inc_iversion(inode);
5295 ret = btrfs_dirty_inode(BTRFS_I(inode));
5296
5297 if (!ret && attr->ia_valid & ATTR_MODE)
5298 ret = posix_acl_chmod(idmap, dentry, inode->i_mode);
5299 }
5300
5301 return ret;
5302 }
5303
5304 /*
5305 * While truncating the inode pages during eviction, we get the VFS
5306 * calling btrfs_invalidate_folio() against each folio of the inode. This
5307 * is slow because the calls to btrfs_invalidate_folio() result in a
5308 * huge amount of calls to lock_extent() and clear_extent_bit(),
5309 * which keep merging and splitting extent_state structures over and over,
5310 * wasting lots of time.
5311 *
5312 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5313 * skip all those expensive operations on a per folio basis and do only
5314 * the ordered io finishing, while we release here the extent_map and
5315 * extent_state structures, without the excessive merging and splitting.
5316 */
evict_inode_truncate_pages(struct inode * inode)5317 static void evict_inode_truncate_pages(struct inode *inode)
5318 {
5319 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5320 struct rb_node *node;
5321
5322 ASSERT(inode->i_state & I_FREEING);
5323 truncate_inode_pages_final(&inode->i_data);
5324
5325 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5326
5327 /*
5328 * Keep looping until we have no more ranges in the io tree.
5329 * We can have ongoing bios started by readahead that have
5330 * their endio callback (extent_io.c:end_bio_extent_readpage)
5331 * still in progress (unlocked the pages in the bio but did not yet
5332 * unlocked the ranges in the io tree). Therefore this means some
5333 * ranges can still be locked and eviction started because before
5334 * submitting those bios, which are executed by a separate task (work
5335 * queue kthread), inode references (inode->i_count) were not taken
5336 * (which would be dropped in the end io callback of each bio).
5337 * Therefore here we effectively end up waiting for those bios and
5338 * anyone else holding locked ranges without having bumped the inode's
5339 * reference count - if we don't do it, when they access the inode's
5340 * io_tree to unlock a range it may be too late, leading to an
5341 * use-after-free issue.
5342 */
5343 spin_lock(&io_tree->lock);
5344 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5345 struct extent_state *state;
5346 struct extent_state *cached_state = NULL;
5347 u64 start;
5348 u64 end;
5349 unsigned state_flags;
5350
5351 node = rb_first(&io_tree->state);
5352 state = rb_entry(node, struct extent_state, rb_node);
5353 start = state->start;
5354 end = state->end;
5355 state_flags = state->state;
5356 spin_unlock(&io_tree->lock);
5357
5358 btrfs_lock_extent(io_tree, start, end, &cached_state);
5359
5360 /*
5361 * If still has DELALLOC flag, the extent didn't reach disk,
5362 * and its reserved space won't be freed by delayed_ref.
5363 * So we need to free its reserved space here.
5364 * (Refer to comment in btrfs_invalidate_folio, case 2)
5365 *
5366 * Note, end is the bytenr of last byte, so we need + 1 here.
5367 */
5368 if (state_flags & EXTENT_DELALLOC)
5369 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5370 end - start + 1, NULL);
5371
5372 btrfs_clear_extent_bit(io_tree, start, end,
5373 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5374 &cached_state);
5375
5376 cond_resched();
5377 spin_lock(&io_tree->lock);
5378 }
5379 spin_unlock(&io_tree->lock);
5380 }
5381
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5382 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5383 struct btrfs_block_rsv *rsv)
5384 {
5385 struct btrfs_fs_info *fs_info = root->fs_info;
5386 struct btrfs_trans_handle *trans;
5387 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5388 int ret;
5389
5390 /*
5391 * Eviction should be taking place at some place safe because of our
5392 * delayed iputs. However the normal flushing code will run delayed
5393 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5394 *
5395 * We reserve the delayed_refs_extra here again because we can't use
5396 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5397 * above. We reserve our extra bit here because we generate a ton of
5398 * delayed refs activity by truncating.
5399 *
5400 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5401 * if we fail to make this reservation we can re-try without the
5402 * delayed_refs_extra so we can make some forward progress.
5403 */
5404 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5405 BTRFS_RESERVE_FLUSH_EVICT);
5406 if (ret) {
5407 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5408 BTRFS_RESERVE_FLUSH_EVICT);
5409 if (ret) {
5410 btrfs_warn(fs_info,
5411 "could not allocate space for delete; will truncate on mount");
5412 return ERR_PTR(-ENOSPC);
5413 }
5414 delayed_refs_extra = 0;
5415 }
5416
5417 trans = btrfs_join_transaction(root);
5418 if (IS_ERR(trans))
5419 return trans;
5420
5421 if (delayed_refs_extra) {
5422 trans->block_rsv = &fs_info->trans_block_rsv;
5423 trans->bytes_reserved = delayed_refs_extra;
5424 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5425 delayed_refs_extra, true);
5426 }
5427 return trans;
5428 }
5429
btrfs_evict_inode(struct inode * inode)5430 void btrfs_evict_inode(struct inode *inode)
5431 {
5432 struct btrfs_fs_info *fs_info;
5433 struct btrfs_trans_handle *trans;
5434 struct btrfs_root *root = BTRFS_I(inode)->root;
5435 struct btrfs_block_rsv rsv;
5436 int ret;
5437
5438 trace_btrfs_inode_evict(inode);
5439
5440 if (!root) {
5441 fsverity_cleanup_inode(inode);
5442 clear_inode(inode);
5443 return;
5444 }
5445
5446 fs_info = inode_to_fs_info(inode);
5447 evict_inode_truncate_pages(inode);
5448
5449 if (inode->i_nlink &&
5450 ((btrfs_root_refs(&root->root_item) != 0 &&
5451 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5452 btrfs_is_free_space_inode(BTRFS_I(inode))))
5453 goto out;
5454
5455 if (is_bad_inode(inode))
5456 goto out;
5457
5458 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5459 goto out;
5460
5461 if (inode->i_nlink > 0) {
5462 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5463 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5464 goto out;
5465 }
5466
5467 /*
5468 * This makes sure the inode item in tree is uptodate and the space for
5469 * the inode update is released.
5470 */
5471 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5472 if (ret)
5473 goto out;
5474
5475 /*
5476 * This drops any pending insert or delete operations we have for this
5477 * inode. We could have a delayed dir index deletion queued up, but
5478 * we're removing the inode completely so that'll be taken care of in
5479 * the truncate.
5480 */
5481 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5482
5483 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
5484 rsv.size = btrfs_calc_metadata_size(fs_info, 1);
5485 rsv.failfast = true;
5486
5487 btrfs_i_size_write(BTRFS_I(inode), 0);
5488
5489 while (1) {
5490 struct btrfs_truncate_control control = {
5491 .inode = BTRFS_I(inode),
5492 .ino = btrfs_ino(BTRFS_I(inode)),
5493 .new_size = 0,
5494 .min_type = 0,
5495 };
5496
5497 trans = evict_refill_and_join(root, &rsv);
5498 if (IS_ERR(trans))
5499 goto out_release;
5500
5501 trans->block_rsv = &rsv;
5502
5503 ret = btrfs_truncate_inode_items(trans, root, &control);
5504 trans->block_rsv = &fs_info->trans_block_rsv;
5505 btrfs_end_transaction(trans);
5506 /*
5507 * We have not added new delayed items for our inode after we
5508 * have flushed its delayed items, so no need to throttle on
5509 * delayed items. However we have modified extent buffers.
5510 */
5511 btrfs_btree_balance_dirty_nodelay(fs_info);
5512 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5513 goto out_release;
5514 else if (!ret)
5515 break;
5516 }
5517
5518 /*
5519 * Errors here aren't a big deal, it just means we leave orphan items in
5520 * the tree. They will be cleaned up on the next mount. If the inode
5521 * number gets reused, cleanup deletes the orphan item without doing
5522 * anything, and unlink reuses the existing orphan item.
5523 *
5524 * If it turns out that we are dropping too many of these, we might want
5525 * to add a mechanism for retrying these after a commit.
5526 */
5527 trans = evict_refill_and_join(root, &rsv);
5528 if (!IS_ERR(trans)) {
5529 trans->block_rsv = &rsv;
5530 btrfs_orphan_del(trans, BTRFS_I(inode));
5531 trans->block_rsv = &fs_info->trans_block_rsv;
5532 btrfs_end_transaction(trans);
5533 }
5534
5535 out_release:
5536 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
5537 out:
5538 /*
5539 * If we didn't successfully delete, the orphan item will still be in
5540 * the tree and we'll retry on the next mount. Again, we might also want
5541 * to retry these periodically in the future.
5542 */
5543 btrfs_remove_delayed_node(BTRFS_I(inode));
5544 fsverity_cleanup_inode(inode);
5545 clear_inode(inode);
5546 }
5547
5548 /*
5549 * Return the key found in the dir entry in the location pointer, fill @type
5550 * with BTRFS_FT_*, and return 0.
5551 *
5552 * If no dir entries were found, returns -ENOENT.
5553 * If found a corrupted location in dir entry, returns -EUCLEAN.
5554 */
btrfs_inode_by_name(struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5555 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5556 struct btrfs_key *location, u8 *type)
5557 {
5558 struct btrfs_dir_item *di;
5559 BTRFS_PATH_AUTO_FREE(path);
5560 struct btrfs_root *root = dir->root;
5561 int ret = 0;
5562 struct fscrypt_name fname;
5563
5564 path = btrfs_alloc_path();
5565 if (!path)
5566 return -ENOMEM;
5567
5568 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5569 if (ret < 0)
5570 return ret;
5571 /*
5572 * fscrypt_setup_filename() should never return a positive value, but
5573 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5574 */
5575 ASSERT(ret == 0);
5576
5577 /* This needs to handle no-key deletions later on */
5578
5579 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5580 &fname.disk_name, 0);
5581 if (IS_ERR_OR_NULL(di)) {
5582 ret = di ? PTR_ERR(di) : -ENOENT;
5583 goto out;
5584 }
5585
5586 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5587 if (location->type != BTRFS_INODE_ITEM_KEY &&
5588 location->type != BTRFS_ROOT_ITEM_KEY) {
5589 ret = -EUCLEAN;
5590 btrfs_warn(root->fs_info,
5591 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5592 __func__, fname.disk_name.name, btrfs_ino(dir),
5593 location->objectid, location->type, location->offset);
5594 }
5595 if (!ret)
5596 *type = btrfs_dir_ftype(path->nodes[0], di);
5597 out:
5598 fscrypt_free_filename(&fname);
5599 return ret;
5600 }
5601
5602 /*
5603 * when we hit a tree root in a directory, the btrfs part of the inode
5604 * needs to be changed to reflect the root directory of the tree root. This
5605 * is kind of like crossing a mount point.
5606 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5607 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5608 struct btrfs_inode *dir,
5609 struct dentry *dentry,
5610 struct btrfs_key *location,
5611 struct btrfs_root **sub_root)
5612 {
5613 BTRFS_PATH_AUTO_FREE(path);
5614 struct btrfs_root *new_root;
5615 struct btrfs_root_ref *ref;
5616 struct extent_buffer *leaf;
5617 struct btrfs_key key;
5618 int ret;
5619 int err = 0;
5620 struct fscrypt_name fname;
5621
5622 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5623 if (ret)
5624 return ret;
5625
5626 path = btrfs_alloc_path();
5627 if (!path) {
5628 err = -ENOMEM;
5629 goto out;
5630 }
5631
5632 err = -ENOENT;
5633 key.objectid = btrfs_root_id(dir->root);
5634 key.type = BTRFS_ROOT_REF_KEY;
5635 key.offset = location->objectid;
5636
5637 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5638 if (ret) {
5639 if (ret < 0)
5640 err = ret;
5641 goto out;
5642 }
5643
5644 leaf = path->nodes[0];
5645 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5646 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5647 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5648 goto out;
5649
5650 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5651 (unsigned long)(ref + 1), fname.disk_name.len);
5652 if (ret)
5653 goto out;
5654
5655 btrfs_release_path(path);
5656
5657 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5658 if (IS_ERR(new_root)) {
5659 err = PTR_ERR(new_root);
5660 goto out;
5661 }
5662
5663 *sub_root = new_root;
5664 location->objectid = btrfs_root_dirid(&new_root->root_item);
5665 location->type = BTRFS_INODE_ITEM_KEY;
5666 location->offset = 0;
5667 err = 0;
5668 out:
5669 fscrypt_free_filename(&fname);
5670 return err;
5671 }
5672
5673
5674
btrfs_del_inode_from_root(struct btrfs_inode * inode)5675 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5676 {
5677 struct btrfs_root *root = inode->root;
5678 struct btrfs_inode *entry;
5679 bool empty = false;
5680
5681 xa_lock(&root->inodes);
5682 entry = __xa_erase(&root->inodes, btrfs_ino(inode));
5683 if (entry == inode)
5684 empty = xa_empty(&root->inodes);
5685 xa_unlock(&root->inodes);
5686
5687 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5688 xa_lock(&root->inodes);
5689 empty = xa_empty(&root->inodes);
5690 xa_unlock(&root->inodes);
5691 if (empty)
5692 btrfs_add_dead_root(root);
5693 }
5694 }
5695
5696
btrfs_init_locked_inode(struct inode * inode,void * p)5697 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5698 {
5699 struct btrfs_iget_args *args = p;
5700
5701 btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5702 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5703
5704 if (args->root && args->root == args->root->fs_info->tree_root &&
5705 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5706 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5707 &BTRFS_I(inode)->runtime_flags);
5708 return 0;
5709 }
5710
btrfs_find_actor(struct inode * inode,void * opaque)5711 static int btrfs_find_actor(struct inode *inode, void *opaque)
5712 {
5713 struct btrfs_iget_args *args = opaque;
5714
5715 return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5716 args->root == BTRFS_I(inode)->root;
5717 }
5718
btrfs_iget_locked(u64 ino,struct btrfs_root * root)5719 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5720 {
5721 struct inode *inode;
5722 struct btrfs_iget_args args;
5723 unsigned long hashval = btrfs_inode_hash(ino, root);
5724
5725 args.ino = ino;
5726 args.root = root;
5727
5728 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5729 btrfs_init_locked_inode,
5730 (void *)&args);
5731 if (!inode)
5732 return NULL;
5733 return BTRFS_I(inode);
5734 }
5735
5736 /*
5737 * Get an inode object given its inode number and corresponding root. Path is
5738 * preallocated to prevent recursing back to iget through allocator.
5739 */
btrfs_iget_path(u64 ino,struct btrfs_root * root,struct btrfs_path * path)5740 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5741 struct btrfs_path *path)
5742 {
5743 struct btrfs_inode *inode;
5744 int ret;
5745
5746 inode = btrfs_iget_locked(ino, root);
5747 if (!inode)
5748 return ERR_PTR(-ENOMEM);
5749
5750 if (!(inode->vfs_inode.i_state & I_NEW))
5751 return inode;
5752
5753 ret = btrfs_read_locked_inode(inode, path);
5754 if (ret)
5755 return ERR_PTR(ret);
5756
5757 unlock_new_inode(&inode->vfs_inode);
5758 return inode;
5759 }
5760
5761 /*
5762 * Get an inode object given its inode number and corresponding root.
5763 */
btrfs_iget(u64 ino,struct btrfs_root * root)5764 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5765 {
5766 struct btrfs_inode *inode;
5767 struct btrfs_path *path;
5768 int ret;
5769
5770 inode = btrfs_iget_locked(ino, root);
5771 if (!inode)
5772 return ERR_PTR(-ENOMEM);
5773
5774 if (!(inode->vfs_inode.i_state & I_NEW))
5775 return inode;
5776
5777 path = btrfs_alloc_path();
5778 if (!path) {
5779 iget_failed(&inode->vfs_inode);
5780 return ERR_PTR(-ENOMEM);
5781 }
5782
5783 ret = btrfs_read_locked_inode(inode, path);
5784 btrfs_free_path(path);
5785 if (ret)
5786 return ERR_PTR(ret);
5787
5788 unlock_new_inode(&inode->vfs_inode);
5789 return inode;
5790 }
5791
new_simple_dir(struct inode * dir,struct btrfs_key * key,struct btrfs_root * root)5792 static struct btrfs_inode *new_simple_dir(struct inode *dir,
5793 struct btrfs_key *key,
5794 struct btrfs_root *root)
5795 {
5796 struct timespec64 ts;
5797 struct inode *vfs_inode;
5798 struct btrfs_inode *inode;
5799
5800 vfs_inode = new_inode(dir->i_sb);
5801 if (!vfs_inode)
5802 return ERR_PTR(-ENOMEM);
5803
5804 inode = BTRFS_I(vfs_inode);
5805 inode->root = btrfs_grab_root(root);
5806 inode->ref_root_id = key->objectid;
5807 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags);
5808 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags);
5809
5810 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5811 /*
5812 * We only need lookup, the rest is read-only and there's no inode
5813 * associated with the dentry
5814 */
5815 vfs_inode->i_op = &simple_dir_inode_operations;
5816 vfs_inode->i_opflags &= ~IOP_XATTR;
5817 vfs_inode->i_fop = &simple_dir_operations;
5818 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5819
5820 ts = inode_set_ctime_current(vfs_inode);
5821 inode_set_mtime_to_ts(vfs_inode, ts);
5822 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir));
5823 inode->i_otime_sec = ts.tv_sec;
5824 inode->i_otime_nsec = ts.tv_nsec;
5825
5826 vfs_inode->i_uid = dir->i_uid;
5827 vfs_inode->i_gid = dir->i_gid;
5828
5829 return inode;
5830 }
5831
5832 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5833 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5834 static_assert(BTRFS_FT_DIR == FT_DIR);
5835 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5836 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5837 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5838 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5839 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5840
btrfs_inode_type(const struct btrfs_inode * inode)5841 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode)
5842 {
5843 return fs_umode_to_ftype(inode->vfs_inode.i_mode);
5844 }
5845
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5846 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5847 {
5848 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5849 struct btrfs_inode *inode;
5850 struct btrfs_root *root = BTRFS_I(dir)->root;
5851 struct btrfs_root *sub_root = root;
5852 struct btrfs_key location = { 0 };
5853 u8 di_type = 0;
5854 int ret = 0;
5855
5856 if (dentry->d_name.len > BTRFS_NAME_LEN)
5857 return ERR_PTR(-ENAMETOOLONG);
5858
5859 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5860 if (ret < 0)
5861 return ERR_PTR(ret);
5862
5863 if (location.type == BTRFS_INODE_ITEM_KEY) {
5864 inode = btrfs_iget(location.objectid, root);
5865 if (IS_ERR(inode))
5866 return ERR_CAST(inode);
5867
5868 /* Do extra check against inode mode with di_type */
5869 if (btrfs_inode_type(inode) != di_type) {
5870 btrfs_crit(fs_info,
5871 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5872 inode->vfs_inode.i_mode, btrfs_inode_type(inode),
5873 di_type);
5874 iput(&inode->vfs_inode);
5875 return ERR_PTR(-EUCLEAN);
5876 }
5877 return &inode->vfs_inode;
5878 }
5879
5880 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5881 &location, &sub_root);
5882 if (ret < 0) {
5883 if (ret != -ENOENT)
5884 inode = ERR_PTR(ret);
5885 else
5886 inode = new_simple_dir(dir, &location, root);
5887 } else {
5888 inode = btrfs_iget(location.objectid, sub_root);
5889 btrfs_put_root(sub_root);
5890
5891 if (IS_ERR(inode))
5892 return ERR_CAST(inode);
5893
5894 down_read(&fs_info->cleanup_work_sem);
5895 if (!sb_rdonly(inode->vfs_inode.i_sb))
5896 ret = btrfs_orphan_cleanup(sub_root);
5897 up_read(&fs_info->cleanup_work_sem);
5898 if (ret) {
5899 iput(&inode->vfs_inode);
5900 inode = ERR_PTR(ret);
5901 }
5902 }
5903
5904 if (IS_ERR(inode))
5905 return ERR_CAST(inode);
5906
5907 return &inode->vfs_inode;
5908 }
5909
btrfs_dentry_delete(const struct dentry * dentry)5910 static int btrfs_dentry_delete(const struct dentry *dentry)
5911 {
5912 struct btrfs_root *root;
5913 struct inode *inode = d_inode(dentry);
5914
5915 if (!inode && !IS_ROOT(dentry))
5916 inode = d_inode(dentry->d_parent);
5917
5918 if (inode) {
5919 root = BTRFS_I(inode)->root;
5920 if (btrfs_root_refs(&root->root_item) == 0)
5921 return 1;
5922
5923 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5924 return 1;
5925 }
5926 return 0;
5927 }
5928
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5929 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5930 unsigned int flags)
5931 {
5932 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5933
5934 if (inode == ERR_PTR(-ENOENT))
5935 inode = NULL;
5936 return d_splice_alias(inode, dentry);
5937 }
5938
5939 /*
5940 * Find the highest existing sequence number in a directory and then set the
5941 * in-memory index_cnt variable to the first free sequence number.
5942 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)5943 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5944 {
5945 struct btrfs_root *root = inode->root;
5946 struct btrfs_key key, found_key;
5947 BTRFS_PATH_AUTO_FREE(path);
5948 struct extent_buffer *leaf;
5949 int ret;
5950
5951 key.objectid = btrfs_ino(inode);
5952 key.type = BTRFS_DIR_INDEX_KEY;
5953 key.offset = (u64)-1;
5954
5955 path = btrfs_alloc_path();
5956 if (!path)
5957 return -ENOMEM;
5958
5959 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5960 if (ret < 0)
5961 return ret;
5962 /* FIXME: we should be able to handle this */
5963 if (ret == 0)
5964 return ret;
5965
5966 if (path->slots[0] == 0) {
5967 inode->index_cnt = BTRFS_DIR_START_INDEX;
5968 return 0;
5969 }
5970
5971 path->slots[0]--;
5972
5973 leaf = path->nodes[0];
5974 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5975
5976 if (found_key.objectid != btrfs_ino(inode) ||
5977 found_key.type != BTRFS_DIR_INDEX_KEY) {
5978 inode->index_cnt = BTRFS_DIR_START_INDEX;
5979 return 0;
5980 }
5981
5982 inode->index_cnt = found_key.offset + 1;
5983
5984 return 0;
5985 }
5986
btrfs_get_dir_last_index(struct btrfs_inode * dir,u64 * index)5987 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5988 {
5989 int ret = 0;
5990
5991 btrfs_inode_lock(dir, 0);
5992 if (dir->index_cnt == (u64)-1) {
5993 ret = btrfs_inode_delayed_dir_index_count(dir);
5994 if (ret) {
5995 ret = btrfs_set_inode_index_count(dir);
5996 if (ret)
5997 goto out;
5998 }
5999 }
6000
6001 /* index_cnt is the index number of next new entry, so decrement it. */
6002 *index = dir->index_cnt - 1;
6003 out:
6004 btrfs_inode_unlock(dir, 0);
6005
6006 return ret;
6007 }
6008
6009 /*
6010 * All this infrastructure exists because dir_emit can fault, and we are holding
6011 * the tree lock when doing readdir. For now just allocate a buffer and copy
6012 * our information into that, and then dir_emit from the buffer. This is
6013 * similar to what NFS does, only we don't keep the buffer around in pagecache
6014 * because I'm afraid I'll mess that up. Long term we need to make filldir do
6015 * copy_to_user_inatomic so we don't have to worry about page faulting under the
6016 * tree lock.
6017 */
btrfs_opendir(struct inode * inode,struct file * file)6018 static int btrfs_opendir(struct inode *inode, struct file *file)
6019 {
6020 struct btrfs_file_private *private;
6021 u64 last_index;
6022 int ret;
6023
6024 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
6025 if (ret)
6026 return ret;
6027
6028 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6029 if (!private)
6030 return -ENOMEM;
6031 private->last_index = last_index;
6032 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6033 if (!private->filldir_buf) {
6034 kfree(private);
6035 return -ENOMEM;
6036 }
6037 file->private_data = private;
6038 return 0;
6039 }
6040
btrfs_dir_llseek(struct file * file,loff_t offset,int whence)6041 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
6042 {
6043 struct btrfs_file_private *private = file->private_data;
6044 int ret;
6045
6046 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
6047 &private->last_index);
6048 if (ret)
6049 return ret;
6050
6051 return generic_file_llseek(file, offset, whence);
6052 }
6053
6054 struct dir_entry {
6055 u64 ino;
6056 u64 offset;
6057 unsigned type;
6058 int name_len;
6059 };
6060
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6061 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6062 {
6063 while (entries--) {
6064 struct dir_entry *entry = addr;
6065 char *name = (char *)(entry + 1);
6066
6067 ctx->pos = get_unaligned(&entry->offset);
6068 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6069 get_unaligned(&entry->ino),
6070 get_unaligned(&entry->type)))
6071 return 1;
6072 addr += sizeof(struct dir_entry) +
6073 get_unaligned(&entry->name_len);
6074 ctx->pos++;
6075 }
6076 return 0;
6077 }
6078
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6079 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6080 {
6081 struct inode *inode = file_inode(file);
6082 struct btrfs_root *root = BTRFS_I(inode)->root;
6083 struct btrfs_file_private *private = file->private_data;
6084 struct btrfs_dir_item *di;
6085 struct btrfs_key key;
6086 struct btrfs_key found_key;
6087 BTRFS_PATH_AUTO_FREE(path);
6088 void *addr;
6089 LIST_HEAD(ins_list);
6090 LIST_HEAD(del_list);
6091 int ret;
6092 char *name_ptr;
6093 int name_len;
6094 int entries = 0;
6095 int total_len = 0;
6096 bool put = false;
6097 struct btrfs_key location;
6098
6099 if (!dir_emit_dots(file, ctx))
6100 return 0;
6101
6102 path = btrfs_alloc_path();
6103 if (!path)
6104 return -ENOMEM;
6105
6106 addr = private->filldir_buf;
6107 path->reada = READA_FORWARD;
6108
6109 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
6110 &ins_list, &del_list);
6111
6112 again:
6113 key.type = BTRFS_DIR_INDEX_KEY;
6114 key.offset = ctx->pos;
6115 key.objectid = btrfs_ino(BTRFS_I(inode));
6116
6117 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6118 struct dir_entry *entry;
6119 struct extent_buffer *leaf = path->nodes[0];
6120 u8 ftype;
6121
6122 if (found_key.objectid != key.objectid)
6123 break;
6124 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6125 break;
6126 if (found_key.offset < ctx->pos)
6127 continue;
6128 if (found_key.offset > private->last_index)
6129 break;
6130 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6131 continue;
6132 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6133 name_len = btrfs_dir_name_len(leaf, di);
6134 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6135 PAGE_SIZE) {
6136 btrfs_release_path(path);
6137 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6138 if (ret)
6139 goto nopos;
6140 addr = private->filldir_buf;
6141 entries = 0;
6142 total_len = 0;
6143 goto again;
6144 }
6145
6146 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6147 entry = addr;
6148 name_ptr = (char *)(entry + 1);
6149 read_extent_buffer(leaf, name_ptr,
6150 (unsigned long)(di + 1), name_len);
6151 put_unaligned(name_len, &entry->name_len);
6152 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6153 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6154 put_unaligned(location.objectid, &entry->ino);
6155 put_unaligned(found_key.offset, &entry->offset);
6156 entries++;
6157 addr += sizeof(struct dir_entry) + name_len;
6158 total_len += sizeof(struct dir_entry) + name_len;
6159 }
6160 /* Catch error encountered during iteration */
6161 if (ret < 0)
6162 goto err;
6163
6164 btrfs_release_path(path);
6165
6166 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6167 if (ret)
6168 goto nopos;
6169
6170 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list))
6171 goto nopos;
6172
6173 /*
6174 * Stop new entries from being returned after we return the last
6175 * entry.
6176 *
6177 * New directory entries are assigned a strictly increasing
6178 * offset. This means that new entries created during readdir
6179 * are *guaranteed* to be seen in the future by that readdir.
6180 * This has broken buggy programs which operate on names as
6181 * they're returned by readdir. Until we reuse freed offsets
6182 * we have this hack to stop new entries from being returned
6183 * under the assumption that they'll never reach this huge
6184 * offset.
6185 *
6186 * This is being careful not to overflow 32bit loff_t unless the
6187 * last entry requires it because doing so has broken 32bit apps
6188 * in the past.
6189 */
6190 if (ctx->pos >= INT_MAX)
6191 ctx->pos = LLONG_MAX;
6192 else
6193 ctx->pos = INT_MAX;
6194 nopos:
6195 ret = 0;
6196 err:
6197 if (put)
6198 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6199 return ret;
6200 }
6201
6202 /*
6203 * This is somewhat expensive, updating the tree every time the
6204 * inode changes. But, it is most likely to find the inode in cache.
6205 * FIXME, needs more benchmarking...there are no reasons other than performance
6206 * to keep or drop this code.
6207 */
btrfs_dirty_inode(struct btrfs_inode * inode)6208 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6209 {
6210 struct btrfs_root *root = inode->root;
6211 struct btrfs_fs_info *fs_info = root->fs_info;
6212 struct btrfs_trans_handle *trans;
6213 int ret;
6214
6215 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6216 return 0;
6217
6218 trans = btrfs_join_transaction(root);
6219 if (IS_ERR(trans))
6220 return PTR_ERR(trans);
6221
6222 ret = btrfs_update_inode(trans, inode);
6223 if (ret == -ENOSPC || ret == -EDQUOT) {
6224 /* whoops, lets try again with the full transaction */
6225 btrfs_end_transaction(trans);
6226 trans = btrfs_start_transaction(root, 1);
6227 if (IS_ERR(trans))
6228 return PTR_ERR(trans);
6229
6230 ret = btrfs_update_inode(trans, inode);
6231 }
6232 btrfs_end_transaction(trans);
6233 if (inode->delayed_node)
6234 btrfs_balance_delayed_items(fs_info);
6235
6236 return ret;
6237 }
6238
6239 /*
6240 * This is a copy of file_update_time. We need this so we can return error on
6241 * ENOSPC for updating the inode in the case of file write and mmap writes.
6242 */
btrfs_update_time(struct inode * inode,int flags)6243 static int btrfs_update_time(struct inode *inode, int flags)
6244 {
6245 struct btrfs_root *root = BTRFS_I(inode)->root;
6246 bool dirty;
6247
6248 if (btrfs_root_readonly(root))
6249 return -EROFS;
6250
6251 dirty = inode_update_timestamps(inode, flags);
6252 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6253 }
6254
6255 /*
6256 * helper to find a free sequence number in a given directory. This current
6257 * code is very simple, later versions will do smarter things in the btree
6258 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6259 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6260 {
6261 int ret = 0;
6262
6263 if (dir->index_cnt == (u64)-1) {
6264 ret = btrfs_inode_delayed_dir_index_count(dir);
6265 if (ret) {
6266 ret = btrfs_set_inode_index_count(dir);
6267 if (ret)
6268 return ret;
6269 }
6270 }
6271
6272 *index = dir->index_cnt;
6273 dir->index_cnt++;
6274
6275 return ret;
6276 }
6277
btrfs_insert_inode_locked(struct inode * inode)6278 static int btrfs_insert_inode_locked(struct inode *inode)
6279 {
6280 struct btrfs_iget_args args;
6281
6282 args.ino = btrfs_ino(BTRFS_I(inode));
6283 args.root = BTRFS_I(inode)->root;
6284
6285 return insert_inode_locked4(inode,
6286 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6287 btrfs_find_actor, &args);
6288 }
6289
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6290 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6291 unsigned int *trans_num_items)
6292 {
6293 struct inode *dir = args->dir;
6294 struct inode *inode = args->inode;
6295 int ret;
6296
6297 if (!args->orphan) {
6298 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6299 &args->fname);
6300 if (ret)
6301 return ret;
6302 }
6303
6304 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6305 if (ret) {
6306 fscrypt_free_filename(&args->fname);
6307 return ret;
6308 }
6309
6310 /* 1 to add inode item */
6311 *trans_num_items = 1;
6312 /* 1 to add compression property */
6313 if (BTRFS_I(dir)->prop_compress)
6314 (*trans_num_items)++;
6315 /* 1 to add default ACL xattr */
6316 if (args->default_acl)
6317 (*trans_num_items)++;
6318 /* 1 to add access ACL xattr */
6319 if (args->acl)
6320 (*trans_num_items)++;
6321 #ifdef CONFIG_SECURITY
6322 /* 1 to add LSM xattr */
6323 if (dir->i_security)
6324 (*trans_num_items)++;
6325 #endif
6326 if (args->orphan) {
6327 /* 1 to add orphan item */
6328 (*trans_num_items)++;
6329 } else {
6330 /*
6331 * 1 to add dir item
6332 * 1 to add dir index
6333 * 1 to update parent inode item
6334 *
6335 * No need for 1 unit for the inode ref item because it is
6336 * inserted in a batch together with the inode item at
6337 * btrfs_create_new_inode().
6338 */
6339 *trans_num_items += 3;
6340 }
6341 return 0;
6342 }
6343
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6344 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6345 {
6346 posix_acl_release(args->acl);
6347 posix_acl_release(args->default_acl);
6348 fscrypt_free_filename(&args->fname);
6349 }
6350
6351 /*
6352 * Inherit flags from the parent inode.
6353 *
6354 * Currently only the compression flags and the cow flags are inherited.
6355 */
btrfs_inherit_iflags(struct btrfs_inode * inode,struct btrfs_inode * dir)6356 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6357 {
6358 unsigned int flags;
6359
6360 flags = dir->flags;
6361
6362 if (flags & BTRFS_INODE_NOCOMPRESS) {
6363 inode->flags &= ~BTRFS_INODE_COMPRESS;
6364 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6365 } else if (flags & BTRFS_INODE_COMPRESS) {
6366 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6367 inode->flags |= BTRFS_INODE_COMPRESS;
6368 }
6369
6370 if (flags & BTRFS_INODE_NODATACOW) {
6371 inode->flags |= BTRFS_INODE_NODATACOW;
6372 if (S_ISREG(inode->vfs_inode.i_mode))
6373 inode->flags |= BTRFS_INODE_NODATASUM;
6374 }
6375
6376 btrfs_sync_inode_flags_to_i_flags(inode);
6377 }
6378
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6379 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6380 struct btrfs_new_inode_args *args)
6381 {
6382 struct timespec64 ts;
6383 struct inode *dir = args->dir;
6384 struct inode *inode = args->inode;
6385 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6386 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6387 struct btrfs_root *root;
6388 struct btrfs_inode_item *inode_item;
6389 struct btrfs_path *path;
6390 u64 objectid;
6391 struct btrfs_inode_ref *ref;
6392 struct btrfs_key key[2];
6393 u32 sizes[2];
6394 struct btrfs_item_batch batch;
6395 unsigned long ptr;
6396 int ret;
6397 bool xa_reserved = false;
6398
6399 path = btrfs_alloc_path();
6400 if (!path)
6401 return -ENOMEM;
6402
6403 if (!args->subvol)
6404 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6405 root = BTRFS_I(inode)->root;
6406
6407 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6408 if (ret)
6409 goto out;
6410
6411 ret = btrfs_get_free_objectid(root, &objectid);
6412 if (ret)
6413 goto out;
6414 btrfs_set_inode_number(BTRFS_I(inode), objectid);
6415
6416 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6417 if (ret)
6418 goto out;
6419 xa_reserved = true;
6420
6421 if (args->orphan) {
6422 /*
6423 * O_TMPFILE, set link count to 0, so that after this point, we
6424 * fill in an inode item with the correct link count.
6425 */
6426 set_nlink(inode, 0);
6427 } else {
6428 trace_btrfs_inode_request(dir);
6429
6430 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6431 if (ret)
6432 goto out;
6433 }
6434
6435 if (S_ISDIR(inode->i_mode))
6436 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6437
6438 BTRFS_I(inode)->generation = trans->transid;
6439 inode->i_generation = BTRFS_I(inode)->generation;
6440
6441 /*
6442 * We don't have any capability xattrs set here yet, shortcut any
6443 * queries for the xattrs here. If we add them later via the inode
6444 * security init path or any other path this flag will be cleared.
6445 */
6446 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6447
6448 /*
6449 * Subvolumes don't inherit flags from their parent directory.
6450 * Originally this was probably by accident, but we probably can't
6451 * change it now without compatibility issues.
6452 */
6453 if (!args->subvol)
6454 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6455
6456 if (S_ISREG(inode->i_mode)) {
6457 if (btrfs_test_opt(fs_info, NODATASUM))
6458 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6459 if (btrfs_test_opt(fs_info, NODATACOW))
6460 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6461 BTRFS_INODE_NODATASUM;
6462 btrfs_update_inode_mapping_flags(BTRFS_I(inode));
6463 btrfs_set_inode_mapping_order(BTRFS_I(inode));
6464 }
6465
6466 ret = btrfs_insert_inode_locked(inode);
6467 if (ret < 0) {
6468 if (!args->orphan)
6469 BTRFS_I(dir)->index_cnt--;
6470 goto out;
6471 }
6472
6473 /*
6474 * We could have gotten an inode number from somebody who was fsynced
6475 * and then removed in this same transaction, so let's just set full
6476 * sync since it will be a full sync anyway and this will blow away the
6477 * old info in the log.
6478 */
6479 btrfs_set_inode_full_sync(BTRFS_I(inode));
6480
6481 key[0].objectid = objectid;
6482 key[0].type = BTRFS_INODE_ITEM_KEY;
6483 key[0].offset = 0;
6484
6485 sizes[0] = sizeof(struct btrfs_inode_item);
6486
6487 if (!args->orphan) {
6488 /*
6489 * Start new inodes with an inode_ref. This is slightly more
6490 * efficient for small numbers of hard links since they will
6491 * be packed into one item. Extended refs will kick in if we
6492 * add more hard links than can fit in the ref item.
6493 */
6494 key[1].objectid = objectid;
6495 key[1].type = BTRFS_INODE_REF_KEY;
6496 if (args->subvol) {
6497 key[1].offset = objectid;
6498 sizes[1] = 2 + sizeof(*ref);
6499 } else {
6500 key[1].offset = btrfs_ino(BTRFS_I(dir));
6501 sizes[1] = name->len + sizeof(*ref);
6502 }
6503 }
6504
6505 batch.keys = &key[0];
6506 batch.data_sizes = &sizes[0];
6507 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6508 batch.nr = args->orphan ? 1 : 2;
6509 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6510 if (ret != 0) {
6511 btrfs_abort_transaction(trans, ret);
6512 goto discard;
6513 }
6514
6515 ts = simple_inode_init_ts(inode);
6516 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6517 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6518
6519 /*
6520 * We're going to fill the inode item now, so at this point the inode
6521 * must be fully initialized.
6522 */
6523
6524 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6525 struct btrfs_inode_item);
6526 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6527 sizeof(*inode_item));
6528 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6529
6530 if (!args->orphan) {
6531 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6532 struct btrfs_inode_ref);
6533 ptr = (unsigned long)(ref + 1);
6534 if (args->subvol) {
6535 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6536 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6537 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6538 } else {
6539 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6540 name->len);
6541 btrfs_set_inode_ref_index(path->nodes[0], ref,
6542 BTRFS_I(inode)->dir_index);
6543 write_extent_buffer(path->nodes[0], name->name, ptr,
6544 name->len);
6545 }
6546 }
6547
6548 /*
6549 * We don't need the path anymore, plus inheriting properties, adding
6550 * ACLs, security xattrs, orphan item or adding the link, will result in
6551 * allocating yet another path. So just free our path.
6552 */
6553 btrfs_free_path(path);
6554 path = NULL;
6555
6556 if (args->subvol) {
6557 struct btrfs_inode *parent;
6558
6559 /*
6560 * Subvolumes inherit properties from their parent subvolume,
6561 * not the directory they were created in.
6562 */
6563 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6564 if (IS_ERR(parent)) {
6565 ret = PTR_ERR(parent);
6566 } else {
6567 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6568 parent);
6569 iput(&parent->vfs_inode);
6570 }
6571 } else {
6572 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6573 BTRFS_I(dir));
6574 }
6575 if (ret) {
6576 btrfs_err(fs_info,
6577 "error inheriting props for ino %llu (root %llu): %d",
6578 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6579 }
6580
6581 /*
6582 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6583 * probably a bug.
6584 */
6585 if (!args->subvol) {
6586 ret = btrfs_init_inode_security(trans, args);
6587 if (ret) {
6588 btrfs_abort_transaction(trans, ret);
6589 goto discard;
6590 }
6591 }
6592
6593 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6594 if (WARN_ON(ret)) {
6595 /* Shouldn't happen, we used xa_reserve() before. */
6596 btrfs_abort_transaction(trans, ret);
6597 goto discard;
6598 }
6599
6600 trace_btrfs_inode_new(inode);
6601 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6602
6603 btrfs_update_root_times(trans, root);
6604
6605 if (args->orphan) {
6606 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6607 if (ret) {
6608 btrfs_abort_transaction(trans, ret);
6609 goto discard;
6610 }
6611 } else {
6612 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6613 0, BTRFS_I(inode)->dir_index);
6614 if (ret) {
6615 btrfs_abort_transaction(trans, ret);
6616 goto discard;
6617 }
6618 }
6619
6620 return 0;
6621
6622 discard:
6623 /*
6624 * discard_new_inode() calls iput(), but the caller owns the reference
6625 * to the inode.
6626 */
6627 ihold(inode);
6628 discard_new_inode(inode);
6629 out:
6630 if (xa_reserved)
6631 xa_release(&root->inodes, objectid);
6632
6633 btrfs_free_path(path);
6634 return ret;
6635 }
6636
6637 /*
6638 * utility function to add 'inode' into 'parent_inode' with
6639 * a give name and a given sequence number.
6640 * if 'add_backref' is true, also insert a backref from the
6641 * inode to the parent directory.
6642 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const struct fscrypt_str * name,int add_backref,u64 index)6643 int btrfs_add_link(struct btrfs_trans_handle *trans,
6644 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6645 const struct fscrypt_str *name, int add_backref, u64 index)
6646 {
6647 int ret = 0;
6648 struct btrfs_key key;
6649 struct btrfs_root *root = parent_inode->root;
6650 u64 ino = btrfs_ino(inode);
6651 u64 parent_ino = btrfs_ino(parent_inode);
6652
6653 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6654 memcpy(&key, &inode->root->root_key, sizeof(key));
6655 } else {
6656 key.objectid = ino;
6657 key.type = BTRFS_INODE_ITEM_KEY;
6658 key.offset = 0;
6659 }
6660
6661 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6662 ret = btrfs_add_root_ref(trans, key.objectid,
6663 btrfs_root_id(root), parent_ino,
6664 index, name);
6665 } else if (add_backref) {
6666 ret = btrfs_insert_inode_ref(trans, root, name,
6667 ino, parent_ino, index);
6668 }
6669
6670 /* Nothing to clean up yet */
6671 if (ret)
6672 return ret;
6673
6674 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6675 btrfs_inode_type(inode), index);
6676 if (ret == -EEXIST || ret == -EOVERFLOW)
6677 goto fail_dir_item;
6678 else if (ret) {
6679 btrfs_abort_transaction(trans, ret);
6680 return ret;
6681 }
6682
6683 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6684 name->len * 2);
6685 inode_inc_iversion(&parent_inode->vfs_inode);
6686 /*
6687 * If we are replaying a log tree, we do not want to update the mtime
6688 * and ctime of the parent directory with the current time, since the
6689 * log replay procedure is responsible for setting them to their correct
6690 * values (the ones it had when the fsync was done).
6691 */
6692 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6693 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6694 inode_set_ctime_current(&parent_inode->vfs_inode));
6695
6696 ret = btrfs_update_inode(trans, parent_inode);
6697 if (ret)
6698 btrfs_abort_transaction(trans, ret);
6699 return ret;
6700
6701 fail_dir_item:
6702 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6703 u64 local_index;
6704 int ret2;
6705
6706 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root),
6707 parent_ino, &local_index, name);
6708 if (ret2)
6709 btrfs_abort_transaction(trans, ret2);
6710 } else if (add_backref) {
6711 int ret2;
6712
6713 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL);
6714 if (ret2)
6715 btrfs_abort_transaction(trans, ret2);
6716 }
6717
6718 /* Return the original error code */
6719 return ret;
6720 }
6721
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6722 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6723 struct inode *inode)
6724 {
6725 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6726 struct btrfs_root *root = BTRFS_I(dir)->root;
6727 struct btrfs_new_inode_args new_inode_args = {
6728 .dir = dir,
6729 .dentry = dentry,
6730 .inode = inode,
6731 };
6732 unsigned int trans_num_items;
6733 struct btrfs_trans_handle *trans;
6734 int ret;
6735
6736 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6737 if (ret)
6738 goto out_inode;
6739
6740 trans = btrfs_start_transaction(root, trans_num_items);
6741 if (IS_ERR(trans)) {
6742 ret = PTR_ERR(trans);
6743 goto out_new_inode_args;
6744 }
6745
6746 ret = btrfs_create_new_inode(trans, &new_inode_args);
6747 if (!ret)
6748 d_instantiate_new(dentry, inode);
6749
6750 btrfs_end_transaction(trans);
6751 btrfs_btree_balance_dirty(fs_info);
6752 out_new_inode_args:
6753 btrfs_new_inode_args_destroy(&new_inode_args);
6754 out_inode:
6755 if (ret)
6756 iput(inode);
6757 return ret;
6758 }
6759
btrfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6760 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6761 struct dentry *dentry, umode_t mode, dev_t rdev)
6762 {
6763 struct inode *inode;
6764
6765 inode = new_inode(dir->i_sb);
6766 if (!inode)
6767 return -ENOMEM;
6768 inode_init_owner(idmap, inode, dir, mode);
6769 inode->i_op = &btrfs_special_inode_operations;
6770 init_special_inode(inode, inode->i_mode, rdev);
6771 return btrfs_create_common(dir, dentry, inode);
6772 }
6773
btrfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6774 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6775 struct dentry *dentry, umode_t mode, bool excl)
6776 {
6777 struct inode *inode;
6778
6779 inode = new_inode(dir->i_sb);
6780 if (!inode)
6781 return -ENOMEM;
6782 inode_init_owner(idmap, inode, dir, mode);
6783 inode->i_fop = &btrfs_file_operations;
6784 inode->i_op = &btrfs_file_inode_operations;
6785 inode->i_mapping->a_ops = &btrfs_aops;
6786 return btrfs_create_common(dir, dentry, inode);
6787 }
6788
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6789 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6790 struct dentry *dentry)
6791 {
6792 struct btrfs_trans_handle *trans = NULL;
6793 struct btrfs_root *root = BTRFS_I(dir)->root;
6794 struct inode *inode = d_inode(old_dentry);
6795 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6796 struct fscrypt_name fname;
6797 u64 index;
6798 int ret;
6799 int drop_inode = 0;
6800
6801 /* do not allow sys_link's with other subvols of the same device */
6802 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6803 return -EXDEV;
6804
6805 if (inode->i_nlink >= BTRFS_LINK_MAX)
6806 return -EMLINK;
6807
6808 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6809 if (ret)
6810 goto fail;
6811
6812 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
6813 if (ret)
6814 goto fail;
6815
6816 /*
6817 * 2 items for inode and inode ref
6818 * 2 items for dir items
6819 * 1 item for parent inode
6820 * 1 item for orphan item deletion if O_TMPFILE
6821 */
6822 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6823 if (IS_ERR(trans)) {
6824 ret = PTR_ERR(trans);
6825 trans = NULL;
6826 goto fail;
6827 }
6828
6829 /* There are several dir indexes for this inode, clear the cache. */
6830 BTRFS_I(inode)->dir_index = 0ULL;
6831 inc_nlink(inode);
6832 inode_inc_iversion(inode);
6833 inode_set_ctime_current(inode);
6834 ihold(inode);
6835 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6836
6837 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6838 &fname.disk_name, 1, index);
6839
6840 if (ret) {
6841 drop_inode = 1;
6842 } else {
6843 struct dentry *parent = dentry->d_parent;
6844
6845 ret = btrfs_update_inode(trans, BTRFS_I(inode));
6846 if (ret)
6847 goto fail;
6848 if (inode->i_nlink == 1) {
6849 /*
6850 * If new hard link count is 1, it's a file created
6851 * with open(2) O_TMPFILE flag.
6852 */
6853 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
6854 if (ret)
6855 goto fail;
6856 }
6857 d_instantiate(dentry, inode);
6858 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6859 }
6860
6861 fail:
6862 fscrypt_free_filename(&fname);
6863 if (trans)
6864 btrfs_end_transaction(trans);
6865 if (drop_inode) {
6866 inode_dec_link_count(inode);
6867 iput(inode);
6868 }
6869 btrfs_btree_balance_dirty(fs_info);
6870 return ret;
6871 }
6872
btrfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)6873 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6874 struct dentry *dentry, umode_t mode)
6875 {
6876 struct inode *inode;
6877
6878 inode = new_inode(dir->i_sb);
6879 if (!inode)
6880 return ERR_PTR(-ENOMEM);
6881 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6882 inode->i_op = &btrfs_dir_inode_operations;
6883 inode->i_fop = &btrfs_dir_file_operations;
6884 return ERR_PTR(btrfs_create_common(dir, dentry, inode));
6885 }
6886
uncompress_inline(struct btrfs_path * path,struct folio * folio,struct btrfs_file_extent_item * item)6887 static noinline int uncompress_inline(struct btrfs_path *path,
6888 struct folio *folio,
6889 struct btrfs_file_extent_item *item)
6890 {
6891 int ret;
6892 struct extent_buffer *leaf = path->nodes[0];
6893 const u32 blocksize = leaf->fs_info->sectorsize;
6894 char *tmp;
6895 size_t max_size;
6896 unsigned long inline_size;
6897 unsigned long ptr;
6898 int compress_type;
6899
6900 compress_type = btrfs_file_extent_compression(leaf, item);
6901 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6902 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6903 tmp = kmalloc(inline_size, GFP_NOFS);
6904 if (!tmp)
6905 return -ENOMEM;
6906 ptr = btrfs_file_extent_inline_start(item);
6907
6908 read_extent_buffer(leaf, tmp, ptr, inline_size);
6909
6910 max_size = min_t(unsigned long, blocksize, max_size);
6911 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
6912 max_size);
6913
6914 /*
6915 * decompression code contains a memset to fill in any space between the end
6916 * of the uncompressed data and the end of max_size in case the decompressed
6917 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6918 * the end of an inline extent and the beginning of the next block, so we
6919 * cover that region here.
6920 */
6921
6922 if (max_size < blocksize)
6923 folio_zero_range(folio, max_size, blocksize - max_size);
6924 kfree(tmp);
6925 return ret;
6926 }
6927
read_inline_extent(struct btrfs_path * path,struct folio * folio)6928 static int read_inline_extent(struct btrfs_path *path, struct folio *folio)
6929 {
6930 const u32 blocksize = path->nodes[0]->fs_info->sectorsize;
6931 struct btrfs_file_extent_item *fi;
6932 void *kaddr;
6933 size_t copy_size;
6934
6935 if (!folio || folio_test_uptodate(folio))
6936 return 0;
6937
6938 ASSERT(folio_pos(folio) == 0);
6939
6940 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6941 struct btrfs_file_extent_item);
6942 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6943 return uncompress_inline(path, folio, fi);
6944
6945 copy_size = min_t(u64, blocksize,
6946 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6947 kaddr = kmap_local_folio(folio, 0);
6948 read_extent_buffer(path->nodes[0], kaddr,
6949 btrfs_file_extent_inline_start(fi), copy_size);
6950 kunmap_local(kaddr);
6951 if (copy_size < blocksize)
6952 folio_zero_range(folio, copy_size, blocksize - copy_size);
6953 return 0;
6954 }
6955
6956 /*
6957 * Lookup the first extent overlapping a range in a file.
6958 *
6959 * @inode: file to search in
6960 * @page: page to read extent data into if the extent is inline
6961 * @start: file offset
6962 * @len: length of range starting at @start
6963 *
6964 * Return the first &struct extent_map which overlaps the given range, reading
6965 * it from the B-tree and caching it if necessary. Note that there may be more
6966 * extents which overlap the given range after the returned extent_map.
6967 *
6968 * If @page is not NULL and the extent is inline, this also reads the extent
6969 * data directly into the page and marks the extent up to date in the io_tree.
6970 *
6971 * Return: ERR_PTR on error, non-NULL extent_map on success.
6972 */
btrfs_get_extent(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len)6973 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6974 struct folio *folio, u64 start, u64 len)
6975 {
6976 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6977 int ret = 0;
6978 u64 extent_start = 0;
6979 u64 extent_end = 0;
6980 u64 objectid = btrfs_ino(inode);
6981 int extent_type = -1;
6982 struct btrfs_path *path = NULL;
6983 struct btrfs_root *root = inode->root;
6984 struct btrfs_file_extent_item *item;
6985 struct extent_buffer *leaf;
6986 struct btrfs_key found_key;
6987 struct extent_map *em = NULL;
6988 struct extent_map_tree *em_tree = &inode->extent_tree;
6989
6990 read_lock(&em_tree->lock);
6991 em = btrfs_lookup_extent_mapping(em_tree, start, len);
6992 read_unlock(&em_tree->lock);
6993
6994 if (em) {
6995 if (em->start > start || em->start + em->len <= start)
6996 btrfs_free_extent_map(em);
6997 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
6998 btrfs_free_extent_map(em);
6999 else
7000 goto out;
7001 }
7002 em = btrfs_alloc_extent_map();
7003 if (!em) {
7004 ret = -ENOMEM;
7005 goto out;
7006 }
7007 em->start = EXTENT_MAP_HOLE;
7008 em->disk_bytenr = EXTENT_MAP_HOLE;
7009 em->len = (u64)-1;
7010
7011 path = btrfs_alloc_path();
7012 if (!path) {
7013 ret = -ENOMEM;
7014 goto out;
7015 }
7016
7017 /* Chances are we'll be called again, so go ahead and do readahead */
7018 path->reada = READA_FORWARD;
7019
7020 /*
7021 * The same explanation in load_free_space_cache applies here as well,
7022 * we only read when we're loading the free space cache, and at that
7023 * point the commit_root has everything we need.
7024 */
7025 if (btrfs_is_free_space_inode(inode)) {
7026 path->search_commit_root = 1;
7027 path->skip_locking = 1;
7028 }
7029
7030 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7031 if (ret < 0) {
7032 goto out;
7033 } else if (ret > 0) {
7034 if (path->slots[0] == 0)
7035 goto not_found;
7036 path->slots[0]--;
7037 ret = 0;
7038 }
7039
7040 leaf = path->nodes[0];
7041 item = btrfs_item_ptr(leaf, path->slots[0],
7042 struct btrfs_file_extent_item);
7043 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7044 if (found_key.objectid != objectid ||
7045 found_key.type != BTRFS_EXTENT_DATA_KEY) {
7046 /*
7047 * If we backup past the first extent we want to move forward
7048 * and see if there is an extent in front of us, otherwise we'll
7049 * say there is a hole for our whole search range which can
7050 * cause problems.
7051 */
7052 extent_end = start;
7053 goto next;
7054 }
7055
7056 extent_type = btrfs_file_extent_type(leaf, item);
7057 extent_start = found_key.offset;
7058 extent_end = btrfs_file_extent_end(path);
7059 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7060 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7061 /* Only regular file could have regular/prealloc extent */
7062 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7063 ret = -EUCLEAN;
7064 btrfs_crit(fs_info,
7065 "regular/prealloc extent found for non-regular inode %llu",
7066 btrfs_ino(inode));
7067 goto out;
7068 }
7069 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7070 extent_start);
7071 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7072 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7073 path->slots[0],
7074 extent_start);
7075 }
7076 next:
7077 if (start >= extent_end) {
7078 path->slots[0]++;
7079 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7080 ret = btrfs_next_leaf(root, path);
7081 if (ret < 0)
7082 goto out;
7083 else if (ret > 0)
7084 goto not_found;
7085
7086 leaf = path->nodes[0];
7087 }
7088 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7089 if (found_key.objectid != objectid ||
7090 found_key.type != BTRFS_EXTENT_DATA_KEY)
7091 goto not_found;
7092 if (start + len <= found_key.offset)
7093 goto not_found;
7094 if (start > found_key.offset)
7095 goto next;
7096
7097 /* New extent overlaps with existing one */
7098 em->start = start;
7099 em->len = found_key.offset - start;
7100 em->disk_bytenr = EXTENT_MAP_HOLE;
7101 goto insert;
7102 }
7103
7104 btrfs_extent_item_to_extent_map(inode, path, item, em);
7105
7106 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7107 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7108 goto insert;
7109 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7110 /*
7111 * Inline extent can only exist at file offset 0. This is
7112 * ensured by tree-checker and inline extent creation path.
7113 * Thus all members representing file offsets should be zero.
7114 */
7115 ASSERT(extent_start == 0);
7116 ASSERT(em->start == 0);
7117
7118 /*
7119 * btrfs_extent_item_to_extent_map() should have properly
7120 * initialized em members already.
7121 *
7122 * Other members are not utilized for inline extents.
7123 */
7124 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
7125 ASSERT(em->len == fs_info->sectorsize);
7126
7127 ret = read_inline_extent(path, folio);
7128 if (ret < 0)
7129 goto out;
7130 goto insert;
7131 }
7132 not_found:
7133 em->start = start;
7134 em->len = len;
7135 em->disk_bytenr = EXTENT_MAP_HOLE;
7136 insert:
7137 ret = 0;
7138 btrfs_release_path(path);
7139 if (em->start > start || btrfs_extent_map_end(em) <= start) {
7140 btrfs_err(fs_info,
7141 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7142 em->start, em->len, start, len);
7143 ret = -EIO;
7144 goto out;
7145 }
7146
7147 write_lock(&em_tree->lock);
7148 ret = btrfs_add_extent_mapping(inode, &em, start, len);
7149 write_unlock(&em_tree->lock);
7150 out:
7151 btrfs_free_path(path);
7152
7153 trace_btrfs_get_extent(root, inode, em);
7154
7155 if (ret) {
7156 btrfs_free_extent_map(em);
7157 return ERR_PTR(ret);
7158 }
7159 return em;
7160 }
7161
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7162 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7163 {
7164 struct btrfs_block_group *block_group;
7165 bool readonly = false;
7166
7167 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7168 if (!block_group || block_group->ro)
7169 readonly = true;
7170 if (block_group)
7171 btrfs_put_block_group(block_group);
7172 return readonly;
7173 }
7174
7175 /*
7176 * Check if we can do nocow write into the range [@offset, @offset + @len)
7177 *
7178 * @offset: File offset
7179 * @len: The length to write, will be updated to the nocow writeable
7180 * range
7181 * @orig_start: (optional) Return the original file offset of the file extent
7182 * @orig_len: (optional) Return the original on-disk length of the file extent
7183 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7184 *
7185 * Return:
7186 * >0 and update @len if we can do nocow write
7187 * 0 if we can't do nocow write
7188 * <0 if error happened
7189 *
7190 * NOTE: This only checks the file extents, caller is responsible to wait for
7191 * any ordered extents.
7192 */
can_nocow_extent(struct btrfs_inode * inode,u64 offset,u64 * len,struct btrfs_file_extent * file_extent,bool nowait)7193 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len,
7194 struct btrfs_file_extent *file_extent,
7195 bool nowait)
7196 {
7197 struct btrfs_root *root = inode->root;
7198 struct btrfs_fs_info *fs_info = root->fs_info;
7199 struct can_nocow_file_extent_args nocow_args = { 0 };
7200 BTRFS_PATH_AUTO_FREE(path);
7201 int ret;
7202 struct extent_buffer *leaf;
7203 struct extent_io_tree *io_tree = &inode->io_tree;
7204 struct btrfs_file_extent_item *fi;
7205 struct btrfs_key key;
7206 int found_type;
7207
7208 path = btrfs_alloc_path();
7209 if (!path)
7210 return -ENOMEM;
7211 path->nowait = nowait;
7212
7213 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7214 offset, 0);
7215 if (ret < 0)
7216 return ret;
7217
7218 if (ret == 1) {
7219 if (path->slots[0] == 0) {
7220 /* Can't find the item, must COW. */
7221 return 0;
7222 }
7223 path->slots[0]--;
7224 }
7225 ret = 0;
7226 leaf = path->nodes[0];
7227 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7228 if (key.objectid != btrfs_ino(inode) ||
7229 key.type != BTRFS_EXTENT_DATA_KEY) {
7230 /* Not our file or wrong item type, must COW. */
7231 return 0;
7232 }
7233
7234 if (key.offset > offset) {
7235 /* Wrong offset, must COW. */
7236 return 0;
7237 }
7238
7239 if (btrfs_file_extent_end(path) <= offset)
7240 return 0;
7241
7242 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7243 found_type = btrfs_file_extent_type(leaf, fi);
7244
7245 nocow_args.start = offset;
7246 nocow_args.end = offset + *len - 1;
7247 nocow_args.free_path = true;
7248
7249 ret = can_nocow_file_extent(path, &key, inode, &nocow_args);
7250 /* can_nocow_file_extent() has freed the path. */
7251 path = NULL;
7252
7253 if (ret != 1) {
7254 /* Treat errors as not being able to NOCOW. */
7255 return 0;
7256 }
7257
7258 if (btrfs_extent_readonly(fs_info,
7259 nocow_args.file_extent.disk_bytenr +
7260 nocow_args.file_extent.offset))
7261 return 0;
7262
7263 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
7264 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7265 u64 range_end;
7266
7267 range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7268 root->fs_info->sectorsize) - 1;
7269 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end,
7270 EXTENT_DELALLOC);
7271 if (ret)
7272 return -EAGAIN;
7273 }
7274
7275 if (file_extent)
7276 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7277
7278 *len = nocow_args.file_extent.num_bytes;
7279
7280 return 1;
7281 }
7282
7283 /* The callers of this must take lock_extent() */
btrfs_create_io_em(struct btrfs_inode * inode,u64 start,const struct btrfs_file_extent * file_extent,int type)7284 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7285 const struct btrfs_file_extent *file_extent,
7286 int type)
7287 {
7288 struct extent_map *em;
7289 int ret;
7290
7291 /*
7292 * Note the missing NOCOW type.
7293 *
7294 * For pure NOCOW writes, we should not create an io extent map, but
7295 * just reusing the existing one.
7296 * Only PREALLOC writes (NOCOW write into preallocated range) can
7297 * create an io extent map.
7298 */
7299 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7300 type == BTRFS_ORDERED_COMPRESSED ||
7301 type == BTRFS_ORDERED_REGULAR);
7302
7303 switch (type) {
7304 case BTRFS_ORDERED_PREALLOC:
7305 /* We're only referring part of a larger preallocated extent. */
7306 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7307 break;
7308 case BTRFS_ORDERED_REGULAR:
7309 /* COW results a new extent matching our file extent size. */
7310 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7311 ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7312
7313 /* Since it's a new extent, we should not have any offset. */
7314 ASSERT(file_extent->offset == 0);
7315 break;
7316 case BTRFS_ORDERED_COMPRESSED:
7317 /* Must be compressed. */
7318 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7319
7320 /*
7321 * Encoded write can make us to refer to part of the
7322 * uncompressed extent.
7323 */
7324 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7325 break;
7326 }
7327
7328 em = btrfs_alloc_extent_map();
7329 if (!em)
7330 return ERR_PTR(-ENOMEM);
7331
7332 em->start = start;
7333 em->len = file_extent->num_bytes;
7334 em->disk_bytenr = file_extent->disk_bytenr;
7335 em->disk_num_bytes = file_extent->disk_num_bytes;
7336 em->ram_bytes = file_extent->ram_bytes;
7337 em->generation = -1;
7338 em->offset = file_extent->offset;
7339 em->flags |= EXTENT_FLAG_PINNED;
7340 if (type == BTRFS_ORDERED_COMPRESSED)
7341 btrfs_extent_map_set_compression(em, file_extent->compression);
7342
7343 ret = btrfs_replace_extent_map_range(inode, em, true);
7344 if (ret) {
7345 btrfs_free_extent_map(em);
7346 return ERR_PTR(ret);
7347 }
7348
7349 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */
7350 return em;
7351 }
7352
7353 /*
7354 * For release_folio() and invalidate_folio() we have a race window where
7355 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7356 * If we continue to release/invalidate the page, we could cause use-after-free
7357 * for subpage spinlock. So this function is to spin and wait for subpage
7358 * spinlock.
7359 */
wait_subpage_spinlock(struct folio * folio)7360 static void wait_subpage_spinlock(struct folio *folio)
7361 {
7362 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7363 struct btrfs_folio_state *bfs;
7364
7365 if (!btrfs_is_subpage(fs_info, folio))
7366 return;
7367
7368 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7369 bfs = folio_get_private(folio);
7370
7371 /*
7372 * This may look insane as we just acquire the spinlock and release it,
7373 * without doing anything. But we just want to make sure no one is
7374 * still holding the subpage spinlock.
7375 * And since the page is not dirty nor writeback, and we have page
7376 * locked, the only possible way to hold a spinlock is from the endio
7377 * function to clear page writeback.
7378 *
7379 * Here we just acquire the spinlock so that all existing callers
7380 * should exit and we're safe to release/invalidate the page.
7381 */
7382 spin_lock_irq(&bfs->lock);
7383 spin_unlock_irq(&bfs->lock);
7384 }
7385
btrfs_launder_folio(struct folio * folio)7386 static int btrfs_launder_folio(struct folio *folio)
7387 {
7388 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7389 folio_size(folio), NULL);
7390 }
7391
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7392 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7393 {
7394 if (try_release_extent_mapping(folio, gfp_flags)) {
7395 wait_subpage_spinlock(folio);
7396 clear_folio_extent_mapped(folio);
7397 return true;
7398 }
7399 return false;
7400 }
7401
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7402 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7403 {
7404 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7405 return false;
7406 return __btrfs_release_folio(folio, gfp_flags);
7407 }
7408
7409 #ifdef CONFIG_MIGRATION
btrfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)7410 static int btrfs_migrate_folio(struct address_space *mapping,
7411 struct folio *dst, struct folio *src,
7412 enum migrate_mode mode)
7413 {
7414 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7415
7416 if (ret != MIGRATEPAGE_SUCCESS)
7417 return ret;
7418
7419 if (folio_test_ordered(src)) {
7420 folio_clear_ordered(src);
7421 folio_set_ordered(dst);
7422 }
7423
7424 return MIGRATEPAGE_SUCCESS;
7425 }
7426 #else
7427 #define btrfs_migrate_folio NULL
7428 #endif
7429
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)7430 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7431 size_t length)
7432 {
7433 struct btrfs_inode *inode = folio_to_inode(folio);
7434 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7435 struct extent_io_tree *tree = &inode->io_tree;
7436 struct extent_state *cached_state = NULL;
7437 u64 page_start = folio_pos(folio);
7438 u64 page_end = page_start + folio_size(folio) - 1;
7439 u64 cur;
7440 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7441
7442 /*
7443 * We have folio locked so no new ordered extent can be created on this
7444 * page, nor bio can be submitted for this folio.
7445 *
7446 * But already submitted bio can still be finished on this folio.
7447 * Furthermore, endio function won't skip folio which has Ordered
7448 * already cleared, so it's possible for endio and
7449 * invalidate_folio to do the same ordered extent accounting twice
7450 * on one folio.
7451 *
7452 * So here we wait for any submitted bios to finish, so that we won't
7453 * do double ordered extent accounting on the same folio.
7454 */
7455 folio_wait_writeback(folio);
7456 wait_subpage_spinlock(folio);
7457
7458 /*
7459 * For subpage case, we have call sites like
7460 * btrfs_punch_hole_lock_range() which passes range not aligned to
7461 * sectorsize.
7462 * If the range doesn't cover the full folio, we don't need to and
7463 * shouldn't clear page extent mapped, as folio->private can still
7464 * record subpage dirty bits for other part of the range.
7465 *
7466 * For cases that invalidate the full folio even the range doesn't
7467 * cover the full folio, like invalidating the last folio, we're
7468 * still safe to wait for ordered extent to finish.
7469 */
7470 if (!(offset == 0 && length == folio_size(folio))) {
7471 btrfs_release_folio(folio, GFP_NOFS);
7472 return;
7473 }
7474
7475 if (!inode_evicting)
7476 btrfs_lock_extent(tree, page_start, page_end, &cached_state);
7477
7478 cur = page_start;
7479 while (cur < page_end) {
7480 struct btrfs_ordered_extent *ordered;
7481 u64 range_end;
7482 u32 range_len;
7483 u32 extra_flags = 0;
7484
7485 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7486 page_end + 1 - cur);
7487 if (!ordered) {
7488 range_end = page_end;
7489 /*
7490 * No ordered extent covering this range, we are safe
7491 * to delete all extent states in the range.
7492 */
7493 extra_flags = EXTENT_CLEAR_ALL_BITS;
7494 goto next;
7495 }
7496 if (ordered->file_offset > cur) {
7497 /*
7498 * There is a range between [cur, oe->file_offset) not
7499 * covered by any ordered extent.
7500 * We are safe to delete all extent states, and handle
7501 * the ordered extent in the next iteration.
7502 */
7503 range_end = ordered->file_offset - 1;
7504 extra_flags = EXTENT_CLEAR_ALL_BITS;
7505 goto next;
7506 }
7507
7508 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7509 page_end);
7510 ASSERT(range_end + 1 - cur < U32_MAX);
7511 range_len = range_end + 1 - cur;
7512 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7513 /*
7514 * If Ordered is cleared, it means endio has
7515 * already been executed for the range.
7516 * We can't delete the extent states as
7517 * btrfs_finish_ordered_io() may still use some of them.
7518 */
7519 goto next;
7520 }
7521 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7522
7523 /*
7524 * IO on this page will never be started, so we need to account
7525 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7526 * here, must leave that up for the ordered extent completion.
7527 *
7528 * This will also unlock the range for incoming
7529 * btrfs_finish_ordered_io().
7530 */
7531 if (!inode_evicting)
7532 btrfs_clear_extent_bit(tree, cur, range_end,
7533 EXTENT_DELALLOC |
7534 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7535 EXTENT_DEFRAG, &cached_state);
7536
7537 spin_lock_irq(&inode->ordered_tree_lock);
7538 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7539 ordered->truncated_len = min(ordered->truncated_len,
7540 cur - ordered->file_offset);
7541 spin_unlock_irq(&inode->ordered_tree_lock);
7542
7543 /*
7544 * If the ordered extent has finished, we're safe to delete all
7545 * the extent states of the range, otherwise
7546 * btrfs_finish_ordered_io() will get executed by endio for
7547 * other pages, so we can't delete extent states.
7548 */
7549 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7550 cur, range_end + 1 - cur)) {
7551 btrfs_finish_ordered_io(ordered);
7552 /*
7553 * The ordered extent has finished, now we're again
7554 * safe to delete all extent states of the range.
7555 */
7556 extra_flags = EXTENT_CLEAR_ALL_BITS;
7557 }
7558 next:
7559 if (ordered)
7560 btrfs_put_ordered_extent(ordered);
7561 /*
7562 * Qgroup reserved space handler
7563 * Sector(s) here will be either:
7564 *
7565 * 1) Already written to disk or bio already finished
7566 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
7567 * Qgroup will be handled by its qgroup_record then.
7568 * btrfs_qgroup_free_data() call will do nothing here.
7569 *
7570 * 2) Not written to disk yet
7571 * Then btrfs_qgroup_free_data() call will clear the
7572 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
7573 * reserved data space.
7574 * Since the IO will never happen for this page.
7575 */
7576 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7577 if (!inode_evicting)
7578 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7579 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7580 EXTENT_DEFRAG | extra_flags,
7581 &cached_state);
7582 cur = range_end + 1;
7583 }
7584 /*
7585 * We have iterated through all ordered extents of the page, the page
7586 * should not have Ordered anymore, or the above iteration
7587 * did something wrong.
7588 */
7589 ASSERT(!folio_test_ordered(folio));
7590 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7591 if (!inode_evicting)
7592 __btrfs_release_folio(folio, GFP_NOFS);
7593 clear_folio_extent_mapped(folio);
7594 }
7595
btrfs_truncate(struct btrfs_inode * inode,bool skip_writeback)7596 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7597 {
7598 struct btrfs_truncate_control control = {
7599 .inode = inode,
7600 .ino = btrfs_ino(inode),
7601 .min_type = BTRFS_EXTENT_DATA_KEY,
7602 .clear_extent_range = true,
7603 };
7604 struct btrfs_root *root = inode->root;
7605 struct btrfs_fs_info *fs_info = root->fs_info;
7606 struct btrfs_block_rsv rsv;
7607 int ret;
7608 struct btrfs_trans_handle *trans;
7609 u64 mask = fs_info->sectorsize - 1;
7610 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7611
7612 if (!skip_writeback) {
7613 ret = btrfs_wait_ordered_range(inode,
7614 inode->vfs_inode.i_size & (~mask),
7615 (u64)-1);
7616 if (ret)
7617 return ret;
7618 }
7619
7620 /*
7621 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
7622 * things going on here:
7623 *
7624 * 1) We need to reserve space to update our inode.
7625 *
7626 * 2) We need to have something to cache all the space that is going to
7627 * be free'd up by the truncate operation, but also have some slack
7628 * space reserved in case it uses space during the truncate (thank you
7629 * very much snapshotting).
7630 *
7631 * And we need these to be separate. The fact is we can use a lot of
7632 * space doing the truncate, and we have no earthly idea how much space
7633 * we will use, so we need the truncate reservation to be separate so it
7634 * doesn't end up using space reserved for updating the inode. We also
7635 * need to be able to stop the transaction and start a new one, which
7636 * means we need to be able to update the inode several times, and we
7637 * have no idea of knowing how many times that will be, so we can't just
7638 * reserve 1 item for the entirety of the operation, so that has to be
7639 * done separately as well.
7640 *
7641 * So that leaves us with
7642 *
7643 * 1) rsv - for the truncate reservation, which we will steal from the
7644 * transaction reservation.
7645 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7646 * updating the inode.
7647 */
7648 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
7649 rsv.size = min_size;
7650 rsv.failfast = true;
7651
7652 /*
7653 * 1 for the truncate slack space
7654 * 1 for updating the inode.
7655 */
7656 trans = btrfs_start_transaction(root, 2);
7657 if (IS_ERR(trans)) {
7658 ret = PTR_ERR(trans);
7659 goto out;
7660 }
7661
7662 /* Migrate the slack space for the truncate to our reserve */
7663 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv,
7664 min_size, false);
7665 /*
7666 * We have reserved 2 metadata units when we started the transaction and
7667 * min_size matches 1 unit, so this should never fail, but if it does,
7668 * it's not critical we just fail truncation.
7669 */
7670 if (WARN_ON(ret)) {
7671 btrfs_end_transaction(trans);
7672 goto out;
7673 }
7674
7675 trans->block_rsv = &rsv;
7676
7677 while (1) {
7678 struct extent_state *cached_state = NULL;
7679 const u64 new_size = inode->vfs_inode.i_size;
7680 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7681
7682 control.new_size = new_size;
7683 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7684 /*
7685 * We want to drop from the next block forward in case this new
7686 * size is not block aligned since we will be keeping the last
7687 * block of the extent just the way it is.
7688 */
7689 btrfs_drop_extent_map_range(inode,
7690 ALIGN(new_size, fs_info->sectorsize),
7691 (u64)-1, false);
7692
7693 ret = btrfs_truncate_inode_items(trans, root, &control);
7694
7695 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7696 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7697
7698 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7699
7700 trans->block_rsv = &fs_info->trans_block_rsv;
7701 if (ret != -ENOSPC && ret != -EAGAIN)
7702 break;
7703
7704 ret = btrfs_update_inode(trans, inode);
7705 if (ret)
7706 break;
7707
7708 btrfs_end_transaction(trans);
7709 btrfs_btree_balance_dirty(fs_info);
7710
7711 trans = btrfs_start_transaction(root, 2);
7712 if (IS_ERR(trans)) {
7713 ret = PTR_ERR(trans);
7714 trans = NULL;
7715 break;
7716 }
7717
7718 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL);
7719 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7720 &rsv, min_size, false);
7721 /*
7722 * We have reserved 2 metadata units when we started the
7723 * transaction and min_size matches 1 unit, so this should never
7724 * fail, but if it does, it's not critical we just fail truncation.
7725 */
7726 if (WARN_ON(ret))
7727 break;
7728
7729 trans->block_rsv = &rsv;
7730 }
7731
7732 /*
7733 * We can't call btrfs_truncate_block inside a trans handle as we could
7734 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7735 * know we've truncated everything except the last little bit, and can
7736 * do btrfs_truncate_block and then update the disk_i_size.
7737 */
7738 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7739 btrfs_end_transaction(trans);
7740 btrfs_btree_balance_dirty(fs_info);
7741
7742 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size,
7743 inode->vfs_inode.i_size, (u64)-1);
7744 if (ret)
7745 goto out;
7746 trans = btrfs_start_transaction(root, 1);
7747 if (IS_ERR(trans)) {
7748 ret = PTR_ERR(trans);
7749 goto out;
7750 }
7751 btrfs_inode_safe_disk_i_size_write(inode, 0);
7752 }
7753
7754 if (trans) {
7755 int ret2;
7756
7757 trans->block_rsv = &fs_info->trans_block_rsv;
7758 ret2 = btrfs_update_inode(trans, inode);
7759 if (ret2 && !ret)
7760 ret = ret2;
7761
7762 ret2 = btrfs_end_transaction(trans);
7763 if (ret2 && !ret)
7764 ret = ret2;
7765 btrfs_btree_balance_dirty(fs_info);
7766 }
7767 out:
7768 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
7769 /*
7770 * So if we truncate and then write and fsync we normally would just
7771 * write the extents that changed, which is a problem if we need to
7772 * first truncate that entire inode. So set this flag so we write out
7773 * all of the extents in the inode to the sync log so we're completely
7774 * safe.
7775 *
7776 * If no extents were dropped or trimmed we don't need to force the next
7777 * fsync to truncate all the inode's items from the log and re-log them
7778 * all. This means the truncate operation did not change the file size,
7779 * or changed it to a smaller size but there was only an implicit hole
7780 * between the old i_size and the new i_size, and there were no prealloc
7781 * extents beyond i_size to drop.
7782 */
7783 if (control.extents_found > 0)
7784 btrfs_set_inode_full_sync(inode);
7785
7786 return ret;
7787 }
7788
btrfs_new_subvol_inode(struct mnt_idmap * idmap,struct inode * dir)7789 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7790 struct inode *dir)
7791 {
7792 struct inode *inode;
7793
7794 inode = new_inode(dir->i_sb);
7795 if (inode) {
7796 /*
7797 * Subvolumes don't inherit the sgid bit or the parent's gid if
7798 * the parent's sgid bit is set. This is probably a bug.
7799 */
7800 inode_init_owner(idmap, inode, NULL,
7801 S_IFDIR | (~current_umask() & S_IRWXUGO));
7802 inode->i_op = &btrfs_dir_inode_operations;
7803 inode->i_fop = &btrfs_dir_file_operations;
7804 }
7805 return inode;
7806 }
7807
btrfs_alloc_inode(struct super_block * sb)7808 struct inode *btrfs_alloc_inode(struct super_block *sb)
7809 {
7810 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7811 struct btrfs_inode *ei;
7812 struct inode *inode;
7813
7814 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7815 if (!ei)
7816 return NULL;
7817
7818 ei->root = NULL;
7819 ei->generation = 0;
7820 ei->last_trans = 0;
7821 ei->last_sub_trans = 0;
7822 ei->logged_trans = 0;
7823 ei->delalloc_bytes = 0;
7824 ei->new_delalloc_bytes = 0;
7825 ei->defrag_bytes = 0;
7826 ei->disk_i_size = 0;
7827 ei->flags = 0;
7828 ei->ro_flags = 0;
7829 /*
7830 * ->index_cnt will be properly initialized later when creating a new
7831 * inode (btrfs_create_new_inode()) or when reading an existing inode
7832 * from disk (btrfs_read_locked_inode()).
7833 */
7834 ei->csum_bytes = 0;
7835 ei->dir_index = 0;
7836 ei->last_unlink_trans = 0;
7837 ei->last_reflink_trans = 0;
7838 ei->last_log_commit = 0;
7839
7840 spin_lock_init(&ei->lock);
7841 ei->outstanding_extents = 0;
7842 if (sb->s_magic != BTRFS_TEST_MAGIC)
7843 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7844 BTRFS_BLOCK_RSV_DELALLOC);
7845 ei->runtime_flags = 0;
7846 ei->prop_compress = BTRFS_COMPRESS_NONE;
7847 ei->defrag_compress = BTRFS_COMPRESS_NONE;
7848
7849 ei->delayed_node = NULL;
7850
7851 ei->i_otime_sec = 0;
7852 ei->i_otime_nsec = 0;
7853
7854 inode = &ei->vfs_inode;
7855 btrfs_extent_map_tree_init(&ei->extent_tree);
7856
7857 /* This io tree sets the valid inode. */
7858 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7859 ei->io_tree.inode = ei;
7860
7861 ei->file_extent_tree = NULL;
7862
7863 mutex_init(&ei->log_mutex);
7864 spin_lock_init(&ei->ordered_tree_lock);
7865 ei->ordered_tree = RB_ROOT;
7866 ei->ordered_tree_last = NULL;
7867 INIT_LIST_HEAD(&ei->delalloc_inodes);
7868 INIT_LIST_HEAD(&ei->delayed_iput);
7869 init_rwsem(&ei->i_mmap_lock);
7870
7871 return inode;
7872 }
7873
7874 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)7875 void btrfs_test_destroy_inode(struct inode *inode)
7876 {
7877 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7878 kfree(BTRFS_I(inode)->file_extent_tree);
7879 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7880 }
7881 #endif
7882
btrfs_free_inode(struct inode * inode)7883 void btrfs_free_inode(struct inode *inode)
7884 {
7885 kfree(BTRFS_I(inode)->file_extent_tree);
7886 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7887 }
7888
btrfs_destroy_inode(struct inode * vfs_inode)7889 void btrfs_destroy_inode(struct inode *vfs_inode)
7890 {
7891 struct btrfs_ordered_extent *ordered;
7892 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7893 struct btrfs_root *root = inode->root;
7894 bool freespace_inode;
7895
7896 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7897 WARN_ON(vfs_inode->i_data.nrpages);
7898 WARN_ON(inode->block_rsv.reserved);
7899 WARN_ON(inode->block_rsv.size);
7900 WARN_ON(inode->outstanding_extents);
7901 if (!S_ISDIR(vfs_inode->i_mode)) {
7902 WARN_ON(inode->delalloc_bytes);
7903 WARN_ON(inode->new_delalloc_bytes);
7904 WARN_ON(inode->csum_bytes);
7905 }
7906 if (!root || !btrfs_is_data_reloc_root(root))
7907 WARN_ON(inode->defrag_bytes);
7908
7909 /*
7910 * This can happen where we create an inode, but somebody else also
7911 * created the same inode and we need to destroy the one we already
7912 * created.
7913 */
7914 if (!root)
7915 return;
7916
7917 /*
7918 * If this is a free space inode do not take the ordered extents lockdep
7919 * map.
7920 */
7921 freespace_inode = btrfs_is_free_space_inode(inode);
7922
7923 while (1) {
7924 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7925 if (!ordered)
7926 break;
7927 else {
7928 btrfs_err(root->fs_info,
7929 "found ordered extent %llu %llu on inode cleanup",
7930 ordered->file_offset, ordered->num_bytes);
7931
7932 if (!freespace_inode)
7933 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7934
7935 btrfs_remove_ordered_extent(inode, ordered);
7936 btrfs_put_ordered_extent(ordered);
7937 btrfs_put_ordered_extent(ordered);
7938 }
7939 }
7940 btrfs_qgroup_check_reserved_leak(inode);
7941 btrfs_del_inode_from_root(inode);
7942 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7943 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7944 btrfs_put_root(inode->root);
7945 }
7946
btrfs_drop_inode(struct inode * inode)7947 int btrfs_drop_inode(struct inode *inode)
7948 {
7949 struct btrfs_root *root = BTRFS_I(inode)->root;
7950
7951 if (root == NULL)
7952 return 1;
7953
7954 /* the snap/subvol tree is on deleting */
7955 if (btrfs_root_refs(&root->root_item) == 0)
7956 return 1;
7957 else
7958 return generic_drop_inode(inode);
7959 }
7960
init_once(void * foo)7961 static void init_once(void *foo)
7962 {
7963 struct btrfs_inode *ei = foo;
7964
7965 inode_init_once(&ei->vfs_inode);
7966 }
7967
btrfs_destroy_cachep(void)7968 void __cold btrfs_destroy_cachep(void)
7969 {
7970 /*
7971 * Make sure all delayed rcu free inodes are flushed before we
7972 * destroy cache.
7973 */
7974 rcu_barrier();
7975 kmem_cache_destroy(btrfs_inode_cachep);
7976 }
7977
btrfs_init_cachep(void)7978 int __init btrfs_init_cachep(void)
7979 {
7980 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7981 sizeof(struct btrfs_inode), 0,
7982 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7983 init_once);
7984 if (!btrfs_inode_cachep)
7985 return -ENOMEM;
7986
7987 return 0;
7988 }
7989
btrfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)7990 static int btrfs_getattr(struct mnt_idmap *idmap,
7991 const struct path *path, struct kstat *stat,
7992 u32 request_mask, unsigned int flags)
7993 {
7994 u64 delalloc_bytes;
7995 u64 inode_bytes;
7996 struct inode *inode = d_inode(path->dentry);
7997 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
7998 u32 bi_flags = BTRFS_I(inode)->flags;
7999 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8000
8001 stat->result_mask |= STATX_BTIME;
8002 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8003 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8004 if (bi_flags & BTRFS_INODE_APPEND)
8005 stat->attributes |= STATX_ATTR_APPEND;
8006 if (bi_flags & BTRFS_INODE_COMPRESS)
8007 stat->attributes |= STATX_ATTR_COMPRESSED;
8008 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8009 stat->attributes |= STATX_ATTR_IMMUTABLE;
8010 if (bi_flags & BTRFS_INODE_NODUMP)
8011 stat->attributes |= STATX_ATTR_NODUMP;
8012 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8013 stat->attributes |= STATX_ATTR_VERITY;
8014
8015 stat->attributes_mask |= (STATX_ATTR_APPEND |
8016 STATX_ATTR_COMPRESSED |
8017 STATX_ATTR_IMMUTABLE |
8018 STATX_ATTR_NODUMP);
8019
8020 generic_fillattr(idmap, request_mask, inode, stat);
8021 stat->dev = BTRFS_I(inode)->root->anon_dev;
8022
8023 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root);
8024 stat->result_mask |= STATX_SUBVOL;
8025
8026 spin_lock(&BTRFS_I(inode)->lock);
8027 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8028 inode_bytes = inode_get_bytes(inode);
8029 spin_unlock(&BTRFS_I(inode)->lock);
8030 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8031 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8032 return 0;
8033 }
8034
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8035 static int btrfs_rename_exchange(struct inode *old_dir,
8036 struct dentry *old_dentry,
8037 struct inode *new_dir,
8038 struct dentry *new_dentry)
8039 {
8040 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8041 struct btrfs_trans_handle *trans;
8042 unsigned int trans_num_items;
8043 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8044 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8045 struct inode *new_inode = new_dentry->d_inode;
8046 struct inode *old_inode = old_dentry->d_inode;
8047 struct btrfs_rename_ctx old_rename_ctx;
8048 struct btrfs_rename_ctx new_rename_ctx;
8049 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8050 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8051 u64 old_idx = 0;
8052 u64 new_idx = 0;
8053 int ret;
8054 int ret2;
8055 bool need_abort = false;
8056 bool logs_pinned = false;
8057 struct fscrypt_name old_fname, new_fname;
8058 struct fscrypt_str *old_name, *new_name;
8059
8060 /*
8061 * For non-subvolumes allow exchange only within one subvolume, in the
8062 * same inode namespace. Two subvolumes (represented as directory) can
8063 * be exchanged as they're a logical link and have a fixed inode number.
8064 */
8065 if (root != dest &&
8066 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8067 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8068 return -EXDEV;
8069
8070 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8071 if (ret)
8072 return ret;
8073
8074 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8075 if (ret) {
8076 fscrypt_free_filename(&old_fname);
8077 return ret;
8078 }
8079
8080 old_name = &old_fname.disk_name;
8081 new_name = &new_fname.disk_name;
8082
8083 /* close the race window with snapshot create/destroy ioctl */
8084 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8085 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8086 down_read(&fs_info->subvol_sem);
8087
8088 /*
8089 * For each inode:
8090 * 1 to remove old dir item
8091 * 1 to remove old dir index
8092 * 1 to add new dir item
8093 * 1 to add new dir index
8094 * 1 to update parent inode
8095 *
8096 * If the parents are the same, we only need to account for one
8097 */
8098 trans_num_items = (old_dir == new_dir ? 9 : 10);
8099 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8100 /*
8101 * 1 to remove old root ref
8102 * 1 to remove old root backref
8103 * 1 to add new root ref
8104 * 1 to add new root backref
8105 */
8106 trans_num_items += 4;
8107 } else {
8108 /*
8109 * 1 to update inode item
8110 * 1 to remove old inode ref
8111 * 1 to add new inode ref
8112 */
8113 trans_num_items += 3;
8114 }
8115 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8116 trans_num_items += 4;
8117 else
8118 trans_num_items += 3;
8119 trans = btrfs_start_transaction(root, trans_num_items);
8120 if (IS_ERR(trans)) {
8121 ret = PTR_ERR(trans);
8122 goto out_notrans;
8123 }
8124
8125 if (dest != root) {
8126 ret = btrfs_record_root_in_trans(trans, dest);
8127 if (ret)
8128 goto out_fail;
8129 }
8130
8131 /*
8132 * We need to find a free sequence number both in the source and
8133 * in the destination directory for the exchange.
8134 */
8135 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8136 if (ret)
8137 goto out_fail;
8138 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8139 if (ret)
8140 goto out_fail;
8141
8142 BTRFS_I(old_inode)->dir_index = 0ULL;
8143 BTRFS_I(new_inode)->dir_index = 0ULL;
8144
8145 /* Reference for the source. */
8146 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8147 /* force full log commit if subvolume involved. */
8148 btrfs_set_log_full_commit(trans);
8149 } else {
8150 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8151 btrfs_ino(BTRFS_I(new_dir)),
8152 old_idx);
8153 if (ret)
8154 goto out_fail;
8155 need_abort = true;
8156 }
8157
8158 /* And now for the dest. */
8159 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8160 /* force full log commit if subvolume involved. */
8161 btrfs_set_log_full_commit(trans);
8162 } else {
8163 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8164 btrfs_ino(BTRFS_I(old_dir)),
8165 new_idx);
8166 if (ret) {
8167 if (need_abort)
8168 btrfs_abort_transaction(trans, ret);
8169 goto out_fail;
8170 }
8171 }
8172
8173 /* Update inode version and ctime/mtime. */
8174 inode_inc_iversion(old_dir);
8175 inode_inc_iversion(new_dir);
8176 inode_inc_iversion(old_inode);
8177 inode_inc_iversion(new_inode);
8178 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8179
8180 if (old_ino != BTRFS_FIRST_FREE_OBJECTID &&
8181 new_ino != BTRFS_FIRST_FREE_OBJECTID) {
8182 /*
8183 * If we are renaming in the same directory (and it's not for
8184 * root entries) pin the log early to prevent any concurrent
8185 * task from logging the directory after we removed the old
8186 * entries and before we add the new entries, otherwise that
8187 * task can sync a log without any entry for the inodes we are
8188 * renaming and therefore replaying that log, if a power failure
8189 * happens after syncing the log, would result in deleting the
8190 * inodes.
8191 *
8192 * If the rename affects two different directories, we want to
8193 * make sure the that there's no log commit that contains
8194 * updates for only one of the directories but not for the
8195 * other.
8196 *
8197 * If we are renaming an entry for a root, we don't care about
8198 * log updates since we called btrfs_set_log_full_commit().
8199 */
8200 btrfs_pin_log_trans(root);
8201 btrfs_pin_log_trans(dest);
8202 logs_pinned = true;
8203 }
8204
8205 if (old_dentry->d_parent != new_dentry->d_parent) {
8206 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8207 BTRFS_I(old_inode), true);
8208 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8209 BTRFS_I(new_inode), true);
8210 }
8211
8212 /* src is a subvolume */
8213 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8214 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8215 if (ret) {
8216 btrfs_abort_transaction(trans, ret);
8217 goto out_fail;
8218 }
8219 } else { /* src is an inode */
8220 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8221 BTRFS_I(old_dentry->d_inode),
8222 old_name, &old_rename_ctx);
8223 if (ret) {
8224 btrfs_abort_transaction(trans, ret);
8225 goto out_fail;
8226 }
8227 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8228 if (ret) {
8229 btrfs_abort_transaction(trans, ret);
8230 goto out_fail;
8231 }
8232 }
8233
8234 /* dest is a subvolume */
8235 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8236 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8237 if (ret) {
8238 btrfs_abort_transaction(trans, ret);
8239 goto out_fail;
8240 }
8241 } else { /* dest is an inode */
8242 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8243 BTRFS_I(new_dentry->d_inode),
8244 new_name, &new_rename_ctx);
8245 if (ret) {
8246 btrfs_abort_transaction(trans, ret);
8247 goto out_fail;
8248 }
8249 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8250 if (ret) {
8251 btrfs_abort_transaction(trans, ret);
8252 goto out_fail;
8253 }
8254 }
8255
8256 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8257 new_name, 0, old_idx);
8258 if (ret) {
8259 btrfs_abort_transaction(trans, ret);
8260 goto out_fail;
8261 }
8262
8263 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8264 old_name, 0, new_idx);
8265 if (ret) {
8266 btrfs_abort_transaction(trans, ret);
8267 goto out_fail;
8268 }
8269
8270 if (old_inode->i_nlink == 1)
8271 BTRFS_I(old_inode)->dir_index = old_idx;
8272 if (new_inode->i_nlink == 1)
8273 BTRFS_I(new_inode)->dir_index = new_idx;
8274
8275 /*
8276 * Do the log updates for all inodes.
8277 *
8278 * If either entry is for a root we don't need to update the logs since
8279 * we've called btrfs_set_log_full_commit() before.
8280 */
8281 if (logs_pinned) {
8282 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8283 old_rename_ctx.index, new_dentry->d_parent);
8284 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8285 new_rename_ctx.index, old_dentry->d_parent);
8286 }
8287
8288 out_fail:
8289 if (logs_pinned) {
8290 btrfs_end_log_trans(root);
8291 btrfs_end_log_trans(dest);
8292 }
8293 ret2 = btrfs_end_transaction(trans);
8294 ret = ret ? ret : ret2;
8295 out_notrans:
8296 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8297 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8298 up_read(&fs_info->subvol_sem);
8299
8300 fscrypt_free_filename(&new_fname);
8301 fscrypt_free_filename(&old_fname);
8302 return ret;
8303 }
8304
new_whiteout_inode(struct mnt_idmap * idmap,struct inode * dir)8305 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8306 struct inode *dir)
8307 {
8308 struct inode *inode;
8309
8310 inode = new_inode(dir->i_sb);
8311 if (inode) {
8312 inode_init_owner(idmap, inode, dir,
8313 S_IFCHR | WHITEOUT_MODE);
8314 inode->i_op = &btrfs_special_inode_operations;
8315 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8316 }
8317 return inode;
8318 }
8319
btrfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8320 static int btrfs_rename(struct mnt_idmap *idmap,
8321 struct inode *old_dir, struct dentry *old_dentry,
8322 struct inode *new_dir, struct dentry *new_dentry,
8323 unsigned int flags)
8324 {
8325 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8326 struct btrfs_new_inode_args whiteout_args = {
8327 .dir = old_dir,
8328 .dentry = old_dentry,
8329 };
8330 struct btrfs_trans_handle *trans;
8331 unsigned int trans_num_items;
8332 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8333 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8334 struct inode *new_inode = d_inode(new_dentry);
8335 struct inode *old_inode = d_inode(old_dentry);
8336 struct btrfs_rename_ctx rename_ctx;
8337 u64 index = 0;
8338 int ret;
8339 int ret2;
8340 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8341 struct fscrypt_name old_fname, new_fname;
8342 bool logs_pinned = false;
8343
8344 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8345 return -EPERM;
8346
8347 /* we only allow rename subvolume link between subvolumes */
8348 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8349 return -EXDEV;
8350
8351 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8352 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8353 return -ENOTEMPTY;
8354
8355 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8356 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8357 return -ENOTEMPTY;
8358
8359 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8360 if (ret)
8361 return ret;
8362
8363 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8364 if (ret) {
8365 fscrypt_free_filename(&old_fname);
8366 return ret;
8367 }
8368
8369 /* check for collisions, even if the name isn't there */
8370 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8371 if (ret) {
8372 if (ret == -EEXIST) {
8373 /* we shouldn't get
8374 * eexist without a new_inode */
8375 if (WARN_ON(!new_inode)) {
8376 goto out_fscrypt_names;
8377 }
8378 } else {
8379 /* maybe -EOVERFLOW */
8380 goto out_fscrypt_names;
8381 }
8382 }
8383 ret = 0;
8384
8385 /*
8386 * we're using rename to replace one file with another. Start IO on it
8387 * now so we don't add too much work to the end of the transaction
8388 */
8389 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8390 filemap_flush(old_inode->i_mapping);
8391
8392 if (flags & RENAME_WHITEOUT) {
8393 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8394 if (!whiteout_args.inode) {
8395 ret = -ENOMEM;
8396 goto out_fscrypt_names;
8397 }
8398 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8399 if (ret)
8400 goto out_whiteout_inode;
8401 } else {
8402 /* 1 to update the old parent inode. */
8403 trans_num_items = 1;
8404 }
8405
8406 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8407 /* Close the race window with snapshot create/destroy ioctl */
8408 down_read(&fs_info->subvol_sem);
8409 /*
8410 * 1 to remove old root ref
8411 * 1 to remove old root backref
8412 * 1 to add new root ref
8413 * 1 to add new root backref
8414 */
8415 trans_num_items += 4;
8416 } else {
8417 /*
8418 * 1 to update inode
8419 * 1 to remove old inode ref
8420 * 1 to add new inode ref
8421 */
8422 trans_num_items += 3;
8423 }
8424 /*
8425 * 1 to remove old dir item
8426 * 1 to remove old dir index
8427 * 1 to add new dir item
8428 * 1 to add new dir index
8429 */
8430 trans_num_items += 4;
8431 /* 1 to update new parent inode if it's not the same as the old parent */
8432 if (new_dir != old_dir)
8433 trans_num_items++;
8434 if (new_inode) {
8435 /*
8436 * 1 to update inode
8437 * 1 to remove inode ref
8438 * 1 to remove dir item
8439 * 1 to remove dir index
8440 * 1 to possibly add orphan item
8441 */
8442 trans_num_items += 5;
8443 }
8444 trans = btrfs_start_transaction(root, trans_num_items);
8445 if (IS_ERR(trans)) {
8446 ret = PTR_ERR(trans);
8447 goto out_notrans;
8448 }
8449
8450 if (dest != root) {
8451 ret = btrfs_record_root_in_trans(trans, dest);
8452 if (ret)
8453 goto out_fail;
8454 }
8455
8456 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8457 if (ret)
8458 goto out_fail;
8459
8460 BTRFS_I(old_inode)->dir_index = 0ULL;
8461 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8462 /* force full log commit if subvolume involved. */
8463 btrfs_set_log_full_commit(trans);
8464 } else {
8465 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8466 old_ino, btrfs_ino(BTRFS_I(new_dir)),
8467 index);
8468 if (ret)
8469 goto out_fail;
8470 }
8471
8472 inode_inc_iversion(old_dir);
8473 inode_inc_iversion(new_dir);
8474 inode_inc_iversion(old_inode);
8475 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8476
8477 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8478 /*
8479 * If we are renaming in the same directory (and it's not a
8480 * root entry) pin the log to prevent any concurrent task from
8481 * logging the directory after we removed the old entry and
8482 * before we add the new entry, otherwise that task can sync
8483 * a log without any entry for the inode we are renaming and
8484 * therefore replaying that log, if a power failure happens
8485 * after syncing the log, would result in deleting the inode.
8486 *
8487 * If the rename affects two different directories, we want to
8488 * make sure the that there's no log commit that contains
8489 * updates for only one of the directories but not for the
8490 * other.
8491 *
8492 * If we are renaming an entry for a root, we don't care about
8493 * log updates since we called btrfs_set_log_full_commit().
8494 */
8495 btrfs_pin_log_trans(root);
8496 btrfs_pin_log_trans(dest);
8497 logs_pinned = true;
8498 }
8499
8500 if (old_dentry->d_parent != new_dentry->d_parent)
8501 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8502 BTRFS_I(old_inode), true);
8503
8504 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8505 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8506 if (ret) {
8507 btrfs_abort_transaction(trans, ret);
8508 goto out_fail;
8509 }
8510 } else {
8511 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8512 BTRFS_I(d_inode(old_dentry)),
8513 &old_fname.disk_name, &rename_ctx);
8514 if (ret) {
8515 btrfs_abort_transaction(trans, ret);
8516 goto out_fail;
8517 }
8518 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8519 if (ret) {
8520 btrfs_abort_transaction(trans, ret);
8521 goto out_fail;
8522 }
8523 }
8524
8525 if (new_inode) {
8526 inode_inc_iversion(new_inode);
8527 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8528 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8529 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8530 if (ret) {
8531 btrfs_abort_transaction(trans, ret);
8532 goto out_fail;
8533 }
8534 BUG_ON(new_inode->i_nlink == 0);
8535 } else {
8536 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8537 BTRFS_I(d_inode(new_dentry)),
8538 &new_fname.disk_name);
8539 if (ret) {
8540 btrfs_abort_transaction(trans, ret);
8541 goto out_fail;
8542 }
8543 }
8544 if (new_inode->i_nlink == 0) {
8545 ret = btrfs_orphan_add(trans,
8546 BTRFS_I(d_inode(new_dentry)));
8547 if (ret) {
8548 btrfs_abort_transaction(trans, ret);
8549 goto out_fail;
8550 }
8551 }
8552 }
8553
8554 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8555 &new_fname.disk_name, 0, index);
8556 if (ret) {
8557 btrfs_abort_transaction(trans, ret);
8558 goto out_fail;
8559 }
8560
8561 if (old_inode->i_nlink == 1)
8562 BTRFS_I(old_inode)->dir_index = index;
8563
8564 if (logs_pinned)
8565 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8566 rename_ctx.index, new_dentry->d_parent);
8567
8568 if (flags & RENAME_WHITEOUT) {
8569 ret = btrfs_create_new_inode(trans, &whiteout_args);
8570 if (ret) {
8571 btrfs_abort_transaction(trans, ret);
8572 goto out_fail;
8573 } else {
8574 unlock_new_inode(whiteout_args.inode);
8575 iput(whiteout_args.inode);
8576 whiteout_args.inode = NULL;
8577 }
8578 }
8579 out_fail:
8580 if (logs_pinned) {
8581 btrfs_end_log_trans(root);
8582 btrfs_end_log_trans(dest);
8583 }
8584 ret2 = btrfs_end_transaction(trans);
8585 ret = ret ? ret : ret2;
8586 out_notrans:
8587 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8588 up_read(&fs_info->subvol_sem);
8589 if (flags & RENAME_WHITEOUT)
8590 btrfs_new_inode_args_destroy(&whiteout_args);
8591 out_whiteout_inode:
8592 if (flags & RENAME_WHITEOUT)
8593 iput(whiteout_args.inode);
8594 out_fscrypt_names:
8595 fscrypt_free_filename(&old_fname);
8596 fscrypt_free_filename(&new_fname);
8597 return ret;
8598 }
8599
btrfs_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8600 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8601 struct dentry *old_dentry, struct inode *new_dir,
8602 struct dentry *new_dentry, unsigned int flags)
8603 {
8604 int ret;
8605
8606 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8607 return -EINVAL;
8608
8609 if (flags & RENAME_EXCHANGE)
8610 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8611 new_dentry);
8612 else
8613 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8614 new_dentry, flags);
8615
8616 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8617
8618 return ret;
8619 }
8620
8621 struct btrfs_delalloc_work {
8622 struct inode *inode;
8623 struct completion completion;
8624 struct list_head list;
8625 struct btrfs_work work;
8626 };
8627
btrfs_run_delalloc_work(struct btrfs_work * work)8628 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8629 {
8630 struct btrfs_delalloc_work *delalloc_work;
8631 struct inode *inode;
8632
8633 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8634 work);
8635 inode = delalloc_work->inode;
8636 filemap_flush(inode->i_mapping);
8637 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8638 &BTRFS_I(inode)->runtime_flags))
8639 filemap_flush(inode->i_mapping);
8640
8641 iput(inode);
8642 complete(&delalloc_work->completion);
8643 }
8644
btrfs_alloc_delalloc_work(struct inode * inode)8645 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8646 {
8647 struct btrfs_delalloc_work *work;
8648
8649 work = kmalloc(sizeof(*work), GFP_NOFS);
8650 if (!work)
8651 return NULL;
8652
8653 init_completion(&work->completion);
8654 INIT_LIST_HEAD(&work->list);
8655 work->inode = inode;
8656 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8657
8658 return work;
8659 }
8660
8661 /*
8662 * some fairly slow code that needs optimization. This walks the list
8663 * of all the inodes with pending delalloc and forces them to disk.
8664 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)8665 static int start_delalloc_inodes(struct btrfs_root *root,
8666 struct writeback_control *wbc, bool snapshot,
8667 bool in_reclaim_context)
8668 {
8669 struct btrfs_delalloc_work *work, *next;
8670 LIST_HEAD(works);
8671 LIST_HEAD(splice);
8672 int ret = 0;
8673 bool full_flush = wbc->nr_to_write == LONG_MAX;
8674
8675 mutex_lock(&root->delalloc_mutex);
8676 spin_lock(&root->delalloc_lock);
8677 list_splice_init(&root->delalloc_inodes, &splice);
8678 while (!list_empty(&splice)) {
8679 struct btrfs_inode *inode;
8680 struct inode *tmp_inode;
8681
8682 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes);
8683
8684 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
8685
8686 if (in_reclaim_context &&
8687 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags))
8688 continue;
8689
8690 tmp_inode = igrab(&inode->vfs_inode);
8691 if (!tmp_inode) {
8692 cond_resched_lock(&root->delalloc_lock);
8693 continue;
8694 }
8695 spin_unlock(&root->delalloc_lock);
8696
8697 if (snapshot)
8698 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags);
8699 if (full_flush) {
8700 work = btrfs_alloc_delalloc_work(&inode->vfs_inode);
8701 if (!work) {
8702 iput(&inode->vfs_inode);
8703 ret = -ENOMEM;
8704 goto out;
8705 }
8706 list_add_tail(&work->list, &works);
8707 btrfs_queue_work(root->fs_info->flush_workers,
8708 &work->work);
8709 } else {
8710 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc);
8711 btrfs_add_delayed_iput(inode);
8712 if (ret || wbc->nr_to_write <= 0)
8713 goto out;
8714 }
8715 cond_resched();
8716 spin_lock(&root->delalloc_lock);
8717 }
8718 spin_unlock(&root->delalloc_lock);
8719
8720 out:
8721 list_for_each_entry_safe(work, next, &works, list) {
8722 list_del_init(&work->list);
8723 wait_for_completion(&work->completion);
8724 kfree(work);
8725 }
8726
8727 if (!list_empty(&splice)) {
8728 spin_lock(&root->delalloc_lock);
8729 list_splice_tail(&splice, &root->delalloc_inodes);
8730 spin_unlock(&root->delalloc_lock);
8731 }
8732 mutex_unlock(&root->delalloc_mutex);
8733 return ret;
8734 }
8735
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)8736 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8737 {
8738 struct writeback_control wbc = {
8739 .nr_to_write = LONG_MAX,
8740 .sync_mode = WB_SYNC_NONE,
8741 .range_start = 0,
8742 .range_end = LLONG_MAX,
8743 };
8744 struct btrfs_fs_info *fs_info = root->fs_info;
8745
8746 if (BTRFS_FS_ERROR(fs_info))
8747 return -EROFS;
8748
8749 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8750 }
8751
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)8752 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8753 bool in_reclaim_context)
8754 {
8755 struct writeback_control wbc = {
8756 .nr_to_write = nr,
8757 .sync_mode = WB_SYNC_NONE,
8758 .range_start = 0,
8759 .range_end = LLONG_MAX,
8760 };
8761 struct btrfs_root *root;
8762 LIST_HEAD(splice);
8763 int ret;
8764
8765 if (BTRFS_FS_ERROR(fs_info))
8766 return -EROFS;
8767
8768 mutex_lock(&fs_info->delalloc_root_mutex);
8769 spin_lock(&fs_info->delalloc_root_lock);
8770 list_splice_init(&fs_info->delalloc_roots, &splice);
8771 while (!list_empty(&splice)) {
8772 /*
8773 * Reset nr_to_write here so we know that we're doing a full
8774 * flush.
8775 */
8776 if (nr == LONG_MAX)
8777 wbc.nr_to_write = LONG_MAX;
8778
8779 root = list_first_entry(&splice, struct btrfs_root,
8780 delalloc_root);
8781 root = btrfs_grab_root(root);
8782 BUG_ON(!root);
8783 list_move_tail(&root->delalloc_root,
8784 &fs_info->delalloc_roots);
8785 spin_unlock(&fs_info->delalloc_root_lock);
8786
8787 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8788 btrfs_put_root(root);
8789 if (ret < 0 || wbc.nr_to_write <= 0)
8790 goto out;
8791 spin_lock(&fs_info->delalloc_root_lock);
8792 }
8793 spin_unlock(&fs_info->delalloc_root_lock);
8794
8795 ret = 0;
8796 out:
8797 if (!list_empty(&splice)) {
8798 spin_lock(&fs_info->delalloc_root_lock);
8799 list_splice_tail(&splice, &fs_info->delalloc_roots);
8800 spin_unlock(&fs_info->delalloc_root_lock);
8801 }
8802 mutex_unlock(&fs_info->delalloc_root_mutex);
8803 return ret;
8804 }
8805
btrfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)8806 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8807 struct dentry *dentry, const char *symname)
8808 {
8809 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8810 struct btrfs_trans_handle *trans;
8811 struct btrfs_root *root = BTRFS_I(dir)->root;
8812 struct btrfs_path *path;
8813 struct btrfs_key key;
8814 struct inode *inode;
8815 struct btrfs_new_inode_args new_inode_args = {
8816 .dir = dir,
8817 .dentry = dentry,
8818 };
8819 unsigned int trans_num_items;
8820 int ret;
8821 int name_len;
8822 int datasize;
8823 unsigned long ptr;
8824 struct btrfs_file_extent_item *ei;
8825 struct extent_buffer *leaf;
8826
8827 name_len = strlen(symname);
8828 /*
8829 * Symlinks utilize uncompressed inline extent data, which should not
8830 * reach block size.
8831 */
8832 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
8833 name_len >= fs_info->sectorsize)
8834 return -ENAMETOOLONG;
8835
8836 inode = new_inode(dir->i_sb);
8837 if (!inode)
8838 return -ENOMEM;
8839 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8840 inode->i_op = &btrfs_symlink_inode_operations;
8841 inode_nohighmem(inode);
8842 inode->i_mapping->a_ops = &btrfs_aops;
8843 btrfs_i_size_write(BTRFS_I(inode), name_len);
8844 inode_set_bytes(inode, name_len);
8845
8846 new_inode_args.inode = inode;
8847 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8848 if (ret)
8849 goto out_inode;
8850 /* 1 additional item for the inline extent */
8851 trans_num_items++;
8852
8853 trans = btrfs_start_transaction(root, trans_num_items);
8854 if (IS_ERR(trans)) {
8855 ret = PTR_ERR(trans);
8856 goto out_new_inode_args;
8857 }
8858
8859 ret = btrfs_create_new_inode(trans, &new_inode_args);
8860 if (ret)
8861 goto out;
8862
8863 path = btrfs_alloc_path();
8864 if (!path) {
8865 ret = -ENOMEM;
8866 btrfs_abort_transaction(trans, ret);
8867 discard_new_inode(inode);
8868 inode = NULL;
8869 goto out;
8870 }
8871 key.objectid = btrfs_ino(BTRFS_I(inode));
8872 key.type = BTRFS_EXTENT_DATA_KEY;
8873 key.offset = 0;
8874 datasize = btrfs_file_extent_calc_inline_size(name_len);
8875 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize);
8876 if (ret) {
8877 btrfs_abort_transaction(trans, ret);
8878 btrfs_free_path(path);
8879 discard_new_inode(inode);
8880 inode = NULL;
8881 goto out;
8882 }
8883 leaf = path->nodes[0];
8884 ei = btrfs_item_ptr(leaf, path->slots[0],
8885 struct btrfs_file_extent_item);
8886 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8887 btrfs_set_file_extent_type(leaf, ei,
8888 BTRFS_FILE_EXTENT_INLINE);
8889 btrfs_set_file_extent_encryption(leaf, ei, 0);
8890 btrfs_set_file_extent_compression(leaf, ei, 0);
8891 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8892 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8893
8894 ptr = btrfs_file_extent_inline_start(ei);
8895 write_extent_buffer(leaf, symname, ptr, name_len);
8896 btrfs_free_path(path);
8897
8898 d_instantiate_new(dentry, inode);
8899 ret = 0;
8900 out:
8901 btrfs_end_transaction(trans);
8902 btrfs_btree_balance_dirty(fs_info);
8903 out_new_inode_args:
8904 btrfs_new_inode_args_destroy(&new_inode_args);
8905 out_inode:
8906 if (ret)
8907 iput(inode);
8908 return ret;
8909 }
8910
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)8911 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8912 struct btrfs_trans_handle *trans_in,
8913 struct btrfs_inode *inode,
8914 struct btrfs_key *ins,
8915 u64 file_offset)
8916 {
8917 struct btrfs_file_extent_item stack_fi;
8918 struct btrfs_replace_extent_info extent_info;
8919 struct btrfs_trans_handle *trans = trans_in;
8920 struct btrfs_path *path;
8921 u64 start = ins->objectid;
8922 u64 len = ins->offset;
8923 u64 qgroup_released = 0;
8924 int ret;
8925
8926 memset(&stack_fi, 0, sizeof(stack_fi));
8927
8928 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8929 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8930 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8931 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8932 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8933 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8934 /* Encryption and other encoding is reserved and all 0 */
8935
8936 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8937 if (ret < 0)
8938 return ERR_PTR(ret);
8939
8940 if (trans) {
8941 ret = insert_reserved_file_extent(trans, inode,
8942 file_offset, &stack_fi,
8943 true, qgroup_released);
8944 if (ret)
8945 goto free_qgroup;
8946 return trans;
8947 }
8948
8949 extent_info.disk_offset = start;
8950 extent_info.disk_len = len;
8951 extent_info.data_offset = 0;
8952 extent_info.data_len = len;
8953 extent_info.file_offset = file_offset;
8954 extent_info.extent_buf = (char *)&stack_fi;
8955 extent_info.is_new_extent = true;
8956 extent_info.update_times = true;
8957 extent_info.qgroup_reserved = qgroup_released;
8958 extent_info.insertions = 0;
8959
8960 path = btrfs_alloc_path();
8961 if (!path) {
8962 ret = -ENOMEM;
8963 goto free_qgroup;
8964 }
8965
8966 ret = btrfs_replace_file_extents(inode, path, file_offset,
8967 file_offset + len - 1, &extent_info,
8968 &trans);
8969 btrfs_free_path(path);
8970 if (ret)
8971 goto free_qgroup;
8972 return trans;
8973
8974 free_qgroup:
8975 /*
8976 * We have released qgroup data range at the beginning of the function,
8977 * and normally qgroup_released bytes will be freed when committing
8978 * transaction.
8979 * But if we error out early, we have to free what we have released
8980 * or we leak qgroup data reservation.
8981 */
8982 btrfs_qgroup_free_refroot(inode->root->fs_info,
8983 btrfs_root_id(inode->root), qgroup_released,
8984 BTRFS_QGROUP_RSV_DATA);
8985 return ERR_PTR(ret);
8986 }
8987
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)8988 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8989 u64 start, u64 num_bytes, u64 min_size,
8990 loff_t actual_len, u64 *alloc_hint,
8991 struct btrfs_trans_handle *trans)
8992 {
8993 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8994 struct extent_map *em;
8995 struct btrfs_root *root = BTRFS_I(inode)->root;
8996 struct btrfs_key ins;
8997 u64 cur_offset = start;
8998 u64 clear_offset = start;
8999 u64 i_size;
9000 u64 cur_bytes;
9001 u64 last_alloc = (u64)-1;
9002 int ret = 0;
9003 bool own_trans = true;
9004 u64 end = start + num_bytes - 1;
9005
9006 if (trans)
9007 own_trans = false;
9008 while (num_bytes > 0) {
9009 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9010 cur_bytes = max(cur_bytes, min_size);
9011 /*
9012 * If we are severely fragmented we could end up with really
9013 * small allocations, so if the allocator is returning small
9014 * chunks lets make its job easier by only searching for those
9015 * sized chunks.
9016 */
9017 cur_bytes = min(cur_bytes, last_alloc);
9018 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9019 min_size, 0, *alloc_hint, &ins, 1, 0);
9020 if (ret)
9021 break;
9022
9023 /*
9024 * We've reserved this space, and thus converted it from
9025 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9026 * from here on out we will only need to clear our reservation
9027 * for the remaining unreserved area, so advance our
9028 * clear_offset by our extent size.
9029 */
9030 clear_offset += ins.offset;
9031
9032 last_alloc = ins.offset;
9033 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9034 &ins, cur_offset);
9035 /*
9036 * Now that we inserted the prealloc extent we can finally
9037 * decrement the number of reservations in the block group.
9038 * If we did it before, we could race with relocation and have
9039 * relocation miss the reserved extent, making it fail later.
9040 */
9041 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9042 if (IS_ERR(trans)) {
9043 ret = PTR_ERR(trans);
9044 btrfs_free_reserved_extent(fs_info, ins.objectid,
9045 ins.offset, false);
9046 break;
9047 }
9048
9049 em = btrfs_alloc_extent_map();
9050 if (!em) {
9051 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9052 cur_offset + ins.offset - 1, false);
9053 btrfs_set_inode_full_sync(BTRFS_I(inode));
9054 goto next;
9055 }
9056
9057 em->start = cur_offset;
9058 em->len = ins.offset;
9059 em->disk_bytenr = ins.objectid;
9060 em->offset = 0;
9061 em->disk_num_bytes = ins.offset;
9062 em->ram_bytes = ins.offset;
9063 em->flags |= EXTENT_FLAG_PREALLOC;
9064 em->generation = trans->transid;
9065
9066 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9067 btrfs_free_extent_map(em);
9068 next:
9069 num_bytes -= ins.offset;
9070 cur_offset += ins.offset;
9071 *alloc_hint = ins.objectid + ins.offset;
9072
9073 inode_inc_iversion(inode);
9074 inode_set_ctime_current(inode);
9075 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9076 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9077 (actual_len > inode->i_size) &&
9078 (cur_offset > inode->i_size)) {
9079 if (cur_offset > actual_len)
9080 i_size = actual_len;
9081 else
9082 i_size = cur_offset;
9083 i_size_write(inode, i_size);
9084 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9085 }
9086
9087 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9088
9089 if (ret) {
9090 btrfs_abort_transaction(trans, ret);
9091 if (own_trans)
9092 btrfs_end_transaction(trans);
9093 break;
9094 }
9095
9096 if (own_trans) {
9097 btrfs_end_transaction(trans);
9098 trans = NULL;
9099 }
9100 }
9101 if (clear_offset < end)
9102 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9103 end - clear_offset + 1);
9104 return ret;
9105 }
9106
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9107 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9108 u64 start, u64 num_bytes, u64 min_size,
9109 loff_t actual_len, u64 *alloc_hint)
9110 {
9111 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9112 min_size, actual_len, alloc_hint,
9113 NULL);
9114 }
9115
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9116 int btrfs_prealloc_file_range_trans(struct inode *inode,
9117 struct btrfs_trans_handle *trans, int mode,
9118 u64 start, u64 num_bytes, u64 min_size,
9119 loff_t actual_len, u64 *alloc_hint)
9120 {
9121 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9122 min_size, actual_len, alloc_hint, trans);
9123 }
9124
btrfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)9125 static int btrfs_permission(struct mnt_idmap *idmap,
9126 struct inode *inode, int mask)
9127 {
9128 struct btrfs_root *root = BTRFS_I(inode)->root;
9129 umode_t mode = inode->i_mode;
9130
9131 if (mask & MAY_WRITE &&
9132 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9133 if (btrfs_root_readonly(root))
9134 return -EROFS;
9135 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9136 return -EACCES;
9137 }
9138 return generic_permission(idmap, inode, mask);
9139 }
9140
btrfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)9141 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9142 struct file *file, umode_t mode)
9143 {
9144 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9145 struct btrfs_trans_handle *trans;
9146 struct btrfs_root *root = BTRFS_I(dir)->root;
9147 struct inode *inode;
9148 struct btrfs_new_inode_args new_inode_args = {
9149 .dir = dir,
9150 .dentry = file->f_path.dentry,
9151 .orphan = true,
9152 };
9153 unsigned int trans_num_items;
9154 int ret;
9155
9156 inode = new_inode(dir->i_sb);
9157 if (!inode)
9158 return -ENOMEM;
9159 inode_init_owner(idmap, inode, dir, mode);
9160 inode->i_fop = &btrfs_file_operations;
9161 inode->i_op = &btrfs_file_inode_operations;
9162 inode->i_mapping->a_ops = &btrfs_aops;
9163
9164 new_inode_args.inode = inode;
9165 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9166 if (ret)
9167 goto out_inode;
9168
9169 trans = btrfs_start_transaction(root, trans_num_items);
9170 if (IS_ERR(trans)) {
9171 ret = PTR_ERR(trans);
9172 goto out_new_inode_args;
9173 }
9174
9175 ret = btrfs_create_new_inode(trans, &new_inode_args);
9176
9177 /*
9178 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9179 * set it to 1 because d_tmpfile() will issue a warning if the count is
9180 * 0, through:
9181 *
9182 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9183 */
9184 set_nlink(inode, 1);
9185
9186 if (!ret) {
9187 d_tmpfile(file, inode);
9188 unlock_new_inode(inode);
9189 mark_inode_dirty(inode);
9190 }
9191
9192 btrfs_end_transaction(trans);
9193 btrfs_btree_balance_dirty(fs_info);
9194 out_new_inode_args:
9195 btrfs_new_inode_args_destroy(&new_inode_args);
9196 out_inode:
9197 if (ret)
9198 iput(inode);
9199 return finish_open_simple(file, ret);
9200 }
9201
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)9202 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9203 int compress_type)
9204 {
9205 switch (compress_type) {
9206 case BTRFS_COMPRESS_NONE:
9207 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9208 case BTRFS_COMPRESS_ZLIB:
9209 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9210 case BTRFS_COMPRESS_LZO:
9211 /*
9212 * The LZO format depends on the sector size. 64K is the maximum
9213 * sector size that we support.
9214 */
9215 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9216 return -EINVAL;
9217 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9218 (fs_info->sectorsize_bits - 12);
9219 case BTRFS_COMPRESS_ZSTD:
9220 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9221 default:
9222 return -EUCLEAN;
9223 }
9224 }
9225
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)9226 static ssize_t btrfs_encoded_read_inline(
9227 struct kiocb *iocb,
9228 struct iov_iter *iter, u64 start,
9229 u64 lockend,
9230 struct extent_state **cached_state,
9231 u64 extent_start, size_t count,
9232 struct btrfs_ioctl_encoded_io_args *encoded,
9233 bool *unlocked)
9234 {
9235 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9236 struct btrfs_root *root = inode->root;
9237 struct btrfs_fs_info *fs_info = root->fs_info;
9238 struct extent_io_tree *io_tree = &inode->io_tree;
9239 BTRFS_PATH_AUTO_FREE(path);
9240 struct extent_buffer *leaf;
9241 struct btrfs_file_extent_item *item;
9242 u64 ram_bytes;
9243 unsigned long ptr;
9244 void *tmp;
9245 ssize_t ret;
9246 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9247
9248 path = btrfs_alloc_path();
9249 if (!path)
9250 return -ENOMEM;
9251
9252 path->nowait = nowait;
9253
9254 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9255 extent_start, 0);
9256 if (ret) {
9257 if (ret > 0) {
9258 /* The extent item disappeared? */
9259 return -EIO;
9260 }
9261 return ret;
9262 }
9263 leaf = path->nodes[0];
9264 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9265
9266 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9267 ptr = btrfs_file_extent_inline_start(item);
9268
9269 encoded->len = min_t(u64, extent_start + ram_bytes,
9270 inode->vfs_inode.i_size) - iocb->ki_pos;
9271 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9272 btrfs_file_extent_compression(leaf, item));
9273 if (ret < 0)
9274 return ret;
9275 encoded->compression = ret;
9276 if (encoded->compression) {
9277 size_t inline_size;
9278
9279 inline_size = btrfs_file_extent_inline_item_len(leaf,
9280 path->slots[0]);
9281 if (inline_size > count)
9282 return -ENOBUFS;
9283
9284 count = inline_size;
9285 encoded->unencoded_len = ram_bytes;
9286 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9287 } else {
9288 count = min_t(u64, count, encoded->len);
9289 encoded->len = count;
9290 encoded->unencoded_len = count;
9291 ptr += iocb->ki_pos - extent_start;
9292 }
9293
9294 tmp = kmalloc(count, GFP_NOFS);
9295 if (!tmp)
9296 return -ENOMEM;
9297
9298 read_extent_buffer(leaf, tmp, ptr, count);
9299 btrfs_release_path(path);
9300 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9301 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9302 *unlocked = true;
9303
9304 ret = copy_to_iter(tmp, count, iter);
9305 if (ret != count)
9306 ret = -EFAULT;
9307 kfree(tmp);
9308
9309 return ret;
9310 }
9311
9312 struct btrfs_encoded_read_private {
9313 struct completion *sync_reads;
9314 void *uring_ctx;
9315 refcount_t pending_refs;
9316 blk_status_t status;
9317 };
9318
btrfs_encoded_read_endio(struct btrfs_bio * bbio)9319 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9320 {
9321 struct btrfs_encoded_read_private *priv = bbio->private;
9322
9323 if (bbio->bio.bi_status) {
9324 /*
9325 * The memory barrier implied by the refcount_dec_and_test() here
9326 * pairs with the memory barrier implied by the refcount_dec_and_test()
9327 * in btrfs_encoded_read_regular_fill_pages() to ensure that
9328 * this write is observed before the load of status in
9329 * btrfs_encoded_read_regular_fill_pages().
9330 */
9331 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9332 }
9333 if (refcount_dec_and_test(&priv->pending_refs)) {
9334 int err = blk_status_to_errno(READ_ONCE(priv->status));
9335
9336 if (priv->uring_ctx) {
9337 btrfs_uring_read_extent_endio(priv->uring_ctx, err);
9338 kfree(priv);
9339 } else {
9340 complete(priv->sync_reads);
9341 }
9342 }
9343 bio_put(&bbio->bio);
9344 }
9345
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 disk_bytenr,u64 disk_io_size,struct page ** pages,void * uring_ctx)9346 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9347 u64 disk_bytenr, u64 disk_io_size,
9348 struct page **pages, void *uring_ctx)
9349 {
9350 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9351 struct btrfs_encoded_read_private *priv, sync_priv;
9352 struct completion sync_reads;
9353 unsigned long i = 0;
9354 struct btrfs_bio *bbio;
9355 int ret;
9356
9357 /*
9358 * Fast path for synchronous reads which completes in this call, io_uring
9359 * needs longer time span.
9360 */
9361 if (uring_ctx) {
9362 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS);
9363 if (!priv)
9364 return -ENOMEM;
9365 } else {
9366 priv = &sync_priv;
9367 init_completion(&sync_reads);
9368 priv->sync_reads = &sync_reads;
9369 }
9370
9371 refcount_set(&priv->pending_refs, 1);
9372 priv->status = 0;
9373 priv->uring_ctx = uring_ctx;
9374
9375 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9376 btrfs_encoded_read_endio, priv);
9377 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9378 bbio->inode = inode;
9379
9380 do {
9381 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9382
9383 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9384 refcount_inc(&priv->pending_refs);
9385 btrfs_submit_bbio(bbio, 0);
9386
9387 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9388 btrfs_encoded_read_endio, priv);
9389 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9390 bbio->inode = inode;
9391 continue;
9392 }
9393
9394 i++;
9395 disk_bytenr += bytes;
9396 disk_io_size -= bytes;
9397 } while (disk_io_size);
9398
9399 refcount_inc(&priv->pending_refs);
9400 btrfs_submit_bbio(bbio, 0);
9401
9402 if (uring_ctx) {
9403 if (refcount_dec_and_test(&priv->pending_refs)) {
9404 ret = blk_status_to_errno(READ_ONCE(priv->status));
9405 btrfs_uring_read_extent_endio(uring_ctx, ret);
9406 kfree(priv);
9407 return ret;
9408 }
9409
9410 return -EIOCBQUEUED;
9411 } else {
9412 if (!refcount_dec_and_test(&priv->pending_refs))
9413 wait_for_completion_io(&sync_reads);
9414 /* See btrfs_encoded_read_endio() for ordering. */
9415 return blk_status_to_errno(READ_ONCE(priv->status));
9416 }
9417 }
9418
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)9419 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
9420 u64 start, u64 lockend,
9421 struct extent_state **cached_state,
9422 u64 disk_bytenr, u64 disk_io_size,
9423 size_t count, bool compressed, bool *unlocked)
9424 {
9425 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9426 struct extent_io_tree *io_tree = &inode->io_tree;
9427 struct page **pages;
9428 unsigned long nr_pages, i;
9429 u64 cur;
9430 size_t page_offset;
9431 ssize_t ret;
9432
9433 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9434 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9435 if (!pages)
9436 return -ENOMEM;
9437 ret = btrfs_alloc_page_array(nr_pages, pages, false);
9438 if (ret) {
9439 ret = -ENOMEM;
9440 goto out;
9441 }
9442
9443 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
9444 disk_io_size, pages, NULL);
9445 if (ret)
9446 goto out;
9447
9448 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9449 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9450 *unlocked = true;
9451
9452 if (compressed) {
9453 i = 0;
9454 page_offset = 0;
9455 } else {
9456 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9457 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9458 }
9459 cur = 0;
9460 while (cur < count) {
9461 size_t bytes = min_t(size_t, count - cur,
9462 PAGE_SIZE - page_offset);
9463
9464 if (copy_page_to_iter(pages[i], page_offset, bytes,
9465 iter) != bytes) {
9466 ret = -EFAULT;
9467 goto out;
9468 }
9469 i++;
9470 cur += bytes;
9471 page_offset = 0;
9472 }
9473 ret = count;
9474 out:
9475 for (i = 0; i < nr_pages; i++) {
9476 if (pages[i])
9477 __free_page(pages[i]);
9478 }
9479 kfree(pages);
9480 return ret;
9481 }
9482
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded,struct extent_state ** cached_state,u64 * disk_bytenr,u64 * disk_io_size)9483 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9484 struct btrfs_ioctl_encoded_io_args *encoded,
9485 struct extent_state **cached_state,
9486 u64 *disk_bytenr, u64 *disk_io_size)
9487 {
9488 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9489 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9490 struct extent_io_tree *io_tree = &inode->io_tree;
9491 ssize_t ret;
9492 size_t count = iov_iter_count(iter);
9493 u64 start, lockend;
9494 struct extent_map *em;
9495 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9496 bool unlocked = false;
9497
9498 file_accessed(iocb->ki_filp);
9499
9500 ret = btrfs_inode_lock(inode,
9501 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0));
9502 if (ret)
9503 return ret;
9504
9505 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9506 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9507 return 0;
9508 }
9509 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9510 /*
9511 * We don't know how long the extent containing iocb->ki_pos is, but if
9512 * it's compressed we know that it won't be longer than this.
9513 */
9514 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9515
9516 if (nowait) {
9517 struct btrfs_ordered_extent *ordered;
9518
9519 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping,
9520 start, lockend)) {
9521 ret = -EAGAIN;
9522 goto out_unlock_inode;
9523 }
9524
9525 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) {
9526 ret = -EAGAIN;
9527 goto out_unlock_inode;
9528 }
9529
9530 ordered = btrfs_lookup_ordered_range(inode, start,
9531 lockend - start + 1);
9532 if (ordered) {
9533 btrfs_put_ordered_extent(ordered);
9534 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9535 ret = -EAGAIN;
9536 goto out_unlock_inode;
9537 }
9538 } else {
9539 for (;;) {
9540 struct btrfs_ordered_extent *ordered;
9541
9542 ret = btrfs_wait_ordered_range(inode, start,
9543 lockend - start + 1);
9544 if (ret)
9545 goto out_unlock_inode;
9546
9547 btrfs_lock_extent(io_tree, start, lockend, cached_state);
9548 ordered = btrfs_lookup_ordered_range(inode, start,
9549 lockend - start + 1);
9550 if (!ordered)
9551 break;
9552 btrfs_put_ordered_extent(ordered);
9553 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9554 cond_resched();
9555 }
9556 }
9557
9558 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9559 if (IS_ERR(em)) {
9560 ret = PTR_ERR(em);
9561 goto out_unlock_extent;
9562 }
9563
9564 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9565 u64 extent_start = em->start;
9566
9567 /*
9568 * For inline extents we get everything we need out of the
9569 * extent item.
9570 */
9571 btrfs_free_extent_map(em);
9572 em = NULL;
9573 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9574 cached_state, extent_start,
9575 count, encoded, &unlocked);
9576 goto out_unlock_extent;
9577 }
9578
9579 /*
9580 * We only want to return up to EOF even if the extent extends beyond
9581 * that.
9582 */
9583 encoded->len = min_t(u64, btrfs_extent_map_end(em),
9584 inode->vfs_inode.i_size) - iocb->ki_pos;
9585 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9586 (em->flags & EXTENT_FLAG_PREALLOC)) {
9587 *disk_bytenr = EXTENT_MAP_HOLE;
9588 count = min_t(u64, count, encoded->len);
9589 encoded->len = count;
9590 encoded->unencoded_len = count;
9591 } else if (btrfs_extent_map_is_compressed(em)) {
9592 *disk_bytenr = em->disk_bytenr;
9593 /*
9594 * Bail if the buffer isn't large enough to return the whole
9595 * compressed extent.
9596 */
9597 if (em->disk_num_bytes > count) {
9598 ret = -ENOBUFS;
9599 goto out_em;
9600 }
9601 *disk_io_size = em->disk_num_bytes;
9602 count = em->disk_num_bytes;
9603 encoded->unencoded_len = em->ram_bytes;
9604 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9605 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9606 btrfs_extent_map_compression(em));
9607 if (ret < 0)
9608 goto out_em;
9609 encoded->compression = ret;
9610 } else {
9611 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start);
9612 if (encoded->len > count)
9613 encoded->len = count;
9614 /*
9615 * Don't read beyond what we locked. This also limits the page
9616 * allocations that we'll do.
9617 */
9618 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9619 count = start + *disk_io_size - iocb->ki_pos;
9620 encoded->len = count;
9621 encoded->unencoded_len = count;
9622 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize);
9623 }
9624 btrfs_free_extent_map(em);
9625 em = NULL;
9626
9627 if (*disk_bytenr == EXTENT_MAP_HOLE) {
9628 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9629 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9630 unlocked = true;
9631 ret = iov_iter_zero(count, iter);
9632 if (ret != count)
9633 ret = -EFAULT;
9634 } else {
9635 ret = -EIOCBQUEUED;
9636 goto out_unlock_extent;
9637 }
9638
9639 out_em:
9640 btrfs_free_extent_map(em);
9641 out_unlock_extent:
9642 /* Leave inode and extent locked if we need to do a read. */
9643 if (!unlocked && ret != -EIOCBQUEUED)
9644 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9645 out_unlock_inode:
9646 if (!unlocked && ret != -EIOCBQUEUED)
9647 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9648 return ret;
9649 }
9650
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)9651 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9652 const struct btrfs_ioctl_encoded_io_args *encoded)
9653 {
9654 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9655 struct btrfs_root *root = inode->root;
9656 struct btrfs_fs_info *fs_info = root->fs_info;
9657 struct extent_io_tree *io_tree = &inode->io_tree;
9658 struct extent_changeset *data_reserved = NULL;
9659 struct extent_state *cached_state = NULL;
9660 struct btrfs_ordered_extent *ordered;
9661 struct btrfs_file_extent file_extent;
9662 int compression;
9663 size_t orig_count;
9664 u64 start, end;
9665 u64 num_bytes, ram_bytes, disk_num_bytes;
9666 unsigned long nr_folios, i;
9667 struct folio **folios;
9668 struct btrfs_key ins;
9669 bool extent_reserved = false;
9670 struct extent_map *em;
9671 ssize_t ret;
9672
9673 switch (encoded->compression) {
9674 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9675 compression = BTRFS_COMPRESS_ZLIB;
9676 break;
9677 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9678 compression = BTRFS_COMPRESS_ZSTD;
9679 break;
9680 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9681 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9682 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9683 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9684 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9685 /* The sector size must match for LZO. */
9686 if (encoded->compression -
9687 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9688 fs_info->sectorsize_bits)
9689 return -EINVAL;
9690 compression = BTRFS_COMPRESS_LZO;
9691 break;
9692 default:
9693 return -EINVAL;
9694 }
9695 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9696 return -EINVAL;
9697
9698 /*
9699 * Compressed extents should always have checksums, so error out if we
9700 * have a NOCOW file or inode was created while mounted with NODATASUM.
9701 */
9702 if (inode->flags & BTRFS_INODE_NODATASUM)
9703 return -EINVAL;
9704
9705 orig_count = iov_iter_count(from);
9706
9707 /* The extent size must be sane. */
9708 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9709 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9710 return -EINVAL;
9711
9712 /*
9713 * The compressed data must be smaller than the decompressed data.
9714 *
9715 * It's of course possible for data to compress to larger or the same
9716 * size, but the buffered I/O path falls back to no compression for such
9717 * data, and we don't want to break any assumptions by creating these
9718 * extents.
9719 *
9720 * Note that this is less strict than the current check we have that the
9721 * compressed data must be at least one sector smaller than the
9722 * decompressed data. We only want to enforce the weaker requirement
9723 * from old kernels that it is at least one byte smaller.
9724 */
9725 if (orig_count >= encoded->unencoded_len)
9726 return -EINVAL;
9727
9728 /* The extent must start on a sector boundary. */
9729 start = iocb->ki_pos;
9730 if (!IS_ALIGNED(start, fs_info->sectorsize))
9731 return -EINVAL;
9732
9733 /*
9734 * The extent must end on a sector boundary. However, we allow a write
9735 * which ends at or extends i_size to have an unaligned length; we round
9736 * up the extent size and set i_size to the unaligned end.
9737 */
9738 if (start + encoded->len < inode->vfs_inode.i_size &&
9739 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9740 return -EINVAL;
9741
9742 /* Finally, the offset in the unencoded data must be sector-aligned. */
9743 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9744 return -EINVAL;
9745
9746 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9747 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9748 end = start + num_bytes - 1;
9749
9750 /*
9751 * If the extent cannot be inline, the compressed data on disk must be
9752 * sector-aligned. For convenience, we extend it with zeroes if it
9753 * isn't.
9754 */
9755 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9756 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9757 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT);
9758 if (!folios)
9759 return -ENOMEM;
9760 for (i = 0; i < nr_folios; i++) {
9761 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9762 char *kaddr;
9763
9764 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9765 if (!folios[i]) {
9766 ret = -ENOMEM;
9767 goto out_folios;
9768 }
9769 kaddr = kmap_local_folio(folios[i], 0);
9770 if (copy_from_iter(kaddr, bytes, from) != bytes) {
9771 kunmap_local(kaddr);
9772 ret = -EFAULT;
9773 goto out_folios;
9774 }
9775 if (bytes < PAGE_SIZE)
9776 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9777 kunmap_local(kaddr);
9778 }
9779
9780 for (;;) {
9781 struct btrfs_ordered_extent *ordered;
9782
9783 ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9784 if (ret)
9785 goto out_folios;
9786 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9787 start >> PAGE_SHIFT,
9788 end >> PAGE_SHIFT);
9789 if (ret)
9790 goto out_folios;
9791 btrfs_lock_extent(io_tree, start, end, &cached_state);
9792 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9793 if (!ordered &&
9794 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9795 break;
9796 if (ordered)
9797 btrfs_put_ordered_extent(ordered);
9798 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9799 cond_resched();
9800 }
9801
9802 /*
9803 * We don't use the higher-level delalloc space functions because our
9804 * num_bytes and disk_num_bytes are different.
9805 */
9806 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9807 if (ret)
9808 goto out_unlock;
9809 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9810 if (ret)
9811 goto out_free_data_space;
9812 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9813 false);
9814 if (ret)
9815 goto out_qgroup_free_data;
9816
9817 /* Try an inline extent first. */
9818 if (encoded->unencoded_len == encoded->len &&
9819 encoded->unencoded_offset == 0 &&
9820 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9821 ret = __cow_file_range_inline(inode, encoded->len,
9822 orig_count, compression, folios[0],
9823 true);
9824 if (ret <= 0) {
9825 if (ret == 0)
9826 ret = orig_count;
9827 goto out_delalloc_release;
9828 }
9829 }
9830
9831 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9832 disk_num_bytes, 0, 0, &ins, 1, 1);
9833 if (ret)
9834 goto out_delalloc_release;
9835 extent_reserved = true;
9836
9837 file_extent.disk_bytenr = ins.objectid;
9838 file_extent.disk_num_bytes = ins.offset;
9839 file_extent.num_bytes = num_bytes;
9840 file_extent.ram_bytes = ram_bytes;
9841 file_extent.offset = encoded->unencoded_offset;
9842 file_extent.compression = compression;
9843 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9844 if (IS_ERR(em)) {
9845 ret = PTR_ERR(em);
9846 goto out_free_reserved;
9847 }
9848 btrfs_free_extent_map(em);
9849
9850 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9851 (1U << BTRFS_ORDERED_ENCODED) |
9852 (1U << BTRFS_ORDERED_COMPRESSED));
9853 if (IS_ERR(ordered)) {
9854 btrfs_drop_extent_map_range(inode, start, end, false);
9855 ret = PTR_ERR(ordered);
9856 goto out_free_reserved;
9857 }
9858 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9859
9860 if (start + encoded->len > inode->vfs_inode.i_size)
9861 i_size_write(&inode->vfs_inode, start + encoded->len);
9862
9863 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9864
9865 btrfs_delalloc_release_extents(inode, num_bytes);
9866
9867 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9868 ret = orig_count;
9869 goto out;
9870
9871 out_free_reserved:
9872 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9873 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
9874 out_delalloc_release:
9875 btrfs_delalloc_release_extents(inode, num_bytes);
9876 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9877 out_qgroup_free_data:
9878 if (ret < 0)
9879 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9880 out_free_data_space:
9881 /*
9882 * If btrfs_reserve_extent() succeeded, then we already decremented
9883 * bytes_may_use.
9884 */
9885 if (!extent_reserved)
9886 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes);
9887 out_unlock:
9888 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9889 out_folios:
9890 for (i = 0; i < nr_folios; i++) {
9891 if (folios[i])
9892 folio_put(folios[i]);
9893 }
9894 kvfree(folios);
9895 out:
9896 if (ret >= 0)
9897 iocb->ki_pos += encoded->len;
9898 return ret;
9899 }
9900
9901 #ifdef CONFIG_SWAP
9902 /*
9903 * Add an entry indicating a block group or device which is pinned by a
9904 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9905 * negative errno on failure.
9906 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)9907 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9908 bool is_block_group)
9909 {
9910 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9911 struct btrfs_swapfile_pin *sp, *entry;
9912 struct rb_node **p;
9913 struct rb_node *parent = NULL;
9914
9915 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9916 if (!sp)
9917 return -ENOMEM;
9918 sp->ptr = ptr;
9919 sp->inode = inode;
9920 sp->is_block_group = is_block_group;
9921 sp->bg_extent_count = 1;
9922
9923 spin_lock(&fs_info->swapfile_pins_lock);
9924 p = &fs_info->swapfile_pins.rb_node;
9925 while (*p) {
9926 parent = *p;
9927 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9928 if (sp->ptr < entry->ptr ||
9929 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9930 p = &(*p)->rb_left;
9931 } else if (sp->ptr > entry->ptr ||
9932 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9933 p = &(*p)->rb_right;
9934 } else {
9935 if (is_block_group)
9936 entry->bg_extent_count++;
9937 spin_unlock(&fs_info->swapfile_pins_lock);
9938 kfree(sp);
9939 return 1;
9940 }
9941 }
9942 rb_link_node(&sp->node, parent, p);
9943 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9944 spin_unlock(&fs_info->swapfile_pins_lock);
9945 return 0;
9946 }
9947
9948 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)9949 static void btrfs_free_swapfile_pins(struct inode *inode)
9950 {
9951 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9952 struct btrfs_swapfile_pin *sp;
9953 struct rb_node *node, *next;
9954
9955 spin_lock(&fs_info->swapfile_pins_lock);
9956 node = rb_first(&fs_info->swapfile_pins);
9957 while (node) {
9958 next = rb_next(node);
9959 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9960 if (sp->inode == inode) {
9961 rb_erase(&sp->node, &fs_info->swapfile_pins);
9962 if (sp->is_block_group) {
9963 btrfs_dec_block_group_swap_extents(sp->ptr,
9964 sp->bg_extent_count);
9965 btrfs_put_block_group(sp->ptr);
9966 }
9967 kfree(sp);
9968 }
9969 node = next;
9970 }
9971 spin_unlock(&fs_info->swapfile_pins_lock);
9972 }
9973
9974 struct btrfs_swap_info {
9975 u64 start;
9976 u64 block_start;
9977 u64 block_len;
9978 u64 lowest_ppage;
9979 u64 highest_ppage;
9980 unsigned long nr_pages;
9981 int nr_extents;
9982 };
9983
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)9984 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9985 struct btrfs_swap_info *bsi)
9986 {
9987 unsigned long nr_pages;
9988 unsigned long max_pages;
9989 u64 first_ppage, first_ppage_reported, next_ppage;
9990 int ret;
9991
9992 /*
9993 * Our swapfile may have had its size extended after the swap header was
9994 * written. In that case activating the swapfile should not go beyond
9995 * the max size set in the swap header.
9996 */
9997 if (bsi->nr_pages >= sis->max)
9998 return 0;
9999
10000 max_pages = sis->max - bsi->nr_pages;
10001 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10002 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10003
10004 if (first_ppage >= next_ppage)
10005 return 0;
10006 nr_pages = next_ppage - first_ppage;
10007 nr_pages = min(nr_pages, max_pages);
10008
10009 first_ppage_reported = first_ppage;
10010 if (bsi->start == 0)
10011 first_ppage_reported++;
10012 if (bsi->lowest_ppage > first_ppage_reported)
10013 bsi->lowest_ppage = first_ppage_reported;
10014 if (bsi->highest_ppage < (next_ppage - 1))
10015 bsi->highest_ppage = next_ppage - 1;
10016
10017 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10018 if (ret < 0)
10019 return ret;
10020 bsi->nr_extents += ret;
10021 bsi->nr_pages += nr_pages;
10022 return 0;
10023 }
10024
btrfs_swap_deactivate(struct file * file)10025 static void btrfs_swap_deactivate(struct file *file)
10026 {
10027 struct inode *inode = file_inode(file);
10028
10029 btrfs_free_swapfile_pins(inode);
10030 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10031 }
10032
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10033 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10034 sector_t *span)
10035 {
10036 struct inode *inode = file_inode(file);
10037 struct btrfs_root *root = BTRFS_I(inode)->root;
10038 struct btrfs_fs_info *fs_info = root->fs_info;
10039 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10040 struct extent_state *cached_state = NULL;
10041 struct btrfs_chunk_map *map = NULL;
10042 struct btrfs_device *device = NULL;
10043 struct btrfs_swap_info bsi = {
10044 .lowest_ppage = (sector_t)-1ULL,
10045 };
10046 struct btrfs_backref_share_check_ctx *backref_ctx = NULL;
10047 struct btrfs_path *path = NULL;
10048 int ret = 0;
10049 u64 isize;
10050 u64 prev_extent_end = 0;
10051
10052 /*
10053 * Acquire the inode's mmap lock to prevent races with memory mapped
10054 * writes, as they could happen after we flush delalloc below and before
10055 * we lock the extent range further below. The inode was already locked
10056 * up in the call chain.
10057 */
10058 btrfs_assert_inode_locked(BTRFS_I(inode));
10059 down_write(&BTRFS_I(inode)->i_mmap_lock);
10060
10061 /*
10062 * If the swap file was just created, make sure delalloc is done. If the
10063 * file changes again after this, the user is doing something stupid and
10064 * we don't really care.
10065 */
10066 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
10067 if (ret)
10068 goto out_unlock_mmap;
10069
10070 /*
10071 * The inode is locked, so these flags won't change after we check them.
10072 */
10073 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10074 btrfs_warn(fs_info, "swapfile must not be compressed");
10075 ret = -EINVAL;
10076 goto out_unlock_mmap;
10077 }
10078 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10079 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10080 ret = -EINVAL;
10081 goto out_unlock_mmap;
10082 }
10083 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10084 btrfs_warn(fs_info, "swapfile must not be checksummed");
10085 ret = -EINVAL;
10086 goto out_unlock_mmap;
10087 }
10088
10089 path = btrfs_alloc_path();
10090 backref_ctx = btrfs_alloc_backref_share_check_ctx();
10091 if (!path || !backref_ctx) {
10092 ret = -ENOMEM;
10093 goto out_unlock_mmap;
10094 }
10095
10096 /*
10097 * Balance or device remove/replace/resize can move stuff around from
10098 * under us. The exclop protection makes sure they aren't running/won't
10099 * run concurrently while we are mapping the swap extents, and
10100 * fs_info->swapfile_pins prevents them from running while the swap
10101 * file is active and moving the extents. Note that this also prevents
10102 * a concurrent device add which isn't actually necessary, but it's not
10103 * really worth the trouble to allow it.
10104 */
10105 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10106 btrfs_warn(fs_info,
10107 "cannot activate swapfile while exclusive operation is running");
10108 ret = -EBUSY;
10109 goto out_unlock_mmap;
10110 }
10111
10112 /*
10113 * Prevent snapshot creation while we are activating the swap file.
10114 * We do not want to race with snapshot creation. If snapshot creation
10115 * already started before we bumped nr_swapfiles from 0 to 1 and
10116 * completes before the first write into the swap file after it is
10117 * activated, than that write would fallback to COW.
10118 */
10119 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10120 btrfs_exclop_finish(fs_info);
10121 btrfs_warn(fs_info,
10122 "cannot activate swapfile because snapshot creation is in progress");
10123 ret = -EINVAL;
10124 goto out_unlock_mmap;
10125 }
10126 /*
10127 * Snapshots can create extents which require COW even if NODATACOW is
10128 * set. We use this counter to prevent snapshots. We must increment it
10129 * before walking the extents because we don't want a concurrent
10130 * snapshot to run after we've already checked the extents.
10131 *
10132 * It is possible that subvolume is marked for deletion but still not
10133 * removed yet. To prevent this race, we check the root status before
10134 * activating the swapfile.
10135 */
10136 spin_lock(&root->root_item_lock);
10137 if (btrfs_root_dead(root)) {
10138 spin_unlock(&root->root_item_lock);
10139
10140 btrfs_drew_write_unlock(&root->snapshot_lock);
10141 btrfs_exclop_finish(fs_info);
10142 btrfs_warn(fs_info,
10143 "cannot activate swapfile because subvolume %llu is being deleted",
10144 btrfs_root_id(root));
10145 ret = -EPERM;
10146 goto out_unlock_mmap;
10147 }
10148 atomic_inc(&root->nr_swapfiles);
10149 spin_unlock(&root->root_item_lock);
10150
10151 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10152
10153 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state);
10154 while (prev_extent_end < isize) {
10155 struct btrfs_key key;
10156 struct extent_buffer *leaf;
10157 struct btrfs_file_extent_item *ei;
10158 struct btrfs_block_group *bg;
10159 u64 logical_block_start;
10160 u64 physical_block_start;
10161 u64 extent_gen;
10162 u64 disk_bytenr;
10163 u64 len;
10164
10165 key.objectid = btrfs_ino(BTRFS_I(inode));
10166 key.type = BTRFS_EXTENT_DATA_KEY;
10167 key.offset = prev_extent_end;
10168
10169 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
10170 if (ret < 0)
10171 goto out;
10172
10173 /*
10174 * If key not found it means we have an implicit hole (NO_HOLES
10175 * is enabled).
10176 */
10177 if (ret > 0) {
10178 btrfs_warn(fs_info, "swapfile must not have holes");
10179 ret = -EINVAL;
10180 goto out;
10181 }
10182
10183 leaf = path->nodes[0];
10184 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10185
10186 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
10187 /*
10188 * It's unlikely we'll ever actually find ourselves
10189 * here, as a file small enough to fit inline won't be
10190 * big enough to store more than the swap header, but in
10191 * case something changes in the future, let's catch it
10192 * here rather than later.
10193 */
10194 btrfs_warn(fs_info, "swapfile must not be inline");
10195 ret = -EINVAL;
10196 goto out;
10197 }
10198
10199 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
10200 btrfs_warn(fs_info, "swapfile must not be compressed");
10201 ret = -EINVAL;
10202 goto out;
10203 }
10204
10205 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
10206 if (disk_bytenr == 0) {
10207 btrfs_warn(fs_info, "swapfile must not have holes");
10208 ret = -EINVAL;
10209 goto out;
10210 }
10211
10212 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei);
10213 extent_gen = btrfs_file_extent_generation(leaf, ei);
10214 prev_extent_end = btrfs_file_extent_end(path);
10215
10216 if (prev_extent_end > isize)
10217 len = isize - key.offset;
10218 else
10219 len = btrfs_file_extent_num_bytes(leaf, ei);
10220
10221 backref_ctx->curr_leaf_bytenr = leaf->start;
10222
10223 /*
10224 * Don't need the path anymore, release to avoid deadlocks when
10225 * calling btrfs_is_data_extent_shared() because when joining a
10226 * transaction it can block waiting for the current one's commit
10227 * which in turn may be trying to lock the same leaf to flush
10228 * delayed items for example.
10229 */
10230 btrfs_release_path(path);
10231
10232 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr,
10233 extent_gen, backref_ctx);
10234 if (ret < 0) {
10235 goto out;
10236 } else if (ret > 0) {
10237 btrfs_warn(fs_info,
10238 "swapfile must not be copy-on-write");
10239 ret = -EINVAL;
10240 goto out;
10241 }
10242
10243 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10244 if (IS_ERR(map)) {
10245 ret = PTR_ERR(map);
10246 goto out;
10247 }
10248
10249 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10250 btrfs_warn(fs_info,
10251 "swapfile must have single data profile");
10252 ret = -EINVAL;
10253 goto out;
10254 }
10255
10256 if (device == NULL) {
10257 device = map->stripes[0].dev;
10258 ret = btrfs_add_swapfile_pin(inode, device, false);
10259 if (ret == 1)
10260 ret = 0;
10261 else if (ret)
10262 goto out;
10263 } else if (device != map->stripes[0].dev) {
10264 btrfs_warn(fs_info, "swapfile must be on one device");
10265 ret = -EINVAL;
10266 goto out;
10267 }
10268
10269 physical_block_start = (map->stripes[0].physical +
10270 (logical_block_start - map->start));
10271 btrfs_free_chunk_map(map);
10272 map = NULL;
10273
10274 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10275 if (!bg) {
10276 btrfs_warn(fs_info,
10277 "could not find block group containing swapfile");
10278 ret = -EINVAL;
10279 goto out;
10280 }
10281
10282 if (!btrfs_inc_block_group_swap_extents(bg)) {
10283 btrfs_warn(fs_info,
10284 "block group for swapfile at %llu is read-only%s",
10285 bg->start,
10286 atomic_read(&fs_info->scrubs_running) ?
10287 " (scrub running)" : "");
10288 btrfs_put_block_group(bg);
10289 ret = -EINVAL;
10290 goto out;
10291 }
10292
10293 ret = btrfs_add_swapfile_pin(inode, bg, true);
10294 if (ret) {
10295 btrfs_put_block_group(bg);
10296 if (ret == 1)
10297 ret = 0;
10298 else
10299 goto out;
10300 }
10301
10302 if (bsi.block_len &&
10303 bsi.block_start + bsi.block_len == physical_block_start) {
10304 bsi.block_len += len;
10305 } else {
10306 if (bsi.block_len) {
10307 ret = btrfs_add_swap_extent(sis, &bsi);
10308 if (ret)
10309 goto out;
10310 }
10311 bsi.start = key.offset;
10312 bsi.block_start = physical_block_start;
10313 bsi.block_len = len;
10314 }
10315
10316 if (fatal_signal_pending(current)) {
10317 ret = -EINTR;
10318 goto out;
10319 }
10320
10321 cond_resched();
10322 }
10323
10324 if (bsi.block_len)
10325 ret = btrfs_add_swap_extent(sis, &bsi);
10326
10327 out:
10328 if (!IS_ERR_OR_NULL(map))
10329 btrfs_free_chunk_map(map);
10330
10331 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state);
10332
10333 if (ret)
10334 btrfs_swap_deactivate(file);
10335
10336 btrfs_drew_write_unlock(&root->snapshot_lock);
10337
10338 btrfs_exclop_finish(fs_info);
10339
10340 out_unlock_mmap:
10341 up_write(&BTRFS_I(inode)->i_mmap_lock);
10342 btrfs_free_backref_share_ctx(backref_ctx);
10343 btrfs_free_path(path);
10344 if (ret)
10345 return ret;
10346
10347 if (device)
10348 sis->bdev = device->bdev;
10349 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10350 sis->max = bsi.nr_pages;
10351 sis->pages = bsi.nr_pages - 1;
10352 return bsi.nr_extents;
10353 }
10354 #else
btrfs_swap_deactivate(struct file * file)10355 static void btrfs_swap_deactivate(struct file *file)
10356 {
10357 }
10358
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10359 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10360 sector_t *span)
10361 {
10362 return -EOPNOTSUPP;
10363 }
10364 #endif
10365
10366 /*
10367 * Update the number of bytes used in the VFS' inode. When we replace extents in
10368 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10369 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10370 * always get a correct value.
10371 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)10372 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10373 const u64 add_bytes,
10374 const u64 del_bytes)
10375 {
10376 if (add_bytes == del_bytes)
10377 return;
10378
10379 spin_lock(&inode->lock);
10380 if (del_bytes > 0)
10381 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10382 if (add_bytes > 0)
10383 inode_add_bytes(&inode->vfs_inode, add_bytes);
10384 spin_unlock(&inode->lock);
10385 }
10386
10387 /*
10388 * Verify that there are no ordered extents for a given file range.
10389 *
10390 * @inode: The target inode.
10391 * @start: Start offset of the file range, should be sector size aligned.
10392 * @end: End offset (inclusive) of the file range, its value +1 should be
10393 * sector size aligned.
10394 *
10395 * This should typically be used for cases where we locked an inode's VFS lock in
10396 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10397 * we have flushed all delalloc in the range, we have waited for all ordered
10398 * extents in the range to complete and finally we have locked the file range in
10399 * the inode's io_tree.
10400 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)10401 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10402 {
10403 struct btrfs_root *root = inode->root;
10404 struct btrfs_ordered_extent *ordered;
10405
10406 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10407 return;
10408
10409 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10410 if (ordered) {
10411 btrfs_err(root->fs_info,
10412 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10413 start, end, btrfs_ino(inode), btrfs_root_id(root),
10414 ordered->file_offset,
10415 ordered->file_offset + ordered->num_bytes - 1);
10416 btrfs_put_ordered_extent(ordered);
10417 }
10418
10419 ASSERT(ordered == NULL);
10420 }
10421
10422 /*
10423 * Find the first inode with a minimum number.
10424 *
10425 * @root: The root to search for.
10426 * @min_ino: The minimum inode number.
10427 *
10428 * Find the first inode in the @root with a number >= @min_ino and return it.
10429 * Returns NULL if no such inode found.
10430 */
btrfs_find_first_inode(struct btrfs_root * root,u64 min_ino)10431 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10432 {
10433 struct btrfs_inode *inode;
10434 unsigned long from = min_ino;
10435
10436 xa_lock(&root->inodes);
10437 while (true) {
10438 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10439 if (!inode)
10440 break;
10441 if (igrab(&inode->vfs_inode))
10442 break;
10443
10444 from = btrfs_ino(inode) + 1;
10445 cond_resched_lock(&root->inodes.xa_lock);
10446 }
10447 xa_unlock(&root->inodes);
10448
10449 return inode;
10450 }
10451
10452 static const struct inode_operations btrfs_dir_inode_operations = {
10453 .getattr = btrfs_getattr,
10454 .lookup = btrfs_lookup,
10455 .create = btrfs_create,
10456 .unlink = btrfs_unlink,
10457 .link = btrfs_link,
10458 .mkdir = btrfs_mkdir,
10459 .rmdir = btrfs_rmdir,
10460 .rename = btrfs_rename2,
10461 .symlink = btrfs_symlink,
10462 .setattr = btrfs_setattr,
10463 .mknod = btrfs_mknod,
10464 .listxattr = btrfs_listxattr,
10465 .permission = btrfs_permission,
10466 .get_inode_acl = btrfs_get_acl,
10467 .set_acl = btrfs_set_acl,
10468 .update_time = btrfs_update_time,
10469 .tmpfile = btrfs_tmpfile,
10470 .fileattr_get = btrfs_fileattr_get,
10471 .fileattr_set = btrfs_fileattr_set,
10472 };
10473
10474 static const struct file_operations btrfs_dir_file_operations = {
10475 .llseek = btrfs_dir_llseek,
10476 .read = generic_read_dir,
10477 .iterate_shared = btrfs_real_readdir,
10478 .open = btrfs_opendir,
10479 .unlocked_ioctl = btrfs_ioctl,
10480 #ifdef CONFIG_COMPAT
10481 .compat_ioctl = btrfs_compat_ioctl,
10482 #endif
10483 .release = btrfs_release_file,
10484 .fsync = btrfs_sync_file,
10485 };
10486
10487 /*
10488 * btrfs doesn't support the bmap operation because swapfiles
10489 * use bmap to make a mapping of extents in the file. They assume
10490 * these extents won't change over the life of the file and they
10491 * use the bmap result to do IO directly to the drive.
10492 *
10493 * the btrfs bmap call would return logical addresses that aren't
10494 * suitable for IO and they also will change frequently as COW
10495 * operations happen. So, swapfile + btrfs == corruption.
10496 *
10497 * For now we're avoiding this by dropping bmap.
10498 */
10499 static const struct address_space_operations btrfs_aops = {
10500 .read_folio = btrfs_read_folio,
10501 .writepages = btrfs_writepages,
10502 .readahead = btrfs_readahead,
10503 .invalidate_folio = btrfs_invalidate_folio,
10504 .launder_folio = btrfs_launder_folio,
10505 .release_folio = btrfs_release_folio,
10506 .migrate_folio = btrfs_migrate_folio,
10507 .dirty_folio = filemap_dirty_folio,
10508 .error_remove_folio = generic_error_remove_folio,
10509 .swap_activate = btrfs_swap_activate,
10510 .swap_deactivate = btrfs_swap_deactivate,
10511 };
10512
10513 static const struct inode_operations btrfs_file_inode_operations = {
10514 .getattr = btrfs_getattr,
10515 .setattr = btrfs_setattr,
10516 .listxattr = btrfs_listxattr,
10517 .permission = btrfs_permission,
10518 .fiemap = btrfs_fiemap,
10519 .get_inode_acl = btrfs_get_acl,
10520 .set_acl = btrfs_set_acl,
10521 .update_time = btrfs_update_time,
10522 .fileattr_get = btrfs_fileattr_get,
10523 .fileattr_set = btrfs_fileattr_set,
10524 };
10525 static const struct inode_operations btrfs_special_inode_operations = {
10526 .getattr = btrfs_getattr,
10527 .setattr = btrfs_setattr,
10528 .permission = btrfs_permission,
10529 .listxattr = btrfs_listxattr,
10530 .get_inode_acl = btrfs_get_acl,
10531 .set_acl = btrfs_set_acl,
10532 .update_time = btrfs_update_time,
10533 };
10534 static const struct inode_operations btrfs_symlink_inode_operations = {
10535 .get_link = page_get_link,
10536 .getattr = btrfs_getattr,
10537 .setattr = btrfs_setattr,
10538 .permission = btrfs_permission,
10539 .listxattr = btrfs_listxattr,
10540 .update_time = btrfs_update_time,
10541 };
10542
10543 const struct dentry_operations btrfs_dentry_operations = {
10544 .d_delete = btrfs_dentry_delete,
10545 };
10546