xref: /linux/net/ipv4/tcp_output.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 #include <net/proto_memory.h>
43 
44 #include <linux/compiler.h>
45 #include <linux/gfp.h>
46 #include <linux/module.h>
47 #include <linux/static_key.h>
48 #include <linux/skbuff_ref.h>
49 
50 #include <trace/events/tcp.h>
51 
52 /* Refresh clocks of a TCP socket,
53  * ensuring monotically increasing values.
54  */
tcp_mstamp_refresh(struct tcp_sock * tp)55 void tcp_mstamp_refresh(struct tcp_sock *tp)
56 {
57 	u64 val = tcp_clock_ns();
58 
59 	tp->tcp_clock_cache = val;
60 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61 }
62 
63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
64 			   int push_one, gfp_t gfp);
65 
66 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
68 {
69 	struct inet_connection_sock *icsk = inet_csk(sk);
70 	struct tcp_sock *tp = tcp_sk(sk);
71 	unsigned int prior_packets = tp->packets_out;
72 
73 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
74 
75 	__skb_unlink(skb, &sk->sk_write_queue);
76 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
77 
78 	if (tp->highest_sack == NULL)
79 		tp->highest_sack = skb;
80 
81 	tp->packets_out += tcp_skb_pcount(skb);
82 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
83 		tcp_rearm_rto(sk);
84 
85 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
86 		      tcp_skb_pcount(skb));
87 	tcp_check_space(sk);
88 }
89 
90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
91  * window scaling factor due to loss of precision.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
tcp_acceptable_seq(const struct sock * sk)97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
102 	    (tp->rx_opt.wscale_ok &&
103 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
104 		return tp->snd_nxt;
105 	else
106 		return tcp_wnd_end(tp);
107 }
108 
109 /* Calculate mss to advertise in SYN segment.
110  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
111  *
112  * 1. It is independent of path mtu.
113  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
114  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
115  *    attached devices, because some buggy hosts are confused by
116  *    large MSS.
117  * 4. We do not make 3, we advertise MSS, calculated from first
118  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
119  *    This may be overridden via information stored in routing table.
120  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
121  *    probably even Jumbo".
122  */
tcp_advertise_mss(struct sock * sk)123 static __u16 tcp_advertise_mss(struct sock *sk)
124 {
125 	struct tcp_sock *tp = tcp_sk(sk);
126 	const struct dst_entry *dst = __sk_dst_get(sk);
127 	int mss = tp->advmss;
128 
129 	if (dst) {
130 		unsigned int metric = dst_metric_advmss(dst);
131 
132 		if (metric < mss) {
133 			mss = metric;
134 			tp->advmss = mss;
135 		}
136 	}
137 
138 	return (__u16)mss;
139 }
140 
141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
142  * This is the first part of cwnd validation mechanism.
143  */
tcp_cwnd_restart(struct sock * sk,s32 delta)144 void tcp_cwnd_restart(struct sock *sk, s32 delta)
145 {
146 	struct tcp_sock *tp = tcp_sk(sk);
147 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
148 	u32 cwnd = tcp_snd_cwnd(tp);
149 
150 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
151 
152 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
153 	restart_cwnd = min(restart_cwnd, cwnd);
154 
155 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
156 		cwnd >>= 1;
157 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
158 	tp->snd_cwnd_stamp = tcp_jiffies32;
159 	tp->snd_cwnd_used = 0;
160 }
161 
162 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)163 static void tcp_event_data_sent(struct tcp_sock *tp,
164 				struct sock *sk)
165 {
166 	struct inet_connection_sock *icsk = inet_csk(sk);
167 	const u32 now = tcp_jiffies32;
168 
169 	if (tcp_packets_in_flight(tp) == 0)
170 		tcp_ca_event(sk, CA_EVENT_TX_START);
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, increase pingpong count.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178 		inet_csk_inc_pingpong_cnt(sk);
179 }
180 
181 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
183 {
184 	struct tcp_sock *tp = tcp_sk(sk);
185 
186 	if (unlikely(tp->compressed_ack)) {
187 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188 			      tp->compressed_ack);
189 		tp->compressed_ack = 0;
190 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191 			__sock_put(sk);
192 	}
193 
194 	if (unlikely(rcv_nxt != tp->rcv_nxt))
195 		return;  /* Special ACK sent by DCTCP to reflect ECN */
196 	tcp_dec_quickack_mode(sk);
197 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
198 }
199 
200 /* Determine a window scaling and initial window to offer.
201  * Based on the assumption that the given amount of space
202  * will be offered. Store the results in the tp structure.
203  * NOTE: for smooth operation initial space offering should
204  * be a multiple of mss if possible. We assume here that mss >= 1.
205  * This MUST be enforced by all callers.
206  */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * __window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
208 			       __u32 *rcv_wnd, __u32 *__window_clamp,
209 			       int wscale_ok, __u8 *rcv_wscale,
210 			       __u32 init_rcv_wnd)
211 {
212 	unsigned int space = (__space < 0 ? 0 : __space);
213 	u32 window_clamp = READ_ONCE(*__window_clamp);
214 
215 	/* If no clamp set the clamp to the max possible scaled window */
216 	if (window_clamp == 0)
217 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
218 	space = min(window_clamp, space);
219 
220 	/* Quantize space offering to a multiple of mss if possible. */
221 	if (space > mss)
222 		space = rounddown(space, mss);
223 
224 	/* NOTE: offering an initial window larger than 32767
225 	 * will break some buggy TCP stacks. If the admin tells us
226 	 * it is likely we could be speaking with such a buggy stack
227 	 * we will truncate our initial window offering to 32K-1
228 	 * unless the remote has sent us a window scaling option,
229 	 * which we interpret as a sign the remote TCP is not
230 	 * misinterpreting the window field as a signed quantity.
231 	 */
232 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
233 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 	else
235 		(*rcv_wnd) = space;
236 
237 	if (init_rcv_wnd)
238 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239 
240 	*rcv_wscale = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window */
243 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
244 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
245 		space = min_t(u32, space, window_clamp);
246 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 				      0, TCP_MAX_WSCALE);
248 	}
249 	/* Set the clamp no higher than max representable value */
250 	WRITE_ONCE(*__window_clamp,
251 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
252 }
253 EXPORT_IPV6_MOD(tcp_select_initial_window);
254 
255 /* Chose a new window to advertise, update state in tcp_sock for the
256  * socket, and return result with RFC1323 scaling applied.  The return
257  * value can be stuffed directly into th->window for an outgoing
258  * frame.
259  */
tcp_select_window(struct sock * sk)260 static u16 tcp_select_window(struct sock *sk)
261 {
262 	struct tcp_sock *tp = tcp_sk(sk);
263 	struct net *net = sock_net(sk);
264 	u32 old_win = tp->rcv_wnd;
265 	u32 cur_win, new_win;
266 
267 	/* Make the window 0 if we failed to queue the data because we
268 	 * are out of memory.
269 	 */
270 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) {
271 		tp->pred_flags = 0;
272 		tp->rcv_wnd = 0;
273 		tp->rcv_wup = tp->rcv_nxt;
274 		return 0;
275 	}
276 
277 	cur_win = tcp_receive_window(tp);
278 	new_win = __tcp_select_window(sk);
279 	if (new_win < cur_win) {
280 		/* Danger Will Robinson!
281 		 * Don't update rcv_wup/rcv_wnd here or else
282 		 * we will not be able to advertise a zero
283 		 * window in time.  --DaveM
284 		 *
285 		 * Relax Will Robinson.
286 		 */
287 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
288 			/* Never shrink the offered window */
289 			if (new_win == 0)
290 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
291 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 		}
293 	}
294 
295 	tp->rcv_wnd = new_win;
296 	tp->rcv_wup = tp->rcv_nxt;
297 
298 	/* Make sure we do not exceed the maximum possible
299 	 * scaled window.
300 	 */
301 	if (!tp->rx_opt.rcv_wscale &&
302 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
303 		new_win = min(new_win, MAX_TCP_WINDOW);
304 	else
305 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
306 
307 	/* RFC1323 scaling applied */
308 	new_win >>= tp->rx_opt.rcv_wscale;
309 
310 	/* If we advertise zero window, disable fast path. */
311 	if (new_win == 0) {
312 		tp->pred_flags = 0;
313 		if (old_win)
314 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
315 	} else if (old_win == 0) {
316 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
317 	}
318 
319 	return new_win;
320 }
321 
322 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)323 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
324 {
325 	const struct tcp_sock *tp = tcp_sk(sk);
326 
327 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
328 	if (tcp_ecn_disabled(tp))
329 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
330 	else if (tcp_ca_needs_ecn(sk) ||
331 		 tcp_bpf_ca_needs_ecn(sk))
332 		INET_ECN_xmit(sk);
333 }
334 
335 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)336 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
337 {
338 	struct tcp_sock *tp = tcp_sk(sk);
339 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
340 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
341 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
342 
343 	if (!use_ecn) {
344 		const struct dst_entry *dst = __sk_dst_get(sk);
345 
346 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
347 			use_ecn = true;
348 	}
349 
350 	tp->ecn_flags = 0;
351 
352 	if (use_ecn) {
353 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
354 		tcp_ecn_mode_set(tp, TCP_ECN_MODE_RFC3168);
355 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
356 			INET_ECN_xmit(sk);
357 	}
358 }
359 
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)360 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
361 {
362 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
363 		/* tp->ecn_flags are cleared at a later point in time when
364 		 * SYN ACK is ultimatively being received.
365 		 */
366 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
367 }
368 
369 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)370 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
371 {
372 	if (inet_rsk(req)->ecn_ok)
373 		th->ece = 1;
374 }
375 
376 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
377  * be sent.
378  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)379 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
380 			 struct tcphdr *th, int tcp_header_len)
381 {
382 	struct tcp_sock *tp = tcp_sk(sk);
383 
384 	if (tcp_ecn_mode_rfc3168(tp)) {
385 		/* Not-retransmitted data segment: set ECT and inject CWR. */
386 		if (skb->len != tcp_header_len &&
387 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
388 			INET_ECN_xmit(sk);
389 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
390 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
391 				th->cwr = 1;
392 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
393 			}
394 		} else if (!tcp_ca_needs_ecn(sk)) {
395 			/* ACK or retransmitted segment: clear ECT|CE */
396 			INET_ECN_dontxmit(sk);
397 		}
398 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
399 			th->ece = 1;
400 	}
401 }
402 
403 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
404  * auto increment end seqno.
405  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u16 flags)406 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u16 flags)
407 {
408 	skb->ip_summed = CHECKSUM_PARTIAL;
409 
410 	TCP_SKB_CB(skb)->tcp_flags = flags;
411 
412 	tcp_skb_pcount_set(skb, 1);
413 
414 	TCP_SKB_CB(skb)->seq = seq;
415 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
416 		seq++;
417 	TCP_SKB_CB(skb)->end_seq = seq;
418 }
419 
tcp_urg_mode(const struct tcp_sock * tp)420 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
421 {
422 	return tp->snd_una != tp->snd_up;
423 }
424 
425 #define OPTION_SACK_ADVERTISE	BIT(0)
426 #define OPTION_TS		BIT(1)
427 #define OPTION_MD5		BIT(2)
428 #define OPTION_WSCALE		BIT(3)
429 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
430 #define OPTION_SMC		BIT(9)
431 #define OPTION_MPTCP		BIT(10)
432 #define OPTION_AO		BIT(11)
433 
smc_options_write(__be32 * ptr,u16 * options)434 static void smc_options_write(__be32 *ptr, u16 *options)
435 {
436 #if IS_ENABLED(CONFIG_SMC)
437 	if (static_branch_unlikely(&tcp_have_smc)) {
438 		if (unlikely(OPTION_SMC & *options)) {
439 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
440 				       (TCPOPT_NOP  << 16) |
441 				       (TCPOPT_EXP <<  8) |
442 				       (TCPOLEN_EXP_SMC_BASE));
443 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
444 		}
445 	}
446 #endif
447 }
448 
449 struct tcp_out_options {
450 	u16 options;		/* bit field of OPTION_* */
451 	u16 mss;		/* 0 to disable */
452 	u8 ws;			/* window scale, 0 to disable */
453 	u8 num_sack_blocks;	/* number of SACK blocks to include */
454 	u8 hash_size;		/* bytes in hash_location */
455 	u8 bpf_opt_len;		/* length of BPF hdr option */
456 	__u8 *hash_location;	/* temporary pointer, overloaded */
457 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
458 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
459 	struct mptcp_out_options mptcp;
460 };
461 
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)462 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
463 				struct tcp_sock *tp,
464 				struct tcp_out_options *opts)
465 {
466 #if IS_ENABLED(CONFIG_MPTCP)
467 	if (unlikely(OPTION_MPTCP & opts->options))
468 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
469 #endif
470 }
471 
472 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)473 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
474 					enum tcp_synack_type synack_type)
475 {
476 	if (unlikely(!skb))
477 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
478 
479 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
480 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
481 
482 	return 0;
483 }
484 
485 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)486 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
487 				  struct request_sock *req,
488 				  struct sk_buff *syn_skb,
489 				  enum tcp_synack_type synack_type,
490 				  struct tcp_out_options *opts,
491 				  unsigned int *remaining)
492 {
493 	struct bpf_sock_ops_kern sock_ops;
494 	int err;
495 
496 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
497 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
498 	    !*remaining)
499 		return;
500 
501 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
502 
503 	/* init sock_ops */
504 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
505 
506 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
507 
508 	if (req) {
509 		/* The listen "sk" cannot be passed here because
510 		 * it is not locked.  It would not make too much
511 		 * sense to do bpf_setsockopt(listen_sk) based
512 		 * on individual connection request also.
513 		 *
514 		 * Thus, "req" is passed here and the cgroup-bpf-progs
515 		 * of the listen "sk" will be run.
516 		 *
517 		 * "req" is also used here for fastopen even the "sk" here is
518 		 * a fullsock "child" sk.  It is to keep the behavior
519 		 * consistent between fastopen and non-fastopen on
520 		 * the bpf programming side.
521 		 */
522 		sock_ops.sk = (struct sock *)req;
523 		sock_ops.syn_skb = syn_skb;
524 	} else {
525 		sock_owned_by_me(sk);
526 
527 		sock_ops.is_fullsock = 1;
528 		sock_ops.is_locked_tcp_sock = 1;
529 		sock_ops.sk = sk;
530 	}
531 
532 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
533 	sock_ops.remaining_opt_len = *remaining;
534 	/* tcp_current_mss() does not pass a skb */
535 	if (skb)
536 		bpf_skops_init_skb(&sock_ops, skb, 0);
537 
538 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
539 
540 	if (err || sock_ops.remaining_opt_len == *remaining)
541 		return;
542 
543 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
544 	/* round up to 4 bytes */
545 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
546 
547 	*remaining -= opts->bpf_opt_len;
548 }
549 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)550 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
551 				    struct request_sock *req,
552 				    struct sk_buff *syn_skb,
553 				    enum tcp_synack_type synack_type,
554 				    struct tcp_out_options *opts)
555 {
556 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
557 	struct bpf_sock_ops_kern sock_ops;
558 	int err;
559 
560 	if (likely(!max_opt_len))
561 		return;
562 
563 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
564 
565 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
566 
567 	if (req) {
568 		sock_ops.sk = (struct sock *)req;
569 		sock_ops.syn_skb = syn_skb;
570 	} else {
571 		sock_owned_by_me(sk);
572 
573 		sock_ops.is_fullsock = 1;
574 		sock_ops.is_locked_tcp_sock = 1;
575 		sock_ops.sk = sk;
576 	}
577 
578 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
579 	sock_ops.remaining_opt_len = max_opt_len;
580 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
581 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
582 
583 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
584 
585 	if (err)
586 		nr_written = 0;
587 	else
588 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
589 
590 	if (nr_written < max_opt_len)
591 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
592 		       max_opt_len - nr_written);
593 }
594 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)595 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
596 				  struct request_sock *req,
597 				  struct sk_buff *syn_skb,
598 				  enum tcp_synack_type synack_type,
599 				  struct tcp_out_options *opts,
600 				  unsigned int *remaining)
601 {
602 }
603 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)604 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
605 				    struct request_sock *req,
606 				    struct sk_buff *syn_skb,
607 				    enum tcp_synack_type synack_type,
608 				    struct tcp_out_options *opts)
609 {
610 }
611 #endif
612 
process_tcp_ao_options(struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key,__be32 * ptr)613 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
614 				      const struct tcp_request_sock *tcprsk,
615 				      struct tcp_out_options *opts,
616 				      struct tcp_key *key, __be32 *ptr)
617 {
618 #ifdef CONFIG_TCP_AO
619 	u8 maclen = tcp_ao_maclen(key->ao_key);
620 
621 	if (tcprsk) {
622 		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
623 
624 		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
625 			       (tcprsk->ao_keyid << 8) |
626 			       (tcprsk->ao_rcv_next));
627 	} else {
628 		struct tcp_ao_key *rnext_key;
629 		struct tcp_ao_info *ao_info;
630 
631 		ao_info = rcu_dereference_check(tp->ao_info,
632 			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
633 		rnext_key = READ_ONCE(ao_info->rnext_key);
634 		if (WARN_ON_ONCE(!rnext_key))
635 			return ptr;
636 		*ptr++ = htonl((TCPOPT_AO << 24) |
637 			       (tcp_ao_len(key->ao_key) << 16) |
638 			       (key->ao_key->sndid << 8) |
639 			       (rnext_key->rcvid));
640 	}
641 	opts->hash_location = (__u8 *)ptr;
642 	ptr += maclen / sizeof(*ptr);
643 	if (unlikely(maclen % sizeof(*ptr))) {
644 		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
645 		ptr++;
646 	}
647 #endif
648 	return ptr;
649 }
650 
651 /* Write previously computed TCP options to the packet.
652  *
653  * Beware: Something in the Internet is very sensitive to the ordering of
654  * TCP options, we learned this through the hard way, so be careful here.
655  * Luckily we can at least blame others for their non-compliance but from
656  * inter-operability perspective it seems that we're somewhat stuck with
657  * the ordering which we have been using if we want to keep working with
658  * those broken things (not that it currently hurts anybody as there isn't
659  * particular reason why the ordering would need to be changed).
660  *
661  * At least SACK_PERM as the first option is known to lead to a disaster
662  * (but it may well be that other scenarios fail similarly).
663  */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key)664 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
665 			      const struct tcp_request_sock *tcprsk,
666 			      struct tcp_out_options *opts,
667 			      struct tcp_key *key)
668 {
669 	__be32 *ptr = (__be32 *)(th + 1);
670 	u16 options = opts->options;	/* mungable copy */
671 
672 	if (tcp_key_is_md5(key)) {
673 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
674 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
675 		/* overload cookie hash location */
676 		opts->hash_location = (__u8 *)ptr;
677 		ptr += 4;
678 	} else if (tcp_key_is_ao(key)) {
679 		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
680 	}
681 	if (unlikely(opts->mss)) {
682 		*ptr++ = htonl((TCPOPT_MSS << 24) |
683 			       (TCPOLEN_MSS << 16) |
684 			       opts->mss);
685 	}
686 
687 	if (likely(OPTION_TS & options)) {
688 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
689 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
690 				       (TCPOLEN_SACK_PERM << 16) |
691 				       (TCPOPT_TIMESTAMP << 8) |
692 				       TCPOLEN_TIMESTAMP);
693 			options &= ~OPTION_SACK_ADVERTISE;
694 		} else {
695 			*ptr++ = htonl((TCPOPT_NOP << 24) |
696 				       (TCPOPT_NOP << 16) |
697 				       (TCPOPT_TIMESTAMP << 8) |
698 				       TCPOLEN_TIMESTAMP);
699 		}
700 		*ptr++ = htonl(opts->tsval);
701 		*ptr++ = htonl(opts->tsecr);
702 	}
703 
704 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
705 		*ptr++ = htonl((TCPOPT_NOP << 24) |
706 			       (TCPOPT_NOP << 16) |
707 			       (TCPOPT_SACK_PERM << 8) |
708 			       TCPOLEN_SACK_PERM);
709 	}
710 
711 	if (unlikely(OPTION_WSCALE & options)) {
712 		*ptr++ = htonl((TCPOPT_NOP << 24) |
713 			       (TCPOPT_WINDOW << 16) |
714 			       (TCPOLEN_WINDOW << 8) |
715 			       opts->ws);
716 	}
717 
718 	if (unlikely(opts->num_sack_blocks)) {
719 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
720 			tp->duplicate_sack : tp->selective_acks;
721 		int this_sack;
722 
723 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
724 			       (TCPOPT_NOP  << 16) |
725 			       (TCPOPT_SACK <<  8) |
726 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
727 						     TCPOLEN_SACK_PERBLOCK)));
728 
729 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
730 		     ++this_sack) {
731 			*ptr++ = htonl(sp[this_sack].start_seq);
732 			*ptr++ = htonl(sp[this_sack].end_seq);
733 		}
734 
735 		tp->rx_opt.dsack = 0;
736 	}
737 
738 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
739 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
740 		u8 *p = (u8 *)ptr;
741 		u32 len; /* Fast Open option length */
742 
743 		if (foc->exp) {
744 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
745 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
746 				     TCPOPT_FASTOPEN_MAGIC);
747 			p += TCPOLEN_EXP_FASTOPEN_BASE;
748 		} else {
749 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
750 			*p++ = TCPOPT_FASTOPEN;
751 			*p++ = len;
752 		}
753 
754 		memcpy(p, foc->val, foc->len);
755 		if ((len & 3) == 2) {
756 			p[foc->len] = TCPOPT_NOP;
757 			p[foc->len + 1] = TCPOPT_NOP;
758 		}
759 		ptr += (len + 3) >> 2;
760 	}
761 
762 	smc_options_write(ptr, &options);
763 
764 	mptcp_options_write(th, ptr, tp, opts);
765 }
766 
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)767 static void smc_set_option(const struct tcp_sock *tp,
768 			   struct tcp_out_options *opts,
769 			   unsigned int *remaining)
770 {
771 #if IS_ENABLED(CONFIG_SMC)
772 	if (static_branch_unlikely(&tcp_have_smc)) {
773 		if (tp->syn_smc) {
774 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
775 				opts->options |= OPTION_SMC;
776 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
777 			}
778 		}
779 	}
780 #endif
781 }
782 
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)783 static void smc_set_option_cond(const struct tcp_sock *tp,
784 				const struct inet_request_sock *ireq,
785 				struct tcp_out_options *opts,
786 				unsigned int *remaining)
787 {
788 #if IS_ENABLED(CONFIG_SMC)
789 	if (static_branch_unlikely(&tcp_have_smc)) {
790 		if (tp->syn_smc && ireq->smc_ok) {
791 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
792 				opts->options |= OPTION_SMC;
793 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
794 			}
795 		}
796 	}
797 #endif
798 }
799 
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)800 static void mptcp_set_option_cond(const struct request_sock *req,
801 				  struct tcp_out_options *opts,
802 				  unsigned int *remaining)
803 {
804 	if (rsk_is_mptcp(req)) {
805 		unsigned int size;
806 
807 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
808 			if (*remaining >= size) {
809 				opts->options |= OPTION_MPTCP;
810 				*remaining -= size;
811 			}
812 		}
813 	}
814 }
815 
816 /* Compute TCP options for SYN packets. This is not the final
817  * network wire format yet.
818  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)819 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
820 				struct tcp_out_options *opts,
821 				struct tcp_key *key)
822 {
823 	struct tcp_sock *tp = tcp_sk(sk);
824 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
825 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
826 	bool timestamps;
827 
828 	/* Better than switch (key.type) as it has static branches */
829 	if (tcp_key_is_md5(key)) {
830 		timestamps = false;
831 		opts->options |= OPTION_MD5;
832 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
833 	} else {
834 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
835 		if (tcp_key_is_ao(key)) {
836 			opts->options |= OPTION_AO;
837 			remaining -= tcp_ao_len_aligned(key->ao_key);
838 		}
839 	}
840 
841 	/* We always get an MSS option.  The option bytes which will be seen in
842 	 * normal data packets should timestamps be used, must be in the MSS
843 	 * advertised.  But we subtract them from tp->mss_cache so that
844 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
845 	 * fact here if necessary.  If we don't do this correctly, as a
846 	 * receiver we won't recognize data packets as being full sized when we
847 	 * should, and thus we won't abide by the delayed ACK rules correctly.
848 	 * SACKs don't matter, we never delay an ACK when we have any of those
849 	 * going out.  */
850 	opts->mss = tcp_advertise_mss(sk);
851 	remaining -= TCPOLEN_MSS_ALIGNED;
852 
853 	if (likely(timestamps)) {
854 		opts->options |= OPTION_TS;
855 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
856 		opts->tsecr = tp->rx_opt.ts_recent;
857 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
858 	}
859 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
860 		opts->ws = tp->rx_opt.rcv_wscale;
861 		opts->options |= OPTION_WSCALE;
862 		remaining -= TCPOLEN_WSCALE_ALIGNED;
863 	}
864 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
865 		opts->options |= OPTION_SACK_ADVERTISE;
866 		if (unlikely(!(OPTION_TS & opts->options)))
867 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
868 	}
869 
870 	if (fastopen && fastopen->cookie.len >= 0) {
871 		u32 need = fastopen->cookie.len;
872 
873 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
874 					       TCPOLEN_FASTOPEN_BASE;
875 		need = (need + 3) & ~3U;  /* Align to 32 bits */
876 		if (remaining >= need) {
877 			opts->options |= OPTION_FAST_OPEN_COOKIE;
878 			opts->fastopen_cookie = &fastopen->cookie;
879 			remaining -= need;
880 			tp->syn_fastopen = 1;
881 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
882 		}
883 	}
884 
885 	smc_set_option(tp, opts, &remaining);
886 
887 	if (sk_is_mptcp(sk)) {
888 		unsigned int size;
889 
890 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
891 			if (remaining >= size) {
892 				opts->options |= OPTION_MPTCP;
893 				remaining -= size;
894 			}
895 		}
896 	}
897 
898 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
899 
900 	return MAX_TCP_OPTION_SPACE - remaining;
901 }
902 
903 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_key * key,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)904 static unsigned int tcp_synack_options(const struct sock *sk,
905 				       struct request_sock *req,
906 				       unsigned int mss, struct sk_buff *skb,
907 				       struct tcp_out_options *opts,
908 				       const struct tcp_key *key,
909 				       struct tcp_fastopen_cookie *foc,
910 				       enum tcp_synack_type synack_type,
911 				       struct sk_buff *syn_skb)
912 {
913 	struct inet_request_sock *ireq = inet_rsk(req);
914 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
915 
916 	if (tcp_key_is_md5(key)) {
917 		opts->options |= OPTION_MD5;
918 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
919 
920 		/* We can't fit any SACK blocks in a packet with MD5 + TS
921 		 * options. There was discussion about disabling SACK
922 		 * rather than TS in order to fit in better with old,
923 		 * buggy kernels, but that was deemed to be unnecessary.
924 		 */
925 		if (synack_type != TCP_SYNACK_COOKIE)
926 			ireq->tstamp_ok &= !ireq->sack_ok;
927 	} else if (tcp_key_is_ao(key)) {
928 		opts->options |= OPTION_AO;
929 		remaining -= tcp_ao_len_aligned(key->ao_key);
930 		ireq->tstamp_ok &= !ireq->sack_ok;
931 	}
932 
933 	/* We always send an MSS option. */
934 	opts->mss = mss;
935 	remaining -= TCPOLEN_MSS_ALIGNED;
936 
937 	if (likely(ireq->wscale_ok)) {
938 		opts->ws = ireq->rcv_wscale;
939 		opts->options |= OPTION_WSCALE;
940 		remaining -= TCPOLEN_WSCALE_ALIGNED;
941 	}
942 	if (likely(ireq->tstamp_ok)) {
943 		opts->options |= OPTION_TS;
944 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
945 			      tcp_rsk(req)->ts_off;
946 		if (!tcp_rsk(req)->snt_tsval_first) {
947 			if (!opts->tsval)
948 				opts->tsval = ~0U;
949 			tcp_rsk(req)->snt_tsval_first = opts->tsval;
950 		}
951 		WRITE_ONCE(tcp_rsk(req)->snt_tsval_last, opts->tsval);
952 		opts->tsecr = req->ts_recent;
953 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
954 	}
955 	if (likely(ireq->sack_ok)) {
956 		opts->options |= OPTION_SACK_ADVERTISE;
957 		if (unlikely(!ireq->tstamp_ok))
958 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
959 	}
960 	if (foc != NULL && foc->len >= 0) {
961 		u32 need = foc->len;
962 
963 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
964 				   TCPOLEN_FASTOPEN_BASE;
965 		need = (need + 3) & ~3U;  /* Align to 32 bits */
966 		if (remaining >= need) {
967 			opts->options |= OPTION_FAST_OPEN_COOKIE;
968 			opts->fastopen_cookie = foc;
969 			remaining -= need;
970 		}
971 	}
972 
973 	mptcp_set_option_cond(req, opts, &remaining);
974 
975 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
976 
977 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
978 			      synack_type, opts, &remaining);
979 
980 	return MAX_TCP_OPTION_SPACE - remaining;
981 }
982 
983 /* Compute TCP options for ESTABLISHED sockets. This is not the
984  * final wire format yet.
985  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)986 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
987 					struct tcp_out_options *opts,
988 					struct tcp_key *key)
989 {
990 	struct tcp_sock *tp = tcp_sk(sk);
991 	unsigned int size = 0;
992 	unsigned int eff_sacks;
993 
994 	opts->options = 0;
995 
996 	/* Better than switch (key.type) as it has static branches */
997 	if (tcp_key_is_md5(key)) {
998 		opts->options |= OPTION_MD5;
999 		size += TCPOLEN_MD5SIG_ALIGNED;
1000 	} else if (tcp_key_is_ao(key)) {
1001 		opts->options |= OPTION_AO;
1002 		size += tcp_ao_len_aligned(key->ao_key);
1003 	}
1004 
1005 	if (likely(tp->rx_opt.tstamp_ok)) {
1006 		opts->options |= OPTION_TS;
1007 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
1008 				tp->tsoffset : 0;
1009 		opts->tsecr = tp->rx_opt.ts_recent;
1010 		size += TCPOLEN_TSTAMP_ALIGNED;
1011 	}
1012 
1013 	/* MPTCP options have precedence over SACK for the limited TCP
1014 	 * option space because a MPTCP connection would be forced to
1015 	 * fall back to regular TCP if a required multipath option is
1016 	 * missing. SACK still gets a chance to use whatever space is
1017 	 * left.
1018 	 */
1019 	if (sk_is_mptcp(sk)) {
1020 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1021 		unsigned int opt_size = 0;
1022 
1023 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1024 					      &opts->mptcp)) {
1025 			opts->options |= OPTION_MPTCP;
1026 			size += opt_size;
1027 		}
1028 	}
1029 
1030 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1031 	if (unlikely(eff_sacks)) {
1032 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1033 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1034 					 TCPOLEN_SACK_PERBLOCK))
1035 			return size;
1036 
1037 		opts->num_sack_blocks =
1038 			min_t(unsigned int, eff_sacks,
1039 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1040 			      TCPOLEN_SACK_PERBLOCK);
1041 
1042 		size += TCPOLEN_SACK_BASE_ALIGNED +
1043 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1044 	}
1045 
1046 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1047 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1048 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1049 
1050 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1051 
1052 		size = MAX_TCP_OPTION_SPACE - remaining;
1053 	}
1054 
1055 	return size;
1056 }
1057 
1058 
1059 /* TCP SMALL QUEUES (TSQ)
1060  *
1061  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1062  * to reduce RTT and bufferbloat.
1063  * We do this using a special skb destructor (tcp_wfree).
1064  *
1065  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1066  * needs to be reallocated in a driver.
1067  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1068  *
1069  * Since transmit from skb destructor is forbidden, we use a BH work item
1070  * to process all sockets that eventually need to send more skbs.
1071  * We use one work item per cpu, with its own queue of sockets.
1072  */
1073 struct tsq_work {
1074 	struct work_struct	work;
1075 	struct list_head	head; /* queue of tcp sockets */
1076 };
1077 static DEFINE_PER_CPU(struct tsq_work, tsq_work);
1078 
tcp_tsq_write(struct sock * sk)1079 static void tcp_tsq_write(struct sock *sk)
1080 {
1081 	if ((1 << sk->sk_state) &
1082 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1083 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1084 		struct tcp_sock *tp = tcp_sk(sk);
1085 
1086 		if (tp->lost_out > tp->retrans_out &&
1087 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1088 			tcp_mstamp_refresh(tp);
1089 			tcp_xmit_retransmit_queue(sk);
1090 		}
1091 
1092 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1093 			       0, GFP_ATOMIC);
1094 	}
1095 }
1096 
tcp_tsq_handler(struct sock * sk)1097 static void tcp_tsq_handler(struct sock *sk)
1098 {
1099 	bh_lock_sock(sk);
1100 	if (!sock_owned_by_user(sk))
1101 		tcp_tsq_write(sk);
1102 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1103 		sock_hold(sk);
1104 	bh_unlock_sock(sk);
1105 }
1106 /*
1107  * One work item per cpu tries to send more skbs.
1108  * We run in BH context but need to disable irqs when
1109  * transferring tsq->head because tcp_wfree() might
1110  * interrupt us (non NAPI drivers)
1111  */
tcp_tsq_workfn(struct work_struct * work)1112 static void tcp_tsq_workfn(struct work_struct *work)
1113 {
1114 	struct tsq_work *tsq = container_of(work, struct tsq_work, work);
1115 	LIST_HEAD(list);
1116 	unsigned long flags;
1117 	struct list_head *q, *n;
1118 	struct tcp_sock *tp;
1119 	struct sock *sk;
1120 
1121 	local_irq_save(flags);
1122 	list_splice_init(&tsq->head, &list);
1123 	local_irq_restore(flags);
1124 
1125 	list_for_each_safe(q, n, &list) {
1126 		tp = list_entry(q, struct tcp_sock, tsq_node);
1127 		list_del(&tp->tsq_node);
1128 
1129 		sk = (struct sock *)tp;
1130 		smp_mb__before_atomic();
1131 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1132 
1133 		tcp_tsq_handler(sk);
1134 		sk_free(sk);
1135 	}
1136 }
1137 
1138 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1139 			  TCPF_WRITE_TIMER_DEFERRED |	\
1140 			  TCPF_DELACK_TIMER_DEFERRED |	\
1141 			  TCPF_MTU_REDUCED_DEFERRED |	\
1142 			  TCPF_ACK_DEFERRED)
1143 /**
1144  * tcp_release_cb - tcp release_sock() callback
1145  * @sk: socket
1146  *
1147  * called from release_sock() to perform protocol dependent
1148  * actions before socket release.
1149  */
tcp_release_cb(struct sock * sk)1150 void tcp_release_cb(struct sock *sk)
1151 {
1152 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1153 	unsigned long nflags;
1154 
1155 	/* perform an atomic operation only if at least one flag is set */
1156 	do {
1157 		if (!(flags & TCP_DEFERRED_ALL))
1158 			return;
1159 		nflags = flags & ~TCP_DEFERRED_ALL;
1160 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1161 
1162 	if (flags & TCPF_TSQ_DEFERRED) {
1163 		tcp_tsq_write(sk);
1164 		__sock_put(sk);
1165 	}
1166 
1167 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1168 		tcp_write_timer_handler(sk);
1169 		__sock_put(sk);
1170 	}
1171 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1172 		tcp_delack_timer_handler(sk);
1173 		__sock_put(sk);
1174 	}
1175 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1176 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1177 		__sock_put(sk);
1178 	}
1179 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1180 		tcp_send_ack(sk);
1181 }
1182 EXPORT_IPV6_MOD(tcp_release_cb);
1183 
tcp_tsq_work_init(void)1184 void __init tcp_tsq_work_init(void)
1185 {
1186 	int i;
1187 
1188 	for_each_possible_cpu(i) {
1189 		struct tsq_work *tsq = &per_cpu(tsq_work, i);
1190 
1191 		INIT_LIST_HEAD(&tsq->head);
1192 		INIT_WORK(&tsq->work, tcp_tsq_workfn);
1193 	}
1194 }
1195 
1196 /*
1197  * Write buffer destructor automatically called from kfree_skb.
1198  * We can't xmit new skbs from this context, as we might already
1199  * hold qdisc lock.
1200  */
tcp_wfree(struct sk_buff * skb)1201 void tcp_wfree(struct sk_buff *skb)
1202 {
1203 	struct sock *sk = skb->sk;
1204 	struct tcp_sock *tp = tcp_sk(sk);
1205 	unsigned long flags, nval, oval;
1206 	struct tsq_work *tsq;
1207 	bool empty;
1208 
1209 	/* Keep one reference on sk_wmem_alloc.
1210 	 * Will be released by sk_free() from here or tcp_tsq_workfn()
1211 	 */
1212 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1213 
1214 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1215 	 * Wait until our queues (qdisc + devices) are drained.
1216 	 * This gives :
1217 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1218 	 * - chance for incoming ACK (processed by another cpu maybe)
1219 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1220 	 */
1221 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1222 		goto out;
1223 
1224 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1225 	do {
1226 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1227 			goto out;
1228 
1229 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1230 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1231 
1232 	/* queue this socket to BH workqueue */
1233 	local_irq_save(flags);
1234 	tsq = this_cpu_ptr(&tsq_work);
1235 	empty = list_empty(&tsq->head);
1236 	list_add(&tp->tsq_node, &tsq->head);
1237 	if (empty)
1238 		queue_work(system_bh_wq, &tsq->work);
1239 	local_irq_restore(flags);
1240 	return;
1241 out:
1242 	sk_free(sk);
1243 }
1244 
1245 /* Note: Called under soft irq.
1246  * We can call TCP stack right away, unless socket is owned by user.
1247  */
tcp_pace_kick(struct hrtimer * timer)1248 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1249 {
1250 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1251 	struct sock *sk = (struct sock *)tp;
1252 
1253 	tcp_tsq_handler(sk);
1254 	sock_put(sk);
1255 
1256 	return HRTIMER_NORESTART;
1257 }
1258 
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1259 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1260 				      u64 prior_wstamp)
1261 {
1262 	struct tcp_sock *tp = tcp_sk(sk);
1263 
1264 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1265 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1266 
1267 		/* Original sch_fq does not pace first 10 MSS
1268 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1269 		 * this is a minor annoyance.
1270 		 */
1271 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1272 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1273 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1274 
1275 			/* take into account OS jitter */
1276 			len_ns -= min_t(u64, len_ns / 2, credit);
1277 			tp->tcp_wstamp_ns += len_ns;
1278 		}
1279 	}
1280 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1281 }
1282 
1283 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1284 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1285 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1286 
1287 /* This routine actually transmits TCP packets queued in by
1288  * tcp_do_sendmsg().  This is used by both the initial
1289  * transmission and possible later retransmissions.
1290  * All SKB's seen here are completely headerless.  It is our
1291  * job to build the TCP header, and pass the packet down to
1292  * IP so it can do the same plus pass the packet off to the
1293  * device.
1294  *
1295  * We are working here with either a clone of the original
1296  * SKB, or a fresh unique copy made by the retransmit engine.
1297  */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1298 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1299 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1300 {
1301 	const struct inet_connection_sock *icsk = inet_csk(sk);
1302 	struct inet_sock *inet;
1303 	struct tcp_sock *tp;
1304 	struct tcp_skb_cb *tcb;
1305 	struct tcp_out_options opts;
1306 	unsigned int tcp_options_size, tcp_header_size;
1307 	struct sk_buff *oskb = NULL;
1308 	struct tcp_key key;
1309 	struct tcphdr *th;
1310 	u64 prior_wstamp;
1311 	int err;
1312 
1313 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1314 	tp = tcp_sk(sk);
1315 	prior_wstamp = tp->tcp_wstamp_ns;
1316 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1317 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
1318 	if (clone_it) {
1319 		oskb = skb;
1320 
1321 		tcp_skb_tsorted_save(oskb) {
1322 			if (unlikely(skb_cloned(oskb)))
1323 				skb = pskb_copy(oskb, gfp_mask);
1324 			else
1325 				skb = skb_clone(oskb, gfp_mask);
1326 		} tcp_skb_tsorted_restore(oskb);
1327 
1328 		if (unlikely(!skb))
1329 			return -ENOBUFS;
1330 		/* retransmit skbs might have a non zero value in skb->dev
1331 		 * because skb->dev is aliased with skb->rbnode.rb_left
1332 		 */
1333 		skb->dev = NULL;
1334 	}
1335 
1336 	inet = inet_sk(sk);
1337 	tcb = TCP_SKB_CB(skb);
1338 	memset(&opts, 0, sizeof(opts));
1339 
1340 	tcp_get_current_key(sk, &key);
1341 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1342 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1343 	} else {
1344 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1345 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1346 		 * at receiver : This slightly improve GRO performance.
1347 		 * Note that we do not force the PSH flag for non GSO packets,
1348 		 * because they might be sent under high congestion events,
1349 		 * and in this case it is better to delay the delivery of 1-MSS
1350 		 * packets and thus the corresponding ACK packet that would
1351 		 * release the following packet.
1352 		 */
1353 		if (tcp_skb_pcount(skb) > 1)
1354 			tcb->tcp_flags |= TCPHDR_PSH;
1355 	}
1356 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1357 
1358 	/* We set skb->ooo_okay to one if this packet can select
1359 	 * a different TX queue than prior packets of this flow,
1360 	 * to avoid self inflicted reorders.
1361 	 * The 'other' queue decision is based on current cpu number
1362 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1363 	 * We can switch to another (and better) queue if:
1364 	 * 1) No packet with payload is in qdisc/device queues.
1365 	 *    Delays in TX completion can defeat the test
1366 	 *    even if packets were already sent.
1367 	 * 2) Or rtx queue is empty.
1368 	 *    This mitigates above case if ACK packets for
1369 	 *    all prior packets were already processed.
1370 	 */
1371 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1372 			tcp_rtx_queue_empty(sk);
1373 
1374 	/* If we had to use memory reserve to allocate this skb,
1375 	 * this might cause drops if packet is looped back :
1376 	 * Other socket might not have SOCK_MEMALLOC.
1377 	 * Packets not looped back do not care about pfmemalloc.
1378 	 */
1379 	skb->pfmemalloc = 0;
1380 
1381 	skb_push(skb, tcp_header_size);
1382 	skb_reset_transport_header(skb);
1383 
1384 	skb_orphan(skb);
1385 	skb->sk = sk;
1386 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1387 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1388 
1389 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1390 
1391 	/* Build TCP header and checksum it. */
1392 	th = (struct tcphdr *)skb->data;
1393 	th->source		= inet->inet_sport;
1394 	th->dest		= inet->inet_dport;
1395 	th->seq			= htonl(tcb->seq);
1396 	th->ack_seq		= htonl(rcv_nxt);
1397 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1398 					(tcb->tcp_flags & TCPHDR_FLAGS_MASK));
1399 
1400 	th->check		= 0;
1401 	th->urg_ptr		= 0;
1402 
1403 	/* The urg_mode check is necessary during a below snd_una win probe */
1404 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1405 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1406 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1407 			th->urg = 1;
1408 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1409 			th->urg_ptr = htons(0xFFFF);
1410 			th->urg = 1;
1411 		}
1412 	}
1413 
1414 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1415 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1416 		th->window      = htons(tcp_select_window(sk));
1417 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1418 	} else {
1419 		/* RFC1323: The window in SYN & SYN/ACK segments
1420 		 * is never scaled.
1421 		 */
1422 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1423 	}
1424 
1425 	tcp_options_write(th, tp, NULL, &opts, &key);
1426 
1427 	if (tcp_key_is_md5(&key)) {
1428 #ifdef CONFIG_TCP_MD5SIG
1429 		/* Calculate the MD5 hash, as we have all we need now */
1430 		sk_gso_disable(sk);
1431 		tp->af_specific->calc_md5_hash(opts.hash_location,
1432 					       key.md5_key, sk, skb);
1433 #endif
1434 	} else if (tcp_key_is_ao(&key)) {
1435 		int err;
1436 
1437 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1438 					  opts.hash_location);
1439 		if (err) {
1440 			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1441 			return -ENOMEM;
1442 		}
1443 	}
1444 
1445 	/* BPF prog is the last one writing header option */
1446 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1447 
1448 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1449 			   tcp_v6_send_check, tcp_v4_send_check,
1450 			   sk, skb);
1451 
1452 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1453 		tcp_event_ack_sent(sk, rcv_nxt);
1454 
1455 	if (skb->len != tcp_header_size) {
1456 		tcp_event_data_sent(tp, sk);
1457 		tp->data_segs_out += tcp_skb_pcount(skb);
1458 		tp->bytes_sent += skb->len - tcp_header_size;
1459 	}
1460 
1461 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1462 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1463 			      tcp_skb_pcount(skb));
1464 
1465 	tp->segs_out += tcp_skb_pcount(skb);
1466 	skb_set_hash_from_sk(skb, sk);
1467 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1468 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1469 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1470 
1471 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1472 
1473 	/* Cleanup our debris for IP stacks */
1474 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1475 			       sizeof(struct inet6_skb_parm)));
1476 
1477 	tcp_add_tx_delay(skb, tp);
1478 
1479 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1480 				 inet6_csk_xmit, ip_queue_xmit,
1481 				 sk, skb, &inet->cork.fl);
1482 
1483 	if (unlikely(err > 0)) {
1484 		tcp_enter_cwr(sk);
1485 		err = net_xmit_eval(err);
1486 	}
1487 	if (!err && oskb) {
1488 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1489 		tcp_rate_skb_sent(sk, oskb);
1490 	}
1491 	return err;
1492 }
1493 
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1494 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1495 			    gfp_t gfp_mask)
1496 {
1497 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1498 				  tcp_sk(sk)->rcv_nxt);
1499 }
1500 
1501 /* This routine just queues the buffer for sending.
1502  *
1503  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1504  * otherwise socket can stall.
1505  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1506 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1507 {
1508 	struct tcp_sock *tp = tcp_sk(sk);
1509 
1510 	/* Advance write_seq and place onto the write_queue. */
1511 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1512 	__skb_header_release(skb);
1513 	tcp_add_write_queue_tail(sk, skb);
1514 	sk_wmem_queued_add(sk, skb->truesize);
1515 	sk_mem_charge(sk, skb->truesize);
1516 }
1517 
1518 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1519 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1520 {
1521 	int tso_segs;
1522 
1523 	if (skb->len <= mss_now) {
1524 		/* Avoid the costly divide in the normal
1525 		 * non-TSO case.
1526 		 */
1527 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1528 		tcp_skb_pcount_set(skb, 1);
1529 		return 1;
1530 	}
1531 	TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1532 	tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1533 	tcp_skb_pcount_set(skb, tso_segs);
1534 	return tso_segs;
1535 }
1536 
1537 /* Pcount in the middle of the write queue got changed, we need to do various
1538  * tweaks to fix counters
1539  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1540 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1541 {
1542 	struct tcp_sock *tp = tcp_sk(sk);
1543 
1544 	tp->packets_out -= decr;
1545 
1546 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1547 		tp->sacked_out -= decr;
1548 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1549 		tp->retrans_out -= decr;
1550 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1551 		tp->lost_out -= decr;
1552 
1553 	/* Reno case is special. Sigh... */
1554 	if (tcp_is_reno(tp) && decr > 0)
1555 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1556 
1557 	tcp_verify_left_out(tp);
1558 }
1559 
tcp_has_tx_tstamp(const struct sk_buff * skb)1560 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1561 {
1562 	return TCP_SKB_CB(skb)->txstamp_ack ||
1563 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1564 }
1565 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1566 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1567 {
1568 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1569 
1570 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1571 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1572 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1573 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1574 
1575 		shinfo->tx_flags &= ~tsflags;
1576 		shinfo2->tx_flags |= tsflags;
1577 		swap(shinfo->tskey, shinfo2->tskey);
1578 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1579 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1580 	}
1581 }
1582 
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1583 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1584 {
1585 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1586 	TCP_SKB_CB(skb)->eor = 0;
1587 }
1588 
1589 /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1590 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1591 					 struct sk_buff *buff,
1592 					 struct sock *sk,
1593 					 enum tcp_queue tcp_queue)
1594 {
1595 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1596 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1597 	else
1598 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1599 }
1600 
1601 /* Function to create two new TCP segments.  Shrinks the given segment
1602  * to the specified size and appends a new segment with the rest of the
1603  * packet to the list.  This won't be called frequently, I hope.
1604  * Remember, these are still headerless SKBs at this point.
1605  */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1606 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1607 		 struct sk_buff *skb, u32 len,
1608 		 unsigned int mss_now, gfp_t gfp)
1609 {
1610 	struct tcp_sock *tp = tcp_sk(sk);
1611 	struct sk_buff *buff;
1612 	int old_factor;
1613 	long limit;
1614 	u16 flags;
1615 	int nlen;
1616 
1617 	if (WARN_ON(len > skb->len))
1618 		return -EINVAL;
1619 
1620 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1621 
1622 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1623 	 * We need some allowance to not penalize applications setting small
1624 	 * SO_SNDBUF values.
1625 	 * Also allow first and last skb in retransmit queue to be split.
1626 	 */
1627 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1628 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1629 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1630 		     skb != tcp_rtx_queue_head(sk) &&
1631 		     skb != tcp_rtx_queue_tail(sk))) {
1632 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1633 		return -ENOMEM;
1634 	}
1635 
1636 	if (skb_unclone_keeptruesize(skb, gfp))
1637 		return -ENOMEM;
1638 
1639 	/* Get a new skb... force flag on. */
1640 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1641 	if (!buff)
1642 		return -ENOMEM; /* We'll just try again later. */
1643 	skb_copy_decrypted(buff, skb);
1644 	mptcp_skb_ext_copy(buff, skb);
1645 
1646 	sk_wmem_queued_add(sk, buff->truesize);
1647 	sk_mem_charge(sk, buff->truesize);
1648 	nlen = skb->len - len;
1649 	buff->truesize += nlen;
1650 	skb->truesize -= nlen;
1651 
1652 	/* Correct the sequence numbers. */
1653 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1654 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1655 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1656 
1657 	/* PSH and FIN should only be set in the second packet. */
1658 	flags = TCP_SKB_CB(skb)->tcp_flags;
1659 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1660 	TCP_SKB_CB(buff)->tcp_flags = flags;
1661 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1662 	tcp_skb_fragment_eor(skb, buff);
1663 
1664 	skb_split(skb, buff, len);
1665 
1666 	skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC);
1667 	tcp_fragment_tstamp(skb, buff);
1668 
1669 	old_factor = tcp_skb_pcount(skb);
1670 
1671 	/* Fix up tso_factor for both original and new SKB.  */
1672 	tcp_set_skb_tso_segs(skb, mss_now);
1673 	tcp_set_skb_tso_segs(buff, mss_now);
1674 
1675 	/* Update delivered info for the new segment */
1676 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1677 
1678 	/* If this packet has been sent out already, we must
1679 	 * adjust the various packet counters.
1680 	 */
1681 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1682 		int diff = old_factor - tcp_skb_pcount(skb) -
1683 			tcp_skb_pcount(buff);
1684 
1685 		if (diff)
1686 			tcp_adjust_pcount(sk, skb, diff);
1687 	}
1688 
1689 	/* Link BUFF into the send queue. */
1690 	__skb_header_release(buff);
1691 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1692 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1693 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1694 
1695 	return 0;
1696 }
1697 
1698 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1699  * data is not copied, but immediately discarded.
1700  */
__pskb_trim_head(struct sk_buff * skb,int len)1701 static int __pskb_trim_head(struct sk_buff *skb, int len)
1702 {
1703 	struct skb_shared_info *shinfo;
1704 	int i, k, eat;
1705 
1706 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1707 	eat = len;
1708 	k = 0;
1709 	shinfo = skb_shinfo(skb);
1710 	for (i = 0; i < shinfo->nr_frags; i++) {
1711 		int size = skb_frag_size(&shinfo->frags[i]);
1712 
1713 		if (size <= eat) {
1714 			skb_frag_unref(skb, i);
1715 			eat -= size;
1716 		} else {
1717 			shinfo->frags[k] = shinfo->frags[i];
1718 			if (eat) {
1719 				skb_frag_off_add(&shinfo->frags[k], eat);
1720 				skb_frag_size_sub(&shinfo->frags[k], eat);
1721 				eat = 0;
1722 			}
1723 			k++;
1724 		}
1725 	}
1726 	shinfo->nr_frags = k;
1727 
1728 	skb->data_len -= len;
1729 	skb->len = skb->data_len;
1730 	return len;
1731 }
1732 
1733 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1734 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1735 {
1736 	u32 delta_truesize;
1737 
1738 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1739 		return -ENOMEM;
1740 
1741 	delta_truesize = __pskb_trim_head(skb, len);
1742 
1743 	TCP_SKB_CB(skb)->seq += len;
1744 
1745 	skb->truesize	   -= delta_truesize;
1746 	sk_wmem_queued_add(sk, -delta_truesize);
1747 	if (!skb_zcopy_pure(skb))
1748 		sk_mem_uncharge(sk, delta_truesize);
1749 
1750 	/* Any change of skb->len requires recalculation of tso factor. */
1751 	if (tcp_skb_pcount(skb) > 1)
1752 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1753 
1754 	return 0;
1755 }
1756 
1757 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1758 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1759 {
1760 	const struct tcp_sock *tp = tcp_sk(sk);
1761 	const struct inet_connection_sock *icsk = inet_csk(sk);
1762 	int mss_now;
1763 
1764 	/* Calculate base mss without TCP options:
1765 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1766 	 */
1767 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1768 
1769 	/* Clamp it (mss_clamp does not include tcp options) */
1770 	if (mss_now > tp->rx_opt.mss_clamp)
1771 		mss_now = tp->rx_opt.mss_clamp;
1772 
1773 	/* Now subtract optional transport overhead */
1774 	mss_now -= icsk->icsk_ext_hdr_len;
1775 
1776 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1777 	mss_now = max(mss_now,
1778 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1779 	return mss_now;
1780 }
1781 
1782 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1783 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1784 {
1785 	/* Subtract TCP options size, not including SACKs */
1786 	return __tcp_mtu_to_mss(sk, pmtu) -
1787 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1788 }
1789 EXPORT_IPV6_MOD(tcp_mtu_to_mss);
1790 
1791 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1792 int tcp_mss_to_mtu(struct sock *sk, int mss)
1793 {
1794 	const struct tcp_sock *tp = tcp_sk(sk);
1795 	const struct inet_connection_sock *icsk = inet_csk(sk);
1796 
1797 	return mss +
1798 	      tp->tcp_header_len +
1799 	      icsk->icsk_ext_hdr_len +
1800 	      icsk->icsk_af_ops->net_header_len;
1801 }
1802 EXPORT_SYMBOL(tcp_mss_to_mtu);
1803 
1804 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1805 void tcp_mtup_init(struct sock *sk)
1806 {
1807 	struct tcp_sock *tp = tcp_sk(sk);
1808 	struct inet_connection_sock *icsk = inet_csk(sk);
1809 	struct net *net = sock_net(sk);
1810 
1811 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1812 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1813 			       icsk->icsk_af_ops->net_header_len;
1814 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1815 	icsk->icsk_mtup.probe_size = 0;
1816 	if (icsk->icsk_mtup.enabled)
1817 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1818 }
1819 
1820 /* This function synchronize snd mss to current pmtu/exthdr set.
1821 
1822    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1823    for TCP options, but includes only bare TCP header.
1824 
1825    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1826    It is minimum of user_mss and mss received with SYN.
1827    It also does not include TCP options.
1828 
1829    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1830 
1831    tp->mss_cache is current effective sending mss, including
1832    all tcp options except for SACKs. It is evaluated,
1833    taking into account current pmtu, but never exceeds
1834    tp->rx_opt.mss_clamp.
1835 
1836    NOTE1. rfc1122 clearly states that advertised MSS
1837    DOES NOT include either tcp or ip options.
1838 
1839    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1840    are READ ONLY outside this function.		--ANK (980731)
1841  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1842 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1843 {
1844 	struct tcp_sock *tp = tcp_sk(sk);
1845 	struct inet_connection_sock *icsk = inet_csk(sk);
1846 	int mss_now;
1847 
1848 	if (icsk->icsk_mtup.search_high > pmtu)
1849 		icsk->icsk_mtup.search_high = pmtu;
1850 
1851 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1852 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1853 
1854 	/* And store cached results */
1855 	icsk->icsk_pmtu_cookie = pmtu;
1856 	if (icsk->icsk_mtup.enabled)
1857 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1858 	tp->mss_cache = mss_now;
1859 
1860 	return mss_now;
1861 }
1862 EXPORT_IPV6_MOD(tcp_sync_mss);
1863 
1864 /* Compute the current effective MSS, taking SACKs and IP options,
1865  * and even PMTU discovery events into account.
1866  */
tcp_current_mss(struct sock * sk)1867 unsigned int tcp_current_mss(struct sock *sk)
1868 {
1869 	const struct tcp_sock *tp = tcp_sk(sk);
1870 	const struct dst_entry *dst = __sk_dst_get(sk);
1871 	u32 mss_now;
1872 	unsigned int header_len;
1873 	struct tcp_out_options opts;
1874 	struct tcp_key key;
1875 
1876 	mss_now = tp->mss_cache;
1877 
1878 	if (dst) {
1879 		u32 mtu = dst_mtu(dst);
1880 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1881 			mss_now = tcp_sync_mss(sk, mtu);
1882 	}
1883 	tcp_get_current_key(sk, &key);
1884 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1885 		     sizeof(struct tcphdr);
1886 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1887 	 * some common options. If this is an odd packet (because we have SACK
1888 	 * blocks etc) then our calculated header_len will be different, and
1889 	 * we have to adjust mss_now correspondingly */
1890 	if (header_len != tp->tcp_header_len) {
1891 		int delta = (int) header_len - tp->tcp_header_len;
1892 		mss_now -= delta;
1893 	}
1894 
1895 	return mss_now;
1896 }
1897 
1898 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1899  * As additional protections, we do not touch cwnd in retransmission phases,
1900  * and if application hit its sndbuf limit recently.
1901  */
tcp_cwnd_application_limited(struct sock * sk)1902 static void tcp_cwnd_application_limited(struct sock *sk)
1903 {
1904 	struct tcp_sock *tp = tcp_sk(sk);
1905 
1906 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1907 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1908 		/* Limited by application or receiver window. */
1909 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1910 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1911 		if (win_used < tcp_snd_cwnd(tp)) {
1912 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1913 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1914 		}
1915 		tp->snd_cwnd_used = 0;
1916 	}
1917 	tp->snd_cwnd_stamp = tcp_jiffies32;
1918 }
1919 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1920 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1921 {
1922 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1923 	struct tcp_sock *tp = tcp_sk(sk);
1924 
1925 	/* Track the strongest available signal of the degree to which the cwnd
1926 	 * is fully utilized. If cwnd-limited then remember that fact for the
1927 	 * current window. If not cwnd-limited then track the maximum number of
1928 	 * outstanding packets in the current window. (If cwnd-limited then we
1929 	 * chose to not update tp->max_packets_out to avoid an extra else
1930 	 * clause with no functional impact.)
1931 	 */
1932 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1933 	    is_cwnd_limited ||
1934 	    (!tp->is_cwnd_limited &&
1935 	     tp->packets_out > tp->max_packets_out)) {
1936 		tp->is_cwnd_limited = is_cwnd_limited;
1937 		tp->max_packets_out = tp->packets_out;
1938 		tp->cwnd_usage_seq = tp->snd_nxt;
1939 	}
1940 
1941 	if (tcp_is_cwnd_limited(sk)) {
1942 		/* Network is feed fully. */
1943 		tp->snd_cwnd_used = 0;
1944 		tp->snd_cwnd_stamp = tcp_jiffies32;
1945 	} else {
1946 		/* Network starves. */
1947 		if (tp->packets_out > tp->snd_cwnd_used)
1948 			tp->snd_cwnd_used = tp->packets_out;
1949 
1950 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1951 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1952 		    !ca_ops->cong_control)
1953 			tcp_cwnd_application_limited(sk);
1954 
1955 		/* The following conditions together indicate the starvation
1956 		 * is caused by insufficient sender buffer:
1957 		 * 1) just sent some data (see tcp_write_xmit)
1958 		 * 2) not cwnd limited (this else condition)
1959 		 * 3) no more data to send (tcp_write_queue_empty())
1960 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1961 		 */
1962 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1963 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1964 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1965 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1966 	}
1967 }
1968 
1969 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1970 static bool tcp_minshall_check(const struct tcp_sock *tp)
1971 {
1972 	return after(tp->snd_sml, tp->snd_una) &&
1973 		!after(tp->snd_sml, tp->snd_nxt);
1974 }
1975 
1976 /* Update snd_sml if this skb is under mss
1977  * Note that a TSO packet might end with a sub-mss segment
1978  * The test is really :
1979  * if ((skb->len % mss) != 0)
1980  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1981  * But we can avoid doing the divide again given we already have
1982  *  skb_pcount = skb->len / mss_now
1983  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1984 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1985 				const struct sk_buff *skb)
1986 {
1987 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1988 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1989 }
1990 
1991 /* Return false, if packet can be sent now without violation Nagle's rules:
1992  * 1. It is full sized. (provided by caller in %partial bool)
1993  * 2. Or it contains FIN. (already checked by caller)
1994  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1995  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1996  *    With Minshall's modification: all sent small packets are ACKed.
1997  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1998 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1999 			    int nonagle)
2000 {
2001 	return partial &&
2002 		((nonagle & TCP_NAGLE_CORK) ||
2003 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
2004 }
2005 
2006 /* Return how many segs we'd like on a TSO packet,
2007  * depending on current pacing rate, and how close the peer is.
2008  *
2009  * Rationale is:
2010  * - For close peers, we rather send bigger packets to reduce
2011  *   cpu costs, because occasional losses will be repaired fast.
2012  * - For long distance/rtt flows, we would like to get ACK clocking
2013  *   with 1 ACK per ms.
2014  *
2015  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2016  * in bigger TSO bursts. We we cut the RTT-based allowance in half
2017  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2018  * is below 1500 bytes after 6 * ~500 usec = 3ms.
2019  */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)2020 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2021 			    int min_tso_segs)
2022 {
2023 	unsigned long bytes;
2024 	u32 r;
2025 
2026 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2027 
2028 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2029 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2030 		bytes += sk->sk_gso_max_size >> r;
2031 
2032 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2033 
2034 	return max_t(u32, bytes / mss_now, min_tso_segs);
2035 }
2036 
2037 /* Return the number of segments we want in the skb we are transmitting.
2038  * See if congestion control module wants to decide; otherwise, autosize.
2039  */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)2040 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2041 {
2042 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2043 	u32 min_tso, tso_segs;
2044 
2045 	min_tso = ca_ops->min_tso_segs ?
2046 			ca_ops->min_tso_segs(sk) :
2047 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2048 
2049 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2050 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2051 }
2052 
2053 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2054 static unsigned int tcp_mss_split_point(const struct sock *sk,
2055 					const struct sk_buff *skb,
2056 					unsigned int mss_now,
2057 					unsigned int max_segs,
2058 					int nonagle)
2059 {
2060 	const struct tcp_sock *tp = tcp_sk(sk);
2061 	u32 partial, needed, window, max_len;
2062 
2063 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2064 	max_len = mss_now * max_segs;
2065 
2066 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2067 		return max_len;
2068 
2069 	needed = min(skb->len, window);
2070 
2071 	if (max_len <= needed)
2072 		return max_len;
2073 
2074 	partial = needed % mss_now;
2075 	/* If last segment is not a full MSS, check if Nagle rules allow us
2076 	 * to include this last segment in this skb.
2077 	 * Otherwise, we'll split the skb at last MSS boundary
2078 	 */
2079 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2080 		return needed - partial;
2081 
2082 	return needed;
2083 }
2084 
2085 /* Can at least one segment of SKB be sent right now, according to the
2086  * congestion window rules?  If so, return how many segments are allowed.
2087  */
tcp_cwnd_test(const struct tcp_sock * tp)2088 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2089 {
2090 	u32 in_flight, cwnd, halfcwnd;
2091 
2092 	in_flight = tcp_packets_in_flight(tp);
2093 	cwnd = tcp_snd_cwnd(tp);
2094 	if (in_flight >= cwnd)
2095 		return 0;
2096 
2097 	/* For better scheduling, ensure we have at least
2098 	 * 2 GSO packets in flight.
2099 	 */
2100 	halfcwnd = max(cwnd >> 1, 1U);
2101 	return min(halfcwnd, cwnd - in_flight);
2102 }
2103 
2104 /* Initialize TSO state of a skb.
2105  * This must be invoked the first time we consider transmitting
2106  * SKB onto the wire.
2107  */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2108 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2109 {
2110 	int tso_segs = tcp_skb_pcount(skb);
2111 
2112 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2113 		return tcp_set_skb_tso_segs(skb, mss_now);
2114 
2115 	return tso_segs;
2116 }
2117 
2118 
2119 /* Return true if the Nagle test allows this packet to be
2120  * sent now.
2121  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2122 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2123 				  unsigned int cur_mss, int nonagle)
2124 {
2125 	/* Nagle rule does not apply to frames, which sit in the middle of the
2126 	 * write_queue (they have no chances to get new data).
2127 	 *
2128 	 * This is implemented in the callers, where they modify the 'nonagle'
2129 	 * argument based upon the location of SKB in the send queue.
2130 	 */
2131 	if (nonagle & TCP_NAGLE_PUSH)
2132 		return true;
2133 
2134 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2135 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2136 		return true;
2137 
2138 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2139 		return true;
2140 
2141 	return false;
2142 }
2143 
2144 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2145 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2146 			     const struct sk_buff *skb,
2147 			     unsigned int cur_mss)
2148 {
2149 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2150 
2151 	if (skb->len > cur_mss)
2152 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2153 
2154 	return !after(end_seq, tcp_wnd_end(tp));
2155 }
2156 
2157 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2158  * which is put after SKB on the list.  It is very much like
2159  * tcp_fragment() except that it may make several kinds of assumptions
2160  * in order to speed up the splitting operation.  In particular, we
2161  * know that all the data is in scatter-gather pages, and that the
2162  * packet has never been sent out before (and thus is not cloned).
2163  */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2164 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2165 			unsigned int mss_now, gfp_t gfp)
2166 {
2167 	int nlen = skb->len - len;
2168 	struct sk_buff *buff;
2169 	u16 flags;
2170 
2171 	/* All of a TSO frame must be composed of paged data.  */
2172 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2173 
2174 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2175 	if (unlikely(!buff))
2176 		return -ENOMEM;
2177 	skb_copy_decrypted(buff, skb);
2178 	mptcp_skb_ext_copy(buff, skb);
2179 
2180 	sk_wmem_queued_add(sk, buff->truesize);
2181 	sk_mem_charge(sk, buff->truesize);
2182 	buff->truesize += nlen;
2183 	skb->truesize -= nlen;
2184 
2185 	/* Correct the sequence numbers. */
2186 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2187 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2188 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2189 
2190 	/* PSH and FIN should only be set in the second packet. */
2191 	flags = TCP_SKB_CB(skb)->tcp_flags;
2192 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2193 	TCP_SKB_CB(buff)->tcp_flags = flags;
2194 
2195 	tcp_skb_fragment_eor(skb, buff);
2196 
2197 	skb_split(skb, buff, len);
2198 	tcp_fragment_tstamp(skb, buff);
2199 
2200 	/* Fix up tso_factor for both original and new SKB.  */
2201 	tcp_set_skb_tso_segs(skb, mss_now);
2202 	tcp_set_skb_tso_segs(buff, mss_now);
2203 
2204 	/* Link BUFF into the send queue. */
2205 	__skb_header_release(buff);
2206 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2207 
2208 	return 0;
2209 }
2210 
2211 /* Try to defer sending, if possible, in order to minimize the amount
2212  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2213  *
2214  * This algorithm is from John Heffner.
2215  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2216 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2217 				 bool *is_cwnd_limited,
2218 				 bool *is_rwnd_limited,
2219 				 u32 max_segs)
2220 {
2221 	const struct inet_connection_sock *icsk = inet_csk(sk);
2222 	u32 send_win, cong_win, limit, in_flight;
2223 	struct tcp_sock *tp = tcp_sk(sk);
2224 	struct sk_buff *head;
2225 	int win_divisor;
2226 	s64 delta;
2227 
2228 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2229 		goto send_now;
2230 
2231 	/* Avoid bursty behavior by allowing defer
2232 	 * only if the last write was recent (1 ms).
2233 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2234 	 * packets waiting in a qdisc or device for EDT delivery.
2235 	 */
2236 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2237 	if (delta > 0)
2238 		goto send_now;
2239 
2240 	in_flight = tcp_packets_in_flight(tp);
2241 
2242 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2243 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2244 
2245 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2246 
2247 	/* From in_flight test above, we know that cwnd > in_flight.  */
2248 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2249 
2250 	limit = min(send_win, cong_win);
2251 
2252 	/* If a full-sized TSO skb can be sent, do it. */
2253 	if (limit >= max_segs * tp->mss_cache)
2254 		goto send_now;
2255 
2256 	/* Middle in queue won't get any more data, full sendable already? */
2257 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2258 		goto send_now;
2259 
2260 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2261 	if (win_divisor) {
2262 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2263 
2264 		/* If at least some fraction of a window is available,
2265 		 * just use it.
2266 		 */
2267 		chunk /= win_divisor;
2268 		if (limit >= chunk)
2269 			goto send_now;
2270 	} else {
2271 		/* Different approach, try not to defer past a single
2272 		 * ACK.  Receiver should ACK every other full sized
2273 		 * frame, so if we have space for more than 3 frames
2274 		 * then send now.
2275 		 */
2276 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2277 			goto send_now;
2278 	}
2279 
2280 	/* TODO : use tsorted_sent_queue ? */
2281 	head = tcp_rtx_queue_head(sk);
2282 	if (!head)
2283 		goto send_now;
2284 	delta = tp->tcp_clock_cache - head->tstamp;
2285 	/* If next ACK is likely to come too late (half srtt), do not defer */
2286 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2287 		goto send_now;
2288 
2289 	/* Ok, it looks like it is advisable to defer.
2290 	 * Three cases are tracked :
2291 	 * 1) We are cwnd-limited
2292 	 * 2) We are rwnd-limited
2293 	 * 3) We are application limited.
2294 	 */
2295 	if (cong_win < send_win) {
2296 		if (cong_win <= skb->len) {
2297 			*is_cwnd_limited = true;
2298 			return true;
2299 		}
2300 	} else {
2301 		if (send_win <= skb->len) {
2302 			*is_rwnd_limited = true;
2303 			return true;
2304 		}
2305 	}
2306 
2307 	/* If this packet won't get more data, do not wait. */
2308 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2309 	    TCP_SKB_CB(skb)->eor)
2310 		goto send_now;
2311 
2312 	return true;
2313 
2314 send_now:
2315 	return false;
2316 }
2317 
tcp_mtu_check_reprobe(struct sock * sk)2318 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2319 {
2320 	struct inet_connection_sock *icsk = inet_csk(sk);
2321 	struct tcp_sock *tp = tcp_sk(sk);
2322 	struct net *net = sock_net(sk);
2323 	u32 interval;
2324 	s32 delta;
2325 
2326 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2327 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2328 	if (unlikely(delta >= interval * HZ)) {
2329 		int mss = tcp_current_mss(sk);
2330 
2331 		/* Update current search range */
2332 		icsk->icsk_mtup.probe_size = 0;
2333 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2334 			sizeof(struct tcphdr) +
2335 			icsk->icsk_af_ops->net_header_len;
2336 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2337 
2338 		/* Update probe time stamp */
2339 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2340 	}
2341 }
2342 
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2343 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2344 {
2345 	struct sk_buff *skb, *next;
2346 
2347 	skb = tcp_send_head(sk);
2348 	tcp_for_write_queue_from_safe(skb, next, sk) {
2349 		if (len <= skb->len)
2350 			break;
2351 
2352 		if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2353 			return false;
2354 
2355 		len -= skb->len;
2356 	}
2357 
2358 	return true;
2359 }
2360 
tcp_clone_payload(struct sock * sk,struct sk_buff * to,int probe_size)2361 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2362 			     int probe_size)
2363 {
2364 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2365 	int i, todo, len = 0, nr_frags = 0;
2366 	const struct sk_buff *skb;
2367 
2368 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2369 		return -ENOMEM;
2370 
2371 	skb_queue_walk(&sk->sk_write_queue, skb) {
2372 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2373 
2374 		if (skb_headlen(skb))
2375 			return -EINVAL;
2376 
2377 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2378 			if (len >= probe_size)
2379 				goto commit;
2380 			todo = min_t(int, skb_frag_size(fragfrom),
2381 				     probe_size - len);
2382 			len += todo;
2383 			if (lastfrag &&
2384 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2385 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2386 						      skb_frag_size(lastfrag)) {
2387 				skb_frag_size_add(lastfrag, todo);
2388 				continue;
2389 			}
2390 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2391 				return -E2BIG;
2392 			skb_frag_page_copy(fragto, fragfrom);
2393 			skb_frag_off_copy(fragto, fragfrom);
2394 			skb_frag_size_set(fragto, todo);
2395 			nr_frags++;
2396 			lastfrag = fragto++;
2397 		}
2398 	}
2399 commit:
2400 	WARN_ON_ONCE(len != probe_size);
2401 	for (i = 0; i < nr_frags; i++)
2402 		skb_frag_ref(to, i);
2403 
2404 	skb_shinfo(to)->nr_frags = nr_frags;
2405 	to->truesize += probe_size;
2406 	to->len += probe_size;
2407 	to->data_len += probe_size;
2408 	__skb_header_release(to);
2409 	return 0;
2410 }
2411 
2412 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2413  * all its payload was moved to another one (dst).
2414  * Make sure to transfer tcp_flags, eor, and tstamp.
2415  */
tcp_eat_one_skb(struct sock * sk,struct sk_buff * dst,struct sk_buff * src)2416 static void tcp_eat_one_skb(struct sock *sk,
2417 			    struct sk_buff *dst,
2418 			    struct sk_buff *src)
2419 {
2420 	TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2421 	TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2422 	tcp_skb_collapse_tstamp(dst, src);
2423 	tcp_unlink_write_queue(src, sk);
2424 	tcp_wmem_free_skb(sk, src);
2425 }
2426 
2427 /* Create a new MTU probe if we are ready.
2428  * MTU probe is regularly attempting to increase the path MTU by
2429  * deliberately sending larger packets.  This discovers routing
2430  * changes resulting in larger path MTUs.
2431  *
2432  * Returns 0 if we should wait to probe (no cwnd available),
2433  *         1 if a probe was sent,
2434  *         -1 otherwise
2435  */
tcp_mtu_probe(struct sock * sk)2436 static int tcp_mtu_probe(struct sock *sk)
2437 {
2438 	struct inet_connection_sock *icsk = inet_csk(sk);
2439 	struct tcp_sock *tp = tcp_sk(sk);
2440 	struct sk_buff *skb, *nskb, *next;
2441 	struct net *net = sock_net(sk);
2442 	int probe_size;
2443 	int size_needed;
2444 	int copy, len;
2445 	int mss_now;
2446 	int interval;
2447 
2448 	/* Not currently probing/verifying,
2449 	 * not in recovery,
2450 	 * have enough cwnd, and
2451 	 * not SACKing (the variable headers throw things off)
2452 	 */
2453 	if (likely(!icsk->icsk_mtup.enabled ||
2454 		   icsk->icsk_mtup.probe_size ||
2455 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2456 		   tcp_snd_cwnd(tp) < 11 ||
2457 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2458 		return -1;
2459 
2460 	/* Use binary search for probe_size between tcp_mss_base,
2461 	 * and current mss_clamp. if (search_high - search_low)
2462 	 * smaller than a threshold, backoff from probing.
2463 	 */
2464 	mss_now = tcp_current_mss(sk);
2465 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2466 				    icsk->icsk_mtup.search_low) >> 1);
2467 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2468 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2469 	/* When misfortune happens, we are reprobing actively,
2470 	 * and then reprobe timer has expired. We stick with current
2471 	 * probing process by not resetting search range to its orignal.
2472 	 */
2473 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2474 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2475 		/* Check whether enough time has elaplased for
2476 		 * another round of probing.
2477 		 */
2478 		tcp_mtu_check_reprobe(sk);
2479 		return -1;
2480 	}
2481 
2482 	/* Have enough data in the send queue to probe? */
2483 	if (tp->write_seq - tp->snd_nxt < size_needed)
2484 		return -1;
2485 
2486 	if (tp->snd_wnd < size_needed)
2487 		return -1;
2488 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2489 		return 0;
2490 
2491 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2492 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2493 		if (!tcp_packets_in_flight(tp))
2494 			return -1;
2495 		else
2496 			return 0;
2497 	}
2498 
2499 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2500 		return -1;
2501 
2502 	/* We're allowed to probe.  Build it now. */
2503 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2504 	if (!nskb)
2505 		return -1;
2506 
2507 	/* build the payload, and be prepared to abort if this fails. */
2508 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2509 		tcp_skb_tsorted_anchor_cleanup(nskb);
2510 		consume_skb(nskb);
2511 		return -1;
2512 	}
2513 	sk_wmem_queued_add(sk, nskb->truesize);
2514 	sk_mem_charge(sk, nskb->truesize);
2515 
2516 	skb = tcp_send_head(sk);
2517 	skb_copy_decrypted(nskb, skb);
2518 	mptcp_skb_ext_copy(nskb, skb);
2519 
2520 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2521 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2522 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2523 
2524 	tcp_insert_write_queue_before(nskb, skb, sk);
2525 	tcp_highest_sack_replace(sk, skb, nskb);
2526 
2527 	len = 0;
2528 	tcp_for_write_queue_from_safe(skb, next, sk) {
2529 		copy = min_t(int, skb->len, probe_size - len);
2530 
2531 		if (skb->len <= copy) {
2532 			tcp_eat_one_skb(sk, nskb, skb);
2533 		} else {
2534 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2535 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2536 			__pskb_trim_head(skb, copy);
2537 			tcp_set_skb_tso_segs(skb, mss_now);
2538 			TCP_SKB_CB(skb)->seq += copy;
2539 		}
2540 
2541 		len += copy;
2542 
2543 		if (len >= probe_size)
2544 			break;
2545 	}
2546 	tcp_init_tso_segs(nskb, nskb->len);
2547 
2548 	/* We're ready to send.  If this fails, the probe will
2549 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2550 	 */
2551 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2552 		/* Decrement cwnd here because we are sending
2553 		 * effectively two packets. */
2554 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2555 		tcp_event_new_data_sent(sk, nskb);
2556 
2557 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2558 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2559 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2560 
2561 		return 1;
2562 	}
2563 
2564 	return -1;
2565 }
2566 
tcp_pacing_check(struct sock * sk)2567 static bool tcp_pacing_check(struct sock *sk)
2568 {
2569 	struct tcp_sock *tp = tcp_sk(sk);
2570 
2571 	if (!tcp_needs_internal_pacing(sk))
2572 		return false;
2573 
2574 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2575 		return false;
2576 
2577 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2578 		hrtimer_start(&tp->pacing_timer,
2579 			      ns_to_ktime(tp->tcp_wstamp_ns),
2580 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2581 		sock_hold(sk);
2582 	}
2583 	return true;
2584 }
2585 
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2586 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2587 {
2588 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2589 
2590 	/* No skb in the rtx queue. */
2591 	if (!node)
2592 		return true;
2593 
2594 	/* Only one skb in rtx queue. */
2595 	return !node->rb_left && !node->rb_right;
2596 }
2597 
2598 /* TCP Small Queues :
2599  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2600  * (These limits are doubled for retransmits)
2601  * This allows for :
2602  *  - better RTT estimation and ACK scheduling
2603  *  - faster recovery
2604  *  - high rates
2605  * Alas, some drivers / subsystems require a fair amount
2606  * of queued bytes to ensure line rate.
2607  * One example is wifi aggregation (802.11 AMPDU)
2608  */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2609 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2610 				  unsigned int factor)
2611 {
2612 	unsigned long limit;
2613 
2614 	limit = max_t(unsigned long,
2615 		      2 * skb->truesize,
2616 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2617 	limit = min_t(unsigned long, limit,
2618 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2619 	limit <<= factor;
2620 
2621 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2622 	    tcp_sk(sk)->tcp_tx_delay) {
2623 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2624 				  tcp_sk(sk)->tcp_tx_delay;
2625 
2626 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2627 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2628 		 * USEC_PER_SEC is approximated by 2^20.
2629 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2630 		 */
2631 		extra_bytes >>= (20 - 1);
2632 		limit += extra_bytes;
2633 	}
2634 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2635 		/* Always send skb if rtx queue is empty or has one skb.
2636 		 * No need to wait for TX completion to call us back,
2637 		 * after softirq schedule.
2638 		 * This helps when TX completions are delayed too much.
2639 		 */
2640 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2641 			return false;
2642 
2643 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2644 		/* It is possible TX completion already happened
2645 		 * before we set TSQ_THROTTLED, so we must
2646 		 * test again the condition.
2647 		 */
2648 		smp_mb__after_atomic();
2649 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2650 			return true;
2651 	}
2652 	return false;
2653 }
2654 
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2655 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2656 {
2657 	const u32 now = tcp_jiffies32;
2658 	enum tcp_chrono old = tp->chrono_type;
2659 
2660 	if (old > TCP_CHRONO_UNSPEC)
2661 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2662 	tp->chrono_start = now;
2663 	tp->chrono_type = new;
2664 }
2665 
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2666 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2667 {
2668 	struct tcp_sock *tp = tcp_sk(sk);
2669 
2670 	/* If there are multiple conditions worthy of tracking in a
2671 	 * chronograph then the highest priority enum takes precedence
2672 	 * over the other conditions. So that if something "more interesting"
2673 	 * starts happening, stop the previous chrono and start a new one.
2674 	 */
2675 	if (type > tp->chrono_type)
2676 		tcp_chrono_set(tp, type);
2677 }
2678 
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2679 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2680 {
2681 	struct tcp_sock *tp = tcp_sk(sk);
2682 
2683 
2684 	/* There are multiple conditions worthy of tracking in a
2685 	 * chronograph, so that the highest priority enum takes
2686 	 * precedence over the other conditions (see tcp_chrono_start).
2687 	 * If a condition stops, we only stop chrono tracking if
2688 	 * it's the "most interesting" or current chrono we are
2689 	 * tracking and starts busy chrono if we have pending data.
2690 	 */
2691 	if (tcp_rtx_and_write_queues_empty(sk))
2692 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2693 	else if (type == tp->chrono_type)
2694 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2695 }
2696 
2697 /* First skb in the write queue is smaller than ideal packet size.
2698  * Check if we can move payload from the second skb in the queue.
2699  */
tcp_grow_skb(struct sock * sk,struct sk_buff * skb,int amount)2700 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2701 {
2702 	struct sk_buff *next_skb = skb->next;
2703 	unsigned int nlen;
2704 
2705 	if (tcp_skb_is_last(sk, skb))
2706 		return;
2707 
2708 	if (!tcp_skb_can_collapse(skb, next_skb))
2709 		return;
2710 
2711 	nlen = min_t(u32, amount, next_skb->len);
2712 	if (!nlen || !skb_shift(skb, next_skb, nlen))
2713 		return;
2714 
2715 	TCP_SKB_CB(skb)->end_seq += nlen;
2716 	TCP_SKB_CB(next_skb)->seq += nlen;
2717 
2718 	if (!next_skb->len) {
2719 		/* In case FIN is set, we need to update end_seq */
2720 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2721 
2722 		tcp_eat_one_skb(sk, skb, next_skb);
2723 	}
2724 }
2725 
2726 /* This routine writes packets to the network.  It advances the
2727  * send_head.  This happens as incoming acks open up the remote
2728  * window for us.
2729  *
2730  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2731  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2732  * account rare use of URG, this is not a big flaw.
2733  *
2734  * Send at most one packet when push_one > 0. Temporarily ignore
2735  * cwnd limit to force at most one packet out when push_one == 2.
2736 
2737  * Returns true, if no segments are in flight and we have queued segments,
2738  * but cannot send anything now because of SWS or another problem.
2739  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2740 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2741 			   int push_one, gfp_t gfp)
2742 {
2743 	struct tcp_sock *tp = tcp_sk(sk);
2744 	struct sk_buff *skb;
2745 	unsigned int tso_segs, sent_pkts;
2746 	u32 cwnd_quota, max_segs;
2747 	int result;
2748 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2749 
2750 	sent_pkts = 0;
2751 
2752 	tcp_mstamp_refresh(tp);
2753 	if (!push_one) {
2754 		/* Do MTU probing. */
2755 		result = tcp_mtu_probe(sk);
2756 		if (!result) {
2757 			return false;
2758 		} else if (result > 0) {
2759 			sent_pkts = 1;
2760 		}
2761 	}
2762 
2763 	max_segs = tcp_tso_segs(sk, mss_now);
2764 	while ((skb = tcp_send_head(sk))) {
2765 		unsigned int limit;
2766 		int missing_bytes;
2767 
2768 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2769 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2770 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2771 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
2772 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2773 			tcp_init_tso_segs(skb, mss_now);
2774 			goto repair; /* Skip network transmission */
2775 		}
2776 
2777 		if (tcp_pacing_check(sk))
2778 			break;
2779 
2780 		cwnd_quota = tcp_cwnd_test(tp);
2781 		if (!cwnd_quota) {
2782 			if (push_one == 2)
2783 				/* Force out a loss probe pkt. */
2784 				cwnd_quota = 1;
2785 			else
2786 				break;
2787 		}
2788 		cwnd_quota = min(cwnd_quota, max_segs);
2789 		missing_bytes = cwnd_quota * mss_now - skb->len;
2790 		if (missing_bytes > 0)
2791 			tcp_grow_skb(sk, skb, missing_bytes);
2792 
2793 		tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2794 
2795 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2796 			is_rwnd_limited = true;
2797 			break;
2798 		}
2799 
2800 		if (tso_segs == 1) {
2801 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2802 						     (tcp_skb_is_last(sk, skb) ?
2803 						      nonagle : TCP_NAGLE_PUSH))))
2804 				break;
2805 		} else {
2806 			if (!push_one &&
2807 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2808 						 &is_rwnd_limited, max_segs))
2809 				break;
2810 		}
2811 
2812 		limit = mss_now;
2813 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2814 			limit = tcp_mss_split_point(sk, skb, mss_now,
2815 						    cwnd_quota,
2816 						    nonagle);
2817 
2818 		if (skb->len > limit &&
2819 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2820 			break;
2821 
2822 		if (tcp_small_queue_check(sk, skb, 0))
2823 			break;
2824 
2825 		/* Argh, we hit an empty skb(), presumably a thread
2826 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2827 		 * We do not want to send a pure-ack packet and have
2828 		 * a strange looking rtx queue with empty packet(s).
2829 		 */
2830 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2831 			break;
2832 
2833 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2834 			break;
2835 
2836 repair:
2837 		/* Advance the send_head.  This one is sent out.
2838 		 * This call will increment packets_out.
2839 		 */
2840 		tcp_event_new_data_sent(sk, skb);
2841 
2842 		tcp_minshall_update(tp, mss_now, skb);
2843 		sent_pkts += tcp_skb_pcount(skb);
2844 
2845 		if (push_one)
2846 			break;
2847 	}
2848 
2849 	if (is_rwnd_limited)
2850 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2851 	else
2852 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2853 
2854 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2855 	if (likely(sent_pkts || is_cwnd_limited))
2856 		tcp_cwnd_validate(sk, is_cwnd_limited);
2857 
2858 	if (likely(sent_pkts)) {
2859 		if (tcp_in_cwnd_reduction(sk))
2860 			tp->prr_out += sent_pkts;
2861 
2862 		/* Send one loss probe per tail loss episode. */
2863 		if (push_one != 2)
2864 			tcp_schedule_loss_probe(sk, false);
2865 		return false;
2866 	}
2867 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2868 }
2869 
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2870 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2871 {
2872 	struct inet_connection_sock *icsk = inet_csk(sk);
2873 	struct tcp_sock *tp = tcp_sk(sk);
2874 	u32 timeout, timeout_us, rto_delta_us;
2875 	int early_retrans;
2876 
2877 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2878 	 * finishes.
2879 	 */
2880 	if (rcu_access_pointer(tp->fastopen_rsk))
2881 		return false;
2882 
2883 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2884 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2885 	 * not in loss recovery, that are either limited by cwnd or application.
2886 	 */
2887 	if ((early_retrans != 3 && early_retrans != 4) ||
2888 	    !tp->packets_out || !tcp_is_sack(tp) ||
2889 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2890 	     icsk->icsk_ca_state != TCP_CA_CWR))
2891 		return false;
2892 
2893 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2894 	 * for delayed ack when there's one outstanding packet. If no RTT
2895 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2896 	 */
2897 	if (tp->srtt_us) {
2898 		timeout_us = tp->srtt_us >> 2;
2899 		if (tp->packets_out == 1)
2900 			timeout_us += tcp_rto_min_us(sk);
2901 		else
2902 			timeout_us += TCP_TIMEOUT_MIN_US;
2903 		timeout = usecs_to_jiffies(timeout_us);
2904 	} else {
2905 		timeout = TCP_TIMEOUT_INIT;
2906 	}
2907 
2908 	/* If the RTO formula yields an earlier time, then use that time. */
2909 	rto_delta_us = advancing_rto ?
2910 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2911 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2912 	if (rto_delta_us > 0)
2913 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2914 
2915 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true);
2916 	return true;
2917 }
2918 
2919 /* Thanks to skb fast clones, we can detect if a prior transmit of
2920  * a packet is still in a qdisc or driver queue.
2921  * In this case, there is very little point doing a retransmit !
2922  */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2923 static bool skb_still_in_host_queue(struct sock *sk,
2924 				    const struct sk_buff *skb)
2925 {
2926 	if (unlikely(skb_fclone_busy(sk, skb))) {
2927 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2928 		smp_mb__after_atomic();
2929 		if (skb_fclone_busy(sk, skb)) {
2930 			NET_INC_STATS(sock_net(sk),
2931 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2932 			return true;
2933 		}
2934 	}
2935 	return false;
2936 }
2937 
2938 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2939  * retransmit the last segment.
2940  */
tcp_send_loss_probe(struct sock * sk)2941 void tcp_send_loss_probe(struct sock *sk)
2942 {
2943 	struct tcp_sock *tp = tcp_sk(sk);
2944 	struct sk_buff *skb;
2945 	int pcount;
2946 	int mss = tcp_current_mss(sk);
2947 
2948 	/* At most one outstanding TLP */
2949 	if (tp->tlp_high_seq)
2950 		goto rearm_timer;
2951 
2952 	tp->tlp_retrans = 0;
2953 	skb = tcp_send_head(sk);
2954 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2955 		pcount = tp->packets_out;
2956 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2957 		if (tp->packets_out > pcount)
2958 			goto probe_sent;
2959 		goto rearm_timer;
2960 	}
2961 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2962 	if (unlikely(!skb)) {
2963 		tcp_warn_once(sk, tp->packets_out, "invalid inflight: ");
2964 		smp_store_release(&inet_csk(sk)->icsk_pending, 0);
2965 		return;
2966 	}
2967 
2968 	if (skb_still_in_host_queue(sk, skb))
2969 		goto rearm_timer;
2970 
2971 	pcount = tcp_skb_pcount(skb);
2972 	if (WARN_ON(!pcount))
2973 		goto rearm_timer;
2974 
2975 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2976 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2977 					  (pcount - 1) * mss, mss,
2978 					  GFP_ATOMIC)))
2979 			goto rearm_timer;
2980 		skb = skb_rb_next(skb);
2981 	}
2982 
2983 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2984 		goto rearm_timer;
2985 
2986 	if (__tcp_retransmit_skb(sk, skb, 1))
2987 		goto rearm_timer;
2988 
2989 	tp->tlp_retrans = 1;
2990 
2991 probe_sent:
2992 	/* Record snd_nxt for loss detection. */
2993 	tp->tlp_high_seq = tp->snd_nxt;
2994 
2995 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2996 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2997 	smp_store_release(&inet_csk(sk)->icsk_pending, 0);
2998 rearm_timer:
2999 	tcp_rearm_rto(sk);
3000 }
3001 
3002 /* Push out any pending frames which were held back due to
3003  * TCP_CORK or attempt at coalescing tiny packets.
3004  * The socket must be locked by the caller.
3005  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)3006 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
3007 			       int nonagle)
3008 {
3009 	/* If we are closed, the bytes will have to remain here.
3010 	 * In time closedown will finish, we empty the write queue and
3011 	 * all will be happy.
3012 	 */
3013 	if (unlikely(sk->sk_state == TCP_CLOSE))
3014 		return;
3015 
3016 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
3017 			   sk_gfp_mask(sk, GFP_ATOMIC)))
3018 		tcp_check_probe_timer(sk);
3019 }
3020 
3021 /* Send _single_ skb sitting at the send head. This function requires
3022  * true push pending frames to setup probe timer etc.
3023  */
tcp_push_one(struct sock * sk,unsigned int mss_now)3024 void tcp_push_one(struct sock *sk, unsigned int mss_now)
3025 {
3026 	struct sk_buff *skb = tcp_send_head(sk);
3027 
3028 	BUG_ON(!skb || skb->len < mss_now);
3029 
3030 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
3031 }
3032 
3033 /* This function returns the amount that we can raise the
3034  * usable window based on the following constraints
3035  *
3036  * 1. The window can never be shrunk once it is offered (RFC 793)
3037  * 2. We limit memory per socket
3038  *
3039  * RFC 1122:
3040  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3041  *  RECV.NEXT + RCV.WIN fixed until:
3042  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3043  *
3044  * i.e. don't raise the right edge of the window until you can raise
3045  * it at least MSS bytes.
3046  *
3047  * Unfortunately, the recommended algorithm breaks header prediction,
3048  * since header prediction assumes th->window stays fixed.
3049  *
3050  * Strictly speaking, keeping th->window fixed violates the receiver
3051  * side SWS prevention criteria. The problem is that under this rule
3052  * a stream of single byte packets will cause the right side of the
3053  * window to always advance by a single byte.
3054  *
3055  * Of course, if the sender implements sender side SWS prevention
3056  * then this will not be a problem.
3057  *
3058  * BSD seems to make the following compromise:
3059  *
3060  *	If the free space is less than the 1/4 of the maximum
3061  *	space available and the free space is less than 1/2 mss,
3062  *	then set the window to 0.
3063  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3064  *	Otherwise, just prevent the window from shrinking
3065  *	and from being larger than the largest representable value.
3066  *
3067  * This prevents incremental opening of the window in the regime
3068  * where TCP is limited by the speed of the reader side taking
3069  * data out of the TCP receive queue. It does nothing about
3070  * those cases where the window is constrained on the sender side
3071  * because the pipeline is full.
3072  *
3073  * BSD also seems to "accidentally" limit itself to windows that are a
3074  * multiple of MSS, at least until the free space gets quite small.
3075  * This would appear to be a side effect of the mbuf implementation.
3076  * Combining these two algorithms results in the observed behavior
3077  * of having a fixed window size at almost all times.
3078  *
3079  * Below we obtain similar behavior by forcing the offered window to
3080  * a multiple of the mss when it is feasible to do so.
3081  *
3082  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3083  * Regular options like TIMESTAMP are taken into account.
3084  */
__tcp_select_window(struct sock * sk)3085 u32 __tcp_select_window(struct sock *sk)
3086 {
3087 	struct inet_connection_sock *icsk = inet_csk(sk);
3088 	struct tcp_sock *tp = tcp_sk(sk);
3089 	struct net *net = sock_net(sk);
3090 	/* MSS for the peer's data.  Previous versions used mss_clamp
3091 	 * here.  I don't know if the value based on our guesses
3092 	 * of peer's MSS is better for the performance.  It's more correct
3093 	 * but may be worse for the performance because of rcv_mss
3094 	 * fluctuations.  --SAW  1998/11/1
3095 	 */
3096 	int mss = icsk->icsk_ack.rcv_mss;
3097 	int free_space = tcp_space(sk);
3098 	int allowed_space = tcp_full_space(sk);
3099 	int full_space, window;
3100 
3101 	if (sk_is_mptcp(sk))
3102 		mptcp_space(sk, &free_space, &allowed_space);
3103 
3104 	full_space = min_t(int, tp->window_clamp, allowed_space);
3105 
3106 	if (unlikely(mss > full_space)) {
3107 		mss = full_space;
3108 		if (mss <= 0)
3109 			return 0;
3110 	}
3111 
3112 	/* Only allow window shrink if the sysctl is enabled and we have
3113 	 * a non-zero scaling factor in effect.
3114 	 */
3115 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3116 		goto shrink_window_allowed;
3117 
3118 	/* do not allow window to shrink */
3119 
3120 	if (free_space < (full_space >> 1)) {
3121 		icsk->icsk_ack.quick = 0;
3122 
3123 		if (tcp_under_memory_pressure(sk))
3124 			tcp_adjust_rcv_ssthresh(sk);
3125 
3126 		/* free_space might become our new window, make sure we don't
3127 		 * increase it due to wscale.
3128 		 */
3129 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3130 
3131 		/* if free space is less than mss estimate, or is below 1/16th
3132 		 * of the maximum allowed, try to move to zero-window, else
3133 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3134 		 * new incoming data is dropped due to memory limits.
3135 		 * With large window, mss test triggers way too late in order
3136 		 * to announce zero window in time before rmem limit kicks in.
3137 		 */
3138 		if (free_space < (allowed_space >> 4) || free_space < mss)
3139 			return 0;
3140 	}
3141 
3142 	if (free_space > tp->rcv_ssthresh)
3143 		free_space = tp->rcv_ssthresh;
3144 
3145 	/* Don't do rounding if we are using window scaling, since the
3146 	 * scaled window will not line up with the MSS boundary anyway.
3147 	 */
3148 	if (tp->rx_opt.rcv_wscale) {
3149 		window = free_space;
3150 
3151 		/* Advertise enough space so that it won't get scaled away.
3152 		 * Import case: prevent zero window announcement if
3153 		 * 1<<rcv_wscale > mss.
3154 		 */
3155 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3156 	} else {
3157 		window = tp->rcv_wnd;
3158 		/* Get the largest window that is a nice multiple of mss.
3159 		 * Window clamp already applied above.
3160 		 * If our current window offering is within 1 mss of the
3161 		 * free space we just keep it. This prevents the divide
3162 		 * and multiply from happening most of the time.
3163 		 * We also don't do any window rounding when the free space
3164 		 * is too small.
3165 		 */
3166 		if (window <= free_space - mss || window > free_space)
3167 			window = rounddown(free_space, mss);
3168 		else if (mss == full_space &&
3169 			 free_space > window + (full_space >> 1))
3170 			window = free_space;
3171 	}
3172 
3173 	return window;
3174 
3175 shrink_window_allowed:
3176 	/* new window should always be an exact multiple of scaling factor */
3177 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3178 
3179 	if (free_space < (full_space >> 1)) {
3180 		icsk->icsk_ack.quick = 0;
3181 
3182 		if (tcp_under_memory_pressure(sk))
3183 			tcp_adjust_rcv_ssthresh(sk);
3184 
3185 		/* if free space is too low, return a zero window */
3186 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3187 			free_space < (1 << tp->rx_opt.rcv_wscale))
3188 			return 0;
3189 	}
3190 
3191 	if (free_space > tp->rcv_ssthresh) {
3192 		free_space = tp->rcv_ssthresh;
3193 		/* new window should always be an exact multiple of scaling factor
3194 		 *
3195 		 * For this case, we ALIGN "up" (increase free_space) because
3196 		 * we know free_space is not zero here, it has been reduced from
3197 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3198 		 * (unlike sk_rcvbuf).
3199 		 */
3200 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3201 	}
3202 
3203 	return free_space;
3204 }
3205 
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3206 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3207 			     const struct sk_buff *next_skb)
3208 {
3209 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3210 		const struct skb_shared_info *next_shinfo =
3211 			skb_shinfo(next_skb);
3212 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3213 
3214 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3215 		shinfo->tskey = next_shinfo->tskey;
3216 		TCP_SKB_CB(skb)->txstamp_ack |=
3217 			TCP_SKB_CB(next_skb)->txstamp_ack;
3218 	}
3219 }
3220 
3221 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3222 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3223 {
3224 	struct tcp_sock *tp = tcp_sk(sk);
3225 	struct sk_buff *next_skb = skb_rb_next(skb);
3226 	int next_skb_size;
3227 
3228 	next_skb_size = next_skb->len;
3229 
3230 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3231 
3232 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3233 		return false;
3234 
3235 	tcp_highest_sack_replace(sk, next_skb, skb);
3236 
3237 	/* Update sequence range on original skb. */
3238 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3239 
3240 	/* Merge over control information. This moves PSH/FIN etc. over */
3241 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3242 
3243 	/* All done, get rid of second SKB and account for it so
3244 	 * packet counting does not break.
3245 	 */
3246 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3247 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3248 
3249 	/* changed transmit queue under us so clear hints */
3250 	if (next_skb == tp->retransmit_skb_hint)
3251 		tp->retransmit_skb_hint = skb;
3252 
3253 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3254 
3255 	tcp_skb_collapse_tstamp(skb, next_skb);
3256 
3257 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3258 	return true;
3259 }
3260 
3261 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3262 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3263 {
3264 	if (tcp_skb_pcount(skb) > 1)
3265 		return false;
3266 	if (skb_cloned(skb))
3267 		return false;
3268 	if (!skb_frags_readable(skb))
3269 		return false;
3270 	/* Some heuristics for collapsing over SACK'd could be invented */
3271 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3272 		return false;
3273 
3274 	return true;
3275 }
3276 
3277 /* Collapse packets in the retransmit queue to make to create
3278  * less packets on the wire. This is only done on retransmission.
3279  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3280 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3281 				     int space)
3282 {
3283 	struct tcp_sock *tp = tcp_sk(sk);
3284 	struct sk_buff *skb = to, *tmp;
3285 	bool first = true;
3286 
3287 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3288 		return;
3289 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3290 		return;
3291 
3292 	skb_rbtree_walk_from_safe(skb, tmp) {
3293 		if (!tcp_can_collapse(sk, skb))
3294 			break;
3295 
3296 		if (!tcp_skb_can_collapse(to, skb))
3297 			break;
3298 
3299 		space -= skb->len;
3300 
3301 		if (first) {
3302 			first = false;
3303 			continue;
3304 		}
3305 
3306 		if (space < 0)
3307 			break;
3308 
3309 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3310 			break;
3311 
3312 		if (!tcp_collapse_retrans(sk, to))
3313 			break;
3314 	}
3315 }
3316 
3317 /* This retransmits one SKB.  Policy decisions and retransmit queue
3318  * state updates are done by the caller.  Returns non-zero if an
3319  * error occurred which prevented the send.
3320  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3321 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3322 {
3323 	struct inet_connection_sock *icsk = inet_csk(sk);
3324 	struct tcp_sock *tp = tcp_sk(sk);
3325 	unsigned int cur_mss;
3326 	int diff, len, err;
3327 	int avail_wnd;
3328 
3329 	/* Inconclusive MTU probe */
3330 	if (icsk->icsk_mtup.probe_size)
3331 		icsk->icsk_mtup.probe_size = 0;
3332 
3333 	if (skb_still_in_host_queue(sk, skb)) {
3334 		err = -EBUSY;
3335 		goto out;
3336 	}
3337 
3338 start:
3339 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3340 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3341 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3342 			TCP_SKB_CB(skb)->seq++;
3343 			goto start;
3344 		}
3345 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3346 			WARN_ON_ONCE(1);
3347 			err = -EINVAL;
3348 			goto out;
3349 		}
3350 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) {
3351 			err = -ENOMEM;
3352 			goto out;
3353 		}
3354 	}
3355 
3356 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) {
3357 		err = -EHOSTUNREACH; /* Routing failure or similar. */
3358 		goto out;
3359 	}
3360 
3361 	cur_mss = tcp_current_mss(sk);
3362 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3363 
3364 	/* If receiver has shrunk his window, and skb is out of
3365 	 * new window, do not retransmit it. The exception is the
3366 	 * case, when window is shrunk to zero. In this case
3367 	 * our retransmit of one segment serves as a zero window probe.
3368 	 */
3369 	if (avail_wnd <= 0) {
3370 		if (TCP_SKB_CB(skb)->seq != tp->snd_una) {
3371 			err = -EAGAIN;
3372 			goto out;
3373 		}
3374 		avail_wnd = cur_mss;
3375 	}
3376 
3377 	len = cur_mss * segs;
3378 	if (len > avail_wnd) {
3379 		len = rounddown(avail_wnd, cur_mss);
3380 		if (!len)
3381 			len = avail_wnd;
3382 	}
3383 	if (skb->len > len) {
3384 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3385 				 cur_mss, GFP_ATOMIC)) {
3386 			err = -ENOMEM;  /* We'll try again later. */
3387 			goto out;
3388 		}
3389 	} else {
3390 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) {
3391 			err = -ENOMEM;
3392 			goto out;
3393 		}
3394 
3395 		diff = tcp_skb_pcount(skb);
3396 		tcp_set_skb_tso_segs(skb, cur_mss);
3397 		diff -= tcp_skb_pcount(skb);
3398 		if (diff)
3399 			tcp_adjust_pcount(sk, skb, diff);
3400 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3401 		if (skb->len < avail_wnd)
3402 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3403 	}
3404 
3405 	/* RFC3168, section 6.1.1.1. ECN fallback */
3406 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3407 		tcp_ecn_clear_syn(sk, skb);
3408 
3409 	/* Update global and local TCP statistics. */
3410 	segs = tcp_skb_pcount(skb);
3411 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3412 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3413 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3414 	tp->total_retrans += segs;
3415 	tp->bytes_retrans += skb->len;
3416 
3417 	/* make sure skb->data is aligned on arches that require it
3418 	 * and check if ack-trimming & collapsing extended the headroom
3419 	 * beyond what csum_start can cover.
3420 	 */
3421 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3422 		     skb_headroom(skb) >= 0xFFFF)) {
3423 		struct sk_buff *nskb;
3424 
3425 		tcp_skb_tsorted_save(skb) {
3426 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3427 			if (nskb) {
3428 				nskb->dev = NULL;
3429 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3430 			} else {
3431 				err = -ENOBUFS;
3432 			}
3433 		} tcp_skb_tsorted_restore(skb);
3434 
3435 		if (!err) {
3436 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3437 			tcp_rate_skb_sent(sk, skb);
3438 		}
3439 	} else {
3440 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3441 	}
3442 
3443 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3444 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3445 				  TCP_SKB_CB(skb)->seq, segs, err);
3446 
3447 	if (unlikely(err) && err != -EBUSY)
3448 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3449 
3450 	/* To avoid taking spuriously low RTT samples based on a timestamp
3451 	 * for a transmit that never happened, always mark EVER_RETRANS
3452 	 */
3453 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3454 
3455 out:
3456 	trace_tcp_retransmit_skb(sk, skb, err);
3457 	return err;
3458 }
3459 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3460 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3461 {
3462 	struct tcp_sock *tp = tcp_sk(sk);
3463 	int err = __tcp_retransmit_skb(sk, skb, segs);
3464 
3465 	if (err == 0) {
3466 #if FASTRETRANS_DEBUG > 0
3467 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3468 			net_dbg_ratelimited("retrans_out leaked\n");
3469 		}
3470 #endif
3471 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3472 		tp->retrans_out += tcp_skb_pcount(skb);
3473 	}
3474 
3475 	/* Save stamp of the first (attempted) retransmit. */
3476 	if (!tp->retrans_stamp)
3477 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3478 
3479 	if (tp->undo_retrans < 0)
3480 		tp->undo_retrans = 0;
3481 	tp->undo_retrans += tcp_skb_pcount(skb);
3482 	return err;
3483 }
3484 
3485 /* This gets called after a retransmit timeout, and the initially
3486  * retransmitted data is acknowledged.  It tries to continue
3487  * resending the rest of the retransmit queue, until either
3488  * we've sent it all or the congestion window limit is reached.
3489  */
tcp_xmit_retransmit_queue(struct sock * sk)3490 void tcp_xmit_retransmit_queue(struct sock *sk)
3491 {
3492 	const struct inet_connection_sock *icsk = inet_csk(sk);
3493 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3494 	struct tcp_sock *tp = tcp_sk(sk);
3495 	bool rearm_timer = false;
3496 	u32 max_segs;
3497 	int mib_idx;
3498 
3499 	if (!tp->packets_out)
3500 		return;
3501 
3502 	rtx_head = tcp_rtx_queue_head(sk);
3503 	skb = tp->retransmit_skb_hint ?: rtx_head;
3504 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3505 	skb_rbtree_walk_from(skb) {
3506 		__u8 sacked;
3507 		int segs;
3508 
3509 		if (tcp_pacing_check(sk))
3510 			break;
3511 
3512 		/* we could do better than to assign each time */
3513 		if (!hole)
3514 			tp->retransmit_skb_hint = skb;
3515 
3516 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3517 		if (segs <= 0)
3518 			break;
3519 		sacked = TCP_SKB_CB(skb)->sacked;
3520 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3521 		 * we need to make sure not sending too bigs TSO packets
3522 		 */
3523 		segs = min_t(int, segs, max_segs);
3524 
3525 		if (tp->retrans_out >= tp->lost_out) {
3526 			break;
3527 		} else if (!(sacked & TCPCB_LOST)) {
3528 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3529 				hole = skb;
3530 			continue;
3531 
3532 		} else {
3533 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3534 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3535 			else
3536 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3537 		}
3538 
3539 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3540 			continue;
3541 
3542 		if (tcp_small_queue_check(sk, skb, 1))
3543 			break;
3544 
3545 		if (tcp_retransmit_skb(sk, skb, segs))
3546 			break;
3547 
3548 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3549 
3550 		if (tcp_in_cwnd_reduction(sk))
3551 			tp->prr_out += tcp_skb_pcount(skb);
3552 
3553 		if (skb == rtx_head &&
3554 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3555 			rearm_timer = true;
3556 
3557 	}
3558 	if (rearm_timer)
3559 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3560 				     inet_csk(sk)->icsk_rto, true);
3561 }
3562 
3563 /* We allow to exceed memory limits for FIN packets to expedite
3564  * connection tear down and (memory) recovery.
3565  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3566  * or even be forced to close flow without any FIN.
3567  * In general, we want to allow one skb per socket to avoid hangs
3568  * with edge trigger epoll()
3569  */
sk_forced_mem_schedule(struct sock * sk,int size)3570 void sk_forced_mem_schedule(struct sock *sk, int size)
3571 {
3572 	int delta, amt;
3573 
3574 	delta = size - sk->sk_forward_alloc;
3575 	if (delta <= 0)
3576 		return;
3577 	amt = sk_mem_pages(delta);
3578 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3579 	sk_memory_allocated_add(sk, amt);
3580 
3581 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3582 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3583 					gfp_memcg_charge() | __GFP_NOFAIL);
3584 }
3585 
3586 /* Send a FIN. The caller locks the socket for us.
3587  * We should try to send a FIN packet really hard, but eventually give up.
3588  */
tcp_send_fin(struct sock * sk)3589 void tcp_send_fin(struct sock *sk)
3590 {
3591 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3592 	struct tcp_sock *tp = tcp_sk(sk);
3593 
3594 	/* Optimization, tack on the FIN if we have one skb in write queue and
3595 	 * this skb was not yet sent, or we are under memory pressure.
3596 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3597 	 * as TCP stack thinks it has already been transmitted.
3598 	 */
3599 	tskb = tail;
3600 	if (!tskb && tcp_under_memory_pressure(sk))
3601 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3602 
3603 	if (tskb) {
3604 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3605 		TCP_SKB_CB(tskb)->end_seq++;
3606 		tp->write_seq++;
3607 		if (!tail) {
3608 			/* This means tskb was already sent.
3609 			 * Pretend we included the FIN on previous transmit.
3610 			 * We need to set tp->snd_nxt to the value it would have
3611 			 * if FIN had been sent. This is because retransmit path
3612 			 * does not change tp->snd_nxt.
3613 			 */
3614 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3615 			return;
3616 		}
3617 	} else {
3618 		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3619 				       sk_gfp_mask(sk, GFP_ATOMIC |
3620 						       __GFP_NOWARN));
3621 		if (unlikely(!skb))
3622 			return;
3623 
3624 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3625 		skb_reserve(skb, MAX_TCP_HEADER);
3626 		sk_forced_mem_schedule(sk, skb->truesize);
3627 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3628 		tcp_init_nondata_skb(skb, tp->write_seq,
3629 				     TCPHDR_ACK | TCPHDR_FIN);
3630 		tcp_queue_skb(sk, skb);
3631 	}
3632 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3633 }
3634 
3635 /* We get here when a process closes a file descriptor (either due to
3636  * an explicit close() or as a byproduct of exit()'ing) and there
3637  * was unread data in the receive queue.  This behavior is recommended
3638  * by RFC 2525, section 2.17.  -DaveM
3639  */
tcp_send_active_reset(struct sock * sk,gfp_t priority,enum sk_rst_reason reason)3640 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3641 			   enum sk_rst_reason reason)
3642 {
3643 	struct sk_buff *skb;
3644 
3645 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3646 
3647 	/* NOTE: No TCP options attached and we never retransmit this. */
3648 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3649 	if (!skb) {
3650 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3651 		return;
3652 	}
3653 
3654 	/* Reserve space for headers and prepare control bits. */
3655 	skb_reserve(skb, MAX_TCP_HEADER);
3656 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3657 			     TCPHDR_ACK | TCPHDR_RST);
3658 	tcp_mstamp_refresh(tcp_sk(sk));
3659 	/* Send it off. */
3660 	if (tcp_transmit_skb(sk, skb, 0, priority))
3661 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3662 
3663 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3664 	 * skb here is different to the troublesome skb, so use NULL
3665 	 */
3666 	trace_tcp_send_reset(sk, NULL, reason);
3667 }
3668 
3669 /* Send a crossed SYN-ACK during socket establishment.
3670  * WARNING: This routine must only be called when we have already sent
3671  * a SYN packet that crossed the incoming SYN that caused this routine
3672  * to get called. If this assumption fails then the initial rcv_wnd
3673  * and rcv_wscale values will not be correct.
3674  */
tcp_send_synack(struct sock * sk)3675 int tcp_send_synack(struct sock *sk)
3676 {
3677 	struct sk_buff *skb;
3678 
3679 	skb = tcp_rtx_queue_head(sk);
3680 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3681 		pr_err("%s: wrong queue state\n", __func__);
3682 		return -EFAULT;
3683 	}
3684 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3685 		if (skb_cloned(skb)) {
3686 			struct sk_buff *nskb;
3687 
3688 			tcp_skb_tsorted_save(skb) {
3689 				nskb = skb_copy(skb, GFP_ATOMIC);
3690 			} tcp_skb_tsorted_restore(skb);
3691 			if (!nskb)
3692 				return -ENOMEM;
3693 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3694 			tcp_highest_sack_replace(sk, skb, nskb);
3695 			tcp_rtx_queue_unlink_and_free(skb, sk);
3696 			__skb_header_release(nskb);
3697 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3698 			sk_wmem_queued_add(sk, nskb->truesize);
3699 			sk_mem_charge(sk, nskb->truesize);
3700 			skb = nskb;
3701 		}
3702 
3703 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3704 		tcp_ecn_send_synack(sk, skb);
3705 	}
3706 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3707 }
3708 
3709 /**
3710  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3711  * @sk: listener socket
3712  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3713  *       should not use it again.
3714  * @req: request_sock pointer
3715  * @foc: cookie for tcp fast open
3716  * @synack_type: Type of synack to prepare
3717  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3718  */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3719 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3720 				struct request_sock *req,
3721 				struct tcp_fastopen_cookie *foc,
3722 				enum tcp_synack_type synack_type,
3723 				struct sk_buff *syn_skb)
3724 {
3725 	struct inet_request_sock *ireq = inet_rsk(req);
3726 	const struct tcp_sock *tp = tcp_sk(sk);
3727 	struct tcp_out_options opts;
3728 	struct tcp_key key = {};
3729 	struct sk_buff *skb;
3730 	int tcp_header_size;
3731 	struct tcphdr *th;
3732 	int mss;
3733 	u64 now;
3734 
3735 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3736 	if (unlikely(!skb)) {
3737 		dst_release(dst);
3738 		return NULL;
3739 	}
3740 	/* Reserve space for headers. */
3741 	skb_reserve(skb, MAX_TCP_HEADER);
3742 
3743 	switch (synack_type) {
3744 	case TCP_SYNACK_NORMAL:
3745 		skb_set_owner_edemux(skb, req_to_sk(req));
3746 		break;
3747 	case TCP_SYNACK_COOKIE:
3748 		/* Under synflood, we do not attach skb to a socket,
3749 		 * to avoid false sharing.
3750 		 */
3751 		break;
3752 	case TCP_SYNACK_FASTOPEN:
3753 		/* sk is a const pointer, because we want to express multiple
3754 		 * cpu might call us concurrently.
3755 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3756 		 */
3757 		skb_set_owner_w(skb, (struct sock *)sk);
3758 		break;
3759 	}
3760 	skb_dst_set(skb, dst);
3761 
3762 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3763 
3764 	memset(&opts, 0, sizeof(opts));
3765 	now = tcp_clock_ns();
3766 #ifdef CONFIG_SYN_COOKIES
3767 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3768 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3769 				      SKB_CLOCK_MONOTONIC);
3770 	else
3771 #endif
3772 	{
3773 		skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3774 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3775 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3776 	}
3777 
3778 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3779 	rcu_read_lock();
3780 #endif
3781 	if (tcp_rsk_used_ao(req)) {
3782 #ifdef CONFIG_TCP_AO
3783 		struct tcp_ao_key *ao_key = NULL;
3784 		u8 keyid = tcp_rsk(req)->ao_keyid;
3785 		u8 rnext = tcp_rsk(req)->ao_rcv_next;
3786 
3787 		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3788 							    keyid, -1);
3789 		/* If there is no matching key - avoid sending anything,
3790 		 * especially usigned segments. It could try harder and lookup
3791 		 * for another peer-matching key, but the peer has requested
3792 		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3793 		 */
3794 		if (unlikely(!ao_key)) {
3795 			trace_tcp_ao_synack_no_key(sk, keyid, rnext);
3796 			rcu_read_unlock();
3797 			kfree_skb(skb);
3798 			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3799 					     keyid);
3800 			return NULL;
3801 		}
3802 		key.ao_key = ao_key;
3803 		key.type = TCP_KEY_AO;
3804 #endif
3805 	} else {
3806 #ifdef CONFIG_TCP_MD5SIG
3807 		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3808 					req_to_sk(req));
3809 		if (key.md5_key)
3810 			key.type = TCP_KEY_MD5;
3811 #endif
3812 	}
3813 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3814 	/* bpf program will be interested in the tcp_flags */
3815 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3816 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3817 					     &key, foc, synack_type, syn_skb)
3818 					+ sizeof(*th);
3819 
3820 	skb_push(skb, tcp_header_size);
3821 	skb_reset_transport_header(skb);
3822 
3823 	th = (struct tcphdr *)skb->data;
3824 	memset(th, 0, sizeof(struct tcphdr));
3825 	th->syn = 1;
3826 	th->ack = 1;
3827 	tcp_ecn_make_synack(req, th);
3828 	th->source = htons(ireq->ir_num);
3829 	th->dest = ireq->ir_rmt_port;
3830 	skb->mark = ireq->ir_mark;
3831 	skb->ip_summed = CHECKSUM_PARTIAL;
3832 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3833 	/* XXX data is queued and acked as is. No buffer/window check */
3834 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3835 
3836 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3837 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3838 	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3839 	th->doff = (tcp_header_size >> 2);
3840 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3841 
3842 	/* Okay, we have all we need - do the md5 hash if needed */
3843 	if (tcp_key_is_md5(&key)) {
3844 #ifdef CONFIG_TCP_MD5SIG
3845 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3846 					key.md5_key, req_to_sk(req), skb);
3847 #endif
3848 	} else if (tcp_key_is_ao(&key)) {
3849 #ifdef CONFIG_TCP_AO
3850 		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3851 					key.ao_key, req, skb,
3852 					opts.hash_location - (u8 *)th, 0);
3853 #endif
3854 	}
3855 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3856 	rcu_read_unlock();
3857 #endif
3858 
3859 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3860 				synack_type, &opts);
3861 
3862 	skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3863 	tcp_add_tx_delay(skb, tp);
3864 
3865 	return skb;
3866 }
3867 EXPORT_IPV6_MOD(tcp_make_synack);
3868 
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3869 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3870 {
3871 	struct inet_connection_sock *icsk = inet_csk(sk);
3872 	const struct tcp_congestion_ops *ca;
3873 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3874 
3875 	if (ca_key == TCP_CA_UNSPEC)
3876 		return;
3877 
3878 	rcu_read_lock();
3879 	ca = tcp_ca_find_key(ca_key);
3880 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3881 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3882 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3883 		icsk->icsk_ca_ops = ca;
3884 	}
3885 	rcu_read_unlock();
3886 }
3887 
3888 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3889 static void tcp_connect_init(struct sock *sk)
3890 {
3891 	const struct dst_entry *dst = __sk_dst_get(sk);
3892 	struct tcp_sock *tp = tcp_sk(sk);
3893 	__u8 rcv_wscale;
3894 	u32 rcv_wnd;
3895 
3896 	/* We'll fix this up when we get a response from the other end.
3897 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3898 	 */
3899 	tp->tcp_header_len = sizeof(struct tcphdr);
3900 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3901 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3902 
3903 	tcp_ao_connect_init(sk);
3904 
3905 	/* If user gave his TCP_MAXSEG, record it to clamp */
3906 	if (tp->rx_opt.user_mss)
3907 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3908 	tp->max_window = 0;
3909 	tcp_mtup_init(sk);
3910 	tcp_sync_mss(sk, dst_mtu(dst));
3911 
3912 	tcp_ca_dst_init(sk, dst);
3913 
3914 	if (!tp->window_clamp)
3915 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3916 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3917 
3918 	tcp_initialize_rcv_mss(sk);
3919 
3920 	/* limit the window selection if the user enforce a smaller rx buffer */
3921 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3922 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3923 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3924 
3925 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3926 	if (rcv_wnd == 0)
3927 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3928 
3929 	tcp_select_initial_window(sk, tcp_full_space(sk),
3930 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3931 				  &tp->rcv_wnd,
3932 				  &tp->window_clamp,
3933 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3934 				  &rcv_wscale,
3935 				  rcv_wnd);
3936 
3937 	tp->rx_opt.rcv_wscale = rcv_wscale;
3938 	tp->rcv_ssthresh = tp->rcv_wnd;
3939 
3940 	WRITE_ONCE(sk->sk_err, 0);
3941 	sock_reset_flag(sk, SOCK_DONE);
3942 	tp->snd_wnd = 0;
3943 	tcp_init_wl(tp, 0);
3944 	tcp_write_queue_purge(sk);
3945 	tp->snd_una = tp->write_seq;
3946 	tp->snd_sml = tp->write_seq;
3947 	tp->snd_up = tp->write_seq;
3948 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3949 
3950 	if (likely(!tp->repair))
3951 		tp->rcv_nxt = 0;
3952 	else
3953 		tp->rcv_tstamp = tcp_jiffies32;
3954 	tp->rcv_wup = tp->rcv_nxt;
3955 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3956 
3957 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3958 	inet_csk(sk)->icsk_retransmits = 0;
3959 	tcp_clear_retrans(tp);
3960 }
3961 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3962 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3963 {
3964 	struct tcp_sock *tp = tcp_sk(sk);
3965 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3966 
3967 	tcb->end_seq += skb->len;
3968 	__skb_header_release(skb);
3969 	sk_wmem_queued_add(sk, skb->truesize);
3970 	sk_mem_charge(sk, skb->truesize);
3971 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3972 	tp->packets_out += tcp_skb_pcount(skb);
3973 }
3974 
3975 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3976  * queue a data-only packet after the regular SYN, such that regular SYNs
3977  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3978  * only the SYN sequence, the data are retransmitted in the first ACK.
3979  * If cookie is not cached or other error occurs, falls back to send a
3980  * regular SYN with Fast Open cookie request option.
3981  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3982 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3983 {
3984 	struct inet_connection_sock *icsk = inet_csk(sk);
3985 	struct tcp_sock *tp = tcp_sk(sk);
3986 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3987 	struct page_frag *pfrag = sk_page_frag(sk);
3988 	struct sk_buff *syn_data;
3989 	int space, err = 0;
3990 
3991 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3992 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3993 		goto fallback;
3994 
3995 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3996 	 * user-MSS. Reserve maximum option space for middleboxes that add
3997 	 * private TCP options. The cost is reduced data space in SYN :(
3998 	 */
3999 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
4000 	/* Sync mss_cache after updating the mss_clamp */
4001 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4002 
4003 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
4004 		MAX_TCP_OPTION_SPACE;
4005 
4006 	space = min_t(size_t, space, fo->size);
4007 
4008 	if (space &&
4009 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
4010 				  pfrag, sk->sk_allocation))
4011 		goto fallback;
4012 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
4013 	if (!syn_data)
4014 		goto fallback;
4015 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
4016 	if (space) {
4017 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
4018 		space = tcp_wmem_schedule(sk, space);
4019 	}
4020 	if (space) {
4021 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
4022 					    space, &fo->data->msg_iter);
4023 		if (unlikely(!space)) {
4024 			tcp_skb_tsorted_anchor_cleanup(syn_data);
4025 			kfree_skb(syn_data);
4026 			goto fallback;
4027 		}
4028 		skb_fill_page_desc(syn_data, 0, pfrag->page,
4029 				   pfrag->offset, space);
4030 		page_ref_inc(pfrag->page);
4031 		pfrag->offset += space;
4032 		skb_len_add(syn_data, space);
4033 		skb_zcopy_set(syn_data, fo->uarg, NULL);
4034 	}
4035 	/* No more data pending in inet_wait_for_connect() */
4036 	if (space == fo->size)
4037 		fo->data = NULL;
4038 	fo->copied = space;
4039 
4040 	tcp_connect_queue_skb(sk, syn_data);
4041 	if (syn_data->len)
4042 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
4043 
4044 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
4045 
4046 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC);
4047 
4048 	/* Now full SYN+DATA was cloned and sent (or not),
4049 	 * remove the SYN from the original skb (syn_data)
4050 	 * we keep in write queue in case of a retransmit, as we
4051 	 * also have the SYN packet (with no data) in the same queue.
4052 	 */
4053 	TCP_SKB_CB(syn_data)->seq++;
4054 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4055 	if (!err) {
4056 		tp->syn_data = (fo->copied > 0);
4057 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4058 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4059 		goto done;
4060 	}
4061 
4062 	/* data was not sent, put it in write_queue */
4063 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4064 	tp->packets_out -= tcp_skb_pcount(syn_data);
4065 
4066 fallback:
4067 	/* Send a regular SYN with Fast Open cookie request option */
4068 	if (fo->cookie.len > 0)
4069 		fo->cookie.len = 0;
4070 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4071 	if (err)
4072 		tp->syn_fastopen = 0;
4073 done:
4074 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4075 	return err;
4076 }
4077 
4078 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)4079 int tcp_connect(struct sock *sk)
4080 {
4081 	struct tcp_sock *tp = tcp_sk(sk);
4082 	struct sk_buff *buff;
4083 	int err;
4084 
4085 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4086 
4087 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4088 	/* Has to be checked late, after setting daddr/saddr/ops.
4089 	 * Return error if the peer has both a md5 and a tcp-ao key
4090 	 * configured as this is ambiguous.
4091 	 */
4092 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4093 					       lockdep_sock_is_held(sk)))) {
4094 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4095 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4096 		struct tcp_ao_info *ao_info;
4097 
4098 		ao_info = rcu_dereference_check(tp->ao_info,
4099 						lockdep_sock_is_held(sk));
4100 		if (ao_info) {
4101 			/* This is an extra check: tcp_ao_required() in
4102 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4103 			 * md5 keys on ao_required socket.
4104 			 */
4105 			needs_ao |= ao_info->ao_required;
4106 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4107 		}
4108 		if (needs_md5 && needs_ao)
4109 			return -EKEYREJECTED;
4110 
4111 		/* If we have a matching md5 key and no matching tcp-ao key
4112 		 * then free up ao_info if allocated.
4113 		 */
4114 		if (needs_md5) {
4115 			tcp_ao_destroy_sock(sk, false);
4116 		} else if (needs_ao) {
4117 			tcp_clear_md5_list(sk);
4118 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4119 						  lockdep_sock_is_held(sk)));
4120 		}
4121 	}
4122 #endif
4123 #ifdef CONFIG_TCP_AO
4124 	if (unlikely(rcu_dereference_protected(tp->ao_info,
4125 					       lockdep_sock_is_held(sk)))) {
4126 		/* Don't allow connecting if ao is configured but no
4127 		 * matching key is found.
4128 		 */
4129 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4130 			return -EKEYREJECTED;
4131 	}
4132 #endif
4133 
4134 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4135 		return -EHOSTUNREACH; /* Routing failure or similar. */
4136 
4137 	tcp_connect_init(sk);
4138 
4139 	if (unlikely(tp->repair)) {
4140 		tcp_finish_connect(sk, NULL);
4141 		return 0;
4142 	}
4143 
4144 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4145 	if (unlikely(!buff))
4146 		return -ENOBUFS;
4147 
4148 	/* SYN eats a sequence byte, write_seq updated by
4149 	 * tcp_connect_queue_skb().
4150 	 */
4151 	tcp_init_nondata_skb(buff, tp->write_seq, TCPHDR_SYN);
4152 	tcp_mstamp_refresh(tp);
4153 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4154 	tcp_connect_queue_skb(sk, buff);
4155 	tcp_ecn_send_syn(sk, buff);
4156 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4157 
4158 	/* Send off SYN; include data in Fast Open. */
4159 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4160 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4161 	if (err == -ECONNREFUSED)
4162 		return err;
4163 
4164 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4165 	 * in order to make this packet get counted in tcpOutSegs.
4166 	 */
4167 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4168 	tp->pushed_seq = tp->write_seq;
4169 	buff = tcp_send_head(sk);
4170 	if (unlikely(buff)) {
4171 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4172 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4173 	}
4174 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4175 
4176 	/* Timer for repeating the SYN until an answer. */
4177 	tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4178 			     inet_csk(sk)->icsk_rto, false);
4179 	return 0;
4180 }
4181 EXPORT_SYMBOL(tcp_connect);
4182 
tcp_delack_max(const struct sock * sk)4183 u32 tcp_delack_max(const struct sock *sk)
4184 {
4185 	u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1;
4186 
4187 	return min(READ_ONCE(inet_csk(sk)->icsk_delack_max), delack_from_rto_min);
4188 }
4189 
4190 /* Send out a delayed ack, the caller does the policy checking
4191  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4192  * for details.
4193  */
tcp_send_delayed_ack(struct sock * sk)4194 void tcp_send_delayed_ack(struct sock *sk)
4195 {
4196 	struct inet_connection_sock *icsk = inet_csk(sk);
4197 	int ato = icsk->icsk_ack.ato;
4198 	unsigned long timeout;
4199 
4200 	if (ato > TCP_DELACK_MIN) {
4201 		const struct tcp_sock *tp = tcp_sk(sk);
4202 		int max_ato = HZ / 2;
4203 
4204 		if (inet_csk_in_pingpong_mode(sk) ||
4205 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4206 			max_ato = TCP_DELACK_MAX;
4207 
4208 		/* Slow path, intersegment interval is "high". */
4209 
4210 		/* If some rtt estimate is known, use it to bound delayed ack.
4211 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4212 		 * directly.
4213 		 */
4214 		if (tp->srtt_us) {
4215 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4216 					TCP_DELACK_MIN);
4217 
4218 			if (rtt < max_ato)
4219 				max_ato = rtt;
4220 		}
4221 
4222 		ato = min(ato, max_ato);
4223 	}
4224 
4225 	ato = min_t(u32, ato, tcp_delack_max(sk));
4226 
4227 	/* Stay within the limit we were given */
4228 	timeout = jiffies + ato;
4229 
4230 	/* Use new timeout only if there wasn't a older one earlier. */
4231 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4232 		/* If delack timer is about to expire, send ACK now. */
4233 		if (time_before_eq(icsk_delack_timeout(icsk), jiffies + (ato >> 2))) {
4234 			tcp_send_ack(sk);
4235 			return;
4236 		}
4237 
4238 		if (!time_before(timeout, icsk_delack_timeout(icsk)))
4239 			timeout = icsk_delack_timeout(icsk);
4240 	}
4241 	smp_store_release(&icsk->icsk_ack.pending,
4242 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
4243 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4244 }
4245 
4246 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt,u16 flags)4247 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags)
4248 {
4249 	struct sk_buff *buff;
4250 
4251 	/* If we have been reset, we may not send again. */
4252 	if (sk->sk_state == TCP_CLOSE)
4253 		return;
4254 
4255 	/* We are not putting this on the write queue, so
4256 	 * tcp_transmit_skb() will set the ownership to this
4257 	 * sock.
4258 	 */
4259 	buff = alloc_skb(MAX_TCP_HEADER,
4260 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4261 	if (unlikely(!buff)) {
4262 		struct inet_connection_sock *icsk = inet_csk(sk);
4263 		unsigned long delay;
4264 
4265 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4266 		if (delay < tcp_rto_max(sk))
4267 			icsk->icsk_ack.retry++;
4268 		inet_csk_schedule_ack(sk);
4269 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4270 		tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false);
4271 		return;
4272 	}
4273 
4274 	/* Reserve space for headers and prepare control bits. */
4275 	skb_reserve(buff, MAX_TCP_HEADER);
4276 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK | flags);
4277 
4278 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4279 	 * too much.
4280 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4281 	 */
4282 	skb_set_tcp_pure_ack(buff);
4283 
4284 	/* Send it off, this clears delayed acks for us. */
4285 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4286 }
4287 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4288 
tcp_send_ack(struct sock * sk)4289 void tcp_send_ack(struct sock *sk)
4290 {
4291 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt, 0);
4292 }
4293 
4294 /* This routine sends a packet with an out of date sequence
4295  * number. It assumes the other end will try to ack it.
4296  *
4297  * Question: what should we make while urgent mode?
4298  * 4.4BSD forces sending single byte of data. We cannot send
4299  * out of window data, because we have SND.NXT==SND.MAX...
4300  *
4301  * Current solution: to send TWO zero-length segments in urgent mode:
4302  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4303  * out-of-date with SND.UNA-1 to probe window.
4304  */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4305 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4306 {
4307 	struct tcp_sock *tp = tcp_sk(sk);
4308 	struct sk_buff *skb;
4309 
4310 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4311 	skb = alloc_skb(MAX_TCP_HEADER,
4312 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4313 	if (!skb)
4314 		return -1;
4315 
4316 	/* Reserve space for headers and set control bits. */
4317 	skb_reserve(skb, MAX_TCP_HEADER);
4318 	/* Use a previous sequence.  This should cause the other
4319 	 * end to send an ack.  Don't queue or clone SKB, just
4320 	 * send it.
4321 	 */
4322 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4323 	NET_INC_STATS(sock_net(sk), mib);
4324 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4325 }
4326 
4327 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4328 void tcp_send_window_probe(struct sock *sk)
4329 {
4330 	if (sk->sk_state == TCP_ESTABLISHED) {
4331 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4332 		tcp_mstamp_refresh(tcp_sk(sk));
4333 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4334 	}
4335 }
4336 
4337 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4338 int tcp_write_wakeup(struct sock *sk, int mib)
4339 {
4340 	struct tcp_sock *tp = tcp_sk(sk);
4341 	struct sk_buff *skb;
4342 
4343 	if (sk->sk_state == TCP_CLOSE)
4344 		return -1;
4345 
4346 	skb = tcp_send_head(sk);
4347 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4348 		int err;
4349 		unsigned int mss = tcp_current_mss(sk);
4350 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4351 
4352 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4353 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4354 
4355 		/* We are probing the opening of a window
4356 		 * but the window size is != 0
4357 		 * must have been a result SWS avoidance ( sender )
4358 		 */
4359 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4360 		    skb->len > mss) {
4361 			seg_size = min(seg_size, mss);
4362 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4363 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4364 					 skb, seg_size, mss, GFP_ATOMIC))
4365 				return -1;
4366 		} else if (!tcp_skb_pcount(skb))
4367 			tcp_set_skb_tso_segs(skb, mss);
4368 
4369 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4370 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4371 		if (!err)
4372 			tcp_event_new_data_sent(sk, skb);
4373 		return err;
4374 	} else {
4375 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4376 			tcp_xmit_probe_skb(sk, 1, mib);
4377 		return tcp_xmit_probe_skb(sk, 0, mib);
4378 	}
4379 }
4380 
4381 /* A window probe timeout has occurred.  If window is not closed send
4382  * a partial packet else a zero probe.
4383  */
tcp_send_probe0(struct sock * sk)4384 void tcp_send_probe0(struct sock *sk)
4385 {
4386 	struct inet_connection_sock *icsk = inet_csk(sk);
4387 	struct tcp_sock *tp = tcp_sk(sk);
4388 	struct net *net = sock_net(sk);
4389 	unsigned long timeout;
4390 	int err;
4391 
4392 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4393 
4394 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4395 		/* Cancel probe timer, if it is not required. */
4396 		icsk->icsk_probes_out = 0;
4397 		icsk->icsk_backoff = 0;
4398 		icsk->icsk_probes_tstamp = 0;
4399 		return;
4400 	}
4401 
4402 	icsk->icsk_probes_out++;
4403 	if (err <= 0) {
4404 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4405 			icsk->icsk_backoff++;
4406 		timeout = tcp_probe0_when(sk, tcp_rto_max(sk));
4407 	} else {
4408 		/* If packet was not sent due to local congestion,
4409 		 * Let senders fight for local resources conservatively.
4410 		 */
4411 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4412 	}
4413 
4414 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4415 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true);
4416 }
4417 
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4418 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4419 {
4420 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4421 	struct flowi fl;
4422 	int res;
4423 
4424 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4425 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4426 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4427 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4428 				  NULL);
4429 	if (!res) {
4430 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4431 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4432 		if (unlikely(tcp_passive_fastopen(sk))) {
4433 			/* sk has const attribute because listeners are lockless.
4434 			 * However in this case, we are dealing with a passive fastopen
4435 			 * socket thus we can change total_retrans value.
4436 			 */
4437 			tcp_sk_rw(sk)->total_retrans++;
4438 		}
4439 		trace_tcp_retransmit_synack(sk, req);
4440 		req->num_retrans++;
4441 	}
4442 	return res;
4443 }
4444 EXPORT_IPV6_MOD(tcp_rtx_synack);
4445