1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 #include <net/proto_memory.h>
43
44 #include <linux/compiler.h>
45 #include <linux/gfp.h>
46 #include <linux/module.h>
47 #include <linux/static_key.h>
48 #include <linux/skbuff_ref.h>
49
50 #include <trace/events/tcp.h>
51
52 /* Refresh clocks of a TCP socket,
53 * ensuring monotically increasing values.
54 */
tcp_mstamp_refresh(struct tcp_sock * tp)55 void tcp_mstamp_refresh(struct tcp_sock *tp)
56 {
57 u64 val = tcp_clock_ns();
58
59 tp->tcp_clock_cache = val;
60 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61 }
62
63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
64 int push_one, gfp_t gfp);
65
66 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
68 {
69 struct inet_connection_sock *icsk = inet_csk(sk);
70 struct tcp_sock *tp = tcp_sk(sk);
71 unsigned int prior_packets = tp->packets_out;
72
73 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
74
75 __skb_unlink(skb, &sk->sk_write_queue);
76 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
77
78 if (tp->highest_sack == NULL)
79 tp->highest_sack = skb;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
83 tcp_rearm_rto(sk);
84
85 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
86 tcp_skb_pcount(skb));
87 tcp_check_space(sk);
88 }
89
90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
91 * window scaling factor due to loss of precision.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
96 */
tcp_acceptable_seq(const struct sock * sk)97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 const struct tcp_sock *tp = tcp_sk(sk);
100
101 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
102 (tp->rx_opt.wscale_ok &&
103 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
104 return tp->snd_nxt;
105 else
106 return tcp_wnd_end(tp);
107 }
108
109 /* Calculate mss to advertise in SYN segment.
110 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
111 *
112 * 1. It is independent of path mtu.
113 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
114 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
115 * attached devices, because some buggy hosts are confused by
116 * large MSS.
117 * 4. We do not make 3, we advertise MSS, calculated from first
118 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
119 * This may be overridden via information stored in routing table.
120 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
121 * probably even Jumbo".
122 */
tcp_advertise_mss(struct sock * sk)123 static __u16 tcp_advertise_mss(struct sock *sk)
124 {
125 struct tcp_sock *tp = tcp_sk(sk);
126 const struct dst_entry *dst = __sk_dst_get(sk);
127 int mss = tp->advmss;
128
129 if (dst) {
130 unsigned int metric = dst_metric_advmss(dst);
131
132 if (metric < mss) {
133 mss = metric;
134 tp->advmss = mss;
135 }
136 }
137
138 return (__u16)mss;
139 }
140
141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
142 * This is the first part of cwnd validation mechanism.
143 */
tcp_cwnd_restart(struct sock * sk,s32 delta)144 void tcp_cwnd_restart(struct sock *sk, s32 delta)
145 {
146 struct tcp_sock *tp = tcp_sk(sk);
147 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
148 u32 cwnd = tcp_snd_cwnd(tp);
149
150 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
151
152 tp->snd_ssthresh = tcp_current_ssthresh(sk);
153 restart_cwnd = min(restart_cwnd, cwnd);
154
155 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
156 cwnd >>= 1;
157 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
158 tp->snd_cwnd_stamp = tcp_jiffies32;
159 tp->snd_cwnd_used = 0;
160 }
161
162 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)163 static void tcp_event_data_sent(struct tcp_sock *tp,
164 struct sock *sk)
165 {
166 struct inet_connection_sock *icsk = inet_csk(sk);
167 const u32 now = tcp_jiffies32;
168
169 if (tcp_packets_in_flight(tp) == 0)
170 tcp_ca_event(sk, CA_EVENT_TX_START);
171
172 tp->lsndtime = now;
173
174 /* If it is a reply for ato after last received
175 * packet, increase pingpong count.
176 */
177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178 inet_csk_inc_pingpong_cnt(sk);
179 }
180
181 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
183 {
184 struct tcp_sock *tp = tcp_sk(sk);
185
186 if (unlikely(tp->compressed_ack)) {
187 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188 tp->compressed_ack);
189 tp->compressed_ack = 0;
190 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191 __sock_put(sk);
192 }
193
194 if (unlikely(rcv_nxt != tp->rcv_nxt))
195 return; /* Special ACK sent by DCTCP to reflect ECN */
196 tcp_dec_quickack_mode(sk);
197 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
198 }
199
200 /* Determine a window scaling and initial window to offer.
201 * Based on the assumption that the given amount of space
202 * will be offered. Store the results in the tp structure.
203 * NOTE: for smooth operation initial space offering should
204 * be a multiple of mss if possible. We assume here that mss >= 1.
205 * This MUST be enforced by all callers.
206 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * __window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
208 __u32 *rcv_wnd, __u32 *__window_clamp,
209 int wscale_ok, __u8 *rcv_wscale,
210 __u32 init_rcv_wnd)
211 {
212 unsigned int space = (__space < 0 ? 0 : __space);
213 u32 window_clamp = READ_ONCE(*__window_clamp);
214
215 /* If no clamp set the clamp to the max possible scaled window */
216 if (window_clamp == 0)
217 window_clamp = (U16_MAX << TCP_MAX_WSCALE);
218 space = min(window_clamp, space);
219
220 /* Quantize space offering to a multiple of mss if possible. */
221 if (space > mss)
222 space = rounddown(space, mss);
223
224 /* NOTE: offering an initial window larger than 32767
225 * will break some buggy TCP stacks. If the admin tells us
226 * it is likely we could be speaking with such a buggy stack
227 * we will truncate our initial window offering to 32K-1
228 * unless the remote has sent us a window scaling option,
229 * which we interpret as a sign the remote TCP is not
230 * misinterpreting the window field as a signed quantity.
231 */
232 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 else
235 (*rcv_wnd) = space;
236
237 if (init_rcv_wnd)
238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239
240 *rcv_wscale = 0;
241 if (wscale_ok) {
242 /* Set window scaling on max possible window */
243 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
244 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
245 space = min_t(u32, space, window_clamp);
246 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 0, TCP_MAX_WSCALE);
248 }
249 /* Set the clamp no higher than max representable value */
250 WRITE_ONCE(*__window_clamp,
251 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
252 }
253 EXPORT_IPV6_MOD(tcp_select_initial_window);
254
255 /* Chose a new window to advertise, update state in tcp_sock for the
256 * socket, and return result with RFC1323 scaling applied. The return
257 * value can be stuffed directly into th->window for an outgoing
258 * frame.
259 */
tcp_select_window(struct sock * sk)260 static u16 tcp_select_window(struct sock *sk)
261 {
262 struct tcp_sock *tp = tcp_sk(sk);
263 struct net *net = sock_net(sk);
264 u32 old_win = tp->rcv_wnd;
265 u32 cur_win, new_win;
266
267 /* Make the window 0 if we failed to queue the data because we
268 * are out of memory.
269 */
270 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) {
271 tp->pred_flags = 0;
272 tp->rcv_wnd = 0;
273 tp->rcv_wup = tp->rcv_nxt;
274 return 0;
275 }
276
277 cur_win = tcp_receive_window(tp);
278 new_win = __tcp_select_window(sk);
279 if (new_win < cur_win) {
280 /* Danger Will Robinson!
281 * Don't update rcv_wup/rcv_wnd here or else
282 * we will not be able to advertise a zero
283 * window in time. --DaveM
284 *
285 * Relax Will Robinson.
286 */
287 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
288 /* Never shrink the offered window */
289 if (new_win == 0)
290 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 }
293 }
294
295 tp->rcv_wnd = new_win;
296 tp->rcv_wup = tp->rcv_nxt;
297
298 /* Make sure we do not exceed the maximum possible
299 * scaled window.
300 */
301 if (!tp->rx_opt.rcv_wscale &&
302 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
303 new_win = min(new_win, MAX_TCP_WINDOW);
304 else
305 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
306
307 /* RFC1323 scaling applied */
308 new_win >>= tp->rx_opt.rcv_wscale;
309
310 /* If we advertise zero window, disable fast path. */
311 if (new_win == 0) {
312 tp->pred_flags = 0;
313 if (old_win)
314 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
315 } else if (old_win == 0) {
316 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
317 }
318
319 return new_win;
320 }
321
322 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)323 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
324 {
325 const struct tcp_sock *tp = tcp_sk(sk);
326
327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
328 if (tcp_ecn_disabled(tp))
329 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
330 else if (tcp_ca_needs_ecn(sk) ||
331 tcp_bpf_ca_needs_ecn(sk))
332 INET_ECN_xmit(sk);
333 }
334
335 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)336 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
337 {
338 struct tcp_sock *tp = tcp_sk(sk);
339 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
340 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
341 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
342
343 if (!use_ecn) {
344 const struct dst_entry *dst = __sk_dst_get(sk);
345
346 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
347 use_ecn = true;
348 }
349
350 tp->ecn_flags = 0;
351
352 if (use_ecn) {
353 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
354 tcp_ecn_mode_set(tp, TCP_ECN_MODE_RFC3168);
355 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
356 INET_ECN_xmit(sk);
357 }
358 }
359
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)360 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
361 {
362 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
363 /* tp->ecn_flags are cleared at a later point in time when
364 * SYN ACK is ultimatively being received.
365 */
366 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
367 }
368
369 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)370 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
371 {
372 if (inet_rsk(req)->ecn_ok)
373 th->ece = 1;
374 }
375
376 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
377 * be sent.
378 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)379 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
380 struct tcphdr *th, int tcp_header_len)
381 {
382 struct tcp_sock *tp = tcp_sk(sk);
383
384 if (tcp_ecn_mode_rfc3168(tp)) {
385 /* Not-retransmitted data segment: set ECT and inject CWR. */
386 if (skb->len != tcp_header_len &&
387 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
388 INET_ECN_xmit(sk);
389 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
390 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
391 th->cwr = 1;
392 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
393 }
394 } else if (!tcp_ca_needs_ecn(sk)) {
395 /* ACK or retransmitted segment: clear ECT|CE */
396 INET_ECN_dontxmit(sk);
397 }
398 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
399 th->ece = 1;
400 }
401 }
402
403 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
404 * auto increment end seqno.
405 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u16 flags)406 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u16 flags)
407 {
408 skb->ip_summed = CHECKSUM_PARTIAL;
409
410 TCP_SKB_CB(skb)->tcp_flags = flags;
411
412 tcp_skb_pcount_set(skb, 1);
413
414 TCP_SKB_CB(skb)->seq = seq;
415 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
416 seq++;
417 TCP_SKB_CB(skb)->end_seq = seq;
418 }
419
tcp_urg_mode(const struct tcp_sock * tp)420 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
421 {
422 return tp->snd_una != tp->snd_up;
423 }
424
425 #define OPTION_SACK_ADVERTISE BIT(0)
426 #define OPTION_TS BIT(1)
427 #define OPTION_MD5 BIT(2)
428 #define OPTION_WSCALE BIT(3)
429 #define OPTION_FAST_OPEN_COOKIE BIT(8)
430 #define OPTION_SMC BIT(9)
431 #define OPTION_MPTCP BIT(10)
432 #define OPTION_AO BIT(11)
433
smc_options_write(__be32 * ptr,u16 * options)434 static void smc_options_write(__be32 *ptr, u16 *options)
435 {
436 #if IS_ENABLED(CONFIG_SMC)
437 if (static_branch_unlikely(&tcp_have_smc)) {
438 if (unlikely(OPTION_SMC & *options)) {
439 *ptr++ = htonl((TCPOPT_NOP << 24) |
440 (TCPOPT_NOP << 16) |
441 (TCPOPT_EXP << 8) |
442 (TCPOLEN_EXP_SMC_BASE));
443 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
444 }
445 }
446 #endif
447 }
448
449 struct tcp_out_options {
450 u16 options; /* bit field of OPTION_* */
451 u16 mss; /* 0 to disable */
452 u8 ws; /* window scale, 0 to disable */
453 u8 num_sack_blocks; /* number of SACK blocks to include */
454 u8 hash_size; /* bytes in hash_location */
455 u8 bpf_opt_len; /* length of BPF hdr option */
456 __u8 *hash_location; /* temporary pointer, overloaded */
457 __u32 tsval, tsecr; /* need to include OPTION_TS */
458 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
459 struct mptcp_out_options mptcp;
460 };
461
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)462 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
463 struct tcp_sock *tp,
464 struct tcp_out_options *opts)
465 {
466 #if IS_ENABLED(CONFIG_MPTCP)
467 if (unlikely(OPTION_MPTCP & opts->options))
468 mptcp_write_options(th, ptr, tp, &opts->mptcp);
469 #endif
470 }
471
472 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)473 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
474 enum tcp_synack_type synack_type)
475 {
476 if (unlikely(!skb))
477 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
478
479 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
480 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
481
482 return 0;
483 }
484
485 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)486 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
487 struct request_sock *req,
488 struct sk_buff *syn_skb,
489 enum tcp_synack_type synack_type,
490 struct tcp_out_options *opts,
491 unsigned int *remaining)
492 {
493 struct bpf_sock_ops_kern sock_ops;
494 int err;
495
496 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
497 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
498 !*remaining)
499 return;
500
501 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
502
503 /* init sock_ops */
504 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
505
506 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
507
508 if (req) {
509 /* The listen "sk" cannot be passed here because
510 * it is not locked. It would not make too much
511 * sense to do bpf_setsockopt(listen_sk) based
512 * on individual connection request also.
513 *
514 * Thus, "req" is passed here and the cgroup-bpf-progs
515 * of the listen "sk" will be run.
516 *
517 * "req" is also used here for fastopen even the "sk" here is
518 * a fullsock "child" sk. It is to keep the behavior
519 * consistent between fastopen and non-fastopen on
520 * the bpf programming side.
521 */
522 sock_ops.sk = (struct sock *)req;
523 sock_ops.syn_skb = syn_skb;
524 } else {
525 sock_owned_by_me(sk);
526
527 sock_ops.is_fullsock = 1;
528 sock_ops.is_locked_tcp_sock = 1;
529 sock_ops.sk = sk;
530 }
531
532 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
533 sock_ops.remaining_opt_len = *remaining;
534 /* tcp_current_mss() does not pass a skb */
535 if (skb)
536 bpf_skops_init_skb(&sock_ops, skb, 0);
537
538 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
539
540 if (err || sock_ops.remaining_opt_len == *remaining)
541 return;
542
543 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
544 /* round up to 4 bytes */
545 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
546
547 *remaining -= opts->bpf_opt_len;
548 }
549
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)550 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
551 struct request_sock *req,
552 struct sk_buff *syn_skb,
553 enum tcp_synack_type synack_type,
554 struct tcp_out_options *opts)
555 {
556 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
557 struct bpf_sock_ops_kern sock_ops;
558 int err;
559
560 if (likely(!max_opt_len))
561 return;
562
563 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
564
565 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
566
567 if (req) {
568 sock_ops.sk = (struct sock *)req;
569 sock_ops.syn_skb = syn_skb;
570 } else {
571 sock_owned_by_me(sk);
572
573 sock_ops.is_fullsock = 1;
574 sock_ops.is_locked_tcp_sock = 1;
575 sock_ops.sk = sk;
576 }
577
578 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
579 sock_ops.remaining_opt_len = max_opt_len;
580 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
581 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
582
583 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
584
585 if (err)
586 nr_written = 0;
587 else
588 nr_written = max_opt_len - sock_ops.remaining_opt_len;
589
590 if (nr_written < max_opt_len)
591 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
592 max_opt_len - nr_written);
593 }
594 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)595 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
596 struct request_sock *req,
597 struct sk_buff *syn_skb,
598 enum tcp_synack_type synack_type,
599 struct tcp_out_options *opts,
600 unsigned int *remaining)
601 {
602 }
603
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)604 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
605 struct request_sock *req,
606 struct sk_buff *syn_skb,
607 enum tcp_synack_type synack_type,
608 struct tcp_out_options *opts)
609 {
610 }
611 #endif
612
process_tcp_ao_options(struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key,__be32 * ptr)613 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
614 const struct tcp_request_sock *tcprsk,
615 struct tcp_out_options *opts,
616 struct tcp_key *key, __be32 *ptr)
617 {
618 #ifdef CONFIG_TCP_AO
619 u8 maclen = tcp_ao_maclen(key->ao_key);
620
621 if (tcprsk) {
622 u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
623
624 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
625 (tcprsk->ao_keyid << 8) |
626 (tcprsk->ao_rcv_next));
627 } else {
628 struct tcp_ao_key *rnext_key;
629 struct tcp_ao_info *ao_info;
630
631 ao_info = rcu_dereference_check(tp->ao_info,
632 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
633 rnext_key = READ_ONCE(ao_info->rnext_key);
634 if (WARN_ON_ONCE(!rnext_key))
635 return ptr;
636 *ptr++ = htonl((TCPOPT_AO << 24) |
637 (tcp_ao_len(key->ao_key) << 16) |
638 (key->ao_key->sndid << 8) |
639 (rnext_key->rcvid));
640 }
641 opts->hash_location = (__u8 *)ptr;
642 ptr += maclen / sizeof(*ptr);
643 if (unlikely(maclen % sizeof(*ptr))) {
644 memset(ptr, TCPOPT_NOP, sizeof(*ptr));
645 ptr++;
646 }
647 #endif
648 return ptr;
649 }
650
651 /* Write previously computed TCP options to the packet.
652 *
653 * Beware: Something in the Internet is very sensitive to the ordering of
654 * TCP options, we learned this through the hard way, so be careful here.
655 * Luckily we can at least blame others for their non-compliance but from
656 * inter-operability perspective it seems that we're somewhat stuck with
657 * the ordering which we have been using if we want to keep working with
658 * those broken things (not that it currently hurts anybody as there isn't
659 * particular reason why the ordering would need to be changed).
660 *
661 * At least SACK_PERM as the first option is known to lead to a disaster
662 * (but it may well be that other scenarios fail similarly).
663 */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key)664 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
665 const struct tcp_request_sock *tcprsk,
666 struct tcp_out_options *opts,
667 struct tcp_key *key)
668 {
669 __be32 *ptr = (__be32 *)(th + 1);
670 u16 options = opts->options; /* mungable copy */
671
672 if (tcp_key_is_md5(key)) {
673 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
674 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
675 /* overload cookie hash location */
676 opts->hash_location = (__u8 *)ptr;
677 ptr += 4;
678 } else if (tcp_key_is_ao(key)) {
679 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
680 }
681 if (unlikely(opts->mss)) {
682 *ptr++ = htonl((TCPOPT_MSS << 24) |
683 (TCPOLEN_MSS << 16) |
684 opts->mss);
685 }
686
687 if (likely(OPTION_TS & options)) {
688 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
689 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
690 (TCPOLEN_SACK_PERM << 16) |
691 (TCPOPT_TIMESTAMP << 8) |
692 TCPOLEN_TIMESTAMP);
693 options &= ~OPTION_SACK_ADVERTISE;
694 } else {
695 *ptr++ = htonl((TCPOPT_NOP << 24) |
696 (TCPOPT_NOP << 16) |
697 (TCPOPT_TIMESTAMP << 8) |
698 TCPOLEN_TIMESTAMP);
699 }
700 *ptr++ = htonl(opts->tsval);
701 *ptr++ = htonl(opts->tsecr);
702 }
703
704 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
705 *ptr++ = htonl((TCPOPT_NOP << 24) |
706 (TCPOPT_NOP << 16) |
707 (TCPOPT_SACK_PERM << 8) |
708 TCPOLEN_SACK_PERM);
709 }
710
711 if (unlikely(OPTION_WSCALE & options)) {
712 *ptr++ = htonl((TCPOPT_NOP << 24) |
713 (TCPOPT_WINDOW << 16) |
714 (TCPOLEN_WINDOW << 8) |
715 opts->ws);
716 }
717
718 if (unlikely(opts->num_sack_blocks)) {
719 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
720 tp->duplicate_sack : tp->selective_acks;
721 int this_sack;
722
723 *ptr++ = htonl((TCPOPT_NOP << 24) |
724 (TCPOPT_NOP << 16) |
725 (TCPOPT_SACK << 8) |
726 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
727 TCPOLEN_SACK_PERBLOCK)));
728
729 for (this_sack = 0; this_sack < opts->num_sack_blocks;
730 ++this_sack) {
731 *ptr++ = htonl(sp[this_sack].start_seq);
732 *ptr++ = htonl(sp[this_sack].end_seq);
733 }
734
735 tp->rx_opt.dsack = 0;
736 }
737
738 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
739 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
740 u8 *p = (u8 *)ptr;
741 u32 len; /* Fast Open option length */
742
743 if (foc->exp) {
744 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
745 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
746 TCPOPT_FASTOPEN_MAGIC);
747 p += TCPOLEN_EXP_FASTOPEN_BASE;
748 } else {
749 len = TCPOLEN_FASTOPEN_BASE + foc->len;
750 *p++ = TCPOPT_FASTOPEN;
751 *p++ = len;
752 }
753
754 memcpy(p, foc->val, foc->len);
755 if ((len & 3) == 2) {
756 p[foc->len] = TCPOPT_NOP;
757 p[foc->len + 1] = TCPOPT_NOP;
758 }
759 ptr += (len + 3) >> 2;
760 }
761
762 smc_options_write(ptr, &options);
763
764 mptcp_options_write(th, ptr, tp, opts);
765 }
766
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)767 static void smc_set_option(const struct tcp_sock *tp,
768 struct tcp_out_options *opts,
769 unsigned int *remaining)
770 {
771 #if IS_ENABLED(CONFIG_SMC)
772 if (static_branch_unlikely(&tcp_have_smc)) {
773 if (tp->syn_smc) {
774 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
775 opts->options |= OPTION_SMC;
776 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
777 }
778 }
779 }
780 #endif
781 }
782
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)783 static void smc_set_option_cond(const struct tcp_sock *tp,
784 const struct inet_request_sock *ireq,
785 struct tcp_out_options *opts,
786 unsigned int *remaining)
787 {
788 #if IS_ENABLED(CONFIG_SMC)
789 if (static_branch_unlikely(&tcp_have_smc)) {
790 if (tp->syn_smc && ireq->smc_ok) {
791 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
792 opts->options |= OPTION_SMC;
793 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
794 }
795 }
796 }
797 #endif
798 }
799
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)800 static void mptcp_set_option_cond(const struct request_sock *req,
801 struct tcp_out_options *opts,
802 unsigned int *remaining)
803 {
804 if (rsk_is_mptcp(req)) {
805 unsigned int size;
806
807 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
808 if (*remaining >= size) {
809 opts->options |= OPTION_MPTCP;
810 *remaining -= size;
811 }
812 }
813 }
814 }
815
816 /* Compute TCP options for SYN packets. This is not the final
817 * network wire format yet.
818 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)819 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
820 struct tcp_out_options *opts,
821 struct tcp_key *key)
822 {
823 struct tcp_sock *tp = tcp_sk(sk);
824 unsigned int remaining = MAX_TCP_OPTION_SPACE;
825 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
826 bool timestamps;
827
828 /* Better than switch (key.type) as it has static branches */
829 if (tcp_key_is_md5(key)) {
830 timestamps = false;
831 opts->options |= OPTION_MD5;
832 remaining -= TCPOLEN_MD5SIG_ALIGNED;
833 } else {
834 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
835 if (tcp_key_is_ao(key)) {
836 opts->options |= OPTION_AO;
837 remaining -= tcp_ao_len_aligned(key->ao_key);
838 }
839 }
840
841 /* We always get an MSS option. The option bytes which will be seen in
842 * normal data packets should timestamps be used, must be in the MSS
843 * advertised. But we subtract them from tp->mss_cache so that
844 * calculations in tcp_sendmsg are simpler etc. So account for this
845 * fact here if necessary. If we don't do this correctly, as a
846 * receiver we won't recognize data packets as being full sized when we
847 * should, and thus we won't abide by the delayed ACK rules correctly.
848 * SACKs don't matter, we never delay an ACK when we have any of those
849 * going out. */
850 opts->mss = tcp_advertise_mss(sk);
851 remaining -= TCPOLEN_MSS_ALIGNED;
852
853 if (likely(timestamps)) {
854 opts->options |= OPTION_TS;
855 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
856 opts->tsecr = tp->rx_opt.ts_recent;
857 remaining -= TCPOLEN_TSTAMP_ALIGNED;
858 }
859 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
860 opts->ws = tp->rx_opt.rcv_wscale;
861 opts->options |= OPTION_WSCALE;
862 remaining -= TCPOLEN_WSCALE_ALIGNED;
863 }
864 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
865 opts->options |= OPTION_SACK_ADVERTISE;
866 if (unlikely(!(OPTION_TS & opts->options)))
867 remaining -= TCPOLEN_SACKPERM_ALIGNED;
868 }
869
870 if (fastopen && fastopen->cookie.len >= 0) {
871 u32 need = fastopen->cookie.len;
872
873 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
874 TCPOLEN_FASTOPEN_BASE;
875 need = (need + 3) & ~3U; /* Align to 32 bits */
876 if (remaining >= need) {
877 opts->options |= OPTION_FAST_OPEN_COOKIE;
878 opts->fastopen_cookie = &fastopen->cookie;
879 remaining -= need;
880 tp->syn_fastopen = 1;
881 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
882 }
883 }
884
885 smc_set_option(tp, opts, &remaining);
886
887 if (sk_is_mptcp(sk)) {
888 unsigned int size;
889
890 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
891 if (remaining >= size) {
892 opts->options |= OPTION_MPTCP;
893 remaining -= size;
894 }
895 }
896 }
897
898 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
899
900 return MAX_TCP_OPTION_SPACE - remaining;
901 }
902
903 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_key * key,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)904 static unsigned int tcp_synack_options(const struct sock *sk,
905 struct request_sock *req,
906 unsigned int mss, struct sk_buff *skb,
907 struct tcp_out_options *opts,
908 const struct tcp_key *key,
909 struct tcp_fastopen_cookie *foc,
910 enum tcp_synack_type synack_type,
911 struct sk_buff *syn_skb)
912 {
913 struct inet_request_sock *ireq = inet_rsk(req);
914 unsigned int remaining = MAX_TCP_OPTION_SPACE;
915
916 if (tcp_key_is_md5(key)) {
917 opts->options |= OPTION_MD5;
918 remaining -= TCPOLEN_MD5SIG_ALIGNED;
919
920 /* We can't fit any SACK blocks in a packet with MD5 + TS
921 * options. There was discussion about disabling SACK
922 * rather than TS in order to fit in better with old,
923 * buggy kernels, but that was deemed to be unnecessary.
924 */
925 if (synack_type != TCP_SYNACK_COOKIE)
926 ireq->tstamp_ok &= !ireq->sack_ok;
927 } else if (tcp_key_is_ao(key)) {
928 opts->options |= OPTION_AO;
929 remaining -= tcp_ao_len_aligned(key->ao_key);
930 ireq->tstamp_ok &= !ireq->sack_ok;
931 }
932
933 /* We always send an MSS option. */
934 opts->mss = mss;
935 remaining -= TCPOLEN_MSS_ALIGNED;
936
937 if (likely(ireq->wscale_ok)) {
938 opts->ws = ireq->rcv_wscale;
939 opts->options |= OPTION_WSCALE;
940 remaining -= TCPOLEN_WSCALE_ALIGNED;
941 }
942 if (likely(ireq->tstamp_ok)) {
943 opts->options |= OPTION_TS;
944 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
945 tcp_rsk(req)->ts_off;
946 if (!tcp_rsk(req)->snt_tsval_first) {
947 if (!opts->tsval)
948 opts->tsval = ~0U;
949 tcp_rsk(req)->snt_tsval_first = opts->tsval;
950 }
951 WRITE_ONCE(tcp_rsk(req)->snt_tsval_last, opts->tsval);
952 opts->tsecr = req->ts_recent;
953 remaining -= TCPOLEN_TSTAMP_ALIGNED;
954 }
955 if (likely(ireq->sack_ok)) {
956 opts->options |= OPTION_SACK_ADVERTISE;
957 if (unlikely(!ireq->tstamp_ok))
958 remaining -= TCPOLEN_SACKPERM_ALIGNED;
959 }
960 if (foc != NULL && foc->len >= 0) {
961 u32 need = foc->len;
962
963 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
964 TCPOLEN_FASTOPEN_BASE;
965 need = (need + 3) & ~3U; /* Align to 32 bits */
966 if (remaining >= need) {
967 opts->options |= OPTION_FAST_OPEN_COOKIE;
968 opts->fastopen_cookie = foc;
969 remaining -= need;
970 }
971 }
972
973 mptcp_set_option_cond(req, opts, &remaining);
974
975 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
976
977 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
978 synack_type, opts, &remaining);
979
980 return MAX_TCP_OPTION_SPACE - remaining;
981 }
982
983 /* Compute TCP options for ESTABLISHED sockets. This is not the
984 * final wire format yet.
985 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)986 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
987 struct tcp_out_options *opts,
988 struct tcp_key *key)
989 {
990 struct tcp_sock *tp = tcp_sk(sk);
991 unsigned int size = 0;
992 unsigned int eff_sacks;
993
994 opts->options = 0;
995
996 /* Better than switch (key.type) as it has static branches */
997 if (tcp_key_is_md5(key)) {
998 opts->options |= OPTION_MD5;
999 size += TCPOLEN_MD5SIG_ALIGNED;
1000 } else if (tcp_key_is_ao(key)) {
1001 opts->options |= OPTION_AO;
1002 size += tcp_ao_len_aligned(key->ao_key);
1003 }
1004
1005 if (likely(tp->rx_opt.tstamp_ok)) {
1006 opts->options |= OPTION_TS;
1007 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
1008 tp->tsoffset : 0;
1009 opts->tsecr = tp->rx_opt.ts_recent;
1010 size += TCPOLEN_TSTAMP_ALIGNED;
1011 }
1012
1013 /* MPTCP options have precedence over SACK for the limited TCP
1014 * option space because a MPTCP connection would be forced to
1015 * fall back to regular TCP if a required multipath option is
1016 * missing. SACK still gets a chance to use whatever space is
1017 * left.
1018 */
1019 if (sk_is_mptcp(sk)) {
1020 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1021 unsigned int opt_size = 0;
1022
1023 if (mptcp_established_options(sk, skb, &opt_size, remaining,
1024 &opts->mptcp)) {
1025 opts->options |= OPTION_MPTCP;
1026 size += opt_size;
1027 }
1028 }
1029
1030 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1031 if (unlikely(eff_sacks)) {
1032 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1033 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1034 TCPOLEN_SACK_PERBLOCK))
1035 return size;
1036
1037 opts->num_sack_blocks =
1038 min_t(unsigned int, eff_sacks,
1039 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1040 TCPOLEN_SACK_PERBLOCK);
1041
1042 size += TCPOLEN_SACK_BASE_ALIGNED +
1043 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1044 }
1045
1046 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1047 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1048 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1049
1050 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1051
1052 size = MAX_TCP_OPTION_SPACE - remaining;
1053 }
1054
1055 return size;
1056 }
1057
1058
1059 /* TCP SMALL QUEUES (TSQ)
1060 *
1061 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1062 * to reduce RTT and bufferbloat.
1063 * We do this using a special skb destructor (tcp_wfree).
1064 *
1065 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1066 * needs to be reallocated in a driver.
1067 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1068 *
1069 * Since transmit from skb destructor is forbidden, we use a BH work item
1070 * to process all sockets that eventually need to send more skbs.
1071 * We use one work item per cpu, with its own queue of sockets.
1072 */
1073 struct tsq_work {
1074 struct work_struct work;
1075 struct list_head head; /* queue of tcp sockets */
1076 };
1077 static DEFINE_PER_CPU(struct tsq_work, tsq_work);
1078
tcp_tsq_write(struct sock * sk)1079 static void tcp_tsq_write(struct sock *sk)
1080 {
1081 if ((1 << sk->sk_state) &
1082 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1083 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1084 struct tcp_sock *tp = tcp_sk(sk);
1085
1086 if (tp->lost_out > tp->retrans_out &&
1087 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1088 tcp_mstamp_refresh(tp);
1089 tcp_xmit_retransmit_queue(sk);
1090 }
1091
1092 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1093 0, GFP_ATOMIC);
1094 }
1095 }
1096
tcp_tsq_handler(struct sock * sk)1097 static void tcp_tsq_handler(struct sock *sk)
1098 {
1099 bh_lock_sock(sk);
1100 if (!sock_owned_by_user(sk))
1101 tcp_tsq_write(sk);
1102 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1103 sock_hold(sk);
1104 bh_unlock_sock(sk);
1105 }
1106 /*
1107 * One work item per cpu tries to send more skbs.
1108 * We run in BH context but need to disable irqs when
1109 * transferring tsq->head because tcp_wfree() might
1110 * interrupt us (non NAPI drivers)
1111 */
tcp_tsq_workfn(struct work_struct * work)1112 static void tcp_tsq_workfn(struct work_struct *work)
1113 {
1114 struct tsq_work *tsq = container_of(work, struct tsq_work, work);
1115 LIST_HEAD(list);
1116 unsigned long flags;
1117 struct list_head *q, *n;
1118 struct tcp_sock *tp;
1119 struct sock *sk;
1120
1121 local_irq_save(flags);
1122 list_splice_init(&tsq->head, &list);
1123 local_irq_restore(flags);
1124
1125 list_for_each_safe(q, n, &list) {
1126 tp = list_entry(q, struct tcp_sock, tsq_node);
1127 list_del(&tp->tsq_node);
1128
1129 sk = (struct sock *)tp;
1130 smp_mb__before_atomic();
1131 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1132
1133 tcp_tsq_handler(sk);
1134 sk_free(sk);
1135 }
1136 }
1137
1138 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1139 TCPF_WRITE_TIMER_DEFERRED | \
1140 TCPF_DELACK_TIMER_DEFERRED | \
1141 TCPF_MTU_REDUCED_DEFERRED | \
1142 TCPF_ACK_DEFERRED)
1143 /**
1144 * tcp_release_cb - tcp release_sock() callback
1145 * @sk: socket
1146 *
1147 * called from release_sock() to perform protocol dependent
1148 * actions before socket release.
1149 */
tcp_release_cb(struct sock * sk)1150 void tcp_release_cb(struct sock *sk)
1151 {
1152 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1153 unsigned long nflags;
1154
1155 /* perform an atomic operation only if at least one flag is set */
1156 do {
1157 if (!(flags & TCP_DEFERRED_ALL))
1158 return;
1159 nflags = flags & ~TCP_DEFERRED_ALL;
1160 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1161
1162 if (flags & TCPF_TSQ_DEFERRED) {
1163 tcp_tsq_write(sk);
1164 __sock_put(sk);
1165 }
1166
1167 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1168 tcp_write_timer_handler(sk);
1169 __sock_put(sk);
1170 }
1171 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1172 tcp_delack_timer_handler(sk);
1173 __sock_put(sk);
1174 }
1175 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1176 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1177 __sock_put(sk);
1178 }
1179 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1180 tcp_send_ack(sk);
1181 }
1182 EXPORT_IPV6_MOD(tcp_release_cb);
1183
tcp_tsq_work_init(void)1184 void __init tcp_tsq_work_init(void)
1185 {
1186 int i;
1187
1188 for_each_possible_cpu(i) {
1189 struct tsq_work *tsq = &per_cpu(tsq_work, i);
1190
1191 INIT_LIST_HEAD(&tsq->head);
1192 INIT_WORK(&tsq->work, tcp_tsq_workfn);
1193 }
1194 }
1195
1196 /*
1197 * Write buffer destructor automatically called from kfree_skb.
1198 * We can't xmit new skbs from this context, as we might already
1199 * hold qdisc lock.
1200 */
tcp_wfree(struct sk_buff * skb)1201 void tcp_wfree(struct sk_buff *skb)
1202 {
1203 struct sock *sk = skb->sk;
1204 struct tcp_sock *tp = tcp_sk(sk);
1205 unsigned long flags, nval, oval;
1206 struct tsq_work *tsq;
1207 bool empty;
1208
1209 /* Keep one reference on sk_wmem_alloc.
1210 * Will be released by sk_free() from here or tcp_tsq_workfn()
1211 */
1212 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1213
1214 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1215 * Wait until our queues (qdisc + devices) are drained.
1216 * This gives :
1217 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1218 * - chance for incoming ACK (processed by another cpu maybe)
1219 * to migrate this flow (skb->ooo_okay will be eventually set)
1220 */
1221 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1222 goto out;
1223
1224 oval = smp_load_acquire(&sk->sk_tsq_flags);
1225 do {
1226 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1227 goto out;
1228
1229 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1230 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1231
1232 /* queue this socket to BH workqueue */
1233 local_irq_save(flags);
1234 tsq = this_cpu_ptr(&tsq_work);
1235 empty = list_empty(&tsq->head);
1236 list_add(&tp->tsq_node, &tsq->head);
1237 if (empty)
1238 queue_work(system_bh_wq, &tsq->work);
1239 local_irq_restore(flags);
1240 return;
1241 out:
1242 sk_free(sk);
1243 }
1244
1245 /* Note: Called under soft irq.
1246 * We can call TCP stack right away, unless socket is owned by user.
1247 */
tcp_pace_kick(struct hrtimer * timer)1248 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1249 {
1250 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1251 struct sock *sk = (struct sock *)tp;
1252
1253 tcp_tsq_handler(sk);
1254 sock_put(sk);
1255
1256 return HRTIMER_NORESTART;
1257 }
1258
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1259 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1260 u64 prior_wstamp)
1261 {
1262 struct tcp_sock *tp = tcp_sk(sk);
1263
1264 if (sk->sk_pacing_status != SK_PACING_NONE) {
1265 unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1266
1267 /* Original sch_fq does not pace first 10 MSS
1268 * Note that tp->data_segs_out overflows after 2^32 packets,
1269 * this is a minor annoyance.
1270 */
1271 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1272 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1273 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1274
1275 /* take into account OS jitter */
1276 len_ns -= min_t(u64, len_ns / 2, credit);
1277 tp->tcp_wstamp_ns += len_ns;
1278 }
1279 }
1280 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1281 }
1282
1283 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1284 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1285 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1286
1287 /* This routine actually transmits TCP packets queued in by
1288 * tcp_do_sendmsg(). This is used by both the initial
1289 * transmission and possible later retransmissions.
1290 * All SKB's seen here are completely headerless. It is our
1291 * job to build the TCP header, and pass the packet down to
1292 * IP so it can do the same plus pass the packet off to the
1293 * device.
1294 *
1295 * We are working here with either a clone of the original
1296 * SKB, or a fresh unique copy made by the retransmit engine.
1297 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1298 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1299 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1300 {
1301 const struct inet_connection_sock *icsk = inet_csk(sk);
1302 struct inet_sock *inet;
1303 struct tcp_sock *tp;
1304 struct tcp_skb_cb *tcb;
1305 struct tcp_out_options opts;
1306 unsigned int tcp_options_size, tcp_header_size;
1307 struct sk_buff *oskb = NULL;
1308 struct tcp_key key;
1309 struct tcphdr *th;
1310 u64 prior_wstamp;
1311 int err;
1312
1313 BUG_ON(!skb || !tcp_skb_pcount(skb));
1314 tp = tcp_sk(sk);
1315 prior_wstamp = tp->tcp_wstamp_ns;
1316 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1317 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
1318 if (clone_it) {
1319 oskb = skb;
1320
1321 tcp_skb_tsorted_save(oskb) {
1322 if (unlikely(skb_cloned(oskb)))
1323 skb = pskb_copy(oskb, gfp_mask);
1324 else
1325 skb = skb_clone(oskb, gfp_mask);
1326 } tcp_skb_tsorted_restore(oskb);
1327
1328 if (unlikely(!skb))
1329 return -ENOBUFS;
1330 /* retransmit skbs might have a non zero value in skb->dev
1331 * because skb->dev is aliased with skb->rbnode.rb_left
1332 */
1333 skb->dev = NULL;
1334 }
1335
1336 inet = inet_sk(sk);
1337 tcb = TCP_SKB_CB(skb);
1338 memset(&opts, 0, sizeof(opts));
1339
1340 tcp_get_current_key(sk, &key);
1341 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1342 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1343 } else {
1344 tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1345 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1346 * at receiver : This slightly improve GRO performance.
1347 * Note that we do not force the PSH flag for non GSO packets,
1348 * because they might be sent under high congestion events,
1349 * and in this case it is better to delay the delivery of 1-MSS
1350 * packets and thus the corresponding ACK packet that would
1351 * release the following packet.
1352 */
1353 if (tcp_skb_pcount(skb) > 1)
1354 tcb->tcp_flags |= TCPHDR_PSH;
1355 }
1356 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1357
1358 /* We set skb->ooo_okay to one if this packet can select
1359 * a different TX queue than prior packets of this flow,
1360 * to avoid self inflicted reorders.
1361 * The 'other' queue decision is based on current cpu number
1362 * if XPS is enabled, or sk->sk_txhash otherwise.
1363 * We can switch to another (and better) queue if:
1364 * 1) No packet with payload is in qdisc/device queues.
1365 * Delays in TX completion can defeat the test
1366 * even if packets were already sent.
1367 * 2) Or rtx queue is empty.
1368 * This mitigates above case if ACK packets for
1369 * all prior packets were already processed.
1370 */
1371 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1372 tcp_rtx_queue_empty(sk);
1373
1374 /* If we had to use memory reserve to allocate this skb,
1375 * this might cause drops if packet is looped back :
1376 * Other socket might not have SOCK_MEMALLOC.
1377 * Packets not looped back do not care about pfmemalloc.
1378 */
1379 skb->pfmemalloc = 0;
1380
1381 skb_push(skb, tcp_header_size);
1382 skb_reset_transport_header(skb);
1383
1384 skb_orphan(skb);
1385 skb->sk = sk;
1386 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1387 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1388
1389 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1390
1391 /* Build TCP header and checksum it. */
1392 th = (struct tcphdr *)skb->data;
1393 th->source = inet->inet_sport;
1394 th->dest = inet->inet_dport;
1395 th->seq = htonl(tcb->seq);
1396 th->ack_seq = htonl(rcv_nxt);
1397 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1398 (tcb->tcp_flags & TCPHDR_FLAGS_MASK));
1399
1400 th->check = 0;
1401 th->urg_ptr = 0;
1402
1403 /* The urg_mode check is necessary during a below snd_una win probe */
1404 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1405 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1406 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1407 th->urg = 1;
1408 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1409 th->urg_ptr = htons(0xFFFF);
1410 th->urg = 1;
1411 }
1412 }
1413
1414 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1415 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1416 th->window = htons(tcp_select_window(sk));
1417 tcp_ecn_send(sk, skb, th, tcp_header_size);
1418 } else {
1419 /* RFC1323: The window in SYN & SYN/ACK segments
1420 * is never scaled.
1421 */
1422 th->window = htons(min(tp->rcv_wnd, 65535U));
1423 }
1424
1425 tcp_options_write(th, tp, NULL, &opts, &key);
1426
1427 if (tcp_key_is_md5(&key)) {
1428 #ifdef CONFIG_TCP_MD5SIG
1429 /* Calculate the MD5 hash, as we have all we need now */
1430 sk_gso_disable(sk);
1431 tp->af_specific->calc_md5_hash(opts.hash_location,
1432 key.md5_key, sk, skb);
1433 #endif
1434 } else if (tcp_key_is_ao(&key)) {
1435 int err;
1436
1437 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1438 opts.hash_location);
1439 if (err) {
1440 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1441 return -ENOMEM;
1442 }
1443 }
1444
1445 /* BPF prog is the last one writing header option */
1446 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1447
1448 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1449 tcp_v6_send_check, tcp_v4_send_check,
1450 sk, skb);
1451
1452 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1453 tcp_event_ack_sent(sk, rcv_nxt);
1454
1455 if (skb->len != tcp_header_size) {
1456 tcp_event_data_sent(tp, sk);
1457 tp->data_segs_out += tcp_skb_pcount(skb);
1458 tp->bytes_sent += skb->len - tcp_header_size;
1459 }
1460
1461 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1462 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1463 tcp_skb_pcount(skb));
1464
1465 tp->segs_out += tcp_skb_pcount(skb);
1466 skb_set_hash_from_sk(skb, sk);
1467 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1468 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1469 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1470
1471 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1472
1473 /* Cleanup our debris for IP stacks */
1474 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1475 sizeof(struct inet6_skb_parm)));
1476
1477 tcp_add_tx_delay(skb, tp);
1478
1479 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1480 inet6_csk_xmit, ip_queue_xmit,
1481 sk, skb, &inet->cork.fl);
1482
1483 if (unlikely(err > 0)) {
1484 tcp_enter_cwr(sk);
1485 err = net_xmit_eval(err);
1486 }
1487 if (!err && oskb) {
1488 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1489 tcp_rate_skb_sent(sk, oskb);
1490 }
1491 return err;
1492 }
1493
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1494 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1495 gfp_t gfp_mask)
1496 {
1497 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1498 tcp_sk(sk)->rcv_nxt);
1499 }
1500
1501 /* This routine just queues the buffer for sending.
1502 *
1503 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1504 * otherwise socket can stall.
1505 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1506 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1507 {
1508 struct tcp_sock *tp = tcp_sk(sk);
1509
1510 /* Advance write_seq and place onto the write_queue. */
1511 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1512 __skb_header_release(skb);
1513 tcp_add_write_queue_tail(sk, skb);
1514 sk_wmem_queued_add(sk, skb->truesize);
1515 sk_mem_charge(sk, skb->truesize);
1516 }
1517
1518 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1519 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1520 {
1521 int tso_segs;
1522
1523 if (skb->len <= mss_now) {
1524 /* Avoid the costly divide in the normal
1525 * non-TSO case.
1526 */
1527 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1528 tcp_skb_pcount_set(skb, 1);
1529 return 1;
1530 }
1531 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1532 tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1533 tcp_skb_pcount_set(skb, tso_segs);
1534 return tso_segs;
1535 }
1536
1537 /* Pcount in the middle of the write queue got changed, we need to do various
1538 * tweaks to fix counters
1539 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1540 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1541 {
1542 struct tcp_sock *tp = tcp_sk(sk);
1543
1544 tp->packets_out -= decr;
1545
1546 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1547 tp->sacked_out -= decr;
1548 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1549 tp->retrans_out -= decr;
1550 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1551 tp->lost_out -= decr;
1552
1553 /* Reno case is special. Sigh... */
1554 if (tcp_is_reno(tp) && decr > 0)
1555 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1556
1557 tcp_verify_left_out(tp);
1558 }
1559
tcp_has_tx_tstamp(const struct sk_buff * skb)1560 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1561 {
1562 return TCP_SKB_CB(skb)->txstamp_ack ||
1563 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1564 }
1565
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1566 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1567 {
1568 struct skb_shared_info *shinfo = skb_shinfo(skb);
1569
1570 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1571 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1572 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1573 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1574
1575 shinfo->tx_flags &= ~tsflags;
1576 shinfo2->tx_flags |= tsflags;
1577 swap(shinfo->tskey, shinfo2->tskey);
1578 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1579 TCP_SKB_CB(skb)->txstamp_ack = 0;
1580 }
1581 }
1582
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1583 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1584 {
1585 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1586 TCP_SKB_CB(skb)->eor = 0;
1587 }
1588
1589 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1590 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1591 struct sk_buff *buff,
1592 struct sock *sk,
1593 enum tcp_queue tcp_queue)
1594 {
1595 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1596 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1597 else
1598 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1599 }
1600
1601 /* Function to create two new TCP segments. Shrinks the given segment
1602 * to the specified size and appends a new segment with the rest of the
1603 * packet to the list. This won't be called frequently, I hope.
1604 * Remember, these are still headerless SKBs at this point.
1605 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1606 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1607 struct sk_buff *skb, u32 len,
1608 unsigned int mss_now, gfp_t gfp)
1609 {
1610 struct tcp_sock *tp = tcp_sk(sk);
1611 struct sk_buff *buff;
1612 int old_factor;
1613 long limit;
1614 u16 flags;
1615 int nlen;
1616
1617 if (WARN_ON(len > skb->len))
1618 return -EINVAL;
1619
1620 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1621
1622 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1623 * We need some allowance to not penalize applications setting small
1624 * SO_SNDBUF values.
1625 * Also allow first and last skb in retransmit queue to be split.
1626 */
1627 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1628 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1629 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1630 skb != tcp_rtx_queue_head(sk) &&
1631 skb != tcp_rtx_queue_tail(sk))) {
1632 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1633 return -ENOMEM;
1634 }
1635
1636 if (skb_unclone_keeptruesize(skb, gfp))
1637 return -ENOMEM;
1638
1639 /* Get a new skb... force flag on. */
1640 buff = tcp_stream_alloc_skb(sk, gfp, true);
1641 if (!buff)
1642 return -ENOMEM; /* We'll just try again later. */
1643 skb_copy_decrypted(buff, skb);
1644 mptcp_skb_ext_copy(buff, skb);
1645
1646 sk_wmem_queued_add(sk, buff->truesize);
1647 sk_mem_charge(sk, buff->truesize);
1648 nlen = skb->len - len;
1649 buff->truesize += nlen;
1650 skb->truesize -= nlen;
1651
1652 /* Correct the sequence numbers. */
1653 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1654 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1655 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1656
1657 /* PSH and FIN should only be set in the second packet. */
1658 flags = TCP_SKB_CB(skb)->tcp_flags;
1659 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1660 TCP_SKB_CB(buff)->tcp_flags = flags;
1661 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1662 tcp_skb_fragment_eor(skb, buff);
1663
1664 skb_split(skb, buff, len);
1665
1666 skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC);
1667 tcp_fragment_tstamp(skb, buff);
1668
1669 old_factor = tcp_skb_pcount(skb);
1670
1671 /* Fix up tso_factor for both original and new SKB. */
1672 tcp_set_skb_tso_segs(skb, mss_now);
1673 tcp_set_skb_tso_segs(buff, mss_now);
1674
1675 /* Update delivered info for the new segment */
1676 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1677
1678 /* If this packet has been sent out already, we must
1679 * adjust the various packet counters.
1680 */
1681 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1682 int diff = old_factor - tcp_skb_pcount(skb) -
1683 tcp_skb_pcount(buff);
1684
1685 if (diff)
1686 tcp_adjust_pcount(sk, skb, diff);
1687 }
1688
1689 /* Link BUFF into the send queue. */
1690 __skb_header_release(buff);
1691 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1692 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1693 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1694
1695 return 0;
1696 }
1697
1698 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1699 * data is not copied, but immediately discarded.
1700 */
__pskb_trim_head(struct sk_buff * skb,int len)1701 static int __pskb_trim_head(struct sk_buff *skb, int len)
1702 {
1703 struct skb_shared_info *shinfo;
1704 int i, k, eat;
1705
1706 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1707 eat = len;
1708 k = 0;
1709 shinfo = skb_shinfo(skb);
1710 for (i = 0; i < shinfo->nr_frags; i++) {
1711 int size = skb_frag_size(&shinfo->frags[i]);
1712
1713 if (size <= eat) {
1714 skb_frag_unref(skb, i);
1715 eat -= size;
1716 } else {
1717 shinfo->frags[k] = shinfo->frags[i];
1718 if (eat) {
1719 skb_frag_off_add(&shinfo->frags[k], eat);
1720 skb_frag_size_sub(&shinfo->frags[k], eat);
1721 eat = 0;
1722 }
1723 k++;
1724 }
1725 }
1726 shinfo->nr_frags = k;
1727
1728 skb->data_len -= len;
1729 skb->len = skb->data_len;
1730 return len;
1731 }
1732
1733 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1734 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1735 {
1736 u32 delta_truesize;
1737
1738 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1739 return -ENOMEM;
1740
1741 delta_truesize = __pskb_trim_head(skb, len);
1742
1743 TCP_SKB_CB(skb)->seq += len;
1744
1745 skb->truesize -= delta_truesize;
1746 sk_wmem_queued_add(sk, -delta_truesize);
1747 if (!skb_zcopy_pure(skb))
1748 sk_mem_uncharge(sk, delta_truesize);
1749
1750 /* Any change of skb->len requires recalculation of tso factor. */
1751 if (tcp_skb_pcount(skb) > 1)
1752 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1753
1754 return 0;
1755 }
1756
1757 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1758 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1759 {
1760 const struct tcp_sock *tp = tcp_sk(sk);
1761 const struct inet_connection_sock *icsk = inet_csk(sk);
1762 int mss_now;
1763
1764 /* Calculate base mss without TCP options:
1765 It is MMS_S - sizeof(tcphdr) of rfc1122
1766 */
1767 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1768
1769 /* Clamp it (mss_clamp does not include tcp options) */
1770 if (mss_now > tp->rx_opt.mss_clamp)
1771 mss_now = tp->rx_opt.mss_clamp;
1772
1773 /* Now subtract optional transport overhead */
1774 mss_now -= icsk->icsk_ext_hdr_len;
1775
1776 /* Then reserve room for full set of TCP options and 8 bytes of data */
1777 mss_now = max(mss_now,
1778 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1779 return mss_now;
1780 }
1781
1782 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1783 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1784 {
1785 /* Subtract TCP options size, not including SACKs */
1786 return __tcp_mtu_to_mss(sk, pmtu) -
1787 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1788 }
1789 EXPORT_IPV6_MOD(tcp_mtu_to_mss);
1790
1791 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1792 int tcp_mss_to_mtu(struct sock *sk, int mss)
1793 {
1794 const struct tcp_sock *tp = tcp_sk(sk);
1795 const struct inet_connection_sock *icsk = inet_csk(sk);
1796
1797 return mss +
1798 tp->tcp_header_len +
1799 icsk->icsk_ext_hdr_len +
1800 icsk->icsk_af_ops->net_header_len;
1801 }
1802 EXPORT_SYMBOL(tcp_mss_to_mtu);
1803
1804 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1805 void tcp_mtup_init(struct sock *sk)
1806 {
1807 struct tcp_sock *tp = tcp_sk(sk);
1808 struct inet_connection_sock *icsk = inet_csk(sk);
1809 struct net *net = sock_net(sk);
1810
1811 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1812 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1813 icsk->icsk_af_ops->net_header_len;
1814 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1815 icsk->icsk_mtup.probe_size = 0;
1816 if (icsk->icsk_mtup.enabled)
1817 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1818 }
1819
1820 /* This function synchronize snd mss to current pmtu/exthdr set.
1821
1822 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1823 for TCP options, but includes only bare TCP header.
1824
1825 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1826 It is minimum of user_mss and mss received with SYN.
1827 It also does not include TCP options.
1828
1829 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1830
1831 tp->mss_cache is current effective sending mss, including
1832 all tcp options except for SACKs. It is evaluated,
1833 taking into account current pmtu, but never exceeds
1834 tp->rx_opt.mss_clamp.
1835
1836 NOTE1. rfc1122 clearly states that advertised MSS
1837 DOES NOT include either tcp or ip options.
1838
1839 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1840 are READ ONLY outside this function. --ANK (980731)
1841 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1842 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1843 {
1844 struct tcp_sock *tp = tcp_sk(sk);
1845 struct inet_connection_sock *icsk = inet_csk(sk);
1846 int mss_now;
1847
1848 if (icsk->icsk_mtup.search_high > pmtu)
1849 icsk->icsk_mtup.search_high = pmtu;
1850
1851 mss_now = tcp_mtu_to_mss(sk, pmtu);
1852 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1853
1854 /* And store cached results */
1855 icsk->icsk_pmtu_cookie = pmtu;
1856 if (icsk->icsk_mtup.enabled)
1857 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1858 tp->mss_cache = mss_now;
1859
1860 return mss_now;
1861 }
1862 EXPORT_IPV6_MOD(tcp_sync_mss);
1863
1864 /* Compute the current effective MSS, taking SACKs and IP options,
1865 * and even PMTU discovery events into account.
1866 */
tcp_current_mss(struct sock * sk)1867 unsigned int tcp_current_mss(struct sock *sk)
1868 {
1869 const struct tcp_sock *tp = tcp_sk(sk);
1870 const struct dst_entry *dst = __sk_dst_get(sk);
1871 u32 mss_now;
1872 unsigned int header_len;
1873 struct tcp_out_options opts;
1874 struct tcp_key key;
1875
1876 mss_now = tp->mss_cache;
1877
1878 if (dst) {
1879 u32 mtu = dst_mtu(dst);
1880 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1881 mss_now = tcp_sync_mss(sk, mtu);
1882 }
1883 tcp_get_current_key(sk, &key);
1884 header_len = tcp_established_options(sk, NULL, &opts, &key) +
1885 sizeof(struct tcphdr);
1886 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1887 * some common options. If this is an odd packet (because we have SACK
1888 * blocks etc) then our calculated header_len will be different, and
1889 * we have to adjust mss_now correspondingly */
1890 if (header_len != tp->tcp_header_len) {
1891 int delta = (int) header_len - tp->tcp_header_len;
1892 mss_now -= delta;
1893 }
1894
1895 return mss_now;
1896 }
1897
1898 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1899 * As additional protections, we do not touch cwnd in retransmission phases,
1900 * and if application hit its sndbuf limit recently.
1901 */
tcp_cwnd_application_limited(struct sock * sk)1902 static void tcp_cwnd_application_limited(struct sock *sk)
1903 {
1904 struct tcp_sock *tp = tcp_sk(sk);
1905
1906 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1907 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1908 /* Limited by application or receiver window. */
1909 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1910 u32 win_used = max(tp->snd_cwnd_used, init_win);
1911 if (win_used < tcp_snd_cwnd(tp)) {
1912 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1913 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1914 }
1915 tp->snd_cwnd_used = 0;
1916 }
1917 tp->snd_cwnd_stamp = tcp_jiffies32;
1918 }
1919
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1920 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1921 {
1922 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1923 struct tcp_sock *tp = tcp_sk(sk);
1924
1925 /* Track the strongest available signal of the degree to which the cwnd
1926 * is fully utilized. If cwnd-limited then remember that fact for the
1927 * current window. If not cwnd-limited then track the maximum number of
1928 * outstanding packets in the current window. (If cwnd-limited then we
1929 * chose to not update tp->max_packets_out to avoid an extra else
1930 * clause with no functional impact.)
1931 */
1932 if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1933 is_cwnd_limited ||
1934 (!tp->is_cwnd_limited &&
1935 tp->packets_out > tp->max_packets_out)) {
1936 tp->is_cwnd_limited = is_cwnd_limited;
1937 tp->max_packets_out = tp->packets_out;
1938 tp->cwnd_usage_seq = tp->snd_nxt;
1939 }
1940
1941 if (tcp_is_cwnd_limited(sk)) {
1942 /* Network is feed fully. */
1943 tp->snd_cwnd_used = 0;
1944 tp->snd_cwnd_stamp = tcp_jiffies32;
1945 } else {
1946 /* Network starves. */
1947 if (tp->packets_out > tp->snd_cwnd_used)
1948 tp->snd_cwnd_used = tp->packets_out;
1949
1950 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1951 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1952 !ca_ops->cong_control)
1953 tcp_cwnd_application_limited(sk);
1954
1955 /* The following conditions together indicate the starvation
1956 * is caused by insufficient sender buffer:
1957 * 1) just sent some data (see tcp_write_xmit)
1958 * 2) not cwnd limited (this else condition)
1959 * 3) no more data to send (tcp_write_queue_empty())
1960 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1961 */
1962 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1963 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1964 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1965 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1966 }
1967 }
1968
1969 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1970 static bool tcp_minshall_check(const struct tcp_sock *tp)
1971 {
1972 return after(tp->snd_sml, tp->snd_una) &&
1973 !after(tp->snd_sml, tp->snd_nxt);
1974 }
1975
1976 /* Update snd_sml if this skb is under mss
1977 * Note that a TSO packet might end with a sub-mss segment
1978 * The test is really :
1979 * if ((skb->len % mss) != 0)
1980 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1981 * But we can avoid doing the divide again given we already have
1982 * skb_pcount = skb->len / mss_now
1983 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1984 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1985 const struct sk_buff *skb)
1986 {
1987 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1988 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1989 }
1990
1991 /* Return false, if packet can be sent now without violation Nagle's rules:
1992 * 1. It is full sized. (provided by caller in %partial bool)
1993 * 2. Or it contains FIN. (already checked by caller)
1994 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1995 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1996 * With Minshall's modification: all sent small packets are ACKed.
1997 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1998 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1999 int nonagle)
2000 {
2001 return partial &&
2002 ((nonagle & TCP_NAGLE_CORK) ||
2003 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
2004 }
2005
2006 /* Return how many segs we'd like on a TSO packet,
2007 * depending on current pacing rate, and how close the peer is.
2008 *
2009 * Rationale is:
2010 * - For close peers, we rather send bigger packets to reduce
2011 * cpu costs, because occasional losses will be repaired fast.
2012 * - For long distance/rtt flows, we would like to get ACK clocking
2013 * with 1 ACK per ms.
2014 *
2015 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2016 * in bigger TSO bursts. We we cut the RTT-based allowance in half
2017 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2018 * is below 1500 bytes after 6 * ~500 usec = 3ms.
2019 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)2020 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2021 int min_tso_segs)
2022 {
2023 unsigned long bytes;
2024 u32 r;
2025
2026 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2027
2028 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2029 if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2030 bytes += sk->sk_gso_max_size >> r;
2031
2032 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2033
2034 return max_t(u32, bytes / mss_now, min_tso_segs);
2035 }
2036
2037 /* Return the number of segments we want in the skb we are transmitting.
2038 * See if congestion control module wants to decide; otherwise, autosize.
2039 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)2040 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2041 {
2042 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2043 u32 min_tso, tso_segs;
2044
2045 min_tso = ca_ops->min_tso_segs ?
2046 ca_ops->min_tso_segs(sk) :
2047 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2048
2049 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2050 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2051 }
2052
2053 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2054 static unsigned int tcp_mss_split_point(const struct sock *sk,
2055 const struct sk_buff *skb,
2056 unsigned int mss_now,
2057 unsigned int max_segs,
2058 int nonagle)
2059 {
2060 const struct tcp_sock *tp = tcp_sk(sk);
2061 u32 partial, needed, window, max_len;
2062
2063 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2064 max_len = mss_now * max_segs;
2065
2066 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2067 return max_len;
2068
2069 needed = min(skb->len, window);
2070
2071 if (max_len <= needed)
2072 return max_len;
2073
2074 partial = needed % mss_now;
2075 /* If last segment is not a full MSS, check if Nagle rules allow us
2076 * to include this last segment in this skb.
2077 * Otherwise, we'll split the skb at last MSS boundary
2078 */
2079 if (tcp_nagle_check(partial != 0, tp, nonagle))
2080 return needed - partial;
2081
2082 return needed;
2083 }
2084
2085 /* Can at least one segment of SKB be sent right now, according to the
2086 * congestion window rules? If so, return how many segments are allowed.
2087 */
tcp_cwnd_test(const struct tcp_sock * tp)2088 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2089 {
2090 u32 in_flight, cwnd, halfcwnd;
2091
2092 in_flight = tcp_packets_in_flight(tp);
2093 cwnd = tcp_snd_cwnd(tp);
2094 if (in_flight >= cwnd)
2095 return 0;
2096
2097 /* For better scheduling, ensure we have at least
2098 * 2 GSO packets in flight.
2099 */
2100 halfcwnd = max(cwnd >> 1, 1U);
2101 return min(halfcwnd, cwnd - in_flight);
2102 }
2103
2104 /* Initialize TSO state of a skb.
2105 * This must be invoked the first time we consider transmitting
2106 * SKB onto the wire.
2107 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2108 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2109 {
2110 int tso_segs = tcp_skb_pcount(skb);
2111
2112 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2113 return tcp_set_skb_tso_segs(skb, mss_now);
2114
2115 return tso_segs;
2116 }
2117
2118
2119 /* Return true if the Nagle test allows this packet to be
2120 * sent now.
2121 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2122 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2123 unsigned int cur_mss, int nonagle)
2124 {
2125 /* Nagle rule does not apply to frames, which sit in the middle of the
2126 * write_queue (they have no chances to get new data).
2127 *
2128 * This is implemented in the callers, where they modify the 'nonagle'
2129 * argument based upon the location of SKB in the send queue.
2130 */
2131 if (nonagle & TCP_NAGLE_PUSH)
2132 return true;
2133
2134 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2135 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2136 return true;
2137
2138 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2139 return true;
2140
2141 return false;
2142 }
2143
2144 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2145 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2146 const struct sk_buff *skb,
2147 unsigned int cur_mss)
2148 {
2149 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2150
2151 if (skb->len > cur_mss)
2152 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2153
2154 return !after(end_seq, tcp_wnd_end(tp));
2155 }
2156
2157 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2158 * which is put after SKB on the list. It is very much like
2159 * tcp_fragment() except that it may make several kinds of assumptions
2160 * in order to speed up the splitting operation. In particular, we
2161 * know that all the data is in scatter-gather pages, and that the
2162 * packet has never been sent out before (and thus is not cloned).
2163 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2164 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2165 unsigned int mss_now, gfp_t gfp)
2166 {
2167 int nlen = skb->len - len;
2168 struct sk_buff *buff;
2169 u16 flags;
2170
2171 /* All of a TSO frame must be composed of paged data. */
2172 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2173
2174 buff = tcp_stream_alloc_skb(sk, gfp, true);
2175 if (unlikely(!buff))
2176 return -ENOMEM;
2177 skb_copy_decrypted(buff, skb);
2178 mptcp_skb_ext_copy(buff, skb);
2179
2180 sk_wmem_queued_add(sk, buff->truesize);
2181 sk_mem_charge(sk, buff->truesize);
2182 buff->truesize += nlen;
2183 skb->truesize -= nlen;
2184
2185 /* Correct the sequence numbers. */
2186 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2187 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2188 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2189
2190 /* PSH and FIN should only be set in the second packet. */
2191 flags = TCP_SKB_CB(skb)->tcp_flags;
2192 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2193 TCP_SKB_CB(buff)->tcp_flags = flags;
2194
2195 tcp_skb_fragment_eor(skb, buff);
2196
2197 skb_split(skb, buff, len);
2198 tcp_fragment_tstamp(skb, buff);
2199
2200 /* Fix up tso_factor for both original and new SKB. */
2201 tcp_set_skb_tso_segs(skb, mss_now);
2202 tcp_set_skb_tso_segs(buff, mss_now);
2203
2204 /* Link BUFF into the send queue. */
2205 __skb_header_release(buff);
2206 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2207
2208 return 0;
2209 }
2210
2211 /* Try to defer sending, if possible, in order to minimize the amount
2212 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2213 *
2214 * This algorithm is from John Heffner.
2215 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2216 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2217 bool *is_cwnd_limited,
2218 bool *is_rwnd_limited,
2219 u32 max_segs)
2220 {
2221 const struct inet_connection_sock *icsk = inet_csk(sk);
2222 u32 send_win, cong_win, limit, in_flight;
2223 struct tcp_sock *tp = tcp_sk(sk);
2224 struct sk_buff *head;
2225 int win_divisor;
2226 s64 delta;
2227
2228 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2229 goto send_now;
2230
2231 /* Avoid bursty behavior by allowing defer
2232 * only if the last write was recent (1 ms).
2233 * Note that tp->tcp_wstamp_ns can be in the future if we have
2234 * packets waiting in a qdisc or device for EDT delivery.
2235 */
2236 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2237 if (delta > 0)
2238 goto send_now;
2239
2240 in_flight = tcp_packets_in_flight(tp);
2241
2242 BUG_ON(tcp_skb_pcount(skb) <= 1);
2243 BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2244
2245 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2246
2247 /* From in_flight test above, we know that cwnd > in_flight. */
2248 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2249
2250 limit = min(send_win, cong_win);
2251
2252 /* If a full-sized TSO skb can be sent, do it. */
2253 if (limit >= max_segs * tp->mss_cache)
2254 goto send_now;
2255
2256 /* Middle in queue won't get any more data, full sendable already? */
2257 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2258 goto send_now;
2259
2260 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2261 if (win_divisor) {
2262 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2263
2264 /* If at least some fraction of a window is available,
2265 * just use it.
2266 */
2267 chunk /= win_divisor;
2268 if (limit >= chunk)
2269 goto send_now;
2270 } else {
2271 /* Different approach, try not to defer past a single
2272 * ACK. Receiver should ACK every other full sized
2273 * frame, so if we have space for more than 3 frames
2274 * then send now.
2275 */
2276 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2277 goto send_now;
2278 }
2279
2280 /* TODO : use tsorted_sent_queue ? */
2281 head = tcp_rtx_queue_head(sk);
2282 if (!head)
2283 goto send_now;
2284 delta = tp->tcp_clock_cache - head->tstamp;
2285 /* If next ACK is likely to come too late (half srtt), do not defer */
2286 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2287 goto send_now;
2288
2289 /* Ok, it looks like it is advisable to defer.
2290 * Three cases are tracked :
2291 * 1) We are cwnd-limited
2292 * 2) We are rwnd-limited
2293 * 3) We are application limited.
2294 */
2295 if (cong_win < send_win) {
2296 if (cong_win <= skb->len) {
2297 *is_cwnd_limited = true;
2298 return true;
2299 }
2300 } else {
2301 if (send_win <= skb->len) {
2302 *is_rwnd_limited = true;
2303 return true;
2304 }
2305 }
2306
2307 /* If this packet won't get more data, do not wait. */
2308 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2309 TCP_SKB_CB(skb)->eor)
2310 goto send_now;
2311
2312 return true;
2313
2314 send_now:
2315 return false;
2316 }
2317
tcp_mtu_check_reprobe(struct sock * sk)2318 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2319 {
2320 struct inet_connection_sock *icsk = inet_csk(sk);
2321 struct tcp_sock *tp = tcp_sk(sk);
2322 struct net *net = sock_net(sk);
2323 u32 interval;
2324 s32 delta;
2325
2326 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2327 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2328 if (unlikely(delta >= interval * HZ)) {
2329 int mss = tcp_current_mss(sk);
2330
2331 /* Update current search range */
2332 icsk->icsk_mtup.probe_size = 0;
2333 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2334 sizeof(struct tcphdr) +
2335 icsk->icsk_af_ops->net_header_len;
2336 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2337
2338 /* Update probe time stamp */
2339 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2340 }
2341 }
2342
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2343 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2344 {
2345 struct sk_buff *skb, *next;
2346
2347 skb = tcp_send_head(sk);
2348 tcp_for_write_queue_from_safe(skb, next, sk) {
2349 if (len <= skb->len)
2350 break;
2351
2352 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2353 return false;
2354
2355 len -= skb->len;
2356 }
2357
2358 return true;
2359 }
2360
tcp_clone_payload(struct sock * sk,struct sk_buff * to,int probe_size)2361 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2362 int probe_size)
2363 {
2364 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2365 int i, todo, len = 0, nr_frags = 0;
2366 const struct sk_buff *skb;
2367
2368 if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2369 return -ENOMEM;
2370
2371 skb_queue_walk(&sk->sk_write_queue, skb) {
2372 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2373
2374 if (skb_headlen(skb))
2375 return -EINVAL;
2376
2377 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2378 if (len >= probe_size)
2379 goto commit;
2380 todo = min_t(int, skb_frag_size(fragfrom),
2381 probe_size - len);
2382 len += todo;
2383 if (lastfrag &&
2384 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2385 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2386 skb_frag_size(lastfrag)) {
2387 skb_frag_size_add(lastfrag, todo);
2388 continue;
2389 }
2390 if (unlikely(nr_frags == MAX_SKB_FRAGS))
2391 return -E2BIG;
2392 skb_frag_page_copy(fragto, fragfrom);
2393 skb_frag_off_copy(fragto, fragfrom);
2394 skb_frag_size_set(fragto, todo);
2395 nr_frags++;
2396 lastfrag = fragto++;
2397 }
2398 }
2399 commit:
2400 WARN_ON_ONCE(len != probe_size);
2401 for (i = 0; i < nr_frags; i++)
2402 skb_frag_ref(to, i);
2403
2404 skb_shinfo(to)->nr_frags = nr_frags;
2405 to->truesize += probe_size;
2406 to->len += probe_size;
2407 to->data_len += probe_size;
2408 __skb_header_release(to);
2409 return 0;
2410 }
2411
2412 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2413 * all its payload was moved to another one (dst).
2414 * Make sure to transfer tcp_flags, eor, and tstamp.
2415 */
tcp_eat_one_skb(struct sock * sk,struct sk_buff * dst,struct sk_buff * src)2416 static void tcp_eat_one_skb(struct sock *sk,
2417 struct sk_buff *dst,
2418 struct sk_buff *src)
2419 {
2420 TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2421 TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2422 tcp_skb_collapse_tstamp(dst, src);
2423 tcp_unlink_write_queue(src, sk);
2424 tcp_wmem_free_skb(sk, src);
2425 }
2426
2427 /* Create a new MTU probe if we are ready.
2428 * MTU probe is regularly attempting to increase the path MTU by
2429 * deliberately sending larger packets. This discovers routing
2430 * changes resulting in larger path MTUs.
2431 *
2432 * Returns 0 if we should wait to probe (no cwnd available),
2433 * 1 if a probe was sent,
2434 * -1 otherwise
2435 */
tcp_mtu_probe(struct sock * sk)2436 static int tcp_mtu_probe(struct sock *sk)
2437 {
2438 struct inet_connection_sock *icsk = inet_csk(sk);
2439 struct tcp_sock *tp = tcp_sk(sk);
2440 struct sk_buff *skb, *nskb, *next;
2441 struct net *net = sock_net(sk);
2442 int probe_size;
2443 int size_needed;
2444 int copy, len;
2445 int mss_now;
2446 int interval;
2447
2448 /* Not currently probing/verifying,
2449 * not in recovery,
2450 * have enough cwnd, and
2451 * not SACKing (the variable headers throw things off)
2452 */
2453 if (likely(!icsk->icsk_mtup.enabled ||
2454 icsk->icsk_mtup.probe_size ||
2455 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2456 tcp_snd_cwnd(tp) < 11 ||
2457 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2458 return -1;
2459
2460 /* Use binary search for probe_size between tcp_mss_base,
2461 * and current mss_clamp. if (search_high - search_low)
2462 * smaller than a threshold, backoff from probing.
2463 */
2464 mss_now = tcp_current_mss(sk);
2465 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2466 icsk->icsk_mtup.search_low) >> 1);
2467 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2468 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2469 /* When misfortune happens, we are reprobing actively,
2470 * and then reprobe timer has expired. We stick with current
2471 * probing process by not resetting search range to its orignal.
2472 */
2473 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2474 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2475 /* Check whether enough time has elaplased for
2476 * another round of probing.
2477 */
2478 tcp_mtu_check_reprobe(sk);
2479 return -1;
2480 }
2481
2482 /* Have enough data in the send queue to probe? */
2483 if (tp->write_seq - tp->snd_nxt < size_needed)
2484 return -1;
2485
2486 if (tp->snd_wnd < size_needed)
2487 return -1;
2488 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2489 return 0;
2490
2491 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2492 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2493 if (!tcp_packets_in_flight(tp))
2494 return -1;
2495 else
2496 return 0;
2497 }
2498
2499 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2500 return -1;
2501
2502 /* We're allowed to probe. Build it now. */
2503 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2504 if (!nskb)
2505 return -1;
2506
2507 /* build the payload, and be prepared to abort if this fails. */
2508 if (tcp_clone_payload(sk, nskb, probe_size)) {
2509 tcp_skb_tsorted_anchor_cleanup(nskb);
2510 consume_skb(nskb);
2511 return -1;
2512 }
2513 sk_wmem_queued_add(sk, nskb->truesize);
2514 sk_mem_charge(sk, nskb->truesize);
2515
2516 skb = tcp_send_head(sk);
2517 skb_copy_decrypted(nskb, skb);
2518 mptcp_skb_ext_copy(nskb, skb);
2519
2520 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2521 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2522 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2523
2524 tcp_insert_write_queue_before(nskb, skb, sk);
2525 tcp_highest_sack_replace(sk, skb, nskb);
2526
2527 len = 0;
2528 tcp_for_write_queue_from_safe(skb, next, sk) {
2529 copy = min_t(int, skb->len, probe_size - len);
2530
2531 if (skb->len <= copy) {
2532 tcp_eat_one_skb(sk, nskb, skb);
2533 } else {
2534 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2535 ~(TCPHDR_FIN|TCPHDR_PSH);
2536 __pskb_trim_head(skb, copy);
2537 tcp_set_skb_tso_segs(skb, mss_now);
2538 TCP_SKB_CB(skb)->seq += copy;
2539 }
2540
2541 len += copy;
2542
2543 if (len >= probe_size)
2544 break;
2545 }
2546 tcp_init_tso_segs(nskb, nskb->len);
2547
2548 /* We're ready to send. If this fails, the probe will
2549 * be resegmented into mss-sized pieces by tcp_write_xmit().
2550 */
2551 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2552 /* Decrement cwnd here because we are sending
2553 * effectively two packets. */
2554 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2555 tcp_event_new_data_sent(sk, nskb);
2556
2557 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2558 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2559 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2560
2561 return 1;
2562 }
2563
2564 return -1;
2565 }
2566
tcp_pacing_check(struct sock * sk)2567 static bool tcp_pacing_check(struct sock *sk)
2568 {
2569 struct tcp_sock *tp = tcp_sk(sk);
2570
2571 if (!tcp_needs_internal_pacing(sk))
2572 return false;
2573
2574 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2575 return false;
2576
2577 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2578 hrtimer_start(&tp->pacing_timer,
2579 ns_to_ktime(tp->tcp_wstamp_ns),
2580 HRTIMER_MODE_ABS_PINNED_SOFT);
2581 sock_hold(sk);
2582 }
2583 return true;
2584 }
2585
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2586 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2587 {
2588 const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2589
2590 /* No skb in the rtx queue. */
2591 if (!node)
2592 return true;
2593
2594 /* Only one skb in rtx queue. */
2595 return !node->rb_left && !node->rb_right;
2596 }
2597
2598 /* TCP Small Queues :
2599 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2600 * (These limits are doubled for retransmits)
2601 * This allows for :
2602 * - better RTT estimation and ACK scheduling
2603 * - faster recovery
2604 * - high rates
2605 * Alas, some drivers / subsystems require a fair amount
2606 * of queued bytes to ensure line rate.
2607 * One example is wifi aggregation (802.11 AMPDU)
2608 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2609 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2610 unsigned int factor)
2611 {
2612 unsigned long limit;
2613
2614 limit = max_t(unsigned long,
2615 2 * skb->truesize,
2616 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2617 limit = min_t(unsigned long, limit,
2618 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2619 limit <<= factor;
2620
2621 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2622 tcp_sk(sk)->tcp_tx_delay) {
2623 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2624 tcp_sk(sk)->tcp_tx_delay;
2625
2626 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2627 * approximate our needs assuming an ~100% skb->truesize overhead.
2628 * USEC_PER_SEC is approximated by 2^20.
2629 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2630 */
2631 extra_bytes >>= (20 - 1);
2632 limit += extra_bytes;
2633 }
2634 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2635 /* Always send skb if rtx queue is empty or has one skb.
2636 * No need to wait for TX completion to call us back,
2637 * after softirq schedule.
2638 * This helps when TX completions are delayed too much.
2639 */
2640 if (tcp_rtx_queue_empty_or_single_skb(sk))
2641 return false;
2642
2643 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2644 /* It is possible TX completion already happened
2645 * before we set TSQ_THROTTLED, so we must
2646 * test again the condition.
2647 */
2648 smp_mb__after_atomic();
2649 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2650 return true;
2651 }
2652 return false;
2653 }
2654
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2655 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2656 {
2657 const u32 now = tcp_jiffies32;
2658 enum tcp_chrono old = tp->chrono_type;
2659
2660 if (old > TCP_CHRONO_UNSPEC)
2661 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2662 tp->chrono_start = now;
2663 tp->chrono_type = new;
2664 }
2665
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2666 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2667 {
2668 struct tcp_sock *tp = tcp_sk(sk);
2669
2670 /* If there are multiple conditions worthy of tracking in a
2671 * chronograph then the highest priority enum takes precedence
2672 * over the other conditions. So that if something "more interesting"
2673 * starts happening, stop the previous chrono and start a new one.
2674 */
2675 if (type > tp->chrono_type)
2676 tcp_chrono_set(tp, type);
2677 }
2678
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2679 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2680 {
2681 struct tcp_sock *tp = tcp_sk(sk);
2682
2683
2684 /* There are multiple conditions worthy of tracking in a
2685 * chronograph, so that the highest priority enum takes
2686 * precedence over the other conditions (see tcp_chrono_start).
2687 * If a condition stops, we only stop chrono tracking if
2688 * it's the "most interesting" or current chrono we are
2689 * tracking and starts busy chrono if we have pending data.
2690 */
2691 if (tcp_rtx_and_write_queues_empty(sk))
2692 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2693 else if (type == tp->chrono_type)
2694 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2695 }
2696
2697 /* First skb in the write queue is smaller than ideal packet size.
2698 * Check if we can move payload from the second skb in the queue.
2699 */
tcp_grow_skb(struct sock * sk,struct sk_buff * skb,int amount)2700 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2701 {
2702 struct sk_buff *next_skb = skb->next;
2703 unsigned int nlen;
2704
2705 if (tcp_skb_is_last(sk, skb))
2706 return;
2707
2708 if (!tcp_skb_can_collapse(skb, next_skb))
2709 return;
2710
2711 nlen = min_t(u32, amount, next_skb->len);
2712 if (!nlen || !skb_shift(skb, next_skb, nlen))
2713 return;
2714
2715 TCP_SKB_CB(skb)->end_seq += nlen;
2716 TCP_SKB_CB(next_skb)->seq += nlen;
2717
2718 if (!next_skb->len) {
2719 /* In case FIN is set, we need to update end_seq */
2720 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2721
2722 tcp_eat_one_skb(sk, skb, next_skb);
2723 }
2724 }
2725
2726 /* This routine writes packets to the network. It advances the
2727 * send_head. This happens as incoming acks open up the remote
2728 * window for us.
2729 *
2730 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2731 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2732 * account rare use of URG, this is not a big flaw.
2733 *
2734 * Send at most one packet when push_one > 0. Temporarily ignore
2735 * cwnd limit to force at most one packet out when push_one == 2.
2736
2737 * Returns true, if no segments are in flight and we have queued segments,
2738 * but cannot send anything now because of SWS or another problem.
2739 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2740 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2741 int push_one, gfp_t gfp)
2742 {
2743 struct tcp_sock *tp = tcp_sk(sk);
2744 struct sk_buff *skb;
2745 unsigned int tso_segs, sent_pkts;
2746 u32 cwnd_quota, max_segs;
2747 int result;
2748 bool is_cwnd_limited = false, is_rwnd_limited = false;
2749
2750 sent_pkts = 0;
2751
2752 tcp_mstamp_refresh(tp);
2753 if (!push_one) {
2754 /* Do MTU probing. */
2755 result = tcp_mtu_probe(sk);
2756 if (!result) {
2757 return false;
2758 } else if (result > 0) {
2759 sent_pkts = 1;
2760 }
2761 }
2762
2763 max_segs = tcp_tso_segs(sk, mss_now);
2764 while ((skb = tcp_send_head(sk))) {
2765 unsigned int limit;
2766 int missing_bytes;
2767
2768 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2769 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2770 tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2771 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
2772 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2773 tcp_init_tso_segs(skb, mss_now);
2774 goto repair; /* Skip network transmission */
2775 }
2776
2777 if (tcp_pacing_check(sk))
2778 break;
2779
2780 cwnd_quota = tcp_cwnd_test(tp);
2781 if (!cwnd_quota) {
2782 if (push_one == 2)
2783 /* Force out a loss probe pkt. */
2784 cwnd_quota = 1;
2785 else
2786 break;
2787 }
2788 cwnd_quota = min(cwnd_quota, max_segs);
2789 missing_bytes = cwnd_quota * mss_now - skb->len;
2790 if (missing_bytes > 0)
2791 tcp_grow_skb(sk, skb, missing_bytes);
2792
2793 tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2794
2795 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2796 is_rwnd_limited = true;
2797 break;
2798 }
2799
2800 if (tso_segs == 1) {
2801 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2802 (tcp_skb_is_last(sk, skb) ?
2803 nonagle : TCP_NAGLE_PUSH))))
2804 break;
2805 } else {
2806 if (!push_one &&
2807 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2808 &is_rwnd_limited, max_segs))
2809 break;
2810 }
2811
2812 limit = mss_now;
2813 if (tso_segs > 1 && !tcp_urg_mode(tp))
2814 limit = tcp_mss_split_point(sk, skb, mss_now,
2815 cwnd_quota,
2816 nonagle);
2817
2818 if (skb->len > limit &&
2819 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2820 break;
2821
2822 if (tcp_small_queue_check(sk, skb, 0))
2823 break;
2824
2825 /* Argh, we hit an empty skb(), presumably a thread
2826 * is sleeping in sendmsg()/sk_stream_wait_memory().
2827 * We do not want to send a pure-ack packet and have
2828 * a strange looking rtx queue with empty packet(s).
2829 */
2830 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2831 break;
2832
2833 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2834 break;
2835
2836 repair:
2837 /* Advance the send_head. This one is sent out.
2838 * This call will increment packets_out.
2839 */
2840 tcp_event_new_data_sent(sk, skb);
2841
2842 tcp_minshall_update(tp, mss_now, skb);
2843 sent_pkts += tcp_skb_pcount(skb);
2844
2845 if (push_one)
2846 break;
2847 }
2848
2849 if (is_rwnd_limited)
2850 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2851 else
2852 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2853
2854 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2855 if (likely(sent_pkts || is_cwnd_limited))
2856 tcp_cwnd_validate(sk, is_cwnd_limited);
2857
2858 if (likely(sent_pkts)) {
2859 if (tcp_in_cwnd_reduction(sk))
2860 tp->prr_out += sent_pkts;
2861
2862 /* Send one loss probe per tail loss episode. */
2863 if (push_one != 2)
2864 tcp_schedule_loss_probe(sk, false);
2865 return false;
2866 }
2867 return !tp->packets_out && !tcp_write_queue_empty(sk);
2868 }
2869
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2870 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2871 {
2872 struct inet_connection_sock *icsk = inet_csk(sk);
2873 struct tcp_sock *tp = tcp_sk(sk);
2874 u32 timeout, timeout_us, rto_delta_us;
2875 int early_retrans;
2876
2877 /* Don't do any loss probe on a Fast Open connection before 3WHS
2878 * finishes.
2879 */
2880 if (rcu_access_pointer(tp->fastopen_rsk))
2881 return false;
2882
2883 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2884 /* Schedule a loss probe in 2*RTT for SACK capable connections
2885 * not in loss recovery, that are either limited by cwnd or application.
2886 */
2887 if ((early_retrans != 3 && early_retrans != 4) ||
2888 !tp->packets_out || !tcp_is_sack(tp) ||
2889 (icsk->icsk_ca_state != TCP_CA_Open &&
2890 icsk->icsk_ca_state != TCP_CA_CWR))
2891 return false;
2892
2893 /* Probe timeout is 2*rtt. Add minimum RTO to account
2894 * for delayed ack when there's one outstanding packet. If no RTT
2895 * sample is available then probe after TCP_TIMEOUT_INIT.
2896 */
2897 if (tp->srtt_us) {
2898 timeout_us = tp->srtt_us >> 2;
2899 if (tp->packets_out == 1)
2900 timeout_us += tcp_rto_min_us(sk);
2901 else
2902 timeout_us += TCP_TIMEOUT_MIN_US;
2903 timeout = usecs_to_jiffies(timeout_us);
2904 } else {
2905 timeout = TCP_TIMEOUT_INIT;
2906 }
2907
2908 /* If the RTO formula yields an earlier time, then use that time. */
2909 rto_delta_us = advancing_rto ?
2910 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2911 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2912 if (rto_delta_us > 0)
2913 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2914
2915 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true);
2916 return true;
2917 }
2918
2919 /* Thanks to skb fast clones, we can detect if a prior transmit of
2920 * a packet is still in a qdisc or driver queue.
2921 * In this case, there is very little point doing a retransmit !
2922 */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2923 static bool skb_still_in_host_queue(struct sock *sk,
2924 const struct sk_buff *skb)
2925 {
2926 if (unlikely(skb_fclone_busy(sk, skb))) {
2927 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2928 smp_mb__after_atomic();
2929 if (skb_fclone_busy(sk, skb)) {
2930 NET_INC_STATS(sock_net(sk),
2931 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2932 return true;
2933 }
2934 }
2935 return false;
2936 }
2937
2938 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2939 * retransmit the last segment.
2940 */
tcp_send_loss_probe(struct sock * sk)2941 void tcp_send_loss_probe(struct sock *sk)
2942 {
2943 struct tcp_sock *tp = tcp_sk(sk);
2944 struct sk_buff *skb;
2945 int pcount;
2946 int mss = tcp_current_mss(sk);
2947
2948 /* At most one outstanding TLP */
2949 if (tp->tlp_high_seq)
2950 goto rearm_timer;
2951
2952 tp->tlp_retrans = 0;
2953 skb = tcp_send_head(sk);
2954 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2955 pcount = tp->packets_out;
2956 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2957 if (tp->packets_out > pcount)
2958 goto probe_sent;
2959 goto rearm_timer;
2960 }
2961 skb = skb_rb_last(&sk->tcp_rtx_queue);
2962 if (unlikely(!skb)) {
2963 tcp_warn_once(sk, tp->packets_out, "invalid inflight: ");
2964 smp_store_release(&inet_csk(sk)->icsk_pending, 0);
2965 return;
2966 }
2967
2968 if (skb_still_in_host_queue(sk, skb))
2969 goto rearm_timer;
2970
2971 pcount = tcp_skb_pcount(skb);
2972 if (WARN_ON(!pcount))
2973 goto rearm_timer;
2974
2975 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2976 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2977 (pcount - 1) * mss, mss,
2978 GFP_ATOMIC)))
2979 goto rearm_timer;
2980 skb = skb_rb_next(skb);
2981 }
2982
2983 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2984 goto rearm_timer;
2985
2986 if (__tcp_retransmit_skb(sk, skb, 1))
2987 goto rearm_timer;
2988
2989 tp->tlp_retrans = 1;
2990
2991 probe_sent:
2992 /* Record snd_nxt for loss detection. */
2993 tp->tlp_high_seq = tp->snd_nxt;
2994
2995 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2996 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2997 smp_store_release(&inet_csk(sk)->icsk_pending, 0);
2998 rearm_timer:
2999 tcp_rearm_rto(sk);
3000 }
3001
3002 /* Push out any pending frames which were held back due to
3003 * TCP_CORK or attempt at coalescing tiny packets.
3004 * The socket must be locked by the caller.
3005 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)3006 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
3007 int nonagle)
3008 {
3009 /* If we are closed, the bytes will have to remain here.
3010 * In time closedown will finish, we empty the write queue and
3011 * all will be happy.
3012 */
3013 if (unlikely(sk->sk_state == TCP_CLOSE))
3014 return;
3015
3016 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
3017 sk_gfp_mask(sk, GFP_ATOMIC)))
3018 tcp_check_probe_timer(sk);
3019 }
3020
3021 /* Send _single_ skb sitting at the send head. This function requires
3022 * true push pending frames to setup probe timer etc.
3023 */
tcp_push_one(struct sock * sk,unsigned int mss_now)3024 void tcp_push_one(struct sock *sk, unsigned int mss_now)
3025 {
3026 struct sk_buff *skb = tcp_send_head(sk);
3027
3028 BUG_ON(!skb || skb->len < mss_now);
3029
3030 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
3031 }
3032
3033 /* This function returns the amount that we can raise the
3034 * usable window based on the following constraints
3035 *
3036 * 1. The window can never be shrunk once it is offered (RFC 793)
3037 * 2. We limit memory per socket
3038 *
3039 * RFC 1122:
3040 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3041 * RECV.NEXT + RCV.WIN fixed until:
3042 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3043 *
3044 * i.e. don't raise the right edge of the window until you can raise
3045 * it at least MSS bytes.
3046 *
3047 * Unfortunately, the recommended algorithm breaks header prediction,
3048 * since header prediction assumes th->window stays fixed.
3049 *
3050 * Strictly speaking, keeping th->window fixed violates the receiver
3051 * side SWS prevention criteria. The problem is that under this rule
3052 * a stream of single byte packets will cause the right side of the
3053 * window to always advance by a single byte.
3054 *
3055 * Of course, if the sender implements sender side SWS prevention
3056 * then this will not be a problem.
3057 *
3058 * BSD seems to make the following compromise:
3059 *
3060 * If the free space is less than the 1/4 of the maximum
3061 * space available and the free space is less than 1/2 mss,
3062 * then set the window to 0.
3063 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3064 * Otherwise, just prevent the window from shrinking
3065 * and from being larger than the largest representable value.
3066 *
3067 * This prevents incremental opening of the window in the regime
3068 * where TCP is limited by the speed of the reader side taking
3069 * data out of the TCP receive queue. It does nothing about
3070 * those cases where the window is constrained on the sender side
3071 * because the pipeline is full.
3072 *
3073 * BSD also seems to "accidentally" limit itself to windows that are a
3074 * multiple of MSS, at least until the free space gets quite small.
3075 * This would appear to be a side effect of the mbuf implementation.
3076 * Combining these two algorithms results in the observed behavior
3077 * of having a fixed window size at almost all times.
3078 *
3079 * Below we obtain similar behavior by forcing the offered window to
3080 * a multiple of the mss when it is feasible to do so.
3081 *
3082 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3083 * Regular options like TIMESTAMP are taken into account.
3084 */
__tcp_select_window(struct sock * sk)3085 u32 __tcp_select_window(struct sock *sk)
3086 {
3087 struct inet_connection_sock *icsk = inet_csk(sk);
3088 struct tcp_sock *tp = tcp_sk(sk);
3089 struct net *net = sock_net(sk);
3090 /* MSS for the peer's data. Previous versions used mss_clamp
3091 * here. I don't know if the value based on our guesses
3092 * of peer's MSS is better for the performance. It's more correct
3093 * but may be worse for the performance because of rcv_mss
3094 * fluctuations. --SAW 1998/11/1
3095 */
3096 int mss = icsk->icsk_ack.rcv_mss;
3097 int free_space = tcp_space(sk);
3098 int allowed_space = tcp_full_space(sk);
3099 int full_space, window;
3100
3101 if (sk_is_mptcp(sk))
3102 mptcp_space(sk, &free_space, &allowed_space);
3103
3104 full_space = min_t(int, tp->window_clamp, allowed_space);
3105
3106 if (unlikely(mss > full_space)) {
3107 mss = full_space;
3108 if (mss <= 0)
3109 return 0;
3110 }
3111
3112 /* Only allow window shrink if the sysctl is enabled and we have
3113 * a non-zero scaling factor in effect.
3114 */
3115 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3116 goto shrink_window_allowed;
3117
3118 /* do not allow window to shrink */
3119
3120 if (free_space < (full_space >> 1)) {
3121 icsk->icsk_ack.quick = 0;
3122
3123 if (tcp_under_memory_pressure(sk))
3124 tcp_adjust_rcv_ssthresh(sk);
3125
3126 /* free_space might become our new window, make sure we don't
3127 * increase it due to wscale.
3128 */
3129 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3130
3131 /* if free space is less than mss estimate, or is below 1/16th
3132 * of the maximum allowed, try to move to zero-window, else
3133 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3134 * new incoming data is dropped due to memory limits.
3135 * With large window, mss test triggers way too late in order
3136 * to announce zero window in time before rmem limit kicks in.
3137 */
3138 if (free_space < (allowed_space >> 4) || free_space < mss)
3139 return 0;
3140 }
3141
3142 if (free_space > tp->rcv_ssthresh)
3143 free_space = tp->rcv_ssthresh;
3144
3145 /* Don't do rounding if we are using window scaling, since the
3146 * scaled window will not line up with the MSS boundary anyway.
3147 */
3148 if (tp->rx_opt.rcv_wscale) {
3149 window = free_space;
3150
3151 /* Advertise enough space so that it won't get scaled away.
3152 * Import case: prevent zero window announcement if
3153 * 1<<rcv_wscale > mss.
3154 */
3155 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3156 } else {
3157 window = tp->rcv_wnd;
3158 /* Get the largest window that is a nice multiple of mss.
3159 * Window clamp already applied above.
3160 * If our current window offering is within 1 mss of the
3161 * free space we just keep it. This prevents the divide
3162 * and multiply from happening most of the time.
3163 * We also don't do any window rounding when the free space
3164 * is too small.
3165 */
3166 if (window <= free_space - mss || window > free_space)
3167 window = rounddown(free_space, mss);
3168 else if (mss == full_space &&
3169 free_space > window + (full_space >> 1))
3170 window = free_space;
3171 }
3172
3173 return window;
3174
3175 shrink_window_allowed:
3176 /* new window should always be an exact multiple of scaling factor */
3177 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3178
3179 if (free_space < (full_space >> 1)) {
3180 icsk->icsk_ack.quick = 0;
3181
3182 if (tcp_under_memory_pressure(sk))
3183 tcp_adjust_rcv_ssthresh(sk);
3184
3185 /* if free space is too low, return a zero window */
3186 if (free_space < (allowed_space >> 4) || free_space < mss ||
3187 free_space < (1 << tp->rx_opt.rcv_wscale))
3188 return 0;
3189 }
3190
3191 if (free_space > tp->rcv_ssthresh) {
3192 free_space = tp->rcv_ssthresh;
3193 /* new window should always be an exact multiple of scaling factor
3194 *
3195 * For this case, we ALIGN "up" (increase free_space) because
3196 * we know free_space is not zero here, it has been reduced from
3197 * the memory-based limit, and rcv_ssthresh is not a hard limit
3198 * (unlike sk_rcvbuf).
3199 */
3200 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3201 }
3202
3203 return free_space;
3204 }
3205
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3206 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3207 const struct sk_buff *next_skb)
3208 {
3209 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3210 const struct skb_shared_info *next_shinfo =
3211 skb_shinfo(next_skb);
3212 struct skb_shared_info *shinfo = skb_shinfo(skb);
3213
3214 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3215 shinfo->tskey = next_shinfo->tskey;
3216 TCP_SKB_CB(skb)->txstamp_ack |=
3217 TCP_SKB_CB(next_skb)->txstamp_ack;
3218 }
3219 }
3220
3221 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3222 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3223 {
3224 struct tcp_sock *tp = tcp_sk(sk);
3225 struct sk_buff *next_skb = skb_rb_next(skb);
3226 int next_skb_size;
3227
3228 next_skb_size = next_skb->len;
3229
3230 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3231
3232 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3233 return false;
3234
3235 tcp_highest_sack_replace(sk, next_skb, skb);
3236
3237 /* Update sequence range on original skb. */
3238 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3239
3240 /* Merge over control information. This moves PSH/FIN etc. over */
3241 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3242
3243 /* All done, get rid of second SKB and account for it so
3244 * packet counting does not break.
3245 */
3246 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3247 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3248
3249 /* changed transmit queue under us so clear hints */
3250 if (next_skb == tp->retransmit_skb_hint)
3251 tp->retransmit_skb_hint = skb;
3252
3253 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3254
3255 tcp_skb_collapse_tstamp(skb, next_skb);
3256
3257 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3258 return true;
3259 }
3260
3261 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3262 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3263 {
3264 if (tcp_skb_pcount(skb) > 1)
3265 return false;
3266 if (skb_cloned(skb))
3267 return false;
3268 if (!skb_frags_readable(skb))
3269 return false;
3270 /* Some heuristics for collapsing over SACK'd could be invented */
3271 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3272 return false;
3273
3274 return true;
3275 }
3276
3277 /* Collapse packets in the retransmit queue to make to create
3278 * less packets on the wire. This is only done on retransmission.
3279 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3280 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3281 int space)
3282 {
3283 struct tcp_sock *tp = tcp_sk(sk);
3284 struct sk_buff *skb = to, *tmp;
3285 bool first = true;
3286
3287 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3288 return;
3289 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3290 return;
3291
3292 skb_rbtree_walk_from_safe(skb, tmp) {
3293 if (!tcp_can_collapse(sk, skb))
3294 break;
3295
3296 if (!tcp_skb_can_collapse(to, skb))
3297 break;
3298
3299 space -= skb->len;
3300
3301 if (first) {
3302 first = false;
3303 continue;
3304 }
3305
3306 if (space < 0)
3307 break;
3308
3309 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3310 break;
3311
3312 if (!tcp_collapse_retrans(sk, to))
3313 break;
3314 }
3315 }
3316
3317 /* This retransmits one SKB. Policy decisions and retransmit queue
3318 * state updates are done by the caller. Returns non-zero if an
3319 * error occurred which prevented the send.
3320 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3321 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3322 {
3323 struct inet_connection_sock *icsk = inet_csk(sk);
3324 struct tcp_sock *tp = tcp_sk(sk);
3325 unsigned int cur_mss;
3326 int diff, len, err;
3327 int avail_wnd;
3328
3329 /* Inconclusive MTU probe */
3330 if (icsk->icsk_mtup.probe_size)
3331 icsk->icsk_mtup.probe_size = 0;
3332
3333 if (skb_still_in_host_queue(sk, skb)) {
3334 err = -EBUSY;
3335 goto out;
3336 }
3337
3338 start:
3339 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3340 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3341 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3342 TCP_SKB_CB(skb)->seq++;
3343 goto start;
3344 }
3345 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3346 WARN_ON_ONCE(1);
3347 err = -EINVAL;
3348 goto out;
3349 }
3350 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) {
3351 err = -ENOMEM;
3352 goto out;
3353 }
3354 }
3355
3356 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) {
3357 err = -EHOSTUNREACH; /* Routing failure or similar. */
3358 goto out;
3359 }
3360
3361 cur_mss = tcp_current_mss(sk);
3362 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3363
3364 /* If receiver has shrunk his window, and skb is out of
3365 * new window, do not retransmit it. The exception is the
3366 * case, when window is shrunk to zero. In this case
3367 * our retransmit of one segment serves as a zero window probe.
3368 */
3369 if (avail_wnd <= 0) {
3370 if (TCP_SKB_CB(skb)->seq != tp->snd_una) {
3371 err = -EAGAIN;
3372 goto out;
3373 }
3374 avail_wnd = cur_mss;
3375 }
3376
3377 len = cur_mss * segs;
3378 if (len > avail_wnd) {
3379 len = rounddown(avail_wnd, cur_mss);
3380 if (!len)
3381 len = avail_wnd;
3382 }
3383 if (skb->len > len) {
3384 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3385 cur_mss, GFP_ATOMIC)) {
3386 err = -ENOMEM; /* We'll try again later. */
3387 goto out;
3388 }
3389 } else {
3390 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) {
3391 err = -ENOMEM;
3392 goto out;
3393 }
3394
3395 diff = tcp_skb_pcount(skb);
3396 tcp_set_skb_tso_segs(skb, cur_mss);
3397 diff -= tcp_skb_pcount(skb);
3398 if (diff)
3399 tcp_adjust_pcount(sk, skb, diff);
3400 avail_wnd = min_t(int, avail_wnd, cur_mss);
3401 if (skb->len < avail_wnd)
3402 tcp_retrans_try_collapse(sk, skb, avail_wnd);
3403 }
3404
3405 /* RFC3168, section 6.1.1.1. ECN fallback */
3406 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3407 tcp_ecn_clear_syn(sk, skb);
3408
3409 /* Update global and local TCP statistics. */
3410 segs = tcp_skb_pcount(skb);
3411 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3412 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3413 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3414 tp->total_retrans += segs;
3415 tp->bytes_retrans += skb->len;
3416
3417 /* make sure skb->data is aligned on arches that require it
3418 * and check if ack-trimming & collapsing extended the headroom
3419 * beyond what csum_start can cover.
3420 */
3421 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3422 skb_headroom(skb) >= 0xFFFF)) {
3423 struct sk_buff *nskb;
3424
3425 tcp_skb_tsorted_save(skb) {
3426 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3427 if (nskb) {
3428 nskb->dev = NULL;
3429 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3430 } else {
3431 err = -ENOBUFS;
3432 }
3433 } tcp_skb_tsorted_restore(skb);
3434
3435 if (!err) {
3436 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3437 tcp_rate_skb_sent(sk, skb);
3438 }
3439 } else {
3440 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3441 }
3442
3443 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3444 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3445 TCP_SKB_CB(skb)->seq, segs, err);
3446
3447 if (unlikely(err) && err != -EBUSY)
3448 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3449
3450 /* To avoid taking spuriously low RTT samples based on a timestamp
3451 * for a transmit that never happened, always mark EVER_RETRANS
3452 */
3453 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3454
3455 out:
3456 trace_tcp_retransmit_skb(sk, skb, err);
3457 return err;
3458 }
3459
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3460 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3461 {
3462 struct tcp_sock *tp = tcp_sk(sk);
3463 int err = __tcp_retransmit_skb(sk, skb, segs);
3464
3465 if (err == 0) {
3466 #if FASTRETRANS_DEBUG > 0
3467 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3468 net_dbg_ratelimited("retrans_out leaked\n");
3469 }
3470 #endif
3471 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3472 tp->retrans_out += tcp_skb_pcount(skb);
3473 }
3474
3475 /* Save stamp of the first (attempted) retransmit. */
3476 if (!tp->retrans_stamp)
3477 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3478
3479 if (tp->undo_retrans < 0)
3480 tp->undo_retrans = 0;
3481 tp->undo_retrans += tcp_skb_pcount(skb);
3482 return err;
3483 }
3484
3485 /* This gets called after a retransmit timeout, and the initially
3486 * retransmitted data is acknowledged. It tries to continue
3487 * resending the rest of the retransmit queue, until either
3488 * we've sent it all or the congestion window limit is reached.
3489 */
tcp_xmit_retransmit_queue(struct sock * sk)3490 void tcp_xmit_retransmit_queue(struct sock *sk)
3491 {
3492 const struct inet_connection_sock *icsk = inet_csk(sk);
3493 struct sk_buff *skb, *rtx_head, *hole = NULL;
3494 struct tcp_sock *tp = tcp_sk(sk);
3495 bool rearm_timer = false;
3496 u32 max_segs;
3497 int mib_idx;
3498
3499 if (!tp->packets_out)
3500 return;
3501
3502 rtx_head = tcp_rtx_queue_head(sk);
3503 skb = tp->retransmit_skb_hint ?: rtx_head;
3504 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3505 skb_rbtree_walk_from(skb) {
3506 __u8 sacked;
3507 int segs;
3508
3509 if (tcp_pacing_check(sk))
3510 break;
3511
3512 /* we could do better than to assign each time */
3513 if (!hole)
3514 tp->retransmit_skb_hint = skb;
3515
3516 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3517 if (segs <= 0)
3518 break;
3519 sacked = TCP_SKB_CB(skb)->sacked;
3520 /* In case tcp_shift_skb_data() have aggregated large skbs,
3521 * we need to make sure not sending too bigs TSO packets
3522 */
3523 segs = min_t(int, segs, max_segs);
3524
3525 if (tp->retrans_out >= tp->lost_out) {
3526 break;
3527 } else if (!(sacked & TCPCB_LOST)) {
3528 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3529 hole = skb;
3530 continue;
3531
3532 } else {
3533 if (icsk->icsk_ca_state != TCP_CA_Loss)
3534 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3535 else
3536 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3537 }
3538
3539 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3540 continue;
3541
3542 if (tcp_small_queue_check(sk, skb, 1))
3543 break;
3544
3545 if (tcp_retransmit_skb(sk, skb, segs))
3546 break;
3547
3548 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3549
3550 if (tcp_in_cwnd_reduction(sk))
3551 tp->prr_out += tcp_skb_pcount(skb);
3552
3553 if (skb == rtx_head &&
3554 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3555 rearm_timer = true;
3556
3557 }
3558 if (rearm_timer)
3559 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3560 inet_csk(sk)->icsk_rto, true);
3561 }
3562
3563 /* We allow to exceed memory limits for FIN packets to expedite
3564 * connection tear down and (memory) recovery.
3565 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3566 * or even be forced to close flow without any FIN.
3567 * In general, we want to allow one skb per socket to avoid hangs
3568 * with edge trigger epoll()
3569 */
sk_forced_mem_schedule(struct sock * sk,int size)3570 void sk_forced_mem_schedule(struct sock *sk, int size)
3571 {
3572 int delta, amt;
3573
3574 delta = size - sk->sk_forward_alloc;
3575 if (delta <= 0)
3576 return;
3577 amt = sk_mem_pages(delta);
3578 sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3579 sk_memory_allocated_add(sk, amt);
3580
3581 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3582 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3583 gfp_memcg_charge() | __GFP_NOFAIL);
3584 }
3585
3586 /* Send a FIN. The caller locks the socket for us.
3587 * We should try to send a FIN packet really hard, but eventually give up.
3588 */
tcp_send_fin(struct sock * sk)3589 void tcp_send_fin(struct sock *sk)
3590 {
3591 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3592 struct tcp_sock *tp = tcp_sk(sk);
3593
3594 /* Optimization, tack on the FIN if we have one skb in write queue and
3595 * this skb was not yet sent, or we are under memory pressure.
3596 * Note: in the latter case, FIN packet will be sent after a timeout,
3597 * as TCP stack thinks it has already been transmitted.
3598 */
3599 tskb = tail;
3600 if (!tskb && tcp_under_memory_pressure(sk))
3601 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3602
3603 if (tskb) {
3604 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3605 TCP_SKB_CB(tskb)->end_seq++;
3606 tp->write_seq++;
3607 if (!tail) {
3608 /* This means tskb was already sent.
3609 * Pretend we included the FIN on previous transmit.
3610 * We need to set tp->snd_nxt to the value it would have
3611 * if FIN had been sent. This is because retransmit path
3612 * does not change tp->snd_nxt.
3613 */
3614 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3615 return;
3616 }
3617 } else {
3618 skb = alloc_skb_fclone(MAX_TCP_HEADER,
3619 sk_gfp_mask(sk, GFP_ATOMIC |
3620 __GFP_NOWARN));
3621 if (unlikely(!skb))
3622 return;
3623
3624 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3625 skb_reserve(skb, MAX_TCP_HEADER);
3626 sk_forced_mem_schedule(sk, skb->truesize);
3627 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3628 tcp_init_nondata_skb(skb, tp->write_seq,
3629 TCPHDR_ACK | TCPHDR_FIN);
3630 tcp_queue_skb(sk, skb);
3631 }
3632 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3633 }
3634
3635 /* We get here when a process closes a file descriptor (either due to
3636 * an explicit close() or as a byproduct of exit()'ing) and there
3637 * was unread data in the receive queue. This behavior is recommended
3638 * by RFC 2525, section 2.17. -DaveM
3639 */
tcp_send_active_reset(struct sock * sk,gfp_t priority,enum sk_rst_reason reason)3640 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3641 enum sk_rst_reason reason)
3642 {
3643 struct sk_buff *skb;
3644
3645 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3646
3647 /* NOTE: No TCP options attached and we never retransmit this. */
3648 skb = alloc_skb(MAX_TCP_HEADER, priority);
3649 if (!skb) {
3650 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3651 return;
3652 }
3653
3654 /* Reserve space for headers and prepare control bits. */
3655 skb_reserve(skb, MAX_TCP_HEADER);
3656 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3657 TCPHDR_ACK | TCPHDR_RST);
3658 tcp_mstamp_refresh(tcp_sk(sk));
3659 /* Send it off. */
3660 if (tcp_transmit_skb(sk, skb, 0, priority))
3661 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3662
3663 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3664 * skb here is different to the troublesome skb, so use NULL
3665 */
3666 trace_tcp_send_reset(sk, NULL, reason);
3667 }
3668
3669 /* Send a crossed SYN-ACK during socket establishment.
3670 * WARNING: This routine must only be called when we have already sent
3671 * a SYN packet that crossed the incoming SYN that caused this routine
3672 * to get called. If this assumption fails then the initial rcv_wnd
3673 * and rcv_wscale values will not be correct.
3674 */
tcp_send_synack(struct sock * sk)3675 int tcp_send_synack(struct sock *sk)
3676 {
3677 struct sk_buff *skb;
3678
3679 skb = tcp_rtx_queue_head(sk);
3680 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3681 pr_err("%s: wrong queue state\n", __func__);
3682 return -EFAULT;
3683 }
3684 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3685 if (skb_cloned(skb)) {
3686 struct sk_buff *nskb;
3687
3688 tcp_skb_tsorted_save(skb) {
3689 nskb = skb_copy(skb, GFP_ATOMIC);
3690 } tcp_skb_tsorted_restore(skb);
3691 if (!nskb)
3692 return -ENOMEM;
3693 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3694 tcp_highest_sack_replace(sk, skb, nskb);
3695 tcp_rtx_queue_unlink_and_free(skb, sk);
3696 __skb_header_release(nskb);
3697 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3698 sk_wmem_queued_add(sk, nskb->truesize);
3699 sk_mem_charge(sk, nskb->truesize);
3700 skb = nskb;
3701 }
3702
3703 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3704 tcp_ecn_send_synack(sk, skb);
3705 }
3706 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3707 }
3708
3709 /**
3710 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3711 * @sk: listener socket
3712 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3713 * should not use it again.
3714 * @req: request_sock pointer
3715 * @foc: cookie for tcp fast open
3716 * @synack_type: Type of synack to prepare
3717 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3718 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3719 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3720 struct request_sock *req,
3721 struct tcp_fastopen_cookie *foc,
3722 enum tcp_synack_type synack_type,
3723 struct sk_buff *syn_skb)
3724 {
3725 struct inet_request_sock *ireq = inet_rsk(req);
3726 const struct tcp_sock *tp = tcp_sk(sk);
3727 struct tcp_out_options opts;
3728 struct tcp_key key = {};
3729 struct sk_buff *skb;
3730 int tcp_header_size;
3731 struct tcphdr *th;
3732 int mss;
3733 u64 now;
3734
3735 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3736 if (unlikely(!skb)) {
3737 dst_release(dst);
3738 return NULL;
3739 }
3740 /* Reserve space for headers. */
3741 skb_reserve(skb, MAX_TCP_HEADER);
3742
3743 switch (synack_type) {
3744 case TCP_SYNACK_NORMAL:
3745 skb_set_owner_edemux(skb, req_to_sk(req));
3746 break;
3747 case TCP_SYNACK_COOKIE:
3748 /* Under synflood, we do not attach skb to a socket,
3749 * to avoid false sharing.
3750 */
3751 break;
3752 case TCP_SYNACK_FASTOPEN:
3753 /* sk is a const pointer, because we want to express multiple
3754 * cpu might call us concurrently.
3755 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3756 */
3757 skb_set_owner_w(skb, (struct sock *)sk);
3758 break;
3759 }
3760 skb_dst_set(skb, dst);
3761
3762 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3763
3764 memset(&opts, 0, sizeof(opts));
3765 now = tcp_clock_ns();
3766 #ifdef CONFIG_SYN_COOKIES
3767 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3768 skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3769 SKB_CLOCK_MONOTONIC);
3770 else
3771 #endif
3772 {
3773 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3774 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3775 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3776 }
3777
3778 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3779 rcu_read_lock();
3780 #endif
3781 if (tcp_rsk_used_ao(req)) {
3782 #ifdef CONFIG_TCP_AO
3783 struct tcp_ao_key *ao_key = NULL;
3784 u8 keyid = tcp_rsk(req)->ao_keyid;
3785 u8 rnext = tcp_rsk(req)->ao_rcv_next;
3786
3787 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3788 keyid, -1);
3789 /* If there is no matching key - avoid sending anything,
3790 * especially usigned segments. It could try harder and lookup
3791 * for another peer-matching key, but the peer has requested
3792 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3793 */
3794 if (unlikely(!ao_key)) {
3795 trace_tcp_ao_synack_no_key(sk, keyid, rnext);
3796 rcu_read_unlock();
3797 kfree_skb(skb);
3798 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3799 keyid);
3800 return NULL;
3801 }
3802 key.ao_key = ao_key;
3803 key.type = TCP_KEY_AO;
3804 #endif
3805 } else {
3806 #ifdef CONFIG_TCP_MD5SIG
3807 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3808 req_to_sk(req));
3809 if (key.md5_key)
3810 key.type = TCP_KEY_MD5;
3811 #endif
3812 }
3813 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3814 /* bpf program will be interested in the tcp_flags */
3815 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3816 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3817 &key, foc, synack_type, syn_skb)
3818 + sizeof(*th);
3819
3820 skb_push(skb, tcp_header_size);
3821 skb_reset_transport_header(skb);
3822
3823 th = (struct tcphdr *)skb->data;
3824 memset(th, 0, sizeof(struct tcphdr));
3825 th->syn = 1;
3826 th->ack = 1;
3827 tcp_ecn_make_synack(req, th);
3828 th->source = htons(ireq->ir_num);
3829 th->dest = ireq->ir_rmt_port;
3830 skb->mark = ireq->ir_mark;
3831 skb->ip_summed = CHECKSUM_PARTIAL;
3832 th->seq = htonl(tcp_rsk(req)->snt_isn);
3833 /* XXX data is queued and acked as is. No buffer/window check */
3834 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3835
3836 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3837 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3838 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3839 th->doff = (tcp_header_size >> 2);
3840 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3841
3842 /* Okay, we have all we need - do the md5 hash if needed */
3843 if (tcp_key_is_md5(&key)) {
3844 #ifdef CONFIG_TCP_MD5SIG
3845 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3846 key.md5_key, req_to_sk(req), skb);
3847 #endif
3848 } else if (tcp_key_is_ao(&key)) {
3849 #ifdef CONFIG_TCP_AO
3850 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3851 key.ao_key, req, skb,
3852 opts.hash_location - (u8 *)th, 0);
3853 #endif
3854 }
3855 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3856 rcu_read_unlock();
3857 #endif
3858
3859 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3860 synack_type, &opts);
3861
3862 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3863 tcp_add_tx_delay(skb, tp);
3864
3865 return skb;
3866 }
3867 EXPORT_IPV6_MOD(tcp_make_synack);
3868
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3869 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3870 {
3871 struct inet_connection_sock *icsk = inet_csk(sk);
3872 const struct tcp_congestion_ops *ca;
3873 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3874
3875 if (ca_key == TCP_CA_UNSPEC)
3876 return;
3877
3878 rcu_read_lock();
3879 ca = tcp_ca_find_key(ca_key);
3880 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3881 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3882 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3883 icsk->icsk_ca_ops = ca;
3884 }
3885 rcu_read_unlock();
3886 }
3887
3888 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3889 static void tcp_connect_init(struct sock *sk)
3890 {
3891 const struct dst_entry *dst = __sk_dst_get(sk);
3892 struct tcp_sock *tp = tcp_sk(sk);
3893 __u8 rcv_wscale;
3894 u32 rcv_wnd;
3895
3896 /* We'll fix this up when we get a response from the other end.
3897 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3898 */
3899 tp->tcp_header_len = sizeof(struct tcphdr);
3900 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3901 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3902
3903 tcp_ao_connect_init(sk);
3904
3905 /* If user gave his TCP_MAXSEG, record it to clamp */
3906 if (tp->rx_opt.user_mss)
3907 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3908 tp->max_window = 0;
3909 tcp_mtup_init(sk);
3910 tcp_sync_mss(sk, dst_mtu(dst));
3911
3912 tcp_ca_dst_init(sk, dst);
3913
3914 if (!tp->window_clamp)
3915 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3916 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3917
3918 tcp_initialize_rcv_mss(sk);
3919
3920 /* limit the window selection if the user enforce a smaller rx buffer */
3921 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3922 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3923 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3924
3925 rcv_wnd = tcp_rwnd_init_bpf(sk);
3926 if (rcv_wnd == 0)
3927 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3928
3929 tcp_select_initial_window(sk, tcp_full_space(sk),
3930 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3931 &tp->rcv_wnd,
3932 &tp->window_clamp,
3933 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3934 &rcv_wscale,
3935 rcv_wnd);
3936
3937 tp->rx_opt.rcv_wscale = rcv_wscale;
3938 tp->rcv_ssthresh = tp->rcv_wnd;
3939
3940 WRITE_ONCE(sk->sk_err, 0);
3941 sock_reset_flag(sk, SOCK_DONE);
3942 tp->snd_wnd = 0;
3943 tcp_init_wl(tp, 0);
3944 tcp_write_queue_purge(sk);
3945 tp->snd_una = tp->write_seq;
3946 tp->snd_sml = tp->write_seq;
3947 tp->snd_up = tp->write_seq;
3948 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3949
3950 if (likely(!tp->repair))
3951 tp->rcv_nxt = 0;
3952 else
3953 tp->rcv_tstamp = tcp_jiffies32;
3954 tp->rcv_wup = tp->rcv_nxt;
3955 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3956
3957 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3958 inet_csk(sk)->icsk_retransmits = 0;
3959 tcp_clear_retrans(tp);
3960 }
3961
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3962 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3963 {
3964 struct tcp_sock *tp = tcp_sk(sk);
3965 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3966
3967 tcb->end_seq += skb->len;
3968 __skb_header_release(skb);
3969 sk_wmem_queued_add(sk, skb->truesize);
3970 sk_mem_charge(sk, skb->truesize);
3971 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3972 tp->packets_out += tcp_skb_pcount(skb);
3973 }
3974
3975 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3976 * queue a data-only packet after the regular SYN, such that regular SYNs
3977 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3978 * only the SYN sequence, the data are retransmitted in the first ACK.
3979 * If cookie is not cached or other error occurs, falls back to send a
3980 * regular SYN with Fast Open cookie request option.
3981 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3982 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3983 {
3984 struct inet_connection_sock *icsk = inet_csk(sk);
3985 struct tcp_sock *tp = tcp_sk(sk);
3986 struct tcp_fastopen_request *fo = tp->fastopen_req;
3987 struct page_frag *pfrag = sk_page_frag(sk);
3988 struct sk_buff *syn_data;
3989 int space, err = 0;
3990
3991 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3992 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3993 goto fallback;
3994
3995 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3996 * user-MSS. Reserve maximum option space for middleboxes that add
3997 * private TCP options. The cost is reduced data space in SYN :(
3998 */
3999 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
4000 /* Sync mss_cache after updating the mss_clamp */
4001 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4002
4003 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
4004 MAX_TCP_OPTION_SPACE;
4005
4006 space = min_t(size_t, space, fo->size);
4007
4008 if (space &&
4009 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
4010 pfrag, sk->sk_allocation))
4011 goto fallback;
4012 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
4013 if (!syn_data)
4014 goto fallback;
4015 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
4016 if (space) {
4017 space = min_t(size_t, space, pfrag->size - pfrag->offset);
4018 space = tcp_wmem_schedule(sk, space);
4019 }
4020 if (space) {
4021 space = copy_page_from_iter(pfrag->page, pfrag->offset,
4022 space, &fo->data->msg_iter);
4023 if (unlikely(!space)) {
4024 tcp_skb_tsorted_anchor_cleanup(syn_data);
4025 kfree_skb(syn_data);
4026 goto fallback;
4027 }
4028 skb_fill_page_desc(syn_data, 0, pfrag->page,
4029 pfrag->offset, space);
4030 page_ref_inc(pfrag->page);
4031 pfrag->offset += space;
4032 skb_len_add(syn_data, space);
4033 skb_zcopy_set(syn_data, fo->uarg, NULL);
4034 }
4035 /* No more data pending in inet_wait_for_connect() */
4036 if (space == fo->size)
4037 fo->data = NULL;
4038 fo->copied = space;
4039
4040 tcp_connect_queue_skb(sk, syn_data);
4041 if (syn_data->len)
4042 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
4043
4044 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
4045
4046 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC);
4047
4048 /* Now full SYN+DATA was cloned and sent (or not),
4049 * remove the SYN from the original skb (syn_data)
4050 * we keep in write queue in case of a retransmit, as we
4051 * also have the SYN packet (with no data) in the same queue.
4052 */
4053 TCP_SKB_CB(syn_data)->seq++;
4054 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4055 if (!err) {
4056 tp->syn_data = (fo->copied > 0);
4057 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4058 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4059 goto done;
4060 }
4061
4062 /* data was not sent, put it in write_queue */
4063 __skb_queue_tail(&sk->sk_write_queue, syn_data);
4064 tp->packets_out -= tcp_skb_pcount(syn_data);
4065
4066 fallback:
4067 /* Send a regular SYN with Fast Open cookie request option */
4068 if (fo->cookie.len > 0)
4069 fo->cookie.len = 0;
4070 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4071 if (err)
4072 tp->syn_fastopen = 0;
4073 done:
4074 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
4075 return err;
4076 }
4077
4078 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)4079 int tcp_connect(struct sock *sk)
4080 {
4081 struct tcp_sock *tp = tcp_sk(sk);
4082 struct sk_buff *buff;
4083 int err;
4084
4085 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4086
4087 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4088 /* Has to be checked late, after setting daddr/saddr/ops.
4089 * Return error if the peer has both a md5 and a tcp-ao key
4090 * configured as this is ambiguous.
4091 */
4092 if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4093 lockdep_sock_is_held(sk)))) {
4094 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4095 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4096 struct tcp_ao_info *ao_info;
4097
4098 ao_info = rcu_dereference_check(tp->ao_info,
4099 lockdep_sock_is_held(sk));
4100 if (ao_info) {
4101 /* This is an extra check: tcp_ao_required() in
4102 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4103 * md5 keys on ao_required socket.
4104 */
4105 needs_ao |= ao_info->ao_required;
4106 WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4107 }
4108 if (needs_md5 && needs_ao)
4109 return -EKEYREJECTED;
4110
4111 /* If we have a matching md5 key and no matching tcp-ao key
4112 * then free up ao_info if allocated.
4113 */
4114 if (needs_md5) {
4115 tcp_ao_destroy_sock(sk, false);
4116 } else if (needs_ao) {
4117 tcp_clear_md5_list(sk);
4118 kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4119 lockdep_sock_is_held(sk)));
4120 }
4121 }
4122 #endif
4123 #ifdef CONFIG_TCP_AO
4124 if (unlikely(rcu_dereference_protected(tp->ao_info,
4125 lockdep_sock_is_held(sk)))) {
4126 /* Don't allow connecting if ao is configured but no
4127 * matching key is found.
4128 */
4129 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4130 return -EKEYREJECTED;
4131 }
4132 #endif
4133
4134 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4135 return -EHOSTUNREACH; /* Routing failure or similar. */
4136
4137 tcp_connect_init(sk);
4138
4139 if (unlikely(tp->repair)) {
4140 tcp_finish_connect(sk, NULL);
4141 return 0;
4142 }
4143
4144 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4145 if (unlikely(!buff))
4146 return -ENOBUFS;
4147
4148 /* SYN eats a sequence byte, write_seq updated by
4149 * tcp_connect_queue_skb().
4150 */
4151 tcp_init_nondata_skb(buff, tp->write_seq, TCPHDR_SYN);
4152 tcp_mstamp_refresh(tp);
4153 tp->retrans_stamp = tcp_time_stamp_ts(tp);
4154 tcp_connect_queue_skb(sk, buff);
4155 tcp_ecn_send_syn(sk, buff);
4156 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4157
4158 /* Send off SYN; include data in Fast Open. */
4159 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4160 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4161 if (err == -ECONNREFUSED)
4162 return err;
4163
4164 /* We change tp->snd_nxt after the tcp_transmit_skb() call
4165 * in order to make this packet get counted in tcpOutSegs.
4166 */
4167 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4168 tp->pushed_seq = tp->write_seq;
4169 buff = tcp_send_head(sk);
4170 if (unlikely(buff)) {
4171 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4172 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
4173 }
4174 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4175
4176 /* Timer for repeating the SYN until an answer. */
4177 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4178 inet_csk(sk)->icsk_rto, false);
4179 return 0;
4180 }
4181 EXPORT_SYMBOL(tcp_connect);
4182
tcp_delack_max(const struct sock * sk)4183 u32 tcp_delack_max(const struct sock *sk)
4184 {
4185 u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1;
4186
4187 return min(READ_ONCE(inet_csk(sk)->icsk_delack_max), delack_from_rto_min);
4188 }
4189
4190 /* Send out a delayed ack, the caller does the policy checking
4191 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
4192 * for details.
4193 */
tcp_send_delayed_ack(struct sock * sk)4194 void tcp_send_delayed_ack(struct sock *sk)
4195 {
4196 struct inet_connection_sock *icsk = inet_csk(sk);
4197 int ato = icsk->icsk_ack.ato;
4198 unsigned long timeout;
4199
4200 if (ato > TCP_DELACK_MIN) {
4201 const struct tcp_sock *tp = tcp_sk(sk);
4202 int max_ato = HZ / 2;
4203
4204 if (inet_csk_in_pingpong_mode(sk) ||
4205 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4206 max_ato = TCP_DELACK_MAX;
4207
4208 /* Slow path, intersegment interval is "high". */
4209
4210 /* If some rtt estimate is known, use it to bound delayed ack.
4211 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4212 * directly.
4213 */
4214 if (tp->srtt_us) {
4215 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4216 TCP_DELACK_MIN);
4217
4218 if (rtt < max_ato)
4219 max_ato = rtt;
4220 }
4221
4222 ato = min(ato, max_ato);
4223 }
4224
4225 ato = min_t(u32, ato, tcp_delack_max(sk));
4226
4227 /* Stay within the limit we were given */
4228 timeout = jiffies + ato;
4229
4230 /* Use new timeout only if there wasn't a older one earlier. */
4231 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4232 /* If delack timer is about to expire, send ACK now. */
4233 if (time_before_eq(icsk_delack_timeout(icsk), jiffies + (ato >> 2))) {
4234 tcp_send_ack(sk);
4235 return;
4236 }
4237
4238 if (!time_before(timeout, icsk_delack_timeout(icsk)))
4239 timeout = icsk_delack_timeout(icsk);
4240 }
4241 smp_store_release(&icsk->icsk_ack.pending,
4242 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
4243 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4244 }
4245
4246 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt,u16 flags)4247 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags)
4248 {
4249 struct sk_buff *buff;
4250
4251 /* If we have been reset, we may not send again. */
4252 if (sk->sk_state == TCP_CLOSE)
4253 return;
4254
4255 /* We are not putting this on the write queue, so
4256 * tcp_transmit_skb() will set the ownership to this
4257 * sock.
4258 */
4259 buff = alloc_skb(MAX_TCP_HEADER,
4260 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4261 if (unlikely(!buff)) {
4262 struct inet_connection_sock *icsk = inet_csk(sk);
4263 unsigned long delay;
4264
4265 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4266 if (delay < tcp_rto_max(sk))
4267 icsk->icsk_ack.retry++;
4268 inet_csk_schedule_ack(sk);
4269 icsk->icsk_ack.ato = TCP_ATO_MIN;
4270 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false);
4271 return;
4272 }
4273
4274 /* Reserve space for headers and prepare control bits. */
4275 skb_reserve(buff, MAX_TCP_HEADER);
4276 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK | flags);
4277
4278 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
4279 * too much.
4280 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4281 */
4282 skb_set_tcp_pure_ack(buff);
4283
4284 /* Send it off, this clears delayed acks for us. */
4285 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4286 }
4287 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4288
tcp_send_ack(struct sock * sk)4289 void tcp_send_ack(struct sock *sk)
4290 {
4291 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt, 0);
4292 }
4293
4294 /* This routine sends a packet with an out of date sequence
4295 * number. It assumes the other end will try to ack it.
4296 *
4297 * Question: what should we make while urgent mode?
4298 * 4.4BSD forces sending single byte of data. We cannot send
4299 * out of window data, because we have SND.NXT==SND.MAX...
4300 *
4301 * Current solution: to send TWO zero-length segments in urgent mode:
4302 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4303 * out-of-date with SND.UNA-1 to probe window.
4304 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4305 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4306 {
4307 struct tcp_sock *tp = tcp_sk(sk);
4308 struct sk_buff *skb;
4309
4310 /* We don't queue it, tcp_transmit_skb() sets ownership. */
4311 skb = alloc_skb(MAX_TCP_HEADER,
4312 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4313 if (!skb)
4314 return -1;
4315
4316 /* Reserve space for headers and set control bits. */
4317 skb_reserve(skb, MAX_TCP_HEADER);
4318 /* Use a previous sequence. This should cause the other
4319 * end to send an ack. Don't queue or clone SKB, just
4320 * send it.
4321 */
4322 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4323 NET_INC_STATS(sock_net(sk), mib);
4324 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4325 }
4326
4327 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4328 void tcp_send_window_probe(struct sock *sk)
4329 {
4330 if (sk->sk_state == TCP_ESTABLISHED) {
4331 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4332 tcp_mstamp_refresh(tcp_sk(sk));
4333 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4334 }
4335 }
4336
4337 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4338 int tcp_write_wakeup(struct sock *sk, int mib)
4339 {
4340 struct tcp_sock *tp = tcp_sk(sk);
4341 struct sk_buff *skb;
4342
4343 if (sk->sk_state == TCP_CLOSE)
4344 return -1;
4345
4346 skb = tcp_send_head(sk);
4347 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4348 int err;
4349 unsigned int mss = tcp_current_mss(sk);
4350 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4351
4352 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4353 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4354
4355 /* We are probing the opening of a window
4356 * but the window size is != 0
4357 * must have been a result SWS avoidance ( sender )
4358 */
4359 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4360 skb->len > mss) {
4361 seg_size = min(seg_size, mss);
4362 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4363 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4364 skb, seg_size, mss, GFP_ATOMIC))
4365 return -1;
4366 } else if (!tcp_skb_pcount(skb))
4367 tcp_set_skb_tso_segs(skb, mss);
4368
4369 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4370 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4371 if (!err)
4372 tcp_event_new_data_sent(sk, skb);
4373 return err;
4374 } else {
4375 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4376 tcp_xmit_probe_skb(sk, 1, mib);
4377 return tcp_xmit_probe_skb(sk, 0, mib);
4378 }
4379 }
4380
4381 /* A window probe timeout has occurred. If window is not closed send
4382 * a partial packet else a zero probe.
4383 */
tcp_send_probe0(struct sock * sk)4384 void tcp_send_probe0(struct sock *sk)
4385 {
4386 struct inet_connection_sock *icsk = inet_csk(sk);
4387 struct tcp_sock *tp = tcp_sk(sk);
4388 struct net *net = sock_net(sk);
4389 unsigned long timeout;
4390 int err;
4391
4392 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4393
4394 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4395 /* Cancel probe timer, if it is not required. */
4396 icsk->icsk_probes_out = 0;
4397 icsk->icsk_backoff = 0;
4398 icsk->icsk_probes_tstamp = 0;
4399 return;
4400 }
4401
4402 icsk->icsk_probes_out++;
4403 if (err <= 0) {
4404 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4405 icsk->icsk_backoff++;
4406 timeout = tcp_probe0_when(sk, tcp_rto_max(sk));
4407 } else {
4408 /* If packet was not sent due to local congestion,
4409 * Let senders fight for local resources conservatively.
4410 */
4411 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4412 }
4413
4414 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4415 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true);
4416 }
4417
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4418 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4419 {
4420 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4421 struct flowi fl;
4422 int res;
4423
4424 /* Paired with WRITE_ONCE() in sock_setsockopt() */
4425 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4426 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4427 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4428 NULL);
4429 if (!res) {
4430 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4431 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4432 if (unlikely(tcp_passive_fastopen(sk))) {
4433 /* sk has const attribute because listeners are lockless.
4434 * However in this case, we are dealing with a passive fastopen
4435 * socket thus we can change total_retrans value.
4436 */
4437 tcp_sk_rw(sk)->total_retrans++;
4438 }
4439 trace_tcp_retransmit_synack(sk, req);
4440 req->num_retrans++;
4441 }
4442 return res;
4443 }
4444 EXPORT_IPV6_MOD(tcp_rtx_synack);
4445