xref: /linux/fs/hugetlbfs/inode.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/hugetlbfs.h>
44 
45 static const struct address_space_operations hugetlbfs_aops;
46 static const struct file_operations hugetlbfs_file_operations;
47 static const struct inode_operations hugetlbfs_dir_inode_operations;
48 static const struct inode_operations hugetlbfs_inode_operations;
49 
50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
51 
52 struct hugetlbfs_fs_context {
53 	struct hstate		*hstate;
54 	unsigned long long	max_size_opt;
55 	unsigned long long	min_size_opt;
56 	long			max_hpages;
57 	long			nr_inodes;
58 	long			min_hpages;
59 	enum hugetlbfs_size_type max_val_type;
60 	enum hugetlbfs_size_type min_val_type;
61 	kuid_t			uid;
62 	kgid_t			gid;
63 	umode_t			mode;
64 };
65 
66 int sysctl_hugetlb_shm_group;
67 
68 enum hugetlb_param {
69 	Opt_gid,
70 	Opt_min_size,
71 	Opt_mode,
72 	Opt_nr_inodes,
73 	Opt_pagesize,
74 	Opt_size,
75 	Opt_uid,
76 };
77 
78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
79 	fsparam_gid   ("gid",		Opt_gid),
80 	fsparam_string("min_size",	Opt_min_size),
81 	fsparam_u32oct("mode",		Opt_mode),
82 	fsparam_string("nr_inodes",	Opt_nr_inodes),
83 	fsparam_string("pagesize",	Opt_pagesize),
84 	fsparam_string("size",		Opt_size),
85 	fsparam_uid   ("uid",		Opt_uid),
86 	{}
87 };
88 
89 /*
90  * Mask used when checking the page offset value passed in via system
91  * calls.  This value will be converted to a loff_t which is signed.
92  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93  * value.  The extra bit (- 1 in the shift value) is to take the sign
94  * bit into account.
95  */
96 #define PGOFF_LOFFT_MAX \
97 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
98 
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
100 {
101 	struct inode *inode = file_inode(file);
102 	loff_t len, vma_len;
103 	int ret;
104 	struct hstate *h = hstate_file(file);
105 	vm_flags_t vm_flags;
106 
107 	/*
108 	 * vma address alignment (but not the pgoff alignment) has
109 	 * already been checked by prepare_hugepage_range.  If you add
110 	 * any error returns here, do so after setting VM_HUGETLB, so
111 	 * is_vm_hugetlb_page tests below unmap_region go the right
112 	 * way when do_mmap unwinds (may be important on powerpc
113 	 * and ia64).
114 	 */
115 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
116 	vma->vm_ops = &hugetlb_vm_ops;
117 
118 	/*
119 	 * page based offset in vm_pgoff could be sufficiently large to
120 	 * overflow a loff_t when converted to byte offset.  This can
121 	 * only happen on architectures where sizeof(loff_t) ==
122 	 * sizeof(unsigned long).  So, only check in those instances.
123 	 */
124 	if (sizeof(unsigned long) == sizeof(loff_t)) {
125 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
126 			return -EINVAL;
127 	}
128 
129 	/* must be huge page aligned */
130 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
131 		return -EINVAL;
132 
133 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
134 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
135 	/* check for overflow */
136 	if (len < vma_len)
137 		return -EINVAL;
138 
139 	inode_lock(inode);
140 	file_accessed(file);
141 
142 	ret = -ENOMEM;
143 
144 	vm_flags = vma->vm_flags;
145 	/*
146 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
147 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
148 	 * flag S_PRIVATE is set.
149 	 */
150 	if (inode->i_flags & S_PRIVATE)
151 		vm_flags |= VM_NORESERVE;
152 
153 	if (hugetlb_reserve_pages(inode,
154 				vma->vm_pgoff >> huge_page_order(h),
155 				len >> huge_page_shift(h), vma,
156 				vm_flags) < 0)
157 		goto out;
158 
159 	ret = 0;
160 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
161 		i_size_write(inode, len);
162 out:
163 	inode_unlock(inode);
164 
165 	return ret;
166 }
167 
168 /*
169  * Called under mmap_write_lock(mm).
170  */
171 
172 unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
174 			    unsigned long len, unsigned long pgoff,
175 			    unsigned long flags)
176 {
177 	unsigned long addr0 = 0;
178 	struct hstate *h = hstate_file(file);
179 
180 	if (len & ~huge_page_mask(h))
181 		return -EINVAL;
182 	if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h)))
183 		return -EINVAL;
184 	if (addr)
185 		addr0 = ALIGN(addr, huge_page_size(h));
186 
187 	return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff,
188 					    flags, 0);
189 }
190 
191 /*
192  * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset.
193  * Returns the maximum number of bytes one can read without touching the 1st raw
194  * HWPOISON page.
195  *
196  * The implementation borrows the iteration logic from copy_page_to_iter*.
197  */
adjust_range_hwpoison(struct folio * folio,size_t offset,size_t bytes)198 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset,
199 		size_t bytes)
200 {
201 	struct page *page;
202 	size_t n = 0;
203 	size_t res = 0;
204 
205 	/* First page to start the loop. */
206 	page = folio_page(folio, offset / PAGE_SIZE);
207 	offset %= PAGE_SIZE;
208 	while (1) {
209 		if (is_raw_hwpoison_page_in_hugepage(page))
210 			break;
211 
212 		/* Safe to read n bytes without touching HWPOISON subpage. */
213 		n = min(bytes, (size_t)PAGE_SIZE - offset);
214 		res += n;
215 		bytes -= n;
216 		if (!bytes || !n)
217 			break;
218 		offset += n;
219 		if (offset == PAGE_SIZE) {
220 			page = nth_page(page, 1);
221 			offset = 0;
222 		}
223 	}
224 
225 	return res;
226 }
227 
228 /*
229  * Support for read() - Find the page attached to f_mapping and copy out the
230  * data. This provides functionality similar to filemap_read().
231  */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)232 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
233 {
234 	struct file *file = iocb->ki_filp;
235 	struct hstate *h = hstate_file(file);
236 	struct address_space *mapping = file->f_mapping;
237 	struct inode *inode = mapping->host;
238 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
239 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
240 	unsigned long end_index;
241 	loff_t isize;
242 	ssize_t retval = 0;
243 
244 	while (iov_iter_count(to)) {
245 		struct folio *folio;
246 		size_t nr, copied, want;
247 
248 		/* nr is the maximum number of bytes to copy from this page */
249 		nr = huge_page_size(h);
250 		isize = i_size_read(inode);
251 		if (!isize)
252 			break;
253 		end_index = (isize - 1) >> huge_page_shift(h);
254 		if (index > end_index)
255 			break;
256 		if (index == end_index) {
257 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
258 			if (nr <= offset)
259 				break;
260 		}
261 		nr = nr - offset;
262 
263 		/* Find the folio */
264 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
265 		if (IS_ERR(folio)) {
266 			/*
267 			 * We have a HOLE, zero out the user-buffer for the
268 			 * length of the hole or request.
269 			 */
270 			copied = iov_iter_zero(nr, to);
271 		} else {
272 			folio_unlock(folio);
273 
274 			if (!folio_test_hwpoison(folio))
275 				want = nr;
276 			else {
277 				/*
278 				 * Adjust how many bytes safe to read without
279 				 * touching the 1st raw HWPOISON page after
280 				 * offset.
281 				 */
282 				want = adjust_range_hwpoison(folio, offset, nr);
283 				if (want == 0) {
284 					folio_put(folio);
285 					retval = -EIO;
286 					break;
287 				}
288 			}
289 
290 			/*
291 			 * We have the folio, copy it to user space buffer.
292 			 */
293 			copied = copy_folio_to_iter(folio, offset, want, to);
294 			folio_put(folio);
295 		}
296 		offset += copied;
297 		retval += copied;
298 		if (copied != nr && iov_iter_count(to)) {
299 			if (!retval)
300 				retval = -EFAULT;
301 			break;
302 		}
303 		index += offset >> huge_page_shift(h);
304 		offset &= ~huge_page_mask(h);
305 	}
306 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
307 	return retval;
308 }
309 
hugetlbfs_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)310 static int hugetlbfs_write_begin(const struct kiocb *iocb,
311 			struct address_space *mapping,
312 			loff_t pos, unsigned len,
313 			struct folio **foliop, void **fsdata)
314 {
315 	return -EINVAL;
316 }
317 
hugetlbfs_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)318 static int hugetlbfs_write_end(const struct kiocb *iocb,
319 			       struct address_space *mapping,
320 			       loff_t pos, unsigned len, unsigned copied,
321 			       struct folio *folio, void *fsdata)
322 {
323 	BUG();
324 	return -EINVAL;
325 }
326 
hugetlb_delete_from_page_cache(struct folio * folio)327 static void hugetlb_delete_from_page_cache(struct folio *folio)
328 {
329 	folio_clear_dirty(folio);
330 	folio_clear_uptodate(folio);
331 	filemap_remove_folio(folio);
332 }
333 
334 /*
335  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
336  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
337  * mutex for the page in the mapping.  So, we can not race with page being
338  * faulted into the vma.
339  */
hugetlb_vma_maps_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)340 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma,
341 				unsigned long addr, unsigned long pfn)
342 {
343 	pte_t *ptep, pte;
344 
345 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
346 	if (!ptep)
347 		return false;
348 
349 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
350 	if (huge_pte_none(pte) || !pte_present(pte))
351 		return false;
352 
353 	if (pte_pfn(pte) == pfn)
354 		return true;
355 
356 	return false;
357 }
358 
359 /*
360  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
361  * No, because the interval tree returns us only those vmas
362  * which overlap the truncated area starting at pgoff,
363  * and no vma on a 32-bit arch can span beyond the 4GB.
364  */
vma_offset_start(struct vm_area_struct * vma,pgoff_t start)365 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
366 {
367 	unsigned long offset = 0;
368 
369 	if (vma->vm_pgoff < start)
370 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
371 
372 	return vma->vm_start + offset;
373 }
374 
vma_offset_end(struct vm_area_struct * vma,pgoff_t end)375 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
376 {
377 	unsigned long t_end;
378 
379 	if (!end)
380 		return vma->vm_end;
381 
382 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
383 	if (t_end > vma->vm_end)
384 		t_end = vma->vm_end;
385 	return t_end;
386 }
387 
388 /*
389  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
390  * this folio can be created while executing the routine.
391  */
hugetlb_unmap_file_folio(struct hstate * h,struct address_space * mapping,struct folio * folio,pgoff_t index)392 static void hugetlb_unmap_file_folio(struct hstate *h,
393 					struct address_space *mapping,
394 					struct folio *folio, pgoff_t index)
395 {
396 	struct rb_root_cached *root = &mapping->i_mmap;
397 	struct hugetlb_vma_lock *vma_lock;
398 	unsigned long pfn = folio_pfn(folio);
399 	struct vm_area_struct *vma;
400 	unsigned long v_start;
401 	unsigned long v_end;
402 	pgoff_t start, end;
403 
404 	start = index * pages_per_huge_page(h);
405 	end = (index + 1) * pages_per_huge_page(h);
406 
407 	i_mmap_lock_write(mapping);
408 retry:
409 	vma_lock = NULL;
410 	vma_interval_tree_foreach(vma, root, start, end - 1) {
411 		v_start = vma_offset_start(vma, start);
412 		v_end = vma_offset_end(vma, end);
413 
414 		if (!hugetlb_vma_maps_pfn(vma, v_start, pfn))
415 			continue;
416 
417 		if (!hugetlb_vma_trylock_write(vma)) {
418 			vma_lock = vma->vm_private_data;
419 			/*
420 			 * If we can not get vma lock, we need to drop
421 			 * immap_sema and take locks in order.  First,
422 			 * take a ref on the vma_lock structure so that
423 			 * we can be guaranteed it will not go away when
424 			 * dropping immap_sema.
425 			 */
426 			kref_get(&vma_lock->refs);
427 			break;
428 		}
429 
430 		unmap_hugepage_range(vma, v_start, v_end, NULL,
431 				     ZAP_FLAG_DROP_MARKER);
432 		hugetlb_vma_unlock_write(vma);
433 	}
434 
435 	i_mmap_unlock_write(mapping);
436 
437 	if (vma_lock) {
438 		/*
439 		 * Wait on vma_lock.  We know it is still valid as we have
440 		 * a reference.  We must 'open code' vma locking as we do
441 		 * not know if vma_lock is still attached to vma.
442 		 */
443 		down_write(&vma_lock->rw_sema);
444 		i_mmap_lock_write(mapping);
445 
446 		vma = vma_lock->vma;
447 		if (!vma) {
448 			/*
449 			 * If lock is no longer attached to vma, then just
450 			 * unlock, drop our reference and retry looking for
451 			 * other vmas.
452 			 */
453 			up_write(&vma_lock->rw_sema);
454 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
455 			goto retry;
456 		}
457 
458 		/*
459 		 * vma_lock is still attached to vma.  Check to see if vma
460 		 * still maps page and if so, unmap.
461 		 */
462 		v_start = vma_offset_start(vma, start);
463 		v_end = vma_offset_end(vma, end);
464 		if (hugetlb_vma_maps_pfn(vma, v_start, pfn))
465 			unmap_hugepage_range(vma, v_start, v_end, NULL,
466 					     ZAP_FLAG_DROP_MARKER);
467 
468 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
469 		hugetlb_vma_unlock_write(vma);
470 
471 		goto retry;
472 	}
473 }
474 
475 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end,zap_flags_t zap_flags)476 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
477 		      zap_flags_t zap_flags)
478 {
479 	struct vm_area_struct *vma;
480 
481 	/*
482 	 * end == 0 indicates that the entire range after start should be
483 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
484 	 * an inclusive "last".
485 	 */
486 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
487 		unsigned long v_start;
488 		unsigned long v_end;
489 
490 		if (!hugetlb_vma_trylock_write(vma))
491 			continue;
492 
493 		v_start = vma_offset_start(vma, start);
494 		v_end = vma_offset_end(vma, end);
495 
496 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
497 
498 		/*
499 		 * Note that vma lock only exists for shared/non-private
500 		 * vmas.  Therefore, lock is not held when calling
501 		 * unmap_hugepage_range for private vmas.
502 		 */
503 		hugetlb_vma_unlock_write(vma);
504 	}
505 }
506 
507 /*
508  * Called with hugetlb fault mutex held.
509  * Returns true if page was actually removed, false otherwise.
510  */
remove_inode_single_folio(struct hstate * h,struct inode * inode,struct address_space * mapping,struct folio * folio,pgoff_t index,bool truncate_op)511 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
512 					struct address_space *mapping,
513 					struct folio *folio, pgoff_t index,
514 					bool truncate_op)
515 {
516 	bool ret = false;
517 
518 	/*
519 	 * If folio is mapped, it was faulted in after being
520 	 * unmapped in caller.  Unmap (again) while holding
521 	 * the fault mutex.  The mutex will prevent faults
522 	 * until we finish removing the folio.
523 	 */
524 	if (unlikely(folio_mapped(folio)))
525 		hugetlb_unmap_file_folio(h, mapping, folio, index);
526 
527 	folio_lock(folio);
528 	/*
529 	 * We must remove the folio from page cache before removing
530 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
531 	 * rare out of memory conditions, removal of the region/reserve
532 	 * map could fail.  Correspondingly, the subpool and global
533 	 * reserve usage count can need to be adjusted.
534 	 */
535 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
536 	hugetlb_delete_from_page_cache(folio);
537 	ret = true;
538 	if (!truncate_op) {
539 		if (unlikely(hugetlb_unreserve_pages(inode, index,
540 							index + 1, 1)))
541 			hugetlb_fix_reserve_counts(inode);
542 	}
543 
544 	folio_unlock(folio);
545 	return ret;
546 }
547 
548 /*
549  * remove_inode_hugepages handles two distinct cases: truncation and hole
550  * punch.  There are subtle differences in operation for each case.
551  *
552  * truncation is indicated by end of range being LLONG_MAX
553  *	In this case, we first scan the range and release found pages.
554  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
555  *	maps and global counts.  Page faults can race with truncation.
556  *	During faults, hugetlb_no_page() checks i_size before page allocation,
557  *	and again after obtaining page table lock.  It will 'back out'
558  *	allocations in the truncated range.
559  * hole punch is indicated if end is not LLONG_MAX
560  *	In the hole punch case we scan the range and release found pages.
561  *	Only when releasing a page is the associated region/reserve map
562  *	deleted.  The region/reserve map for ranges without associated
563  *	pages are not modified.  Page faults can race with hole punch.
564  *	This is indicated if we find a mapped page.
565  * Note: If the passed end of range value is beyond the end of file, but
566  * not LLONG_MAX this routine still performs a hole punch operation.
567  */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)568 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
569 				   loff_t lend)
570 {
571 	struct hstate *h = hstate_inode(inode);
572 	struct address_space *mapping = &inode->i_data;
573 	const pgoff_t end = lend >> PAGE_SHIFT;
574 	struct folio_batch fbatch;
575 	pgoff_t next, index;
576 	int i, freed = 0;
577 	bool truncate_op = (lend == LLONG_MAX);
578 
579 	folio_batch_init(&fbatch);
580 	next = lstart >> PAGE_SHIFT;
581 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
582 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
583 			struct folio *folio = fbatch.folios[i];
584 			u32 hash = 0;
585 
586 			index = folio->index >> huge_page_order(h);
587 			hash = hugetlb_fault_mutex_hash(mapping, index);
588 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
589 
590 			/*
591 			 * Remove folio that was part of folio_batch.
592 			 */
593 			if (remove_inode_single_folio(h, inode, mapping, folio,
594 							index, truncate_op))
595 				freed++;
596 
597 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
598 		}
599 		folio_batch_release(&fbatch);
600 		cond_resched();
601 	}
602 
603 	if (truncate_op)
604 		(void)hugetlb_unreserve_pages(inode,
605 				lstart >> huge_page_shift(h),
606 				LONG_MAX, freed);
607 }
608 
hugetlbfs_evict_inode(struct inode * inode)609 static void hugetlbfs_evict_inode(struct inode *inode)
610 {
611 	struct resv_map *resv_map;
612 
613 	trace_hugetlbfs_evict_inode(inode);
614 	remove_inode_hugepages(inode, 0, LLONG_MAX);
615 
616 	/*
617 	 * Get the resv_map from the address space embedded in the inode.
618 	 * This is the address space which points to any resv_map allocated
619 	 * at inode creation time.  If this is a device special inode,
620 	 * i_mapping may not point to the original address space.
621 	 */
622 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
623 	/* Only regular and link inodes have associated reserve maps */
624 	if (resv_map)
625 		resv_map_release(&resv_map->refs);
626 	clear_inode(inode);
627 }
628 
hugetlb_vmtruncate(struct inode * inode,loff_t offset)629 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
630 {
631 	pgoff_t pgoff;
632 	struct address_space *mapping = inode->i_mapping;
633 	struct hstate *h = hstate_inode(inode);
634 
635 	BUG_ON(offset & ~huge_page_mask(h));
636 	pgoff = offset >> PAGE_SHIFT;
637 
638 	i_size_write(inode, offset);
639 	i_mmap_lock_write(mapping);
640 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
641 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
642 				      ZAP_FLAG_DROP_MARKER);
643 	i_mmap_unlock_write(mapping);
644 	remove_inode_hugepages(inode, offset, LLONG_MAX);
645 }
646 
hugetlbfs_zero_partial_page(struct hstate * h,struct address_space * mapping,loff_t start,loff_t end)647 static void hugetlbfs_zero_partial_page(struct hstate *h,
648 					struct address_space *mapping,
649 					loff_t start,
650 					loff_t end)
651 {
652 	pgoff_t idx = start >> huge_page_shift(h);
653 	struct folio *folio;
654 
655 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
656 	if (IS_ERR(folio))
657 		return;
658 
659 	start = start & ~huge_page_mask(h);
660 	end = end & ~huge_page_mask(h);
661 	if (!end)
662 		end = huge_page_size(h);
663 
664 	folio_zero_segment(folio, (size_t)start, (size_t)end);
665 
666 	folio_unlock(folio);
667 	folio_put(folio);
668 }
669 
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)670 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
671 {
672 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
673 	struct address_space *mapping = inode->i_mapping;
674 	struct hstate *h = hstate_inode(inode);
675 	loff_t hpage_size = huge_page_size(h);
676 	loff_t hole_start, hole_end;
677 
678 	/*
679 	 * hole_start and hole_end indicate the full pages within the hole.
680 	 */
681 	hole_start = round_up(offset, hpage_size);
682 	hole_end = round_down(offset + len, hpage_size);
683 
684 	inode_lock(inode);
685 
686 	/* protected by i_rwsem */
687 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
688 		inode_unlock(inode);
689 		return -EPERM;
690 	}
691 
692 	i_mmap_lock_write(mapping);
693 
694 	/* If range starts before first full page, zero partial page. */
695 	if (offset < hole_start)
696 		hugetlbfs_zero_partial_page(h, mapping,
697 				offset, min(offset + len, hole_start));
698 
699 	/* Unmap users of full pages in the hole. */
700 	if (hole_end > hole_start) {
701 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
702 			hugetlb_vmdelete_list(&mapping->i_mmap,
703 					      hole_start >> PAGE_SHIFT,
704 					      hole_end >> PAGE_SHIFT, 0);
705 	}
706 
707 	/* If range extends beyond last full page, zero partial page. */
708 	if ((offset + len) > hole_end && (offset + len) > hole_start)
709 		hugetlbfs_zero_partial_page(h, mapping,
710 				hole_end, offset + len);
711 
712 	i_mmap_unlock_write(mapping);
713 
714 	/* Remove full pages from the file. */
715 	if (hole_end > hole_start)
716 		remove_inode_hugepages(inode, hole_start, hole_end);
717 
718 	inode_unlock(inode);
719 
720 	return 0;
721 }
722 
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)723 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
724 				loff_t len)
725 {
726 	struct inode *inode = file_inode(file);
727 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
728 	struct address_space *mapping = inode->i_mapping;
729 	struct hstate *h = hstate_inode(inode);
730 	struct vm_area_struct pseudo_vma;
731 	struct mm_struct *mm = current->mm;
732 	loff_t hpage_size = huge_page_size(h);
733 	unsigned long hpage_shift = huge_page_shift(h);
734 	pgoff_t start, index, end;
735 	int error;
736 	u32 hash;
737 
738 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
739 		return -EOPNOTSUPP;
740 
741 	if (mode & FALLOC_FL_PUNCH_HOLE) {
742 		error = hugetlbfs_punch_hole(inode, offset, len);
743 		goto out_nolock;
744 	}
745 
746 	/*
747 	 * Default preallocate case.
748 	 * For this range, start is rounded down and end is rounded up
749 	 * as well as being converted to page offsets.
750 	 */
751 	start = offset >> hpage_shift;
752 	end = (offset + len + hpage_size - 1) >> hpage_shift;
753 
754 	inode_lock(inode);
755 
756 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
757 	error = inode_newsize_ok(inode, offset + len);
758 	if (error)
759 		goto out;
760 
761 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
762 		error = -EPERM;
763 		goto out;
764 	}
765 
766 	/*
767 	 * Initialize a pseudo vma as this is required by the huge page
768 	 * allocation routines.
769 	 */
770 	vma_init(&pseudo_vma, mm);
771 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
772 	pseudo_vma.vm_file = file;
773 
774 	for (index = start; index < end; index++) {
775 		/*
776 		 * This is supposed to be the vaddr where the page is being
777 		 * faulted in, but we have no vaddr here.
778 		 */
779 		struct folio *folio;
780 		unsigned long addr;
781 
782 		cond_resched();
783 
784 		/*
785 		 * fallocate(2) manpage permits EINTR; we may have been
786 		 * interrupted because we are using up too much memory.
787 		 */
788 		if (signal_pending(current)) {
789 			error = -EINTR;
790 			break;
791 		}
792 
793 		/* addr is the offset within the file (zero based) */
794 		addr = index * hpage_size;
795 
796 		/* mutex taken here, fault path and hole punch */
797 		hash = hugetlb_fault_mutex_hash(mapping, index);
798 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
799 
800 		/* See if already present in mapping to avoid alloc/free */
801 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
802 		if (!IS_ERR(folio)) {
803 			folio_put(folio);
804 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
805 			continue;
806 		}
807 
808 		/*
809 		 * Allocate folio without setting the avoid_reserve argument.
810 		 * There certainly are no reserves associated with the
811 		 * pseudo_vma.  However, there could be shared mappings with
812 		 * reserves for the file at the inode level.  If we fallocate
813 		 * folios in these areas, we need to consume the reserves
814 		 * to keep reservation accounting consistent.
815 		 */
816 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, false);
817 		if (IS_ERR(folio)) {
818 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
819 			error = PTR_ERR(folio);
820 			goto out;
821 		}
822 		folio_zero_user(folio, addr);
823 		__folio_mark_uptodate(folio);
824 		error = hugetlb_add_to_page_cache(folio, mapping, index);
825 		if (unlikely(error)) {
826 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
827 			folio_put(folio);
828 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
829 			goto out;
830 		}
831 
832 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
833 
834 		folio_set_hugetlb_migratable(folio);
835 		/*
836 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
837 		 * folio_put() due to reference from alloc_hugetlb_folio()
838 		 */
839 		folio_unlock(folio);
840 		folio_put(folio);
841 	}
842 
843 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
844 		i_size_write(inode, offset + len);
845 	inode_set_ctime_current(inode);
846 out:
847 	inode_unlock(inode);
848 
849 out_nolock:
850 	trace_hugetlbfs_fallocate(inode, mode, offset, len, error);
851 	return error;
852 }
853 
hugetlbfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)854 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
855 			     struct dentry *dentry, struct iattr *attr)
856 {
857 	struct inode *inode = d_inode(dentry);
858 	struct hstate *h = hstate_inode(inode);
859 	int error;
860 	unsigned int ia_valid = attr->ia_valid;
861 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
862 
863 	error = setattr_prepare(idmap, dentry, attr);
864 	if (error)
865 		return error;
866 
867 	trace_hugetlbfs_setattr(inode, dentry, attr);
868 
869 	if (ia_valid & ATTR_SIZE) {
870 		loff_t oldsize = inode->i_size;
871 		loff_t newsize = attr->ia_size;
872 
873 		if (newsize & ~huge_page_mask(h))
874 			return -EINVAL;
875 		/* protected by i_rwsem */
876 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
877 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
878 			return -EPERM;
879 		hugetlb_vmtruncate(inode, newsize);
880 	}
881 
882 	setattr_copy(idmap, inode, attr);
883 	mark_inode_dirty(inode);
884 	return 0;
885 }
886 
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)887 static struct inode *hugetlbfs_get_root(struct super_block *sb,
888 					struct hugetlbfs_fs_context *ctx)
889 {
890 	struct inode *inode;
891 
892 	inode = new_inode(sb);
893 	if (inode) {
894 		inode->i_ino = get_next_ino();
895 		inode->i_mode = S_IFDIR | ctx->mode;
896 		inode->i_uid = ctx->uid;
897 		inode->i_gid = ctx->gid;
898 		simple_inode_init_ts(inode);
899 		inode->i_op = &hugetlbfs_dir_inode_operations;
900 		inode->i_fop = &simple_dir_operations;
901 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
902 		inc_nlink(inode);
903 		lockdep_annotate_inode_mutex_key(inode);
904 	}
905 	return inode;
906 }
907 
908 /*
909  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
910  * be taken from reclaim -- unlike regular filesystems. This needs an
911  * annotation because huge_pmd_share() does an allocation under hugetlb's
912  * i_mmap_rwsem.
913  */
914 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
915 
hugetlbfs_get_inode(struct super_block * sb,struct mnt_idmap * idmap,struct inode * dir,umode_t mode,dev_t dev)916 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
917 					struct mnt_idmap *idmap,
918 					struct inode *dir,
919 					umode_t mode, dev_t dev)
920 {
921 	struct inode *inode;
922 	struct resv_map *resv_map = NULL;
923 
924 	/*
925 	 * Reserve maps are only needed for inodes that can have associated
926 	 * page allocations.
927 	 */
928 	if (S_ISREG(mode) || S_ISLNK(mode)) {
929 		resv_map = resv_map_alloc();
930 		if (!resv_map)
931 			return NULL;
932 	}
933 
934 	inode = new_inode(sb);
935 	if (inode) {
936 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
937 
938 		inode->i_ino = get_next_ino();
939 		inode_init_owner(idmap, inode, dir, mode);
940 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
941 				&hugetlbfs_i_mmap_rwsem_key);
942 		inode->i_mapping->a_ops = &hugetlbfs_aops;
943 		simple_inode_init_ts(inode);
944 		inode->i_mapping->i_private_data = resv_map;
945 		info->seals = F_SEAL_SEAL;
946 		switch (mode & S_IFMT) {
947 		default:
948 			init_special_inode(inode, mode, dev);
949 			break;
950 		case S_IFREG:
951 			inode->i_op = &hugetlbfs_inode_operations;
952 			inode->i_fop = &hugetlbfs_file_operations;
953 			break;
954 		case S_IFDIR:
955 			inode->i_op = &hugetlbfs_dir_inode_operations;
956 			inode->i_fop = &simple_dir_operations;
957 
958 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
959 			inc_nlink(inode);
960 			break;
961 		case S_IFLNK:
962 			inode->i_op = &page_symlink_inode_operations;
963 			inode_nohighmem(inode);
964 			break;
965 		}
966 		lockdep_annotate_inode_mutex_key(inode);
967 		trace_hugetlbfs_alloc_inode(inode, dir, mode);
968 	} else {
969 		if (resv_map)
970 			kref_put(&resv_map->refs, resv_map_release);
971 	}
972 
973 	return inode;
974 }
975 
976 /*
977  * File creation. Allocate an inode, and we're done..
978  */
hugetlbfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)979 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
980 			   struct dentry *dentry, umode_t mode, dev_t dev)
981 {
982 	struct inode *inode;
983 
984 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
985 	if (!inode)
986 		return -ENOSPC;
987 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
988 	d_instantiate(dentry, inode);
989 	dget(dentry);/* Extra count - pin the dentry in core */
990 	return 0;
991 }
992 
hugetlbfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)993 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
994 				      struct dentry *dentry, umode_t mode)
995 {
996 	int retval = hugetlbfs_mknod(idmap, dir, dentry,
997 				     mode | S_IFDIR, 0);
998 	if (!retval)
999 		inc_nlink(dir);
1000 	return ERR_PTR(retval);
1001 }
1002 
hugetlbfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1003 static int hugetlbfs_create(struct mnt_idmap *idmap,
1004 			    struct inode *dir, struct dentry *dentry,
1005 			    umode_t mode, bool excl)
1006 {
1007 	return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1008 }
1009 
hugetlbfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)1010 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1011 			     struct inode *dir, struct file *file,
1012 			     umode_t mode)
1013 {
1014 	struct inode *inode;
1015 
1016 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1017 	if (!inode)
1018 		return -ENOSPC;
1019 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1020 	d_tmpfile(file, inode);
1021 	return finish_open_simple(file, 0);
1022 }
1023 
hugetlbfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)1024 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1025 			     struct inode *dir, struct dentry *dentry,
1026 			     const char *symname)
1027 {
1028 	const umode_t mode = S_IFLNK|S_IRWXUGO;
1029 	struct inode *inode;
1030 	int error = -ENOSPC;
1031 
1032 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1033 	if (inode) {
1034 		int l = strlen(symname)+1;
1035 		error = page_symlink(inode, symname, l);
1036 		if (!error) {
1037 			d_instantiate(dentry, inode);
1038 			dget(dentry);
1039 		} else
1040 			iput(inode);
1041 	}
1042 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1043 
1044 	return error;
1045 }
1046 
1047 #ifdef CONFIG_MIGRATION
hugetlbfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1048 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1049 				struct folio *dst, struct folio *src,
1050 				enum migrate_mode mode)
1051 {
1052 	int rc;
1053 
1054 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1055 	if (rc != MIGRATEPAGE_SUCCESS)
1056 		return rc;
1057 
1058 	if (hugetlb_folio_subpool(src)) {
1059 		hugetlb_set_folio_subpool(dst,
1060 					hugetlb_folio_subpool(src));
1061 		hugetlb_set_folio_subpool(src, NULL);
1062 	}
1063 
1064 	folio_migrate_flags(dst, src);
1065 
1066 	return MIGRATEPAGE_SUCCESS;
1067 }
1068 #else
1069 #define hugetlbfs_migrate_folio NULL
1070 #endif
1071 
hugetlbfs_error_remove_folio(struct address_space * mapping,struct folio * folio)1072 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1073 				struct folio *folio)
1074 {
1075 	return 0;
1076 }
1077 
1078 /*
1079  * Display the mount options in /proc/mounts.
1080  */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1081 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1082 {
1083 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1084 	struct hugepage_subpool *spool = sbinfo->spool;
1085 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1086 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1087 	char mod;
1088 
1089 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1090 		seq_printf(m, ",uid=%u",
1091 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1092 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1093 		seq_printf(m, ",gid=%u",
1094 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1095 	if (sbinfo->mode != 0755)
1096 		seq_printf(m, ",mode=%o", sbinfo->mode);
1097 	if (sbinfo->max_inodes != -1)
1098 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1099 
1100 	hpage_size /= 1024;
1101 	mod = 'K';
1102 	if (hpage_size >= 1024) {
1103 		hpage_size /= 1024;
1104 		mod = 'M';
1105 	}
1106 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1107 	if (spool) {
1108 		if (spool->max_hpages != -1)
1109 			seq_printf(m, ",size=%llu",
1110 				   (unsigned long long)spool->max_hpages << hpage_shift);
1111 		if (spool->min_hpages != -1)
1112 			seq_printf(m, ",min_size=%llu",
1113 				   (unsigned long long)spool->min_hpages << hpage_shift);
1114 	}
1115 	return 0;
1116 }
1117 
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1118 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1119 {
1120 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1121 	struct hstate *h = hstate_inode(d_inode(dentry));
1122 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1123 
1124 	buf->f_fsid = u64_to_fsid(id);
1125 	buf->f_type = HUGETLBFS_MAGIC;
1126 	buf->f_bsize = huge_page_size(h);
1127 	if (sbinfo) {
1128 		spin_lock(&sbinfo->stat_lock);
1129 		/* If no limits set, just report 0 or -1 for max/free/used
1130 		 * blocks, like simple_statfs() */
1131 		if (sbinfo->spool) {
1132 			long free_pages;
1133 
1134 			spin_lock_irq(&sbinfo->spool->lock);
1135 			buf->f_blocks = sbinfo->spool->max_hpages;
1136 			free_pages = sbinfo->spool->max_hpages
1137 				- sbinfo->spool->used_hpages;
1138 			buf->f_bavail = buf->f_bfree = free_pages;
1139 			spin_unlock_irq(&sbinfo->spool->lock);
1140 			buf->f_files = sbinfo->max_inodes;
1141 			buf->f_ffree = sbinfo->free_inodes;
1142 		}
1143 		spin_unlock(&sbinfo->stat_lock);
1144 	}
1145 	buf->f_namelen = NAME_MAX;
1146 	return 0;
1147 }
1148 
hugetlbfs_put_super(struct super_block * sb)1149 static void hugetlbfs_put_super(struct super_block *sb)
1150 {
1151 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1152 
1153 	if (sbi) {
1154 		sb->s_fs_info = NULL;
1155 
1156 		if (sbi->spool)
1157 			hugepage_put_subpool(sbi->spool);
1158 
1159 		kfree(sbi);
1160 	}
1161 }
1162 
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1163 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1164 {
1165 	if (sbinfo->free_inodes >= 0) {
1166 		spin_lock(&sbinfo->stat_lock);
1167 		if (unlikely(!sbinfo->free_inodes)) {
1168 			spin_unlock(&sbinfo->stat_lock);
1169 			return 0;
1170 		}
1171 		sbinfo->free_inodes--;
1172 		spin_unlock(&sbinfo->stat_lock);
1173 	}
1174 
1175 	return 1;
1176 }
1177 
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1178 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1179 {
1180 	if (sbinfo->free_inodes >= 0) {
1181 		spin_lock(&sbinfo->stat_lock);
1182 		sbinfo->free_inodes++;
1183 		spin_unlock(&sbinfo->stat_lock);
1184 	}
1185 }
1186 
1187 
1188 static struct kmem_cache *hugetlbfs_inode_cachep;
1189 
hugetlbfs_alloc_inode(struct super_block * sb)1190 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1191 {
1192 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1193 	struct hugetlbfs_inode_info *p;
1194 
1195 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1196 		return NULL;
1197 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1198 	if (unlikely(!p)) {
1199 		hugetlbfs_inc_free_inodes(sbinfo);
1200 		return NULL;
1201 	}
1202 	return &p->vfs_inode;
1203 }
1204 
hugetlbfs_free_inode(struct inode * inode)1205 static void hugetlbfs_free_inode(struct inode *inode)
1206 {
1207 	trace_hugetlbfs_free_inode(inode);
1208 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1209 }
1210 
hugetlbfs_destroy_inode(struct inode * inode)1211 static void hugetlbfs_destroy_inode(struct inode *inode)
1212 {
1213 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1214 }
1215 
1216 static const struct address_space_operations hugetlbfs_aops = {
1217 	.write_begin	= hugetlbfs_write_begin,
1218 	.write_end	= hugetlbfs_write_end,
1219 	.dirty_folio	= noop_dirty_folio,
1220 	.migrate_folio  = hugetlbfs_migrate_folio,
1221 	.error_remove_folio	= hugetlbfs_error_remove_folio,
1222 };
1223 
1224 
init_once(void * foo)1225 static void init_once(void *foo)
1226 {
1227 	struct hugetlbfs_inode_info *ei = foo;
1228 
1229 	inode_init_once(&ei->vfs_inode);
1230 }
1231 
1232 static const struct file_operations hugetlbfs_file_operations = {
1233 	.read_iter		= hugetlbfs_read_iter,
1234 	.mmap			= hugetlbfs_file_mmap,
1235 	.fsync			= noop_fsync,
1236 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1237 	.llseek			= default_llseek,
1238 	.fallocate		= hugetlbfs_fallocate,
1239 	.fop_flags		= FOP_HUGE_PAGES,
1240 };
1241 
1242 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1243 	.create		= hugetlbfs_create,
1244 	.lookup		= simple_lookup,
1245 	.link		= simple_link,
1246 	.unlink		= simple_unlink,
1247 	.symlink	= hugetlbfs_symlink,
1248 	.mkdir		= hugetlbfs_mkdir,
1249 	.rmdir		= simple_rmdir,
1250 	.mknod		= hugetlbfs_mknod,
1251 	.rename		= simple_rename,
1252 	.setattr	= hugetlbfs_setattr,
1253 	.tmpfile	= hugetlbfs_tmpfile,
1254 };
1255 
1256 static const struct inode_operations hugetlbfs_inode_operations = {
1257 	.setattr	= hugetlbfs_setattr,
1258 };
1259 
1260 static const struct super_operations hugetlbfs_ops = {
1261 	.alloc_inode    = hugetlbfs_alloc_inode,
1262 	.free_inode     = hugetlbfs_free_inode,
1263 	.destroy_inode  = hugetlbfs_destroy_inode,
1264 	.evict_inode	= hugetlbfs_evict_inode,
1265 	.statfs		= hugetlbfs_statfs,
1266 	.put_super	= hugetlbfs_put_super,
1267 	.show_options	= hugetlbfs_show_options,
1268 };
1269 
1270 /*
1271  * Convert size option passed from command line to number of huge pages
1272  * in the pool specified by hstate.  Size option could be in bytes
1273  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1274  */
1275 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1276 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1277 			 enum hugetlbfs_size_type val_type)
1278 {
1279 	if (val_type == NO_SIZE)
1280 		return -1;
1281 
1282 	if (val_type == SIZE_PERCENT) {
1283 		size_opt <<= huge_page_shift(h);
1284 		size_opt *= h->max_huge_pages;
1285 		do_div(size_opt, 100);
1286 	}
1287 
1288 	size_opt >>= huge_page_shift(h);
1289 	return size_opt;
1290 }
1291 
1292 /*
1293  * Parse one mount parameter.
1294  */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1295 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1296 {
1297 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1298 	struct fs_parse_result result;
1299 	struct hstate *h;
1300 	char *rest;
1301 	unsigned long ps;
1302 	int opt;
1303 
1304 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1305 	if (opt < 0)
1306 		return opt;
1307 
1308 	switch (opt) {
1309 	case Opt_uid:
1310 		ctx->uid = result.uid;
1311 		return 0;
1312 
1313 	case Opt_gid:
1314 		ctx->gid = result.gid;
1315 		return 0;
1316 
1317 	case Opt_mode:
1318 		ctx->mode = result.uint_32 & 01777U;
1319 		return 0;
1320 
1321 	case Opt_size:
1322 		/* memparse() will accept a K/M/G without a digit */
1323 		if (!param->string || !isdigit(param->string[0]))
1324 			goto bad_val;
1325 		ctx->max_size_opt = memparse(param->string, &rest);
1326 		ctx->max_val_type = SIZE_STD;
1327 		if (*rest == '%')
1328 			ctx->max_val_type = SIZE_PERCENT;
1329 		return 0;
1330 
1331 	case Opt_nr_inodes:
1332 		/* memparse() will accept a K/M/G without a digit */
1333 		if (!param->string || !isdigit(param->string[0]))
1334 			goto bad_val;
1335 		ctx->nr_inodes = memparse(param->string, &rest);
1336 		return 0;
1337 
1338 	case Opt_pagesize:
1339 		ps = memparse(param->string, &rest);
1340 		h = size_to_hstate(ps);
1341 		if (!h) {
1342 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1343 			return -EINVAL;
1344 		}
1345 		ctx->hstate = h;
1346 		return 0;
1347 
1348 	case Opt_min_size:
1349 		/* memparse() will accept a K/M/G without a digit */
1350 		if (!param->string || !isdigit(param->string[0]))
1351 			goto bad_val;
1352 		ctx->min_size_opt = memparse(param->string, &rest);
1353 		ctx->min_val_type = SIZE_STD;
1354 		if (*rest == '%')
1355 			ctx->min_val_type = SIZE_PERCENT;
1356 		return 0;
1357 
1358 	default:
1359 		return -EINVAL;
1360 	}
1361 
1362 bad_val:
1363 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1364 		      param->string, param->key);
1365 }
1366 
1367 /*
1368  * Validate the parsed options.
1369  */
hugetlbfs_validate(struct fs_context * fc)1370 static int hugetlbfs_validate(struct fs_context *fc)
1371 {
1372 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1373 
1374 	/*
1375 	 * Use huge page pool size (in hstate) to convert the size
1376 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1377 	 */
1378 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1379 						   ctx->max_size_opt,
1380 						   ctx->max_val_type);
1381 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1382 						   ctx->min_size_opt,
1383 						   ctx->min_val_type);
1384 
1385 	/*
1386 	 * If max_size was specified, then min_size must be smaller
1387 	 */
1388 	if (ctx->max_val_type > NO_SIZE &&
1389 	    ctx->min_hpages > ctx->max_hpages) {
1390 		pr_err("Minimum size can not be greater than maximum size\n");
1391 		return -EINVAL;
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1398 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1399 {
1400 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1401 	struct hugetlbfs_sb_info *sbinfo;
1402 
1403 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1404 	if (!sbinfo)
1405 		return -ENOMEM;
1406 	sb->s_fs_info = sbinfo;
1407 	spin_lock_init(&sbinfo->stat_lock);
1408 	sbinfo->hstate		= ctx->hstate;
1409 	sbinfo->max_inodes	= ctx->nr_inodes;
1410 	sbinfo->free_inodes	= ctx->nr_inodes;
1411 	sbinfo->spool		= NULL;
1412 	sbinfo->uid		= ctx->uid;
1413 	sbinfo->gid		= ctx->gid;
1414 	sbinfo->mode		= ctx->mode;
1415 
1416 	/*
1417 	 * Allocate and initialize subpool if maximum or minimum size is
1418 	 * specified.  Any needed reservations (for minimum size) are taken
1419 	 * when the subpool is created.
1420 	 */
1421 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1422 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1423 						     ctx->max_hpages,
1424 						     ctx->min_hpages);
1425 		if (!sbinfo->spool)
1426 			goto out_free;
1427 	}
1428 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1429 	sb->s_blocksize = huge_page_size(ctx->hstate);
1430 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1431 	sb->s_magic = HUGETLBFS_MAGIC;
1432 	sb->s_op = &hugetlbfs_ops;
1433 	sb->s_d_flags = DCACHE_DONTCACHE;
1434 	sb->s_time_gran = 1;
1435 
1436 	/*
1437 	 * Due to the special and limited functionality of hugetlbfs, it does
1438 	 * not work well as a stacking filesystem.
1439 	 */
1440 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1441 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1442 	if (!sb->s_root)
1443 		goto out_free;
1444 	return 0;
1445 out_free:
1446 	kfree(sbinfo->spool);
1447 	kfree(sbinfo);
1448 	return -ENOMEM;
1449 }
1450 
hugetlbfs_get_tree(struct fs_context * fc)1451 static int hugetlbfs_get_tree(struct fs_context *fc)
1452 {
1453 	int err = hugetlbfs_validate(fc);
1454 	if (err)
1455 		return err;
1456 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1457 }
1458 
hugetlbfs_fs_context_free(struct fs_context * fc)1459 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1460 {
1461 	kfree(fc->fs_private);
1462 }
1463 
1464 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1465 	.free		= hugetlbfs_fs_context_free,
1466 	.parse_param	= hugetlbfs_parse_param,
1467 	.get_tree	= hugetlbfs_get_tree,
1468 };
1469 
hugetlbfs_init_fs_context(struct fs_context * fc)1470 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1471 {
1472 	struct hugetlbfs_fs_context *ctx;
1473 
1474 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1475 	if (!ctx)
1476 		return -ENOMEM;
1477 
1478 	ctx->max_hpages	= -1; /* No limit on size by default */
1479 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1480 	ctx->uid	= current_fsuid();
1481 	ctx->gid	= current_fsgid();
1482 	ctx->mode	= 0755;
1483 	ctx->hstate	= &default_hstate;
1484 	ctx->min_hpages	= -1; /* No default minimum size */
1485 	ctx->max_val_type = NO_SIZE;
1486 	ctx->min_val_type = NO_SIZE;
1487 	fc->fs_private = ctx;
1488 	fc->ops	= &hugetlbfs_fs_context_ops;
1489 	return 0;
1490 }
1491 
1492 static struct file_system_type hugetlbfs_fs_type = {
1493 	.name			= "hugetlbfs",
1494 	.init_fs_context	= hugetlbfs_init_fs_context,
1495 	.parameters		= hugetlb_fs_parameters,
1496 	.kill_sb		= kill_litter_super,
1497 	.fs_flags               = FS_ALLOW_IDMAP,
1498 };
1499 
1500 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1501 
can_do_hugetlb_shm(void)1502 static int can_do_hugetlb_shm(void)
1503 {
1504 	kgid_t shm_group;
1505 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1506 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1507 }
1508 
get_hstate_idx(int page_size_log)1509 static int get_hstate_idx(int page_size_log)
1510 {
1511 	struct hstate *h = hstate_sizelog(page_size_log);
1512 
1513 	if (!h)
1514 		return -1;
1515 	return hstate_index(h);
1516 }
1517 
1518 /*
1519  * Note that size should be aligned to proper hugepage size in caller side,
1520  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1521  */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)1522 struct file *hugetlb_file_setup(const char *name, size_t size,
1523 				vm_flags_t acctflag, int creat_flags,
1524 				int page_size_log)
1525 {
1526 	struct inode *inode;
1527 	struct vfsmount *mnt;
1528 	int hstate_idx;
1529 	struct file *file;
1530 
1531 	hstate_idx = get_hstate_idx(page_size_log);
1532 	if (hstate_idx < 0)
1533 		return ERR_PTR(-ENODEV);
1534 
1535 	mnt = hugetlbfs_vfsmount[hstate_idx];
1536 	if (!mnt)
1537 		return ERR_PTR(-ENOENT);
1538 
1539 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1540 		struct ucounts *ucounts = current_ucounts();
1541 
1542 		if (user_shm_lock(size, ucounts)) {
1543 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1544 				current->comm, current->pid);
1545 			user_shm_unlock(size, ucounts);
1546 		}
1547 		return ERR_PTR(-EPERM);
1548 	}
1549 
1550 	file = ERR_PTR(-ENOSPC);
1551 	/* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */
1552 	inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1553 				    S_IFREG | S_IRWXUGO, 0);
1554 	if (!inode)
1555 		goto out;
1556 	if (creat_flags == HUGETLB_SHMFS_INODE)
1557 		inode->i_flags |= S_PRIVATE;
1558 
1559 	inode->i_size = size;
1560 	clear_nlink(inode);
1561 
1562 	if (hugetlb_reserve_pages(inode, 0,
1563 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1564 			acctflag) < 0)
1565 		file = ERR_PTR(-ENOMEM);
1566 	else
1567 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1568 					&hugetlbfs_file_operations);
1569 	if (!IS_ERR(file))
1570 		return file;
1571 
1572 	iput(inode);
1573 out:
1574 	return file;
1575 }
1576 
mount_one_hugetlbfs(struct hstate * h)1577 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1578 {
1579 	struct fs_context *fc;
1580 	struct vfsmount *mnt;
1581 
1582 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1583 	if (IS_ERR(fc)) {
1584 		mnt = ERR_CAST(fc);
1585 	} else {
1586 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1587 		ctx->hstate = h;
1588 		mnt = fc_mount_longterm(fc);
1589 		put_fs_context(fc);
1590 	}
1591 	if (IS_ERR(mnt))
1592 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1593 		       huge_page_size(h) / SZ_1K);
1594 	return mnt;
1595 }
1596 
init_hugetlbfs_fs(void)1597 static int __init init_hugetlbfs_fs(void)
1598 {
1599 	struct vfsmount *mnt;
1600 	struct hstate *h;
1601 	int error;
1602 	int i;
1603 
1604 	if (!hugepages_supported()) {
1605 		pr_info("disabling because there are no supported hugepage sizes\n");
1606 		return -ENOTSUPP;
1607 	}
1608 
1609 	error = -ENOMEM;
1610 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1611 					sizeof(struct hugetlbfs_inode_info),
1612 					0, SLAB_ACCOUNT, init_once);
1613 	if (hugetlbfs_inode_cachep == NULL)
1614 		goto out;
1615 
1616 	error = register_filesystem(&hugetlbfs_fs_type);
1617 	if (error)
1618 		goto out_free;
1619 
1620 	/* default hstate mount is required */
1621 	mnt = mount_one_hugetlbfs(&default_hstate);
1622 	if (IS_ERR(mnt)) {
1623 		error = PTR_ERR(mnt);
1624 		goto out_unreg;
1625 	}
1626 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1627 
1628 	/* other hstates are optional */
1629 	i = 0;
1630 	for_each_hstate(h) {
1631 		if (i == default_hstate_idx) {
1632 			i++;
1633 			continue;
1634 		}
1635 
1636 		mnt = mount_one_hugetlbfs(h);
1637 		if (IS_ERR(mnt))
1638 			hugetlbfs_vfsmount[i] = NULL;
1639 		else
1640 			hugetlbfs_vfsmount[i] = mnt;
1641 		i++;
1642 	}
1643 
1644 	return 0;
1645 
1646  out_unreg:
1647 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1648  out_free:
1649 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1650  out:
1651 	return error;
1652 }
1653 fs_initcall(init_hugetlbfs_fs)
1654