1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/hugetlbfs.h>
44
45 static const struct address_space_operations hugetlbfs_aops;
46 static const struct file_operations hugetlbfs_file_operations;
47 static const struct inode_operations hugetlbfs_dir_inode_operations;
48 static const struct inode_operations hugetlbfs_inode_operations;
49
50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
51
52 struct hugetlbfs_fs_context {
53 struct hstate *hstate;
54 unsigned long long max_size_opt;
55 unsigned long long min_size_opt;
56 long max_hpages;
57 long nr_inodes;
58 long min_hpages;
59 enum hugetlbfs_size_type max_val_type;
60 enum hugetlbfs_size_type min_val_type;
61 kuid_t uid;
62 kgid_t gid;
63 umode_t mode;
64 };
65
66 int sysctl_hugetlb_shm_group;
67
68 enum hugetlb_param {
69 Opt_gid,
70 Opt_min_size,
71 Opt_mode,
72 Opt_nr_inodes,
73 Opt_pagesize,
74 Opt_size,
75 Opt_uid,
76 };
77
78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
79 fsparam_gid ("gid", Opt_gid),
80 fsparam_string("min_size", Opt_min_size),
81 fsparam_u32oct("mode", Opt_mode),
82 fsparam_string("nr_inodes", Opt_nr_inodes),
83 fsparam_string("pagesize", Opt_pagesize),
84 fsparam_string("size", Opt_size),
85 fsparam_uid ("uid", Opt_uid),
86 {}
87 };
88
89 /*
90 * Mask used when checking the page offset value passed in via system
91 * calls. This value will be converted to a loff_t which is signed.
92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93 * value. The extra bit (- 1 in the shift value) is to take the sign
94 * bit into account.
95 */
96 #define PGOFF_LOFFT_MAX \
97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
98
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
100 {
101 struct inode *inode = file_inode(file);
102 loff_t len, vma_len;
103 int ret;
104 struct hstate *h = hstate_file(file);
105 vm_flags_t vm_flags;
106
107 /*
108 * vma address alignment (but not the pgoff alignment) has
109 * already been checked by prepare_hugepage_range. If you add
110 * any error returns here, do so after setting VM_HUGETLB, so
111 * is_vm_hugetlb_page tests below unmap_region go the right
112 * way when do_mmap unwinds (may be important on powerpc
113 * and ia64).
114 */
115 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
116 vma->vm_ops = &hugetlb_vm_ops;
117
118 /*
119 * page based offset in vm_pgoff could be sufficiently large to
120 * overflow a loff_t when converted to byte offset. This can
121 * only happen on architectures where sizeof(loff_t) ==
122 * sizeof(unsigned long). So, only check in those instances.
123 */
124 if (sizeof(unsigned long) == sizeof(loff_t)) {
125 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
126 return -EINVAL;
127 }
128
129 /* must be huge page aligned */
130 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
131 return -EINVAL;
132
133 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
134 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
135 /* check for overflow */
136 if (len < vma_len)
137 return -EINVAL;
138
139 inode_lock(inode);
140 file_accessed(file);
141
142 ret = -ENOMEM;
143
144 vm_flags = vma->vm_flags;
145 /*
146 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
147 * reserving here. Note: only for SHM hugetlbfs file, the inode
148 * flag S_PRIVATE is set.
149 */
150 if (inode->i_flags & S_PRIVATE)
151 vm_flags |= VM_NORESERVE;
152
153 if (hugetlb_reserve_pages(inode,
154 vma->vm_pgoff >> huge_page_order(h),
155 len >> huge_page_shift(h), vma,
156 vm_flags) < 0)
157 goto out;
158
159 ret = 0;
160 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
161 i_size_write(inode, len);
162 out:
163 inode_unlock(inode);
164
165 return ret;
166 }
167
168 /*
169 * Called under mmap_write_lock(mm).
170 */
171
172 unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
174 unsigned long len, unsigned long pgoff,
175 unsigned long flags)
176 {
177 unsigned long addr0 = 0;
178 struct hstate *h = hstate_file(file);
179
180 if (len & ~huge_page_mask(h))
181 return -EINVAL;
182 if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h)))
183 return -EINVAL;
184 if (addr)
185 addr0 = ALIGN(addr, huge_page_size(h));
186
187 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff,
188 flags, 0);
189 }
190
191 /*
192 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset.
193 * Returns the maximum number of bytes one can read without touching the 1st raw
194 * HWPOISON page.
195 *
196 * The implementation borrows the iteration logic from copy_page_to_iter*.
197 */
adjust_range_hwpoison(struct folio * folio,size_t offset,size_t bytes)198 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset,
199 size_t bytes)
200 {
201 struct page *page;
202 size_t n = 0;
203 size_t res = 0;
204
205 /* First page to start the loop. */
206 page = folio_page(folio, offset / PAGE_SIZE);
207 offset %= PAGE_SIZE;
208 while (1) {
209 if (is_raw_hwpoison_page_in_hugepage(page))
210 break;
211
212 /* Safe to read n bytes without touching HWPOISON subpage. */
213 n = min(bytes, (size_t)PAGE_SIZE - offset);
214 res += n;
215 bytes -= n;
216 if (!bytes || !n)
217 break;
218 offset += n;
219 if (offset == PAGE_SIZE) {
220 page = nth_page(page, 1);
221 offset = 0;
222 }
223 }
224
225 return res;
226 }
227
228 /*
229 * Support for read() - Find the page attached to f_mapping and copy out the
230 * data. This provides functionality similar to filemap_read().
231 */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)232 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
233 {
234 struct file *file = iocb->ki_filp;
235 struct hstate *h = hstate_file(file);
236 struct address_space *mapping = file->f_mapping;
237 struct inode *inode = mapping->host;
238 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
239 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
240 unsigned long end_index;
241 loff_t isize;
242 ssize_t retval = 0;
243
244 while (iov_iter_count(to)) {
245 struct folio *folio;
246 size_t nr, copied, want;
247
248 /* nr is the maximum number of bytes to copy from this page */
249 nr = huge_page_size(h);
250 isize = i_size_read(inode);
251 if (!isize)
252 break;
253 end_index = (isize - 1) >> huge_page_shift(h);
254 if (index > end_index)
255 break;
256 if (index == end_index) {
257 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
258 if (nr <= offset)
259 break;
260 }
261 nr = nr - offset;
262
263 /* Find the folio */
264 folio = filemap_lock_hugetlb_folio(h, mapping, index);
265 if (IS_ERR(folio)) {
266 /*
267 * We have a HOLE, zero out the user-buffer for the
268 * length of the hole or request.
269 */
270 copied = iov_iter_zero(nr, to);
271 } else {
272 folio_unlock(folio);
273
274 if (!folio_test_hwpoison(folio))
275 want = nr;
276 else {
277 /*
278 * Adjust how many bytes safe to read without
279 * touching the 1st raw HWPOISON page after
280 * offset.
281 */
282 want = adjust_range_hwpoison(folio, offset, nr);
283 if (want == 0) {
284 folio_put(folio);
285 retval = -EIO;
286 break;
287 }
288 }
289
290 /*
291 * We have the folio, copy it to user space buffer.
292 */
293 copied = copy_folio_to_iter(folio, offset, want, to);
294 folio_put(folio);
295 }
296 offset += copied;
297 retval += copied;
298 if (copied != nr && iov_iter_count(to)) {
299 if (!retval)
300 retval = -EFAULT;
301 break;
302 }
303 index += offset >> huge_page_shift(h);
304 offset &= ~huge_page_mask(h);
305 }
306 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
307 return retval;
308 }
309
hugetlbfs_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)310 static int hugetlbfs_write_begin(const struct kiocb *iocb,
311 struct address_space *mapping,
312 loff_t pos, unsigned len,
313 struct folio **foliop, void **fsdata)
314 {
315 return -EINVAL;
316 }
317
hugetlbfs_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)318 static int hugetlbfs_write_end(const struct kiocb *iocb,
319 struct address_space *mapping,
320 loff_t pos, unsigned len, unsigned copied,
321 struct folio *folio, void *fsdata)
322 {
323 BUG();
324 return -EINVAL;
325 }
326
hugetlb_delete_from_page_cache(struct folio * folio)327 static void hugetlb_delete_from_page_cache(struct folio *folio)
328 {
329 folio_clear_dirty(folio);
330 folio_clear_uptodate(folio);
331 filemap_remove_folio(folio);
332 }
333
334 /*
335 * Called with i_mmap_rwsem held for inode based vma maps. This makes
336 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
337 * mutex for the page in the mapping. So, we can not race with page being
338 * faulted into the vma.
339 */
hugetlb_vma_maps_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)340 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma,
341 unsigned long addr, unsigned long pfn)
342 {
343 pte_t *ptep, pte;
344
345 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
346 if (!ptep)
347 return false;
348
349 pte = huge_ptep_get(vma->vm_mm, addr, ptep);
350 if (huge_pte_none(pte) || !pte_present(pte))
351 return false;
352
353 if (pte_pfn(pte) == pfn)
354 return true;
355
356 return false;
357 }
358
359 /*
360 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
361 * No, because the interval tree returns us only those vmas
362 * which overlap the truncated area starting at pgoff,
363 * and no vma on a 32-bit arch can span beyond the 4GB.
364 */
vma_offset_start(struct vm_area_struct * vma,pgoff_t start)365 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
366 {
367 unsigned long offset = 0;
368
369 if (vma->vm_pgoff < start)
370 offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
371
372 return vma->vm_start + offset;
373 }
374
vma_offset_end(struct vm_area_struct * vma,pgoff_t end)375 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
376 {
377 unsigned long t_end;
378
379 if (!end)
380 return vma->vm_end;
381
382 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
383 if (t_end > vma->vm_end)
384 t_end = vma->vm_end;
385 return t_end;
386 }
387
388 /*
389 * Called with hugetlb fault mutex held. Therefore, no more mappings to
390 * this folio can be created while executing the routine.
391 */
hugetlb_unmap_file_folio(struct hstate * h,struct address_space * mapping,struct folio * folio,pgoff_t index)392 static void hugetlb_unmap_file_folio(struct hstate *h,
393 struct address_space *mapping,
394 struct folio *folio, pgoff_t index)
395 {
396 struct rb_root_cached *root = &mapping->i_mmap;
397 struct hugetlb_vma_lock *vma_lock;
398 unsigned long pfn = folio_pfn(folio);
399 struct vm_area_struct *vma;
400 unsigned long v_start;
401 unsigned long v_end;
402 pgoff_t start, end;
403
404 start = index * pages_per_huge_page(h);
405 end = (index + 1) * pages_per_huge_page(h);
406
407 i_mmap_lock_write(mapping);
408 retry:
409 vma_lock = NULL;
410 vma_interval_tree_foreach(vma, root, start, end - 1) {
411 v_start = vma_offset_start(vma, start);
412 v_end = vma_offset_end(vma, end);
413
414 if (!hugetlb_vma_maps_pfn(vma, v_start, pfn))
415 continue;
416
417 if (!hugetlb_vma_trylock_write(vma)) {
418 vma_lock = vma->vm_private_data;
419 /*
420 * If we can not get vma lock, we need to drop
421 * immap_sema and take locks in order. First,
422 * take a ref on the vma_lock structure so that
423 * we can be guaranteed it will not go away when
424 * dropping immap_sema.
425 */
426 kref_get(&vma_lock->refs);
427 break;
428 }
429
430 unmap_hugepage_range(vma, v_start, v_end, NULL,
431 ZAP_FLAG_DROP_MARKER);
432 hugetlb_vma_unlock_write(vma);
433 }
434
435 i_mmap_unlock_write(mapping);
436
437 if (vma_lock) {
438 /*
439 * Wait on vma_lock. We know it is still valid as we have
440 * a reference. We must 'open code' vma locking as we do
441 * not know if vma_lock is still attached to vma.
442 */
443 down_write(&vma_lock->rw_sema);
444 i_mmap_lock_write(mapping);
445
446 vma = vma_lock->vma;
447 if (!vma) {
448 /*
449 * If lock is no longer attached to vma, then just
450 * unlock, drop our reference and retry looking for
451 * other vmas.
452 */
453 up_write(&vma_lock->rw_sema);
454 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
455 goto retry;
456 }
457
458 /*
459 * vma_lock is still attached to vma. Check to see if vma
460 * still maps page and if so, unmap.
461 */
462 v_start = vma_offset_start(vma, start);
463 v_end = vma_offset_end(vma, end);
464 if (hugetlb_vma_maps_pfn(vma, v_start, pfn))
465 unmap_hugepage_range(vma, v_start, v_end, NULL,
466 ZAP_FLAG_DROP_MARKER);
467
468 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
469 hugetlb_vma_unlock_write(vma);
470
471 goto retry;
472 }
473 }
474
475 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end,zap_flags_t zap_flags)476 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
477 zap_flags_t zap_flags)
478 {
479 struct vm_area_struct *vma;
480
481 /*
482 * end == 0 indicates that the entire range after start should be
483 * unmapped. Note, end is exclusive, whereas the interval tree takes
484 * an inclusive "last".
485 */
486 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
487 unsigned long v_start;
488 unsigned long v_end;
489
490 if (!hugetlb_vma_trylock_write(vma))
491 continue;
492
493 v_start = vma_offset_start(vma, start);
494 v_end = vma_offset_end(vma, end);
495
496 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
497
498 /*
499 * Note that vma lock only exists for shared/non-private
500 * vmas. Therefore, lock is not held when calling
501 * unmap_hugepage_range for private vmas.
502 */
503 hugetlb_vma_unlock_write(vma);
504 }
505 }
506
507 /*
508 * Called with hugetlb fault mutex held.
509 * Returns true if page was actually removed, false otherwise.
510 */
remove_inode_single_folio(struct hstate * h,struct inode * inode,struct address_space * mapping,struct folio * folio,pgoff_t index,bool truncate_op)511 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
512 struct address_space *mapping,
513 struct folio *folio, pgoff_t index,
514 bool truncate_op)
515 {
516 bool ret = false;
517
518 /*
519 * If folio is mapped, it was faulted in after being
520 * unmapped in caller. Unmap (again) while holding
521 * the fault mutex. The mutex will prevent faults
522 * until we finish removing the folio.
523 */
524 if (unlikely(folio_mapped(folio)))
525 hugetlb_unmap_file_folio(h, mapping, folio, index);
526
527 folio_lock(folio);
528 /*
529 * We must remove the folio from page cache before removing
530 * the region/ reserve map (hugetlb_unreserve_pages). In
531 * rare out of memory conditions, removal of the region/reserve
532 * map could fail. Correspondingly, the subpool and global
533 * reserve usage count can need to be adjusted.
534 */
535 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
536 hugetlb_delete_from_page_cache(folio);
537 ret = true;
538 if (!truncate_op) {
539 if (unlikely(hugetlb_unreserve_pages(inode, index,
540 index + 1, 1)))
541 hugetlb_fix_reserve_counts(inode);
542 }
543
544 folio_unlock(folio);
545 return ret;
546 }
547
548 /*
549 * remove_inode_hugepages handles two distinct cases: truncation and hole
550 * punch. There are subtle differences in operation for each case.
551 *
552 * truncation is indicated by end of range being LLONG_MAX
553 * In this case, we first scan the range and release found pages.
554 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
555 * maps and global counts. Page faults can race with truncation.
556 * During faults, hugetlb_no_page() checks i_size before page allocation,
557 * and again after obtaining page table lock. It will 'back out'
558 * allocations in the truncated range.
559 * hole punch is indicated if end is not LLONG_MAX
560 * In the hole punch case we scan the range and release found pages.
561 * Only when releasing a page is the associated region/reserve map
562 * deleted. The region/reserve map for ranges without associated
563 * pages are not modified. Page faults can race with hole punch.
564 * This is indicated if we find a mapped page.
565 * Note: If the passed end of range value is beyond the end of file, but
566 * not LLONG_MAX this routine still performs a hole punch operation.
567 */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)568 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
569 loff_t lend)
570 {
571 struct hstate *h = hstate_inode(inode);
572 struct address_space *mapping = &inode->i_data;
573 const pgoff_t end = lend >> PAGE_SHIFT;
574 struct folio_batch fbatch;
575 pgoff_t next, index;
576 int i, freed = 0;
577 bool truncate_op = (lend == LLONG_MAX);
578
579 folio_batch_init(&fbatch);
580 next = lstart >> PAGE_SHIFT;
581 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
582 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
583 struct folio *folio = fbatch.folios[i];
584 u32 hash = 0;
585
586 index = folio->index >> huge_page_order(h);
587 hash = hugetlb_fault_mutex_hash(mapping, index);
588 mutex_lock(&hugetlb_fault_mutex_table[hash]);
589
590 /*
591 * Remove folio that was part of folio_batch.
592 */
593 if (remove_inode_single_folio(h, inode, mapping, folio,
594 index, truncate_op))
595 freed++;
596
597 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
598 }
599 folio_batch_release(&fbatch);
600 cond_resched();
601 }
602
603 if (truncate_op)
604 (void)hugetlb_unreserve_pages(inode,
605 lstart >> huge_page_shift(h),
606 LONG_MAX, freed);
607 }
608
hugetlbfs_evict_inode(struct inode * inode)609 static void hugetlbfs_evict_inode(struct inode *inode)
610 {
611 struct resv_map *resv_map;
612
613 trace_hugetlbfs_evict_inode(inode);
614 remove_inode_hugepages(inode, 0, LLONG_MAX);
615
616 /*
617 * Get the resv_map from the address space embedded in the inode.
618 * This is the address space which points to any resv_map allocated
619 * at inode creation time. If this is a device special inode,
620 * i_mapping may not point to the original address space.
621 */
622 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
623 /* Only regular and link inodes have associated reserve maps */
624 if (resv_map)
625 resv_map_release(&resv_map->refs);
626 clear_inode(inode);
627 }
628
hugetlb_vmtruncate(struct inode * inode,loff_t offset)629 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
630 {
631 pgoff_t pgoff;
632 struct address_space *mapping = inode->i_mapping;
633 struct hstate *h = hstate_inode(inode);
634
635 BUG_ON(offset & ~huge_page_mask(h));
636 pgoff = offset >> PAGE_SHIFT;
637
638 i_size_write(inode, offset);
639 i_mmap_lock_write(mapping);
640 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
641 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
642 ZAP_FLAG_DROP_MARKER);
643 i_mmap_unlock_write(mapping);
644 remove_inode_hugepages(inode, offset, LLONG_MAX);
645 }
646
hugetlbfs_zero_partial_page(struct hstate * h,struct address_space * mapping,loff_t start,loff_t end)647 static void hugetlbfs_zero_partial_page(struct hstate *h,
648 struct address_space *mapping,
649 loff_t start,
650 loff_t end)
651 {
652 pgoff_t idx = start >> huge_page_shift(h);
653 struct folio *folio;
654
655 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
656 if (IS_ERR(folio))
657 return;
658
659 start = start & ~huge_page_mask(h);
660 end = end & ~huge_page_mask(h);
661 if (!end)
662 end = huge_page_size(h);
663
664 folio_zero_segment(folio, (size_t)start, (size_t)end);
665
666 folio_unlock(folio);
667 folio_put(folio);
668 }
669
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)670 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
671 {
672 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
673 struct address_space *mapping = inode->i_mapping;
674 struct hstate *h = hstate_inode(inode);
675 loff_t hpage_size = huge_page_size(h);
676 loff_t hole_start, hole_end;
677
678 /*
679 * hole_start and hole_end indicate the full pages within the hole.
680 */
681 hole_start = round_up(offset, hpage_size);
682 hole_end = round_down(offset + len, hpage_size);
683
684 inode_lock(inode);
685
686 /* protected by i_rwsem */
687 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
688 inode_unlock(inode);
689 return -EPERM;
690 }
691
692 i_mmap_lock_write(mapping);
693
694 /* If range starts before first full page, zero partial page. */
695 if (offset < hole_start)
696 hugetlbfs_zero_partial_page(h, mapping,
697 offset, min(offset + len, hole_start));
698
699 /* Unmap users of full pages in the hole. */
700 if (hole_end > hole_start) {
701 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
702 hugetlb_vmdelete_list(&mapping->i_mmap,
703 hole_start >> PAGE_SHIFT,
704 hole_end >> PAGE_SHIFT, 0);
705 }
706
707 /* If range extends beyond last full page, zero partial page. */
708 if ((offset + len) > hole_end && (offset + len) > hole_start)
709 hugetlbfs_zero_partial_page(h, mapping,
710 hole_end, offset + len);
711
712 i_mmap_unlock_write(mapping);
713
714 /* Remove full pages from the file. */
715 if (hole_end > hole_start)
716 remove_inode_hugepages(inode, hole_start, hole_end);
717
718 inode_unlock(inode);
719
720 return 0;
721 }
722
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)723 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
724 loff_t len)
725 {
726 struct inode *inode = file_inode(file);
727 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
728 struct address_space *mapping = inode->i_mapping;
729 struct hstate *h = hstate_inode(inode);
730 struct vm_area_struct pseudo_vma;
731 struct mm_struct *mm = current->mm;
732 loff_t hpage_size = huge_page_size(h);
733 unsigned long hpage_shift = huge_page_shift(h);
734 pgoff_t start, index, end;
735 int error;
736 u32 hash;
737
738 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
739 return -EOPNOTSUPP;
740
741 if (mode & FALLOC_FL_PUNCH_HOLE) {
742 error = hugetlbfs_punch_hole(inode, offset, len);
743 goto out_nolock;
744 }
745
746 /*
747 * Default preallocate case.
748 * For this range, start is rounded down and end is rounded up
749 * as well as being converted to page offsets.
750 */
751 start = offset >> hpage_shift;
752 end = (offset + len + hpage_size - 1) >> hpage_shift;
753
754 inode_lock(inode);
755
756 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
757 error = inode_newsize_ok(inode, offset + len);
758 if (error)
759 goto out;
760
761 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
762 error = -EPERM;
763 goto out;
764 }
765
766 /*
767 * Initialize a pseudo vma as this is required by the huge page
768 * allocation routines.
769 */
770 vma_init(&pseudo_vma, mm);
771 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
772 pseudo_vma.vm_file = file;
773
774 for (index = start; index < end; index++) {
775 /*
776 * This is supposed to be the vaddr where the page is being
777 * faulted in, but we have no vaddr here.
778 */
779 struct folio *folio;
780 unsigned long addr;
781
782 cond_resched();
783
784 /*
785 * fallocate(2) manpage permits EINTR; we may have been
786 * interrupted because we are using up too much memory.
787 */
788 if (signal_pending(current)) {
789 error = -EINTR;
790 break;
791 }
792
793 /* addr is the offset within the file (zero based) */
794 addr = index * hpage_size;
795
796 /* mutex taken here, fault path and hole punch */
797 hash = hugetlb_fault_mutex_hash(mapping, index);
798 mutex_lock(&hugetlb_fault_mutex_table[hash]);
799
800 /* See if already present in mapping to avoid alloc/free */
801 folio = filemap_get_folio(mapping, index << huge_page_order(h));
802 if (!IS_ERR(folio)) {
803 folio_put(folio);
804 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
805 continue;
806 }
807
808 /*
809 * Allocate folio without setting the avoid_reserve argument.
810 * There certainly are no reserves associated with the
811 * pseudo_vma. However, there could be shared mappings with
812 * reserves for the file at the inode level. If we fallocate
813 * folios in these areas, we need to consume the reserves
814 * to keep reservation accounting consistent.
815 */
816 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false);
817 if (IS_ERR(folio)) {
818 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
819 error = PTR_ERR(folio);
820 goto out;
821 }
822 folio_zero_user(folio, addr);
823 __folio_mark_uptodate(folio);
824 error = hugetlb_add_to_page_cache(folio, mapping, index);
825 if (unlikely(error)) {
826 restore_reserve_on_error(h, &pseudo_vma, addr, folio);
827 folio_put(folio);
828 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
829 goto out;
830 }
831
832 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
833
834 folio_set_hugetlb_migratable(folio);
835 /*
836 * folio_unlock because locked by hugetlb_add_to_page_cache()
837 * folio_put() due to reference from alloc_hugetlb_folio()
838 */
839 folio_unlock(folio);
840 folio_put(folio);
841 }
842
843 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
844 i_size_write(inode, offset + len);
845 inode_set_ctime_current(inode);
846 out:
847 inode_unlock(inode);
848
849 out_nolock:
850 trace_hugetlbfs_fallocate(inode, mode, offset, len, error);
851 return error;
852 }
853
hugetlbfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)854 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
855 struct dentry *dentry, struct iattr *attr)
856 {
857 struct inode *inode = d_inode(dentry);
858 struct hstate *h = hstate_inode(inode);
859 int error;
860 unsigned int ia_valid = attr->ia_valid;
861 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
862
863 error = setattr_prepare(idmap, dentry, attr);
864 if (error)
865 return error;
866
867 trace_hugetlbfs_setattr(inode, dentry, attr);
868
869 if (ia_valid & ATTR_SIZE) {
870 loff_t oldsize = inode->i_size;
871 loff_t newsize = attr->ia_size;
872
873 if (newsize & ~huge_page_mask(h))
874 return -EINVAL;
875 /* protected by i_rwsem */
876 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
877 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
878 return -EPERM;
879 hugetlb_vmtruncate(inode, newsize);
880 }
881
882 setattr_copy(idmap, inode, attr);
883 mark_inode_dirty(inode);
884 return 0;
885 }
886
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)887 static struct inode *hugetlbfs_get_root(struct super_block *sb,
888 struct hugetlbfs_fs_context *ctx)
889 {
890 struct inode *inode;
891
892 inode = new_inode(sb);
893 if (inode) {
894 inode->i_ino = get_next_ino();
895 inode->i_mode = S_IFDIR | ctx->mode;
896 inode->i_uid = ctx->uid;
897 inode->i_gid = ctx->gid;
898 simple_inode_init_ts(inode);
899 inode->i_op = &hugetlbfs_dir_inode_operations;
900 inode->i_fop = &simple_dir_operations;
901 /* directory inodes start off with i_nlink == 2 (for "." entry) */
902 inc_nlink(inode);
903 lockdep_annotate_inode_mutex_key(inode);
904 }
905 return inode;
906 }
907
908 /*
909 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
910 * be taken from reclaim -- unlike regular filesystems. This needs an
911 * annotation because huge_pmd_share() does an allocation under hugetlb's
912 * i_mmap_rwsem.
913 */
914 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
915
hugetlbfs_get_inode(struct super_block * sb,struct mnt_idmap * idmap,struct inode * dir,umode_t mode,dev_t dev)916 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
917 struct mnt_idmap *idmap,
918 struct inode *dir,
919 umode_t mode, dev_t dev)
920 {
921 struct inode *inode;
922 struct resv_map *resv_map = NULL;
923
924 /*
925 * Reserve maps are only needed for inodes that can have associated
926 * page allocations.
927 */
928 if (S_ISREG(mode) || S_ISLNK(mode)) {
929 resv_map = resv_map_alloc();
930 if (!resv_map)
931 return NULL;
932 }
933
934 inode = new_inode(sb);
935 if (inode) {
936 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
937
938 inode->i_ino = get_next_ino();
939 inode_init_owner(idmap, inode, dir, mode);
940 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
941 &hugetlbfs_i_mmap_rwsem_key);
942 inode->i_mapping->a_ops = &hugetlbfs_aops;
943 simple_inode_init_ts(inode);
944 inode->i_mapping->i_private_data = resv_map;
945 info->seals = F_SEAL_SEAL;
946 switch (mode & S_IFMT) {
947 default:
948 init_special_inode(inode, mode, dev);
949 break;
950 case S_IFREG:
951 inode->i_op = &hugetlbfs_inode_operations;
952 inode->i_fop = &hugetlbfs_file_operations;
953 break;
954 case S_IFDIR:
955 inode->i_op = &hugetlbfs_dir_inode_operations;
956 inode->i_fop = &simple_dir_operations;
957
958 /* directory inodes start off with i_nlink == 2 (for "." entry) */
959 inc_nlink(inode);
960 break;
961 case S_IFLNK:
962 inode->i_op = &page_symlink_inode_operations;
963 inode_nohighmem(inode);
964 break;
965 }
966 lockdep_annotate_inode_mutex_key(inode);
967 trace_hugetlbfs_alloc_inode(inode, dir, mode);
968 } else {
969 if (resv_map)
970 kref_put(&resv_map->refs, resv_map_release);
971 }
972
973 return inode;
974 }
975
976 /*
977 * File creation. Allocate an inode, and we're done..
978 */
hugetlbfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)979 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
980 struct dentry *dentry, umode_t mode, dev_t dev)
981 {
982 struct inode *inode;
983
984 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
985 if (!inode)
986 return -ENOSPC;
987 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
988 d_instantiate(dentry, inode);
989 dget(dentry);/* Extra count - pin the dentry in core */
990 return 0;
991 }
992
hugetlbfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)993 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
994 struct dentry *dentry, umode_t mode)
995 {
996 int retval = hugetlbfs_mknod(idmap, dir, dentry,
997 mode | S_IFDIR, 0);
998 if (!retval)
999 inc_nlink(dir);
1000 return ERR_PTR(retval);
1001 }
1002
hugetlbfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1003 static int hugetlbfs_create(struct mnt_idmap *idmap,
1004 struct inode *dir, struct dentry *dentry,
1005 umode_t mode, bool excl)
1006 {
1007 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1008 }
1009
hugetlbfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)1010 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1011 struct inode *dir, struct file *file,
1012 umode_t mode)
1013 {
1014 struct inode *inode;
1015
1016 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1017 if (!inode)
1018 return -ENOSPC;
1019 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1020 d_tmpfile(file, inode);
1021 return finish_open_simple(file, 0);
1022 }
1023
hugetlbfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)1024 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1025 struct inode *dir, struct dentry *dentry,
1026 const char *symname)
1027 {
1028 const umode_t mode = S_IFLNK|S_IRWXUGO;
1029 struct inode *inode;
1030 int error = -ENOSPC;
1031
1032 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1033 if (inode) {
1034 int l = strlen(symname)+1;
1035 error = page_symlink(inode, symname, l);
1036 if (!error) {
1037 d_instantiate(dentry, inode);
1038 dget(dentry);
1039 } else
1040 iput(inode);
1041 }
1042 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1043
1044 return error;
1045 }
1046
1047 #ifdef CONFIG_MIGRATION
hugetlbfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1048 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1049 struct folio *dst, struct folio *src,
1050 enum migrate_mode mode)
1051 {
1052 int rc;
1053
1054 rc = migrate_huge_page_move_mapping(mapping, dst, src);
1055 if (rc != MIGRATEPAGE_SUCCESS)
1056 return rc;
1057
1058 if (hugetlb_folio_subpool(src)) {
1059 hugetlb_set_folio_subpool(dst,
1060 hugetlb_folio_subpool(src));
1061 hugetlb_set_folio_subpool(src, NULL);
1062 }
1063
1064 folio_migrate_flags(dst, src);
1065
1066 return MIGRATEPAGE_SUCCESS;
1067 }
1068 #else
1069 #define hugetlbfs_migrate_folio NULL
1070 #endif
1071
hugetlbfs_error_remove_folio(struct address_space * mapping,struct folio * folio)1072 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1073 struct folio *folio)
1074 {
1075 return 0;
1076 }
1077
1078 /*
1079 * Display the mount options in /proc/mounts.
1080 */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1081 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1082 {
1083 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1084 struct hugepage_subpool *spool = sbinfo->spool;
1085 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1086 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1087 char mod;
1088
1089 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1090 seq_printf(m, ",uid=%u",
1091 from_kuid_munged(&init_user_ns, sbinfo->uid));
1092 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1093 seq_printf(m, ",gid=%u",
1094 from_kgid_munged(&init_user_ns, sbinfo->gid));
1095 if (sbinfo->mode != 0755)
1096 seq_printf(m, ",mode=%o", sbinfo->mode);
1097 if (sbinfo->max_inodes != -1)
1098 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1099
1100 hpage_size /= 1024;
1101 mod = 'K';
1102 if (hpage_size >= 1024) {
1103 hpage_size /= 1024;
1104 mod = 'M';
1105 }
1106 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1107 if (spool) {
1108 if (spool->max_hpages != -1)
1109 seq_printf(m, ",size=%llu",
1110 (unsigned long long)spool->max_hpages << hpage_shift);
1111 if (spool->min_hpages != -1)
1112 seq_printf(m, ",min_size=%llu",
1113 (unsigned long long)spool->min_hpages << hpage_shift);
1114 }
1115 return 0;
1116 }
1117
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1118 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1119 {
1120 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1121 struct hstate *h = hstate_inode(d_inode(dentry));
1122 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1123
1124 buf->f_fsid = u64_to_fsid(id);
1125 buf->f_type = HUGETLBFS_MAGIC;
1126 buf->f_bsize = huge_page_size(h);
1127 if (sbinfo) {
1128 spin_lock(&sbinfo->stat_lock);
1129 /* If no limits set, just report 0 or -1 for max/free/used
1130 * blocks, like simple_statfs() */
1131 if (sbinfo->spool) {
1132 long free_pages;
1133
1134 spin_lock_irq(&sbinfo->spool->lock);
1135 buf->f_blocks = sbinfo->spool->max_hpages;
1136 free_pages = sbinfo->spool->max_hpages
1137 - sbinfo->spool->used_hpages;
1138 buf->f_bavail = buf->f_bfree = free_pages;
1139 spin_unlock_irq(&sbinfo->spool->lock);
1140 buf->f_files = sbinfo->max_inodes;
1141 buf->f_ffree = sbinfo->free_inodes;
1142 }
1143 spin_unlock(&sbinfo->stat_lock);
1144 }
1145 buf->f_namelen = NAME_MAX;
1146 return 0;
1147 }
1148
hugetlbfs_put_super(struct super_block * sb)1149 static void hugetlbfs_put_super(struct super_block *sb)
1150 {
1151 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1152
1153 if (sbi) {
1154 sb->s_fs_info = NULL;
1155
1156 if (sbi->spool)
1157 hugepage_put_subpool(sbi->spool);
1158
1159 kfree(sbi);
1160 }
1161 }
1162
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1163 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1164 {
1165 if (sbinfo->free_inodes >= 0) {
1166 spin_lock(&sbinfo->stat_lock);
1167 if (unlikely(!sbinfo->free_inodes)) {
1168 spin_unlock(&sbinfo->stat_lock);
1169 return 0;
1170 }
1171 sbinfo->free_inodes--;
1172 spin_unlock(&sbinfo->stat_lock);
1173 }
1174
1175 return 1;
1176 }
1177
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1178 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1179 {
1180 if (sbinfo->free_inodes >= 0) {
1181 spin_lock(&sbinfo->stat_lock);
1182 sbinfo->free_inodes++;
1183 spin_unlock(&sbinfo->stat_lock);
1184 }
1185 }
1186
1187
1188 static struct kmem_cache *hugetlbfs_inode_cachep;
1189
hugetlbfs_alloc_inode(struct super_block * sb)1190 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1191 {
1192 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1193 struct hugetlbfs_inode_info *p;
1194
1195 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1196 return NULL;
1197 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1198 if (unlikely(!p)) {
1199 hugetlbfs_inc_free_inodes(sbinfo);
1200 return NULL;
1201 }
1202 return &p->vfs_inode;
1203 }
1204
hugetlbfs_free_inode(struct inode * inode)1205 static void hugetlbfs_free_inode(struct inode *inode)
1206 {
1207 trace_hugetlbfs_free_inode(inode);
1208 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1209 }
1210
hugetlbfs_destroy_inode(struct inode * inode)1211 static void hugetlbfs_destroy_inode(struct inode *inode)
1212 {
1213 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1214 }
1215
1216 static const struct address_space_operations hugetlbfs_aops = {
1217 .write_begin = hugetlbfs_write_begin,
1218 .write_end = hugetlbfs_write_end,
1219 .dirty_folio = noop_dirty_folio,
1220 .migrate_folio = hugetlbfs_migrate_folio,
1221 .error_remove_folio = hugetlbfs_error_remove_folio,
1222 };
1223
1224
init_once(void * foo)1225 static void init_once(void *foo)
1226 {
1227 struct hugetlbfs_inode_info *ei = foo;
1228
1229 inode_init_once(&ei->vfs_inode);
1230 }
1231
1232 static const struct file_operations hugetlbfs_file_operations = {
1233 .read_iter = hugetlbfs_read_iter,
1234 .mmap = hugetlbfs_file_mmap,
1235 .fsync = noop_fsync,
1236 .get_unmapped_area = hugetlb_get_unmapped_area,
1237 .llseek = default_llseek,
1238 .fallocate = hugetlbfs_fallocate,
1239 .fop_flags = FOP_HUGE_PAGES,
1240 };
1241
1242 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1243 .create = hugetlbfs_create,
1244 .lookup = simple_lookup,
1245 .link = simple_link,
1246 .unlink = simple_unlink,
1247 .symlink = hugetlbfs_symlink,
1248 .mkdir = hugetlbfs_mkdir,
1249 .rmdir = simple_rmdir,
1250 .mknod = hugetlbfs_mknod,
1251 .rename = simple_rename,
1252 .setattr = hugetlbfs_setattr,
1253 .tmpfile = hugetlbfs_tmpfile,
1254 };
1255
1256 static const struct inode_operations hugetlbfs_inode_operations = {
1257 .setattr = hugetlbfs_setattr,
1258 };
1259
1260 static const struct super_operations hugetlbfs_ops = {
1261 .alloc_inode = hugetlbfs_alloc_inode,
1262 .free_inode = hugetlbfs_free_inode,
1263 .destroy_inode = hugetlbfs_destroy_inode,
1264 .evict_inode = hugetlbfs_evict_inode,
1265 .statfs = hugetlbfs_statfs,
1266 .put_super = hugetlbfs_put_super,
1267 .show_options = hugetlbfs_show_options,
1268 };
1269
1270 /*
1271 * Convert size option passed from command line to number of huge pages
1272 * in the pool specified by hstate. Size option could be in bytes
1273 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1274 */
1275 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1276 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1277 enum hugetlbfs_size_type val_type)
1278 {
1279 if (val_type == NO_SIZE)
1280 return -1;
1281
1282 if (val_type == SIZE_PERCENT) {
1283 size_opt <<= huge_page_shift(h);
1284 size_opt *= h->max_huge_pages;
1285 do_div(size_opt, 100);
1286 }
1287
1288 size_opt >>= huge_page_shift(h);
1289 return size_opt;
1290 }
1291
1292 /*
1293 * Parse one mount parameter.
1294 */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1295 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1296 {
1297 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1298 struct fs_parse_result result;
1299 struct hstate *h;
1300 char *rest;
1301 unsigned long ps;
1302 int opt;
1303
1304 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1305 if (opt < 0)
1306 return opt;
1307
1308 switch (opt) {
1309 case Opt_uid:
1310 ctx->uid = result.uid;
1311 return 0;
1312
1313 case Opt_gid:
1314 ctx->gid = result.gid;
1315 return 0;
1316
1317 case Opt_mode:
1318 ctx->mode = result.uint_32 & 01777U;
1319 return 0;
1320
1321 case Opt_size:
1322 /* memparse() will accept a K/M/G without a digit */
1323 if (!param->string || !isdigit(param->string[0]))
1324 goto bad_val;
1325 ctx->max_size_opt = memparse(param->string, &rest);
1326 ctx->max_val_type = SIZE_STD;
1327 if (*rest == '%')
1328 ctx->max_val_type = SIZE_PERCENT;
1329 return 0;
1330
1331 case Opt_nr_inodes:
1332 /* memparse() will accept a K/M/G without a digit */
1333 if (!param->string || !isdigit(param->string[0]))
1334 goto bad_val;
1335 ctx->nr_inodes = memparse(param->string, &rest);
1336 return 0;
1337
1338 case Opt_pagesize:
1339 ps = memparse(param->string, &rest);
1340 h = size_to_hstate(ps);
1341 if (!h) {
1342 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1343 return -EINVAL;
1344 }
1345 ctx->hstate = h;
1346 return 0;
1347
1348 case Opt_min_size:
1349 /* memparse() will accept a K/M/G without a digit */
1350 if (!param->string || !isdigit(param->string[0]))
1351 goto bad_val;
1352 ctx->min_size_opt = memparse(param->string, &rest);
1353 ctx->min_val_type = SIZE_STD;
1354 if (*rest == '%')
1355 ctx->min_val_type = SIZE_PERCENT;
1356 return 0;
1357
1358 default:
1359 return -EINVAL;
1360 }
1361
1362 bad_val:
1363 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1364 param->string, param->key);
1365 }
1366
1367 /*
1368 * Validate the parsed options.
1369 */
hugetlbfs_validate(struct fs_context * fc)1370 static int hugetlbfs_validate(struct fs_context *fc)
1371 {
1372 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1373
1374 /*
1375 * Use huge page pool size (in hstate) to convert the size
1376 * options to number of huge pages. If NO_SIZE, -1 is returned.
1377 */
1378 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1379 ctx->max_size_opt,
1380 ctx->max_val_type);
1381 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1382 ctx->min_size_opt,
1383 ctx->min_val_type);
1384
1385 /*
1386 * If max_size was specified, then min_size must be smaller
1387 */
1388 if (ctx->max_val_type > NO_SIZE &&
1389 ctx->min_hpages > ctx->max_hpages) {
1390 pr_err("Minimum size can not be greater than maximum size\n");
1391 return -EINVAL;
1392 }
1393
1394 return 0;
1395 }
1396
1397 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1398 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1399 {
1400 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1401 struct hugetlbfs_sb_info *sbinfo;
1402
1403 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1404 if (!sbinfo)
1405 return -ENOMEM;
1406 sb->s_fs_info = sbinfo;
1407 spin_lock_init(&sbinfo->stat_lock);
1408 sbinfo->hstate = ctx->hstate;
1409 sbinfo->max_inodes = ctx->nr_inodes;
1410 sbinfo->free_inodes = ctx->nr_inodes;
1411 sbinfo->spool = NULL;
1412 sbinfo->uid = ctx->uid;
1413 sbinfo->gid = ctx->gid;
1414 sbinfo->mode = ctx->mode;
1415
1416 /*
1417 * Allocate and initialize subpool if maximum or minimum size is
1418 * specified. Any needed reservations (for minimum size) are taken
1419 * when the subpool is created.
1420 */
1421 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1422 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1423 ctx->max_hpages,
1424 ctx->min_hpages);
1425 if (!sbinfo->spool)
1426 goto out_free;
1427 }
1428 sb->s_maxbytes = MAX_LFS_FILESIZE;
1429 sb->s_blocksize = huge_page_size(ctx->hstate);
1430 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1431 sb->s_magic = HUGETLBFS_MAGIC;
1432 sb->s_op = &hugetlbfs_ops;
1433 sb->s_d_flags = DCACHE_DONTCACHE;
1434 sb->s_time_gran = 1;
1435
1436 /*
1437 * Due to the special and limited functionality of hugetlbfs, it does
1438 * not work well as a stacking filesystem.
1439 */
1440 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1441 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1442 if (!sb->s_root)
1443 goto out_free;
1444 return 0;
1445 out_free:
1446 kfree(sbinfo->spool);
1447 kfree(sbinfo);
1448 return -ENOMEM;
1449 }
1450
hugetlbfs_get_tree(struct fs_context * fc)1451 static int hugetlbfs_get_tree(struct fs_context *fc)
1452 {
1453 int err = hugetlbfs_validate(fc);
1454 if (err)
1455 return err;
1456 return get_tree_nodev(fc, hugetlbfs_fill_super);
1457 }
1458
hugetlbfs_fs_context_free(struct fs_context * fc)1459 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1460 {
1461 kfree(fc->fs_private);
1462 }
1463
1464 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1465 .free = hugetlbfs_fs_context_free,
1466 .parse_param = hugetlbfs_parse_param,
1467 .get_tree = hugetlbfs_get_tree,
1468 };
1469
hugetlbfs_init_fs_context(struct fs_context * fc)1470 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1471 {
1472 struct hugetlbfs_fs_context *ctx;
1473
1474 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1475 if (!ctx)
1476 return -ENOMEM;
1477
1478 ctx->max_hpages = -1; /* No limit on size by default */
1479 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1480 ctx->uid = current_fsuid();
1481 ctx->gid = current_fsgid();
1482 ctx->mode = 0755;
1483 ctx->hstate = &default_hstate;
1484 ctx->min_hpages = -1; /* No default minimum size */
1485 ctx->max_val_type = NO_SIZE;
1486 ctx->min_val_type = NO_SIZE;
1487 fc->fs_private = ctx;
1488 fc->ops = &hugetlbfs_fs_context_ops;
1489 return 0;
1490 }
1491
1492 static struct file_system_type hugetlbfs_fs_type = {
1493 .name = "hugetlbfs",
1494 .init_fs_context = hugetlbfs_init_fs_context,
1495 .parameters = hugetlb_fs_parameters,
1496 .kill_sb = kill_litter_super,
1497 .fs_flags = FS_ALLOW_IDMAP,
1498 };
1499
1500 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1501
can_do_hugetlb_shm(void)1502 static int can_do_hugetlb_shm(void)
1503 {
1504 kgid_t shm_group;
1505 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1506 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1507 }
1508
get_hstate_idx(int page_size_log)1509 static int get_hstate_idx(int page_size_log)
1510 {
1511 struct hstate *h = hstate_sizelog(page_size_log);
1512
1513 if (!h)
1514 return -1;
1515 return hstate_index(h);
1516 }
1517
1518 /*
1519 * Note that size should be aligned to proper hugepage size in caller side,
1520 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1521 */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)1522 struct file *hugetlb_file_setup(const char *name, size_t size,
1523 vm_flags_t acctflag, int creat_flags,
1524 int page_size_log)
1525 {
1526 struct inode *inode;
1527 struct vfsmount *mnt;
1528 int hstate_idx;
1529 struct file *file;
1530
1531 hstate_idx = get_hstate_idx(page_size_log);
1532 if (hstate_idx < 0)
1533 return ERR_PTR(-ENODEV);
1534
1535 mnt = hugetlbfs_vfsmount[hstate_idx];
1536 if (!mnt)
1537 return ERR_PTR(-ENOENT);
1538
1539 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1540 struct ucounts *ucounts = current_ucounts();
1541
1542 if (user_shm_lock(size, ucounts)) {
1543 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1544 current->comm, current->pid);
1545 user_shm_unlock(size, ucounts);
1546 }
1547 return ERR_PTR(-EPERM);
1548 }
1549
1550 file = ERR_PTR(-ENOSPC);
1551 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */
1552 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1553 S_IFREG | S_IRWXUGO, 0);
1554 if (!inode)
1555 goto out;
1556 if (creat_flags == HUGETLB_SHMFS_INODE)
1557 inode->i_flags |= S_PRIVATE;
1558
1559 inode->i_size = size;
1560 clear_nlink(inode);
1561
1562 if (hugetlb_reserve_pages(inode, 0,
1563 size >> huge_page_shift(hstate_inode(inode)), NULL,
1564 acctflag) < 0)
1565 file = ERR_PTR(-ENOMEM);
1566 else
1567 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1568 &hugetlbfs_file_operations);
1569 if (!IS_ERR(file))
1570 return file;
1571
1572 iput(inode);
1573 out:
1574 return file;
1575 }
1576
mount_one_hugetlbfs(struct hstate * h)1577 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1578 {
1579 struct fs_context *fc;
1580 struct vfsmount *mnt;
1581
1582 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1583 if (IS_ERR(fc)) {
1584 mnt = ERR_CAST(fc);
1585 } else {
1586 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1587 ctx->hstate = h;
1588 mnt = fc_mount_longterm(fc);
1589 put_fs_context(fc);
1590 }
1591 if (IS_ERR(mnt))
1592 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1593 huge_page_size(h) / SZ_1K);
1594 return mnt;
1595 }
1596
init_hugetlbfs_fs(void)1597 static int __init init_hugetlbfs_fs(void)
1598 {
1599 struct vfsmount *mnt;
1600 struct hstate *h;
1601 int error;
1602 int i;
1603
1604 if (!hugepages_supported()) {
1605 pr_info("disabling because there are no supported hugepage sizes\n");
1606 return -ENOTSUPP;
1607 }
1608
1609 error = -ENOMEM;
1610 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1611 sizeof(struct hugetlbfs_inode_info),
1612 0, SLAB_ACCOUNT, init_once);
1613 if (hugetlbfs_inode_cachep == NULL)
1614 goto out;
1615
1616 error = register_filesystem(&hugetlbfs_fs_type);
1617 if (error)
1618 goto out_free;
1619
1620 /* default hstate mount is required */
1621 mnt = mount_one_hugetlbfs(&default_hstate);
1622 if (IS_ERR(mnt)) {
1623 error = PTR_ERR(mnt);
1624 goto out_unreg;
1625 }
1626 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1627
1628 /* other hstates are optional */
1629 i = 0;
1630 for_each_hstate(h) {
1631 if (i == default_hstate_idx) {
1632 i++;
1633 continue;
1634 }
1635
1636 mnt = mount_one_hugetlbfs(h);
1637 if (IS_ERR(mnt))
1638 hugetlbfs_vfsmount[i] = NULL;
1639 else
1640 hugetlbfs_vfsmount[i] = mnt;
1641 i++;
1642 }
1643
1644 return 0;
1645
1646 out_unreg:
1647 (void)unregister_filesystem(&hugetlbfs_fs_type);
1648 out_free:
1649 kmem_cache_destroy(hugetlbfs_inode_cachep);
1650 out:
1651 return error;
1652 }
1653 fs_initcall(init_hugetlbfs_fs)
1654