1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6 * Copyright 1995 Linus Torvalds
7 */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct folio_batch;
20
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 pgoff_t start, pgoff_t end);
23
invalidate_remote_inode(struct inode * inode)24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 S_ISLNK(inode->i_mode))
28 invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35 int filemap_invalidate_pages(struct address_space *mapping,
36 loff_t pos, loff_t end, bool nowait);
37
38 int write_inode_now(struct inode *, int sync);
39 int filemap_fdatawrite(struct address_space *);
40 int filemap_flush(struct address_space *);
41 int filemap_fdatawait_keep_errors(struct address_space *mapping);
42 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
43 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
44 loff_t start_byte, loff_t end_byte);
45 int filemap_invalidate_inode(struct inode *inode, bool flush,
46 loff_t start, loff_t end);
47
filemap_fdatawait(struct address_space * mapping)48 static inline int filemap_fdatawait(struct address_space *mapping)
49 {
50 return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
51 }
52
53 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
54 int filemap_write_and_wait_range(struct address_space *mapping,
55 loff_t lstart, loff_t lend);
56 int __filemap_fdatawrite_range(struct address_space *mapping,
57 loff_t start, loff_t end, int sync_mode);
58 int filemap_fdatawrite_range(struct address_space *mapping,
59 loff_t start, loff_t end);
60 int filemap_check_errors(struct address_space *mapping);
61 void __filemap_set_wb_err(struct address_space *mapping, int err);
62 int filemap_fdatawrite_wbc(struct address_space *mapping,
63 struct writeback_control *wbc);
64 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
65
filemap_write_and_wait(struct address_space * mapping)66 static inline int filemap_write_and_wait(struct address_space *mapping)
67 {
68 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
69 }
70
71 /**
72 * filemap_set_wb_err - set a writeback error on an address_space
73 * @mapping: mapping in which to set writeback error
74 * @err: error to be set in mapping
75 *
76 * When writeback fails in some way, we must record that error so that
77 * userspace can be informed when fsync and the like are called. We endeavor
78 * to report errors on any file that was open at the time of the error. Some
79 * internal callers also need to know when writeback errors have occurred.
80 *
81 * When a writeback error occurs, most filesystems will want to call
82 * filemap_set_wb_err to record the error in the mapping so that it will be
83 * automatically reported whenever fsync is called on the file.
84 */
filemap_set_wb_err(struct address_space * mapping,int err)85 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
86 {
87 /* Fastpath for common case of no error */
88 if (unlikely(err))
89 __filemap_set_wb_err(mapping, err);
90 }
91
92 /**
93 * filemap_check_wb_err - has an error occurred since the mark was sampled?
94 * @mapping: mapping to check for writeback errors
95 * @since: previously-sampled errseq_t
96 *
97 * Grab the errseq_t value from the mapping, and see if it has changed "since"
98 * the given value was sampled.
99 *
100 * If it has then report the latest error set, otherwise return 0.
101 */
filemap_check_wb_err(struct address_space * mapping,errseq_t since)102 static inline int filemap_check_wb_err(struct address_space *mapping,
103 errseq_t since)
104 {
105 return errseq_check(&mapping->wb_err, since);
106 }
107
108 /**
109 * filemap_sample_wb_err - sample the current errseq_t to test for later errors
110 * @mapping: mapping to be sampled
111 *
112 * Writeback errors are always reported relative to a particular sample point
113 * in the past. This function provides those sample points.
114 */
filemap_sample_wb_err(struct address_space * mapping)115 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
116 {
117 return errseq_sample(&mapping->wb_err);
118 }
119
120 /**
121 * file_sample_sb_err - sample the current errseq_t to test for later errors
122 * @file: file pointer to be sampled
123 *
124 * Grab the most current superblock-level errseq_t value for the given
125 * struct file.
126 */
file_sample_sb_err(struct file * file)127 static inline errseq_t file_sample_sb_err(struct file *file)
128 {
129 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
130 }
131
132 /*
133 * Flush file data before changing attributes. Caller must hold any locks
134 * required to prevent further writes to this file until we're done setting
135 * flags.
136 */
inode_drain_writes(struct inode * inode)137 static inline int inode_drain_writes(struct inode *inode)
138 {
139 inode_dio_wait(inode);
140 return filemap_write_and_wait(inode->i_mapping);
141 }
142
mapping_empty(struct address_space * mapping)143 static inline bool mapping_empty(struct address_space *mapping)
144 {
145 return xa_empty(&mapping->i_pages);
146 }
147
148 /*
149 * mapping_shrinkable - test if page cache state allows inode reclaim
150 * @mapping: the page cache mapping
151 *
152 * This checks the mapping's cache state for the pupose of inode
153 * reclaim and LRU management.
154 *
155 * The caller is expected to hold the i_lock, but is not required to
156 * hold the i_pages lock, which usually protects cache state. That's
157 * because the i_lock and the list_lru lock that protect the inode and
158 * its LRU state don't nest inside the irq-safe i_pages lock.
159 *
160 * Cache deletions are performed under the i_lock, which ensures that
161 * when an inode goes empty, it will reliably get queued on the LRU.
162 *
163 * Cache additions do not acquire the i_lock and may race with this
164 * check, in which case we'll report the inode as shrinkable when it
165 * has cache pages. This is okay: the shrinker also checks the
166 * refcount and the referenced bit, which will be elevated or set in
167 * the process of adding new cache pages to an inode.
168 */
mapping_shrinkable(struct address_space * mapping)169 static inline bool mapping_shrinkable(struct address_space *mapping)
170 {
171 void *head;
172
173 /*
174 * On highmem systems, there could be lowmem pressure from the
175 * inodes before there is highmem pressure from the page
176 * cache. Make inodes shrinkable regardless of cache state.
177 */
178 if (IS_ENABLED(CONFIG_HIGHMEM))
179 return true;
180
181 /* Cache completely empty? Shrink away. */
182 head = rcu_access_pointer(mapping->i_pages.xa_head);
183 if (!head)
184 return true;
185
186 /*
187 * The xarray stores single offset-0 entries directly in the
188 * head pointer, which allows non-resident page cache entries
189 * to escape the shadow shrinker's list of xarray nodes. The
190 * inode shrinker needs to pick them up under memory pressure.
191 */
192 if (!xa_is_node(head) && xa_is_value(head))
193 return true;
194
195 return false;
196 }
197
198 /*
199 * Bits in mapping->flags.
200 */
201 enum mapping_flags {
202 AS_EIO = 0, /* IO error on async write */
203 AS_ENOSPC = 1, /* ENOSPC on async write */
204 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
205 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
206 AS_EXITING = 4, /* final truncate in progress */
207 /* writeback related tags are not used */
208 AS_NO_WRITEBACK_TAGS = 5,
209 AS_RELEASE_ALWAYS = 6, /* Call ->release_folio(), even if no private data */
210 AS_STABLE_WRITES = 7, /* must wait for writeback before modifying
211 folio contents */
212 AS_INACCESSIBLE = 8, /* Do not attempt direct R/W access to the mapping */
213 /* Bits 16-25 are used for FOLIO_ORDER */
214 AS_FOLIO_ORDER_BITS = 5,
215 AS_FOLIO_ORDER_MIN = 16,
216 AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS,
217 };
218
219 #define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1)
220 #define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN)
221 #define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX)
222 #define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK)
223
224 /**
225 * mapping_set_error - record a writeback error in the address_space
226 * @mapping: the mapping in which an error should be set
227 * @error: the error to set in the mapping
228 *
229 * When writeback fails in some way, we must record that error so that
230 * userspace can be informed when fsync and the like are called. We endeavor
231 * to report errors on any file that was open at the time of the error. Some
232 * internal callers also need to know when writeback errors have occurred.
233 *
234 * When a writeback error occurs, most filesystems will want to call
235 * mapping_set_error to record the error in the mapping so that it can be
236 * reported when the application calls fsync(2).
237 */
mapping_set_error(struct address_space * mapping,int error)238 static inline void mapping_set_error(struct address_space *mapping, int error)
239 {
240 if (likely(!error))
241 return;
242
243 /* Record in wb_err for checkers using errseq_t based tracking */
244 __filemap_set_wb_err(mapping, error);
245
246 /* Record it in superblock */
247 if (mapping->host)
248 errseq_set(&mapping->host->i_sb->s_wb_err, error);
249
250 /* Record it in flags for now, for legacy callers */
251 if (error == -ENOSPC)
252 set_bit(AS_ENOSPC, &mapping->flags);
253 else
254 set_bit(AS_EIO, &mapping->flags);
255 }
256
mapping_set_unevictable(struct address_space * mapping)257 static inline void mapping_set_unevictable(struct address_space *mapping)
258 {
259 set_bit(AS_UNEVICTABLE, &mapping->flags);
260 }
261
mapping_clear_unevictable(struct address_space * mapping)262 static inline void mapping_clear_unevictable(struct address_space *mapping)
263 {
264 clear_bit(AS_UNEVICTABLE, &mapping->flags);
265 }
266
mapping_unevictable(struct address_space * mapping)267 static inline bool mapping_unevictable(struct address_space *mapping)
268 {
269 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
270 }
271
mapping_set_exiting(struct address_space * mapping)272 static inline void mapping_set_exiting(struct address_space *mapping)
273 {
274 set_bit(AS_EXITING, &mapping->flags);
275 }
276
mapping_exiting(struct address_space * mapping)277 static inline int mapping_exiting(struct address_space *mapping)
278 {
279 return test_bit(AS_EXITING, &mapping->flags);
280 }
281
mapping_set_no_writeback_tags(struct address_space * mapping)282 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
283 {
284 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
285 }
286
mapping_use_writeback_tags(struct address_space * mapping)287 static inline int mapping_use_writeback_tags(struct address_space *mapping)
288 {
289 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
290 }
291
mapping_release_always(const struct address_space * mapping)292 static inline bool mapping_release_always(const struct address_space *mapping)
293 {
294 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
295 }
296
mapping_set_release_always(struct address_space * mapping)297 static inline void mapping_set_release_always(struct address_space *mapping)
298 {
299 set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
300 }
301
mapping_clear_release_always(struct address_space * mapping)302 static inline void mapping_clear_release_always(struct address_space *mapping)
303 {
304 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
305 }
306
mapping_stable_writes(const struct address_space * mapping)307 static inline bool mapping_stable_writes(const struct address_space *mapping)
308 {
309 return test_bit(AS_STABLE_WRITES, &mapping->flags);
310 }
311
mapping_set_stable_writes(struct address_space * mapping)312 static inline void mapping_set_stable_writes(struct address_space *mapping)
313 {
314 set_bit(AS_STABLE_WRITES, &mapping->flags);
315 }
316
mapping_clear_stable_writes(struct address_space * mapping)317 static inline void mapping_clear_stable_writes(struct address_space *mapping)
318 {
319 clear_bit(AS_STABLE_WRITES, &mapping->flags);
320 }
321
mapping_set_inaccessible(struct address_space * mapping)322 static inline void mapping_set_inaccessible(struct address_space *mapping)
323 {
324 /*
325 * It's expected inaccessible mappings are also unevictable. Compaction
326 * migrate scanner (isolate_migratepages_block()) relies on this to
327 * reduce page locking.
328 */
329 set_bit(AS_UNEVICTABLE, &mapping->flags);
330 set_bit(AS_INACCESSIBLE, &mapping->flags);
331 }
332
mapping_inaccessible(struct address_space * mapping)333 static inline bool mapping_inaccessible(struct address_space *mapping)
334 {
335 return test_bit(AS_INACCESSIBLE, &mapping->flags);
336 }
337
mapping_gfp_mask(struct address_space * mapping)338 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
339 {
340 return mapping->gfp_mask;
341 }
342
343 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)344 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
345 gfp_t gfp_mask)
346 {
347 return mapping_gfp_mask(mapping) & gfp_mask;
348 }
349
350 /*
351 * This is non-atomic. Only to be used before the mapping is activated.
352 * Probably needs a barrier...
353 */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)354 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
355 {
356 m->gfp_mask = mask;
357 }
358
359 /*
360 * There are some parts of the kernel which assume that PMD entries
361 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then,
362 * limit the maximum allocation order to PMD size. I'm not aware of any
363 * assumptions about maximum order if THP are disabled, but 8 seems like
364 * a good order (that's 1MB if you're using 4kB pages)
365 */
366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
367 #define PREFERRED_MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER
368 #else
369 #define PREFERRED_MAX_PAGECACHE_ORDER 8
370 #endif
371
372 /*
373 * xas_split_alloc() does not support arbitrary orders. This implies no
374 * 512MB THP on ARM64 with 64KB base page size.
375 */
376 #define MAX_XAS_ORDER (XA_CHUNK_SHIFT * 2 - 1)
377 #define MAX_PAGECACHE_ORDER min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER)
378
379 /*
380 * mapping_max_folio_size_supported() - Check the max folio size supported
381 *
382 * The filesystem should call this function at mount time if there is a
383 * requirement on the folio mapping size in the page cache.
384 */
mapping_max_folio_size_supported(void)385 static inline size_t mapping_max_folio_size_supported(void)
386 {
387 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
388 return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER);
389 return PAGE_SIZE;
390 }
391
392 /*
393 * mapping_set_folio_order_range() - Set the orders supported by a file.
394 * @mapping: The address space of the file.
395 * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive).
396 * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive).
397 *
398 * The filesystem should call this function in its inode constructor to
399 * indicate which base size (min) and maximum size (max) of folio the VFS
400 * can use to cache the contents of the file. This should only be used
401 * if the filesystem needs special handling of folio sizes (ie there is
402 * something the core cannot know).
403 * Do not tune it based on, eg, i_size.
404 *
405 * Context: This should not be called while the inode is active as it
406 * is non-atomic.
407 */
mapping_set_folio_order_range(struct address_space * mapping,unsigned int min,unsigned int max)408 static inline void mapping_set_folio_order_range(struct address_space *mapping,
409 unsigned int min,
410 unsigned int max)
411 {
412 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
413 return;
414
415 if (min > MAX_PAGECACHE_ORDER)
416 min = MAX_PAGECACHE_ORDER;
417
418 if (max > MAX_PAGECACHE_ORDER)
419 max = MAX_PAGECACHE_ORDER;
420
421 if (max < min)
422 max = min;
423
424 mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) |
425 (min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX);
426 }
427
mapping_set_folio_min_order(struct address_space * mapping,unsigned int min)428 static inline void mapping_set_folio_min_order(struct address_space *mapping,
429 unsigned int min)
430 {
431 mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER);
432 }
433
434 /**
435 * mapping_set_large_folios() - Indicate the file supports large folios.
436 * @mapping: The address space of the file.
437 *
438 * The filesystem should call this function in its inode constructor to
439 * indicate that the VFS can use large folios to cache the contents of
440 * the file.
441 *
442 * Context: This should not be called while the inode is active as it
443 * is non-atomic.
444 */
mapping_set_large_folios(struct address_space * mapping)445 static inline void mapping_set_large_folios(struct address_space *mapping)
446 {
447 mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER);
448 }
449
450 static inline unsigned int
mapping_max_folio_order(const struct address_space * mapping)451 mapping_max_folio_order(const struct address_space *mapping)
452 {
453 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
454 return 0;
455 return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX;
456 }
457
458 static inline unsigned int
mapping_min_folio_order(const struct address_space * mapping)459 mapping_min_folio_order(const struct address_space *mapping)
460 {
461 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
462 return 0;
463 return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN;
464 }
465
466 static inline unsigned long
mapping_min_folio_nrpages(struct address_space * mapping)467 mapping_min_folio_nrpages(struct address_space *mapping)
468 {
469 return 1UL << mapping_min_folio_order(mapping);
470 }
471
472 /**
473 * mapping_align_index() - Align index for this mapping.
474 * @mapping: The address_space.
475 * @index: The page index.
476 *
477 * The index of a folio must be naturally aligned. If you are adding a
478 * new folio to the page cache and need to know what index to give it,
479 * call this function.
480 */
mapping_align_index(struct address_space * mapping,pgoff_t index)481 static inline pgoff_t mapping_align_index(struct address_space *mapping,
482 pgoff_t index)
483 {
484 return round_down(index, mapping_min_folio_nrpages(mapping));
485 }
486
487 /*
488 * Large folio support currently depends on THP. These dependencies are
489 * being worked on but are not yet fixed.
490 */
mapping_large_folio_support(struct address_space * mapping)491 static inline bool mapping_large_folio_support(struct address_space *mapping)
492 {
493 /* AS_FOLIO_ORDER is only reasonable for pagecache folios */
494 VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON,
495 "Anonymous mapping always supports large folio");
496
497 return mapping_max_folio_order(mapping) > 0;
498 }
499
500 /* Return the maximum folio size for this pagecache mapping, in bytes. */
mapping_max_folio_size(const struct address_space * mapping)501 static inline size_t mapping_max_folio_size(const struct address_space *mapping)
502 {
503 return PAGE_SIZE << mapping_max_folio_order(mapping);
504 }
505
filemap_nr_thps(struct address_space * mapping)506 static inline int filemap_nr_thps(struct address_space *mapping)
507 {
508 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
509 return atomic_read(&mapping->nr_thps);
510 #else
511 return 0;
512 #endif
513 }
514
filemap_nr_thps_inc(struct address_space * mapping)515 static inline void filemap_nr_thps_inc(struct address_space *mapping)
516 {
517 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
518 if (!mapping_large_folio_support(mapping))
519 atomic_inc(&mapping->nr_thps);
520 #else
521 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
522 #endif
523 }
524
filemap_nr_thps_dec(struct address_space * mapping)525 static inline void filemap_nr_thps_dec(struct address_space *mapping)
526 {
527 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
528 if (!mapping_large_folio_support(mapping))
529 atomic_dec(&mapping->nr_thps);
530 #else
531 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
532 #endif
533 }
534
535 struct address_space *folio_mapping(struct folio *);
536 struct address_space *swapcache_mapping(struct folio *);
537
538 /**
539 * folio_flush_mapping - Find the file mapping this folio belongs to.
540 * @folio: The folio.
541 *
542 * For folios which are in the page cache, return the mapping that this
543 * page belongs to. Anonymous folios return NULL, even if they're in
544 * the swap cache. Other kinds of folio also return NULL.
545 *
546 * This is ONLY used by architecture cache flushing code. If you aren't
547 * writing cache flushing code, you want either folio_mapping() or
548 * folio_file_mapping().
549 */
folio_flush_mapping(struct folio * folio)550 static inline struct address_space *folio_flush_mapping(struct folio *folio)
551 {
552 if (unlikely(folio_test_swapcache(folio)))
553 return NULL;
554
555 return folio_mapping(folio);
556 }
557
558 /**
559 * folio_inode - Get the host inode for this folio.
560 * @folio: The folio.
561 *
562 * For folios which are in the page cache, return the inode that this folio
563 * belongs to.
564 *
565 * Do not call this for folios which aren't in the page cache.
566 */
folio_inode(struct folio * folio)567 static inline struct inode *folio_inode(struct folio *folio)
568 {
569 return folio->mapping->host;
570 }
571
572 /**
573 * folio_attach_private - Attach private data to a folio.
574 * @folio: Folio to attach data to.
575 * @data: Data to attach to folio.
576 *
577 * Attaching private data to a folio increments the page's reference count.
578 * The data must be detached before the folio will be freed.
579 */
folio_attach_private(struct folio * folio,void * data)580 static inline void folio_attach_private(struct folio *folio, void *data)
581 {
582 folio_get(folio);
583 folio->private = data;
584 folio_set_private(folio);
585 }
586
587 /**
588 * folio_change_private - Change private data on a folio.
589 * @folio: Folio to change the data on.
590 * @data: Data to set on the folio.
591 *
592 * Change the private data attached to a folio and return the old
593 * data. The page must previously have had data attached and the data
594 * must be detached before the folio will be freed.
595 *
596 * Return: Data that was previously attached to the folio.
597 */
folio_change_private(struct folio * folio,void * data)598 static inline void *folio_change_private(struct folio *folio, void *data)
599 {
600 void *old = folio_get_private(folio);
601
602 folio->private = data;
603 return old;
604 }
605
606 /**
607 * folio_detach_private - Detach private data from a folio.
608 * @folio: Folio to detach data from.
609 *
610 * Removes the data that was previously attached to the folio and decrements
611 * the refcount on the page.
612 *
613 * Return: Data that was attached to the folio.
614 */
folio_detach_private(struct folio * folio)615 static inline void *folio_detach_private(struct folio *folio)
616 {
617 void *data = folio_get_private(folio);
618
619 if (!folio_test_private(folio))
620 return NULL;
621 folio_clear_private(folio);
622 folio->private = NULL;
623 folio_put(folio);
624
625 return data;
626 }
627
attach_page_private(struct page * page,void * data)628 static inline void attach_page_private(struct page *page, void *data)
629 {
630 folio_attach_private(page_folio(page), data);
631 }
632
detach_page_private(struct page * page)633 static inline void *detach_page_private(struct page *page)
634 {
635 return folio_detach_private(page_folio(page));
636 }
637
638 #ifdef CONFIG_NUMA
639 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order);
640 #else
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)641 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
642 {
643 return folio_alloc_noprof(gfp, order);
644 }
645 #endif
646
647 #define filemap_alloc_folio(...) \
648 alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
649
__page_cache_alloc(gfp_t gfp)650 static inline struct page *__page_cache_alloc(gfp_t gfp)
651 {
652 return &filemap_alloc_folio(gfp, 0)->page;
653 }
654
readahead_gfp_mask(struct address_space * x)655 static inline gfp_t readahead_gfp_mask(struct address_space *x)
656 {
657 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
658 }
659
660 typedef int filler_t(struct file *, struct folio *);
661
662 pgoff_t page_cache_next_miss(struct address_space *mapping,
663 pgoff_t index, unsigned long max_scan);
664 pgoff_t page_cache_prev_miss(struct address_space *mapping,
665 pgoff_t index, unsigned long max_scan);
666
667 /**
668 * typedef fgf_t - Flags for getting folios from the page cache.
669 *
670 * Most users of the page cache will not need to use these flags;
671 * there are convenience functions such as filemap_get_folio() and
672 * filemap_lock_folio(). For users which need more control over exactly
673 * what is done with the folios, these flags to __filemap_get_folio()
674 * are available.
675 *
676 * * %FGP_ACCESSED - The folio will be marked accessed.
677 * * %FGP_LOCK - The folio is returned locked.
678 * * %FGP_CREAT - If no folio is present then a new folio is allocated,
679 * added to the page cache and the VM's LRU list. The folio is
680 * returned locked.
681 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
682 * folio is already in cache. If the folio was allocated, unlock it
683 * before returning so the caller can do the same dance.
684 * * %FGP_WRITE - The folio will be written to by the caller.
685 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
686 * * %FGP_NOWAIT - Don't block on the folio lock.
687 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
688 * * %FGP_DONTCACHE - Uncached buffered IO
689 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
690 * implementation.
691 */
692 typedef unsigned int __bitwise fgf_t;
693
694 #define FGP_ACCESSED ((__force fgf_t)0x00000001)
695 #define FGP_LOCK ((__force fgf_t)0x00000002)
696 #define FGP_CREAT ((__force fgf_t)0x00000004)
697 #define FGP_WRITE ((__force fgf_t)0x00000008)
698 #define FGP_NOFS ((__force fgf_t)0x00000010)
699 #define FGP_NOWAIT ((__force fgf_t)0x00000020)
700 #define FGP_FOR_MMAP ((__force fgf_t)0x00000040)
701 #define FGP_STABLE ((__force fgf_t)0x00000080)
702 #define FGP_DONTCACHE ((__force fgf_t)0x00000100)
703 #define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */
704
705 #define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
706
filemap_get_order(size_t size)707 static inline unsigned int filemap_get_order(size_t size)
708 {
709 unsigned int shift = ilog2(size);
710
711 if (shift <= PAGE_SHIFT)
712 return 0;
713
714 return shift - PAGE_SHIFT;
715 }
716
717 /**
718 * fgf_set_order - Encode a length in the fgf_t flags.
719 * @size: The suggested size of the folio to create.
720 *
721 * The caller of __filemap_get_folio() can use this to suggest a preferred
722 * size for the folio that is created. If there is already a folio at
723 * the index, it will be returned, no matter what its size. If a folio
724 * is freshly created, it may be of a different size than requested
725 * due to alignment constraints, memory pressure, or the presence of
726 * other folios at nearby indices.
727 */
fgf_set_order(size_t size)728 static inline fgf_t fgf_set_order(size_t size)
729 {
730 unsigned int order = filemap_get_order(size);
731
732 if (!order)
733 return 0;
734 return (__force fgf_t)(order << 26);
735 }
736
737 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
738 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
739 fgf_t fgp_flags, gfp_t gfp);
740 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
741 fgf_t fgp_flags, gfp_t gfp);
742
743 /**
744 * filemap_get_folio - Find and get a folio.
745 * @mapping: The address_space to search.
746 * @index: The page index.
747 *
748 * Looks up the page cache entry at @mapping & @index. If a folio is
749 * present, it is returned with an increased refcount.
750 *
751 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
752 * this index. Will not return a shadow, swap or DAX entry.
753 */
filemap_get_folio(struct address_space * mapping,pgoff_t index)754 static inline struct folio *filemap_get_folio(struct address_space *mapping,
755 pgoff_t index)
756 {
757 return __filemap_get_folio(mapping, index, 0, 0);
758 }
759
760 /**
761 * filemap_lock_folio - Find and lock a folio.
762 * @mapping: The address_space to search.
763 * @index: The page index.
764 *
765 * Looks up the page cache entry at @mapping & @index. If a folio is
766 * present, it is returned locked with an increased refcount.
767 *
768 * Context: May sleep.
769 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
770 * this index. Will not return a shadow, swap or DAX entry.
771 */
filemap_lock_folio(struct address_space * mapping,pgoff_t index)772 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
773 pgoff_t index)
774 {
775 return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
776 }
777
778 /**
779 * filemap_grab_folio - grab a folio from the page cache
780 * @mapping: The address space to search
781 * @index: The page index
782 *
783 * Looks up the page cache entry at @mapping & @index. If no folio is found,
784 * a new folio is created. The folio is locked, marked as accessed, and
785 * returned.
786 *
787 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
788 * and failed to create a folio.
789 */
filemap_grab_folio(struct address_space * mapping,pgoff_t index)790 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
791 pgoff_t index)
792 {
793 return __filemap_get_folio(mapping, index,
794 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
795 mapping_gfp_mask(mapping));
796 }
797
798 /**
799 * find_get_page - find and get a page reference
800 * @mapping: the address_space to search
801 * @offset: the page index
802 *
803 * Looks up the page cache slot at @mapping & @offset. If there is a
804 * page cache page, it is returned with an increased refcount.
805 *
806 * Otherwise, %NULL is returned.
807 */
find_get_page(struct address_space * mapping,pgoff_t offset)808 static inline struct page *find_get_page(struct address_space *mapping,
809 pgoff_t offset)
810 {
811 return pagecache_get_page(mapping, offset, 0, 0);
812 }
813
find_get_page_flags(struct address_space * mapping,pgoff_t offset,fgf_t fgp_flags)814 static inline struct page *find_get_page_flags(struct address_space *mapping,
815 pgoff_t offset, fgf_t fgp_flags)
816 {
817 return pagecache_get_page(mapping, offset, fgp_flags, 0);
818 }
819
820 /**
821 * find_lock_page - locate, pin and lock a pagecache page
822 * @mapping: the address_space to search
823 * @index: the page index
824 *
825 * Looks up the page cache entry at @mapping & @index. If there is a
826 * page cache page, it is returned locked and with an increased
827 * refcount.
828 *
829 * Context: May sleep.
830 * Return: A struct page or %NULL if there is no page in the cache for this
831 * index.
832 */
find_lock_page(struct address_space * mapping,pgoff_t index)833 static inline struct page *find_lock_page(struct address_space *mapping,
834 pgoff_t index)
835 {
836 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
837 }
838
839 /**
840 * find_or_create_page - locate or add a pagecache page
841 * @mapping: the page's address_space
842 * @index: the page's index into the mapping
843 * @gfp_mask: page allocation mode
844 *
845 * Looks up the page cache slot at @mapping & @offset. If there is a
846 * page cache page, it is returned locked and with an increased
847 * refcount.
848 *
849 * If the page is not present, a new page is allocated using @gfp_mask
850 * and added to the page cache and the VM's LRU list. The page is
851 * returned locked and with an increased refcount.
852 *
853 * On memory exhaustion, %NULL is returned.
854 *
855 * find_or_create_page() may sleep, even if @gfp_flags specifies an
856 * atomic allocation!
857 */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)858 static inline struct page *find_or_create_page(struct address_space *mapping,
859 pgoff_t index, gfp_t gfp_mask)
860 {
861 return pagecache_get_page(mapping, index,
862 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
863 gfp_mask);
864 }
865
866 /**
867 * grab_cache_page_nowait - returns locked page at given index in given cache
868 * @mapping: target address_space
869 * @index: the page index
870 *
871 * Same as grab_cache_page(), but do not wait if the page is unavailable.
872 * This is intended for speculative data generators, where the data can
873 * be regenerated if the page couldn't be grabbed. This routine should
874 * be safe to call while holding the lock for another page.
875 *
876 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
877 * and deadlock against the caller's locked page.
878 */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)879 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
880 pgoff_t index)
881 {
882 return pagecache_get_page(mapping, index,
883 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
884 mapping_gfp_mask(mapping));
885 }
886
887 extern pgoff_t __folio_swap_cache_index(struct folio *folio);
888
889 /**
890 * folio_index - File index of a folio.
891 * @folio: The folio.
892 *
893 * For a folio which is either in the page cache or the swap cache,
894 * return its index within the address_space it belongs to. If you know
895 * the page is definitely in the page cache, you can look at the folio's
896 * index directly.
897 *
898 * Return: The index (offset in units of pages) of a folio in its file.
899 */
folio_index(struct folio * folio)900 static inline pgoff_t folio_index(struct folio *folio)
901 {
902 if (unlikely(folio_test_swapcache(folio)))
903 return __folio_swap_cache_index(folio);
904 return folio->index;
905 }
906
907 /**
908 * folio_next_index - Get the index of the next folio.
909 * @folio: The current folio.
910 *
911 * Return: The index of the folio which follows this folio in the file.
912 */
folio_next_index(struct folio * folio)913 static inline pgoff_t folio_next_index(struct folio *folio)
914 {
915 return folio->index + folio_nr_pages(folio);
916 }
917
918 /**
919 * folio_file_page - The page for a particular index.
920 * @folio: The folio which contains this index.
921 * @index: The index we want to look up.
922 *
923 * Sometimes after looking up a folio in the page cache, we need to
924 * obtain the specific page for an index (eg a page fault).
925 *
926 * Return: The page containing the file data for this index.
927 */
folio_file_page(struct folio * folio,pgoff_t index)928 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
929 {
930 return folio_page(folio, index & (folio_nr_pages(folio) - 1));
931 }
932
933 /**
934 * folio_contains - Does this folio contain this index?
935 * @folio: The folio.
936 * @index: The page index within the file.
937 *
938 * Context: The caller should have the page locked in order to prevent
939 * (eg) shmem from moving the page between the page cache and swap cache
940 * and changing its index in the middle of the operation.
941 * Return: true or false.
942 */
folio_contains(struct folio * folio,pgoff_t index)943 static inline bool folio_contains(struct folio *folio, pgoff_t index)
944 {
945 return index - folio_index(folio) < folio_nr_pages(folio);
946 }
947
948 /*
949 * Given the page we found in the page cache, return the page corresponding
950 * to this index in the file
951 */
find_subpage(struct page * head,pgoff_t index)952 static inline struct page *find_subpage(struct page *head, pgoff_t index)
953 {
954 /* HugeTLBfs wants the head page regardless */
955 if (PageHuge(head))
956 return head;
957
958 return head + (index & (thp_nr_pages(head) - 1));
959 }
960
961 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
962 pgoff_t end, struct folio_batch *fbatch);
963 unsigned filemap_get_folios_contig(struct address_space *mapping,
964 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
965 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
966 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
967
968 /*
969 * Returns locked page at given index in given cache, creating it if needed.
970 */
grab_cache_page(struct address_space * mapping,pgoff_t index)971 static inline struct page *grab_cache_page(struct address_space *mapping,
972 pgoff_t index)
973 {
974 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
975 }
976
977 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
978 filler_t *filler, struct file *file);
979 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
980 gfp_t flags);
981 struct page *read_cache_page(struct address_space *, pgoff_t index,
982 filler_t *filler, struct file *file);
983 extern struct page * read_cache_page_gfp(struct address_space *mapping,
984 pgoff_t index, gfp_t gfp_mask);
985
read_mapping_page(struct address_space * mapping,pgoff_t index,struct file * file)986 static inline struct page *read_mapping_page(struct address_space *mapping,
987 pgoff_t index, struct file *file)
988 {
989 return read_cache_page(mapping, index, NULL, file);
990 }
991
read_mapping_folio(struct address_space * mapping,pgoff_t index,struct file * file)992 static inline struct folio *read_mapping_folio(struct address_space *mapping,
993 pgoff_t index, struct file *file)
994 {
995 return read_cache_folio(mapping, index, NULL, file);
996 }
997
998 /**
999 * page_pgoff - Calculate the logical page offset of this page.
1000 * @folio: The folio containing this page.
1001 * @page: The page which we need the offset of.
1002 *
1003 * For file pages, this is the offset from the beginning of the file
1004 * in units of PAGE_SIZE. For anonymous pages, this is the offset from
1005 * the beginning of the anon_vma in units of PAGE_SIZE. This will
1006 * return nonsense for KSM pages.
1007 *
1008 * Context: Caller must have a reference on the folio or otherwise
1009 * prevent it from being split or freed.
1010 *
1011 * Return: The offset in units of PAGE_SIZE.
1012 */
page_pgoff(const struct folio * folio,const struct page * page)1013 static inline pgoff_t page_pgoff(const struct folio *folio,
1014 const struct page *page)
1015 {
1016 return folio->index + folio_page_idx(folio, page);
1017 }
1018
1019 /**
1020 * folio_pos - Returns the byte position of this folio in its file.
1021 * @folio: The folio.
1022 */
folio_pos(const struct folio * folio)1023 static inline loff_t folio_pos(const struct folio *folio)
1024 {
1025 return ((loff_t)folio->index) * PAGE_SIZE;
1026 }
1027
1028 /*
1029 * Return byte-offset into filesystem object for page.
1030 */
page_offset(struct page * page)1031 static inline loff_t page_offset(struct page *page)
1032 {
1033 struct folio *folio = page_folio(page);
1034
1035 return folio_pos(folio) + folio_page_idx(folio, page) * PAGE_SIZE;
1036 }
1037
1038 /*
1039 * Get the offset in PAGE_SIZE (even for hugetlb folios).
1040 */
folio_pgoff(struct folio * folio)1041 static inline pgoff_t folio_pgoff(struct folio *folio)
1042 {
1043 return folio->index;
1044 }
1045
linear_page_index(struct vm_area_struct * vma,unsigned long address)1046 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
1047 unsigned long address)
1048 {
1049 pgoff_t pgoff;
1050 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1051 pgoff += vma->vm_pgoff;
1052 return pgoff;
1053 }
1054
1055 struct wait_page_key {
1056 struct folio *folio;
1057 int bit_nr;
1058 int page_match;
1059 };
1060
1061 struct wait_page_queue {
1062 struct folio *folio;
1063 int bit_nr;
1064 wait_queue_entry_t wait;
1065 };
1066
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)1067 static inline bool wake_page_match(struct wait_page_queue *wait_page,
1068 struct wait_page_key *key)
1069 {
1070 if (wait_page->folio != key->folio)
1071 return false;
1072 key->page_match = 1;
1073
1074 if (wait_page->bit_nr != key->bit_nr)
1075 return false;
1076
1077 return true;
1078 }
1079
1080 void __folio_lock(struct folio *folio);
1081 int __folio_lock_killable(struct folio *folio);
1082 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1083 void unlock_page(struct page *page);
1084 void folio_unlock(struct folio *folio);
1085
1086 /**
1087 * folio_trylock() - Attempt to lock a folio.
1088 * @folio: The folio to attempt to lock.
1089 *
1090 * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1091 * when the locks are being taken in the wrong order, or if making
1092 * progress through a batch of folios is more important than processing
1093 * them in order). Usually folio_lock() is the correct function to call.
1094 *
1095 * Context: Any context.
1096 * Return: Whether the lock was successfully acquired.
1097 */
folio_trylock(struct folio * folio)1098 static inline bool folio_trylock(struct folio *folio)
1099 {
1100 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1101 }
1102
1103 /*
1104 * Return true if the page was successfully locked
1105 */
trylock_page(struct page * page)1106 static inline bool trylock_page(struct page *page)
1107 {
1108 return folio_trylock(page_folio(page));
1109 }
1110
1111 /**
1112 * folio_lock() - Lock this folio.
1113 * @folio: The folio to lock.
1114 *
1115 * The folio lock protects against many things, probably more than it
1116 * should. It is primarily held while a folio is being brought uptodate,
1117 * either from its backing file or from swap. It is also held while a
1118 * folio is being truncated from its address_space, so holding the lock
1119 * is sufficient to keep folio->mapping stable.
1120 *
1121 * The folio lock is also held while write() is modifying the page to
1122 * provide POSIX atomicity guarantees (as long as the write does not
1123 * cross a page boundary). Other modifications to the data in the folio
1124 * do not hold the folio lock and can race with writes, eg DMA and stores
1125 * to mapped pages.
1126 *
1127 * Context: May sleep. If you need to acquire the locks of two or
1128 * more folios, they must be in order of ascending index, if they are
1129 * in the same address_space. If they are in different address_spaces,
1130 * acquire the lock of the folio which belongs to the address_space which
1131 * has the lowest address in memory first.
1132 */
folio_lock(struct folio * folio)1133 static inline void folio_lock(struct folio *folio)
1134 {
1135 might_sleep();
1136 if (!folio_trylock(folio))
1137 __folio_lock(folio);
1138 }
1139
1140 /**
1141 * lock_page() - Lock the folio containing this page.
1142 * @page: The page to lock.
1143 *
1144 * See folio_lock() for a description of what the lock protects.
1145 * This is a legacy function and new code should probably use folio_lock()
1146 * instead.
1147 *
1148 * Context: May sleep. Pages in the same folio share a lock, so do not
1149 * attempt to lock two pages which share a folio.
1150 */
lock_page(struct page * page)1151 static inline void lock_page(struct page *page)
1152 {
1153 struct folio *folio;
1154 might_sleep();
1155
1156 folio = page_folio(page);
1157 if (!folio_trylock(folio))
1158 __folio_lock(folio);
1159 }
1160
1161 /**
1162 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1163 * @folio: The folio to lock.
1164 *
1165 * Attempts to lock the folio, like folio_lock(), except that the sleep
1166 * to acquire the lock is interruptible by a fatal signal.
1167 *
1168 * Context: May sleep; see folio_lock().
1169 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1170 */
folio_lock_killable(struct folio * folio)1171 static inline int folio_lock_killable(struct folio *folio)
1172 {
1173 might_sleep();
1174 if (!folio_trylock(folio))
1175 return __folio_lock_killable(folio);
1176 return 0;
1177 }
1178
1179 /*
1180 * folio_lock_or_retry - Lock the folio, unless this would block and the
1181 * caller indicated that it can handle a retry.
1182 *
1183 * Return value and mmap_lock implications depend on flags; see
1184 * __folio_lock_or_retry().
1185 */
folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1186 static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1187 struct vm_fault *vmf)
1188 {
1189 might_sleep();
1190 if (!folio_trylock(folio))
1191 return __folio_lock_or_retry(folio, vmf);
1192 return 0;
1193 }
1194
1195 /*
1196 * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1197 * and should not be used directly.
1198 */
1199 void folio_wait_bit(struct folio *folio, int bit_nr);
1200 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1201
1202 /*
1203 * Wait for a folio to be unlocked.
1204 *
1205 * This must be called with the caller "holding" the folio,
1206 * ie with increased folio reference count so that the folio won't
1207 * go away during the wait.
1208 */
folio_wait_locked(struct folio * folio)1209 static inline void folio_wait_locked(struct folio *folio)
1210 {
1211 if (folio_test_locked(folio))
1212 folio_wait_bit(folio, PG_locked);
1213 }
1214
folio_wait_locked_killable(struct folio * folio)1215 static inline int folio_wait_locked_killable(struct folio *folio)
1216 {
1217 if (!folio_test_locked(folio))
1218 return 0;
1219 return folio_wait_bit_killable(folio, PG_locked);
1220 }
1221
1222 void folio_end_read(struct folio *folio, bool success);
1223 void wait_on_page_writeback(struct page *page);
1224 void folio_wait_writeback(struct folio *folio);
1225 int folio_wait_writeback_killable(struct folio *folio);
1226 void end_page_writeback(struct page *page);
1227 void folio_end_writeback(struct folio *folio);
1228 void folio_wait_stable(struct folio *folio);
1229 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1230 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1231 void __folio_cancel_dirty(struct folio *folio);
folio_cancel_dirty(struct folio * folio)1232 static inline void folio_cancel_dirty(struct folio *folio)
1233 {
1234 /* Avoid atomic ops, locking, etc. when not actually needed. */
1235 if (folio_test_dirty(folio))
1236 __folio_cancel_dirty(folio);
1237 }
1238 bool folio_clear_dirty_for_io(struct folio *folio);
1239 bool clear_page_dirty_for_io(struct page *page);
1240 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1241 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1242
1243 #ifdef CONFIG_MIGRATION
1244 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1245 struct folio *src, enum migrate_mode mode);
1246 #else
1247 #define filemap_migrate_folio NULL
1248 #endif
1249 void folio_end_private_2(struct folio *folio);
1250 void folio_wait_private_2(struct folio *folio);
1251 int folio_wait_private_2_killable(struct folio *folio);
1252
1253 /*
1254 * Fault in userspace address range.
1255 */
1256 size_t fault_in_writeable(char __user *uaddr, size_t size);
1257 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1258 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1259 size_t fault_in_readable(const char __user *uaddr, size_t size);
1260
1261 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1262 pgoff_t index, gfp_t gfp);
1263 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1264 pgoff_t index, gfp_t gfp);
1265 void filemap_remove_folio(struct folio *folio);
1266 void __filemap_remove_folio(struct folio *folio, void *shadow);
1267 void replace_page_cache_folio(struct folio *old, struct folio *new);
1268 void delete_from_page_cache_batch(struct address_space *mapping,
1269 struct folio_batch *fbatch);
1270 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1271 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1272 int whence);
1273
1274 /* Must be non-static for BPF error injection */
1275 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1276 pgoff_t index, gfp_t gfp, void **shadowp);
1277
1278 bool filemap_range_has_writeback(struct address_space *mapping,
1279 loff_t start_byte, loff_t end_byte);
1280
1281 /**
1282 * filemap_range_needs_writeback - check if range potentially needs writeback
1283 * @mapping: address space within which to check
1284 * @start_byte: offset in bytes where the range starts
1285 * @end_byte: offset in bytes where the range ends (inclusive)
1286 *
1287 * Find at least one page in the range supplied, usually used to check if
1288 * direct writing in this range will trigger a writeback. Used by O_DIRECT
1289 * read/write with IOCB_NOWAIT, to see if the caller needs to do
1290 * filemap_write_and_wait_range() before proceeding.
1291 *
1292 * Return: %true if the caller should do filemap_write_and_wait_range() before
1293 * doing O_DIRECT to a page in this range, %false otherwise.
1294 */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)1295 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1296 loff_t start_byte,
1297 loff_t end_byte)
1298 {
1299 if (!mapping->nrpages)
1300 return false;
1301 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1302 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1303 return false;
1304 return filemap_range_has_writeback(mapping, start_byte, end_byte);
1305 }
1306
1307 /**
1308 * struct readahead_control - Describes a readahead request.
1309 *
1310 * A readahead request is for consecutive pages. Filesystems which
1311 * implement the ->readahead method should call readahead_page() or
1312 * readahead_page_batch() in a loop and attempt to start I/O against
1313 * each page in the request.
1314 *
1315 * Most of the fields in this struct are private and should be accessed
1316 * by the functions below.
1317 *
1318 * @file: The file, used primarily by network filesystems for authentication.
1319 * May be NULL if invoked internally by the filesystem.
1320 * @mapping: Readahead this filesystem object.
1321 * @ra: File readahead state. May be NULL.
1322 */
1323 struct readahead_control {
1324 struct file *file;
1325 struct address_space *mapping;
1326 struct file_ra_state *ra;
1327 /* private: use the readahead_* accessors instead */
1328 pgoff_t _index;
1329 unsigned int _nr_pages;
1330 unsigned int _batch_count;
1331 bool dropbehind;
1332 bool _workingset;
1333 unsigned long _pflags;
1334 };
1335
1336 #define DEFINE_READAHEAD(ractl, f, r, m, i) \
1337 struct readahead_control ractl = { \
1338 .file = f, \
1339 .mapping = m, \
1340 .ra = r, \
1341 ._index = i, \
1342 }
1343
1344 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1345
1346 void page_cache_ra_unbounded(struct readahead_control *,
1347 unsigned long nr_to_read, unsigned long lookahead_count);
1348 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1349 void page_cache_async_ra(struct readahead_control *, struct folio *,
1350 unsigned long req_count);
1351 void readahead_expand(struct readahead_control *ractl,
1352 loff_t new_start, size_t new_len);
1353
1354 /**
1355 * page_cache_sync_readahead - generic file readahead
1356 * @mapping: address_space which holds the pagecache and I/O vectors
1357 * @ra: file_ra_state which holds the readahead state
1358 * @file: Used by the filesystem for authentication.
1359 * @index: Index of first page to be read.
1360 * @req_count: Total number of pages being read by the caller.
1361 *
1362 * page_cache_sync_readahead() should be called when a cache miss happened:
1363 * it will submit the read. The readahead logic may decide to piggyback more
1364 * pages onto the read request if access patterns suggest it will improve
1365 * performance.
1366 */
1367 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)1368 void page_cache_sync_readahead(struct address_space *mapping,
1369 struct file_ra_state *ra, struct file *file, pgoff_t index,
1370 unsigned long req_count)
1371 {
1372 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1373 page_cache_sync_ra(&ractl, req_count);
1374 }
1375
1376 /**
1377 * page_cache_async_readahead - file readahead for marked pages
1378 * @mapping: address_space which holds the pagecache and I/O vectors
1379 * @ra: file_ra_state which holds the readahead state
1380 * @file: Used by the filesystem for authentication.
1381 * @folio: The folio which triggered the readahead call.
1382 * @req_count: Total number of pages being read by the caller.
1383 *
1384 * page_cache_async_readahead() should be called when a page is used which
1385 * is marked as PageReadahead; this is a marker to suggest that the application
1386 * has used up enough of the readahead window that we should start pulling in
1387 * more pages.
1388 */
1389 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct folio * folio,unsigned long req_count)1390 void page_cache_async_readahead(struct address_space *mapping,
1391 struct file_ra_state *ra, struct file *file,
1392 struct folio *folio, unsigned long req_count)
1393 {
1394 DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index);
1395 page_cache_async_ra(&ractl, folio, req_count);
1396 }
1397
__readahead_folio(struct readahead_control * ractl)1398 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1399 {
1400 struct folio *folio;
1401
1402 BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1403 ractl->_nr_pages -= ractl->_batch_count;
1404 ractl->_index += ractl->_batch_count;
1405
1406 if (!ractl->_nr_pages) {
1407 ractl->_batch_count = 0;
1408 return NULL;
1409 }
1410
1411 folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1412 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1413 ractl->_batch_count = folio_nr_pages(folio);
1414
1415 return folio;
1416 }
1417
1418 /**
1419 * readahead_page - Get the next page to read.
1420 * @ractl: The current readahead request.
1421 *
1422 * Context: The page is locked and has an elevated refcount. The caller
1423 * should decreases the refcount once the page has been submitted for I/O
1424 * and unlock the page once all I/O to that page has completed.
1425 * Return: A pointer to the next page, or %NULL if we are done.
1426 */
readahead_page(struct readahead_control * ractl)1427 static inline struct page *readahead_page(struct readahead_control *ractl)
1428 {
1429 struct folio *folio = __readahead_folio(ractl);
1430
1431 return &folio->page;
1432 }
1433
1434 /**
1435 * readahead_folio - Get the next folio to read.
1436 * @ractl: The current readahead request.
1437 *
1438 * Context: The folio is locked. The caller should unlock the folio once
1439 * all I/O to that folio has completed.
1440 * Return: A pointer to the next folio, or %NULL if we are done.
1441 */
readahead_folio(struct readahead_control * ractl)1442 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1443 {
1444 struct folio *folio = __readahead_folio(ractl);
1445
1446 if (folio)
1447 folio_put(folio);
1448 return folio;
1449 }
1450
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)1451 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1452 struct page **array, unsigned int array_sz)
1453 {
1454 unsigned int i = 0;
1455 XA_STATE(xas, &rac->mapping->i_pages, 0);
1456 struct page *page;
1457
1458 BUG_ON(rac->_batch_count > rac->_nr_pages);
1459 rac->_nr_pages -= rac->_batch_count;
1460 rac->_index += rac->_batch_count;
1461 rac->_batch_count = 0;
1462
1463 xas_set(&xas, rac->_index);
1464 rcu_read_lock();
1465 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1466 if (xas_retry(&xas, page))
1467 continue;
1468 VM_BUG_ON_PAGE(!PageLocked(page), page);
1469 VM_BUG_ON_PAGE(PageTail(page), page);
1470 array[i++] = page;
1471 rac->_batch_count += thp_nr_pages(page);
1472 if (i == array_sz)
1473 break;
1474 }
1475 rcu_read_unlock();
1476
1477 return i;
1478 }
1479
1480 /**
1481 * readahead_page_batch - Get a batch of pages to read.
1482 * @rac: The current readahead request.
1483 * @array: An array of pointers to struct page.
1484 *
1485 * Context: The pages are locked and have an elevated refcount. The caller
1486 * should decreases the refcount once the page has been submitted for I/O
1487 * and unlock the page once all I/O to that page has completed.
1488 * Return: The number of pages placed in the array. 0 indicates the request
1489 * is complete.
1490 */
1491 #define readahead_page_batch(rac, array) \
1492 __readahead_batch(rac, array, ARRAY_SIZE(array))
1493
1494 /**
1495 * readahead_pos - The byte offset into the file of this readahead request.
1496 * @rac: The readahead request.
1497 */
readahead_pos(struct readahead_control * rac)1498 static inline loff_t readahead_pos(struct readahead_control *rac)
1499 {
1500 return (loff_t)rac->_index * PAGE_SIZE;
1501 }
1502
1503 /**
1504 * readahead_length - The number of bytes in this readahead request.
1505 * @rac: The readahead request.
1506 */
readahead_length(struct readahead_control * rac)1507 static inline size_t readahead_length(struct readahead_control *rac)
1508 {
1509 return rac->_nr_pages * PAGE_SIZE;
1510 }
1511
1512 /**
1513 * readahead_index - The index of the first page in this readahead request.
1514 * @rac: The readahead request.
1515 */
readahead_index(struct readahead_control * rac)1516 static inline pgoff_t readahead_index(struct readahead_control *rac)
1517 {
1518 return rac->_index;
1519 }
1520
1521 /**
1522 * readahead_count - The number of pages in this readahead request.
1523 * @rac: The readahead request.
1524 */
readahead_count(struct readahead_control * rac)1525 static inline unsigned int readahead_count(struct readahead_control *rac)
1526 {
1527 return rac->_nr_pages;
1528 }
1529
1530 /**
1531 * readahead_batch_length - The number of bytes in the current batch.
1532 * @rac: The readahead request.
1533 */
readahead_batch_length(struct readahead_control * rac)1534 static inline size_t readahead_batch_length(struct readahead_control *rac)
1535 {
1536 return rac->_batch_count * PAGE_SIZE;
1537 }
1538
dir_pages(struct inode * inode)1539 static inline unsigned long dir_pages(struct inode *inode)
1540 {
1541 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1542 PAGE_SHIFT;
1543 }
1544
1545 /**
1546 * folio_mkwrite_check_truncate - check if folio was truncated
1547 * @folio: the folio to check
1548 * @inode: the inode to check the folio against
1549 *
1550 * Return: the number of bytes in the folio up to EOF,
1551 * or -EFAULT if the folio was truncated.
1552 */
folio_mkwrite_check_truncate(struct folio * folio,struct inode * inode)1553 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1554 struct inode *inode)
1555 {
1556 loff_t size = i_size_read(inode);
1557 pgoff_t index = size >> PAGE_SHIFT;
1558 size_t offset = offset_in_folio(folio, size);
1559
1560 if (!folio->mapping)
1561 return -EFAULT;
1562
1563 /* folio is wholly inside EOF */
1564 if (folio_next_index(folio) - 1 < index)
1565 return folio_size(folio);
1566 /* folio is wholly past EOF */
1567 if (folio->index > index || !offset)
1568 return -EFAULT;
1569 /* folio is partially inside EOF */
1570 return offset;
1571 }
1572
1573 /**
1574 * i_blocks_per_folio - How many blocks fit in this folio.
1575 * @inode: The inode which contains the blocks.
1576 * @folio: The folio.
1577 *
1578 * If the block size is larger than the size of this folio, return zero.
1579 *
1580 * Context: The caller should hold a refcount on the folio to prevent it
1581 * from being split.
1582 * Return: The number of filesystem blocks covered by this folio.
1583 */
1584 static inline
i_blocks_per_folio(struct inode * inode,struct folio * folio)1585 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1586 {
1587 return folio_size(folio) >> inode->i_blkbits;
1588 }
1589 #endif /* _LINUX_PAGEMAP_H */
1590