1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Atmel ADC driver for SAMA5D2 devices and compatible.
4 *
5 * Copyright (C) 2015 Atmel,
6 * 2015 Ludovic Desroches <ludovic.desroches@atmel.com>
7 * 2021 Microchip Technology, Inc. and its subsidiaries
8 * 2021 Eugen Hristev <eugen.hristev@microchip.com>
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/cleanup.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmaengine.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/platform_device.h>
22 #include <linux/property.h>
23 #include <linux/sched.h>
24 #include <linux/units.h>
25 #include <linux/wait.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/sysfs.h>
28 #include <linux/iio/buffer.h>
29 #include <linux/iio/trigger.h>
30 #include <linux/iio/trigger_consumer.h>
31 #include <linux/iio/triggered_buffer.h>
32 #include <linux/nvmem-consumer.h>
33 #include <linux/pinctrl/consumer.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/regulator/consumer.h>
36
37 #include <dt-bindings/iio/adc/at91-sama5d2_adc.h>
38
39 struct at91_adc_reg_layout {
40 /* Control Register */
41 u16 CR;
42 /* Software Reset */
43 #define AT91_SAMA5D2_CR_SWRST BIT(0)
44 /* Start Conversion */
45 #define AT91_SAMA5D2_CR_START BIT(1)
46 /* Touchscreen Calibration */
47 #define AT91_SAMA5D2_CR_TSCALIB BIT(2)
48 /* Comparison Restart */
49 #define AT91_SAMA5D2_CR_CMPRST BIT(4)
50
51 /* Mode Register */
52 u16 MR;
53 /* Trigger Selection */
54 #define AT91_SAMA5D2_MR_TRGSEL(v) ((v) << 1)
55 /* ADTRG */
56 #define AT91_SAMA5D2_MR_TRGSEL_TRIG0 0
57 /* TIOA0 */
58 #define AT91_SAMA5D2_MR_TRGSEL_TRIG1 1
59 /* TIOA1 */
60 #define AT91_SAMA5D2_MR_TRGSEL_TRIG2 2
61 /* TIOA2 */
62 #define AT91_SAMA5D2_MR_TRGSEL_TRIG3 3
63 /* PWM event line 0 */
64 #define AT91_SAMA5D2_MR_TRGSEL_TRIG4 4
65 /* PWM event line 1 */
66 #define AT91_SAMA5D2_MR_TRGSEL_TRIG5 5
67 /* TIOA3 */
68 #define AT91_SAMA5D2_MR_TRGSEL_TRIG6 6
69 /* RTCOUT0 */
70 #define AT91_SAMA5D2_MR_TRGSEL_TRIG7 7
71 /* Sleep Mode */
72 #define AT91_SAMA5D2_MR_SLEEP BIT(5)
73 /* Fast Wake Up */
74 #define AT91_SAMA5D2_MR_FWUP BIT(6)
75 /* Prescaler Rate Selection */
76 #define AT91_SAMA5D2_MR_PRESCAL(v) ((v) << AT91_SAMA5D2_MR_PRESCAL_OFFSET)
77 #define AT91_SAMA5D2_MR_PRESCAL_OFFSET 8
78 #define AT91_SAMA5D2_MR_PRESCAL_MAX 0xff
79 #define AT91_SAMA5D2_MR_PRESCAL_MASK GENMASK(15, 8)
80 /* Startup Time */
81 #define AT91_SAMA5D2_MR_STARTUP(v) ((v) << 16)
82 #define AT91_SAMA5D2_MR_STARTUP_MASK GENMASK(19, 16)
83 /* Minimum startup time for temperature sensor */
84 #define AT91_SAMA5D2_MR_STARTUP_TS_MIN (50)
85 /* Analog Change */
86 #define AT91_SAMA5D2_MR_ANACH BIT(23)
87 /* Tracking Time */
88 #define AT91_SAMA5D2_MR_TRACKTIM(v) ((v) << 24)
89 #define AT91_SAMA5D2_MR_TRACKTIM_TS 6
90 #define AT91_SAMA5D2_MR_TRACKTIM_MAX 0xf
91 /* Transfer Time */
92 #define AT91_SAMA5D2_MR_TRANSFER(v) ((v) << 28)
93 #define AT91_SAMA5D2_MR_TRANSFER_MAX 0x3
94 /* Use Sequence Enable */
95 #define AT91_SAMA5D2_MR_USEQ BIT(31)
96
97 /* Channel Sequence Register 1 */
98 u16 SEQR1;
99 /* Channel Sequence Register 2 */
100 u16 SEQR2;
101 /* Channel Enable Register */
102 u16 CHER;
103 /* Channel Disable Register */
104 u16 CHDR;
105 /* Channel Status Register */
106 u16 CHSR;
107 /* Last Converted Data Register */
108 u16 LCDR;
109 /* Interrupt Enable Register */
110 u16 IER;
111 /* Interrupt Enable Register - TS X measurement ready */
112 #define AT91_SAMA5D2_IER_XRDY BIT(20)
113 /* Interrupt Enable Register - TS Y measurement ready */
114 #define AT91_SAMA5D2_IER_YRDY BIT(21)
115 /* Interrupt Enable Register - TS pressure measurement ready */
116 #define AT91_SAMA5D2_IER_PRDY BIT(22)
117 /* Interrupt Enable Register - Data ready */
118 #define AT91_SAMA5D2_IER_DRDY BIT(24)
119 /* Interrupt Enable Register - general overrun error */
120 #define AT91_SAMA5D2_IER_GOVRE BIT(25)
121 /* Interrupt Enable Register - Pen detect */
122 #define AT91_SAMA5D2_IER_PEN BIT(29)
123 /* Interrupt Enable Register - No pen detect */
124 #define AT91_SAMA5D2_IER_NOPEN BIT(30)
125
126 /* Interrupt Disable Register */
127 u16 IDR;
128 /* Interrupt Mask Register */
129 u16 IMR;
130 /* Interrupt Status Register */
131 u16 ISR;
132 /* End of Conversion Interrupt Enable Register */
133 u16 EOC_IER;
134 /* End of Conversion Interrupt Disable Register */
135 u16 EOC_IDR;
136 /* End of Conversion Interrupt Mask Register */
137 u16 EOC_IMR;
138 /* End of Conversion Interrupt Status Register */
139 u16 EOC_ISR;
140 /* Interrupt Status Register - Pen touching sense status */
141 #define AT91_SAMA5D2_ISR_PENS BIT(31)
142 /* Last Channel Trigger Mode Register */
143 u16 LCTMR;
144 /* Last Channel Compare Window Register */
145 u16 LCCWR;
146 /* Overrun Status Register */
147 u16 OVER;
148 /* Extended Mode Register */
149 u16 EMR;
150 /* Extended Mode Register - Oversampling rate */
151 #define AT91_SAMA5D2_EMR_OSR(V, M) (((V) << 16) & (M))
152 #define AT91_SAMA5D2_EMR_OSR_1SAMPLES 0
153 #define AT91_SAMA5D2_EMR_OSR_4SAMPLES 1
154 #define AT91_SAMA5D2_EMR_OSR_16SAMPLES 2
155 #define AT91_SAMA5D2_EMR_OSR_64SAMPLES 3
156 #define AT91_SAMA5D2_EMR_OSR_256SAMPLES 4
157
158 /* Extended Mode Register - TRACKX */
159 #define AT91_SAMA5D2_TRACKX_MASK GENMASK(23, 22)
160 #define AT91_SAMA5D2_TRACKX(x) (((x) << 22) & \
161 AT91_SAMA5D2_TRACKX_MASK)
162 /* TRACKX for temperature sensor. */
163 #define AT91_SAMA5D2_TRACKX_TS (1)
164
165 /* Extended Mode Register - Averaging on single trigger event */
166 #define AT91_SAMA5D2_EMR_ASTE(V) ((V) << 20)
167
168 /* Compare Window Register */
169 u16 CWR;
170 /* Channel Gain Register */
171 u16 CGR;
172 /* Channel Offset Register */
173 u16 COR;
174 /* Channel Offset Register differential offset - constant, not a register */
175 u16 COR_diff_offset;
176 /* Analog Control Register */
177 u16 ACR;
178 /* Analog Control Register - Pen detect sensitivity mask */
179 #define AT91_SAMA5D2_ACR_PENDETSENS_MASK GENMASK(1, 0)
180 /* Analog Control Register - Source last channel */
181 #define AT91_SAMA5D2_ACR_SRCLCH BIT(16)
182
183 /* Touchscreen Mode Register */
184 u16 TSMR;
185 /* Touchscreen Mode Register - No touch mode */
186 #define AT91_SAMA5D2_TSMR_TSMODE_NONE 0
187 /* Touchscreen Mode Register - 4 wire screen, no pressure measurement */
188 #define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_NO_PRESS 1
189 /* Touchscreen Mode Register - 4 wire screen, pressure measurement */
190 #define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS 2
191 /* Touchscreen Mode Register - 5 wire screen */
192 #define AT91_SAMA5D2_TSMR_TSMODE_5WIRE 3
193 /* Touchscreen Mode Register - Average samples mask */
194 #define AT91_SAMA5D2_TSMR_TSAV_MASK GENMASK(5, 4)
195 /* Touchscreen Mode Register - Average samples */
196 #define AT91_SAMA5D2_TSMR_TSAV(x) ((x) << 4)
197 /* Touchscreen Mode Register - Touch/trigger frequency ratio mask */
198 #define AT91_SAMA5D2_TSMR_TSFREQ_MASK GENMASK(11, 8)
199 /* Touchscreen Mode Register - Touch/trigger frequency ratio */
200 #define AT91_SAMA5D2_TSMR_TSFREQ(x) ((x) << 8)
201 /* Touchscreen Mode Register - Pen Debounce Time mask */
202 #define AT91_SAMA5D2_TSMR_PENDBC_MASK GENMASK(31, 28)
203 /* Touchscreen Mode Register - Pen Debounce Time */
204 #define AT91_SAMA5D2_TSMR_PENDBC(x) ((x) << 28)
205 /* Touchscreen Mode Register - No DMA for touch measurements */
206 #define AT91_SAMA5D2_TSMR_NOTSDMA BIT(22)
207 /* Touchscreen Mode Register - Disable pen detection */
208 #define AT91_SAMA5D2_TSMR_PENDET_DIS (0 << 24)
209 /* Touchscreen Mode Register - Enable pen detection */
210 #define AT91_SAMA5D2_TSMR_PENDET_ENA BIT(24)
211
212 /* Touchscreen X Position Register */
213 u16 XPOSR;
214 /* Touchscreen Y Position Register */
215 u16 YPOSR;
216 /* Touchscreen Pressure Register */
217 u16 PRESSR;
218 /* Trigger Register */
219 u16 TRGR;
220 /* Mask for TRGMOD field of TRGR register */
221 #define AT91_SAMA5D2_TRGR_TRGMOD_MASK GENMASK(2, 0)
222 /* No trigger, only software trigger can start conversions */
223 #define AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER 0
224 /* Trigger Mode external trigger rising edge */
225 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE 1
226 /* Trigger Mode external trigger falling edge */
227 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL 2
228 /* Trigger Mode external trigger any edge */
229 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY 3
230 /* Trigger Mode internal periodic */
231 #define AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC 5
232 /* Trigger Mode - trigger period mask */
233 #define AT91_SAMA5D2_TRGR_TRGPER_MASK GENMASK(31, 16)
234 /* Trigger Mode - trigger period */
235 #define AT91_SAMA5D2_TRGR_TRGPER(x) ((x) << 16)
236
237 /* Correction Select Register */
238 u16 COSR;
239 /* Correction Value Register */
240 u16 CVR;
241 /* Channel Error Correction Register */
242 u16 CECR;
243 /* Write Protection Mode Register */
244 u16 WPMR;
245 /* Write Protection Status Register */
246 u16 WPSR;
247 /* Version Register */
248 u16 VERSION;
249 /* Temperature Sensor Mode Register */
250 u16 TEMPMR;
251 /* Temperature Sensor Mode - Temperature sensor on */
252 #define AT91_SAMA5D2_TEMPMR_TEMPON BIT(0)
253 };
254
255 static const struct at91_adc_reg_layout sama5d2_layout = {
256 .CR = 0x00,
257 .MR = 0x04,
258 .SEQR1 = 0x08,
259 .SEQR2 = 0x0c,
260 .CHER = 0x10,
261 .CHDR = 0x14,
262 .CHSR = 0x18,
263 .LCDR = 0x20,
264 .IER = 0x24,
265 .IDR = 0x28,
266 .IMR = 0x2c,
267 .ISR = 0x30,
268 .LCTMR = 0x34,
269 .LCCWR = 0x38,
270 .OVER = 0x3c,
271 .EMR = 0x40,
272 .CWR = 0x44,
273 .CGR = 0x48,
274 .COR = 0x4c,
275 .COR_diff_offset = 16,
276 .ACR = 0x94,
277 .TSMR = 0xb0,
278 .XPOSR = 0xb4,
279 .YPOSR = 0xb8,
280 .PRESSR = 0xbc,
281 .TRGR = 0xc0,
282 .COSR = 0xd0,
283 .CVR = 0xd4,
284 .CECR = 0xd8,
285 .WPMR = 0xe4,
286 .WPSR = 0xe8,
287 .VERSION = 0xfc,
288 };
289
290 static const struct at91_adc_reg_layout sama7g5_layout = {
291 .CR = 0x00,
292 .MR = 0x04,
293 .SEQR1 = 0x08,
294 .SEQR2 = 0x0c,
295 .CHER = 0x10,
296 .CHDR = 0x14,
297 .CHSR = 0x18,
298 .LCDR = 0x20,
299 .IER = 0x24,
300 .IDR = 0x28,
301 .IMR = 0x2c,
302 .ISR = 0x30,
303 .EOC_IER = 0x34,
304 .EOC_IDR = 0x38,
305 .EOC_IMR = 0x3c,
306 .EOC_ISR = 0x40,
307 .TEMPMR = 0x44,
308 .OVER = 0x4c,
309 .EMR = 0x50,
310 .CWR = 0x54,
311 .COR = 0x5c,
312 .COR_diff_offset = 0,
313 .ACR = 0xe0,
314 .TRGR = 0x100,
315 .COSR = 0x104,
316 .CVR = 0x108,
317 .CECR = 0x10c,
318 .WPMR = 0x118,
319 .WPSR = 0x11c,
320 .VERSION = 0x130,
321 };
322
323 #define AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US 2000 /* 2ms */
324 #define AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US 200
325
326 #define AT91_SAMA5D2_XYZ_MASK GENMASK(11, 0)
327
328 #define AT91_SAMA5D2_MAX_POS_BITS 12
329
330 #define AT91_HWFIFO_MAX_SIZE_STR "128"
331 #define AT91_HWFIFO_MAX_SIZE 128
332
333 #define AT91_SAMA_CHAN_SINGLE(index, num, addr, rbits) \
334 { \
335 .type = IIO_VOLTAGE, \
336 .channel = num, \
337 .address = addr, \
338 .scan_index = index, \
339 .scan_type = { \
340 .sign = 'u', \
341 .realbits = rbits, \
342 .storagebits = 16, \
343 }, \
344 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
345 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
346 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
347 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
348 .info_mask_shared_by_all_available = \
349 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
350 .datasheet_name = "CH"#num, \
351 .indexed = 1, \
352 }
353
354 #define AT91_SAMA5D2_CHAN_SINGLE(index, num, addr) \
355 AT91_SAMA_CHAN_SINGLE(index, num, addr, 14)
356
357 #define AT91_SAMA7G5_CHAN_SINGLE(index, num, addr) \
358 AT91_SAMA_CHAN_SINGLE(index, num, addr, 16)
359
360 #define AT91_SAMA_CHAN_DIFF(index, num, num2, addr, rbits) \
361 { \
362 .type = IIO_VOLTAGE, \
363 .differential = 1, \
364 .channel = num, \
365 .channel2 = num2, \
366 .address = addr, \
367 .scan_index = index, \
368 .scan_type = { \
369 .sign = 's', \
370 .realbits = rbits, \
371 .storagebits = 16, \
372 }, \
373 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
374 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
375 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
376 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
377 .info_mask_shared_by_all_available = \
378 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
379 .datasheet_name = "CH"#num"-CH"#num2, \
380 .indexed = 1, \
381 }
382
383 #define AT91_SAMA5D2_CHAN_DIFF(index, num, num2, addr) \
384 AT91_SAMA_CHAN_DIFF(index, num, num2, addr, 14)
385
386 #define AT91_SAMA7G5_CHAN_DIFF(index, num, num2, addr) \
387 AT91_SAMA_CHAN_DIFF(index, num, num2, addr, 16)
388
389 #define AT91_SAMA5D2_CHAN_TOUCH(num, name, mod) \
390 { \
391 .type = IIO_POSITIONRELATIVE, \
392 .modified = 1, \
393 .channel = num, \
394 .channel2 = mod, \
395 .scan_index = num, \
396 .scan_type = { \
397 .sign = 'u', \
398 .realbits = 12, \
399 .storagebits = 16, \
400 }, \
401 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
402 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
403 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
404 .info_mask_shared_by_all_available = \
405 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
406 .datasheet_name = name, \
407 }
408 #define AT91_SAMA5D2_CHAN_PRESSURE(num, name) \
409 { \
410 .type = IIO_PRESSURE, \
411 .channel = num, \
412 .scan_index = num, \
413 .scan_type = { \
414 .sign = 'u', \
415 .realbits = 12, \
416 .storagebits = 16, \
417 }, \
418 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
419 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
420 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
421 .info_mask_shared_by_all_available = \
422 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
423 .datasheet_name = name, \
424 }
425
426 #define AT91_SAMA5D2_CHAN_TEMP(num, name, addr) \
427 { \
428 .type = IIO_TEMP, \
429 .channel = num, \
430 .address = addr, \
431 .scan_index = num, \
432 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
433 .info_mask_shared_by_all = \
434 BIT(IIO_CHAN_INFO_PROCESSED) | \
435 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
436 .info_mask_shared_by_all_available = \
437 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
438 .datasheet_name = name, \
439 }
440
441 #define at91_adc_readl(st, reg) \
442 readl_relaxed((st)->base + (st)->soc_info.platform->layout->reg)
443 #define at91_adc_read_chan(st, reg) \
444 readl_relaxed((st)->base + reg)
445 #define at91_adc_writel(st, reg, val) \
446 writel_relaxed(val, (st)->base + (st)->soc_info.platform->layout->reg)
447
448 /**
449 * struct at91_adc_platform - at91-sama5d2 platform information struct
450 * @layout: pointer to the reg layout struct
451 * @adc_channels: pointer to an array of channels for registering in
452 * the iio subsystem
453 * @nr_channels: number of physical channels available
454 * @touch_chan_x: index of the touchscreen X channel
455 * @touch_chan_y: index of the touchscreen Y channel
456 * @touch_chan_p: index of the touchscreen P channel
457 * @max_channels: number of total channels
458 * @max_index: highest channel index (highest index may be higher
459 * than the total channel number)
460 * @hw_trig_cnt: number of possible hardware triggers
461 * @osr_mask: oversampling ratio bitmask on EMR register
462 * @oversampling_avail: available oversampling values
463 * @oversampling_avail_no: number of available oversampling values
464 * @chan_realbits: realbits for registered channels
465 * @temp_chan: temperature channel index
466 * @temp_sensor: temperature sensor supported
467 */
468 struct at91_adc_platform {
469 const struct at91_adc_reg_layout *layout;
470 const struct iio_chan_spec (*adc_channels)[];
471 unsigned int nr_channels;
472 unsigned int touch_chan_x;
473 unsigned int touch_chan_y;
474 unsigned int touch_chan_p;
475 unsigned int max_channels;
476 unsigned int max_index;
477 unsigned int hw_trig_cnt;
478 unsigned int osr_mask;
479 unsigned int oversampling_avail[5];
480 unsigned int oversampling_avail_no;
481 unsigned int chan_realbits;
482 unsigned int temp_chan;
483 bool temp_sensor;
484 };
485
486 /**
487 * struct at91_adc_temp_sensor_clb - at91-sama5d2 temperature sensor
488 * calibration data structure
489 * @p1: P1 calibration temperature
490 * @p4: P4 calibration voltage
491 * @p6: P6 calibration voltage
492 */
493 struct at91_adc_temp_sensor_clb {
494 u32 p1;
495 u32 p4;
496 u32 p6;
497 };
498
499 /**
500 * enum at91_adc_ts_clb_idx - calibration indexes in NVMEM buffer
501 * @AT91_ADC_TS_CLB_IDX_P1: index for P1
502 * @AT91_ADC_TS_CLB_IDX_P4: index for P4
503 * @AT91_ADC_TS_CLB_IDX_P6: index for P6
504 * @AT91_ADC_TS_CLB_IDX_MAX: max index for temperature calibration packet in OTP
505 */
506 enum at91_adc_ts_clb_idx {
507 AT91_ADC_TS_CLB_IDX_P1 = 2,
508 AT91_ADC_TS_CLB_IDX_P4 = 5,
509 AT91_ADC_TS_CLB_IDX_P6 = 7,
510 AT91_ADC_TS_CLB_IDX_MAX = 19,
511 };
512
513 /* Temperature sensor calibration - Vtemp voltage sensitivity to temperature. */
514 #define AT91_ADC_TS_VTEMP_DT (2080U)
515
516 /**
517 * struct at91_adc_soc_info - at91-sama5d2 soc information struct
518 * @startup_time: device startup time
519 * @min_sample_rate: minimum sample rate in Hz
520 * @max_sample_rate: maximum sample rate in Hz
521 * @platform: pointer to the platform structure
522 * @temp_sensor_clb: temperature sensor calibration data structure
523 */
524 struct at91_adc_soc_info {
525 unsigned startup_time;
526 unsigned min_sample_rate;
527 unsigned max_sample_rate;
528 const struct at91_adc_platform *platform;
529 struct at91_adc_temp_sensor_clb temp_sensor_clb;
530 };
531
532 struct at91_adc_trigger {
533 char *name;
534 unsigned int trgmod_value;
535 unsigned int edge_type;
536 bool hw_trig;
537 };
538
539 /**
540 * struct at91_adc_dma - at91-sama5d2 dma information struct
541 * @dma_chan: the dma channel acquired
542 * @rx_buf: dma coherent allocated area
543 * @rx_dma_buf: dma handler for the buffer
544 * @phys_addr: physical address of the ADC base register
545 * @buf_idx: index inside the dma buffer where reading was last done
546 * @rx_buf_sz: size of buffer used by DMA operation
547 * @watermark: number of conversions to copy before DMA triggers irq
548 * @dma_ts: hold the start timestamp of dma operation
549 */
550 struct at91_adc_dma {
551 struct dma_chan *dma_chan;
552 u8 *rx_buf;
553 dma_addr_t rx_dma_buf;
554 phys_addr_t phys_addr;
555 int buf_idx;
556 int rx_buf_sz;
557 int watermark;
558 s64 dma_ts;
559 };
560
561 /**
562 * struct at91_adc_touch - at91-sama5d2 touchscreen information struct
563 * @sample_period_val: the value for periodic trigger interval
564 * @touching: is the pen touching the screen or not
565 * @x_pos: temporary placeholder for pressure computation
566 * @channels_bitmask: bitmask with the touchscreen channels enabled
567 * @workq: workqueue for buffer data pushing
568 */
569 struct at91_adc_touch {
570 u16 sample_period_val;
571 bool touching;
572 u16 x_pos;
573 unsigned long channels_bitmask;
574 struct work_struct workq;
575 };
576
577 /**
578 * struct at91_adc_temp - at91-sama5d2 temperature information structure
579 * @sample_period_val: sample period value
580 * @saved_sample_rate: saved sample rate
581 * @saved_oversampling: saved oversampling
582 */
583 struct at91_adc_temp {
584 u16 sample_period_val;
585 u16 saved_sample_rate;
586 u16 saved_oversampling;
587 };
588
589 struct at91_adc_state {
590 void __iomem *base;
591 int irq;
592 struct clk *per_clk;
593 struct regulator *reg;
594 struct regulator *vref;
595 int vref_uv;
596 unsigned int current_sample_rate;
597 struct iio_trigger *trig;
598 const struct at91_adc_trigger *selected_trig;
599 const struct iio_chan_spec *chan;
600 bool conversion_done;
601 u32 conversion_value;
602 unsigned int oversampling_ratio;
603 struct at91_adc_soc_info soc_info;
604 wait_queue_head_t wq_data_available;
605 struct at91_adc_dma dma_st;
606 struct at91_adc_touch touch_st;
607 struct at91_adc_temp temp_st;
608 struct iio_dev *indio_dev;
609 struct device *dev;
610 /* We assume 32 channels for now, has to be increased if needed. */
611 IIO_DECLARE_BUFFER_WITH_TS(u16, buffer, 32);
612 /*
613 * lock to prevent concurrent 'single conversion' requests through
614 * sysfs.
615 */
616 struct mutex lock;
617 };
618
619 static const struct at91_adc_trigger at91_adc_trigger_list[] = {
620 {
621 .name = "external_rising",
622 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE,
623 .edge_type = IRQ_TYPE_EDGE_RISING,
624 .hw_trig = true,
625 },
626 {
627 .name = "external_falling",
628 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL,
629 .edge_type = IRQ_TYPE_EDGE_FALLING,
630 .hw_trig = true,
631 },
632 {
633 .name = "external_any",
634 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY,
635 .edge_type = IRQ_TYPE_EDGE_BOTH,
636 .hw_trig = true,
637 },
638 {
639 .name = "software",
640 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER,
641 .edge_type = IRQ_TYPE_NONE,
642 .hw_trig = false,
643 },
644 };
645
646 static const struct iio_chan_spec at91_sama5d2_adc_channels[] = {
647 AT91_SAMA5D2_CHAN_SINGLE(0, 0, 0x50),
648 AT91_SAMA5D2_CHAN_SINGLE(1, 1, 0x54),
649 AT91_SAMA5D2_CHAN_SINGLE(2, 2, 0x58),
650 AT91_SAMA5D2_CHAN_SINGLE(3, 3, 0x5c),
651 AT91_SAMA5D2_CHAN_SINGLE(4, 4, 0x60),
652 AT91_SAMA5D2_CHAN_SINGLE(5, 5, 0x64),
653 AT91_SAMA5D2_CHAN_SINGLE(6, 6, 0x68),
654 AT91_SAMA5D2_CHAN_SINGLE(7, 7, 0x6c),
655 AT91_SAMA5D2_CHAN_SINGLE(8, 8, 0x70),
656 AT91_SAMA5D2_CHAN_SINGLE(9, 9, 0x74),
657 AT91_SAMA5D2_CHAN_SINGLE(10, 10, 0x78),
658 AT91_SAMA5D2_CHAN_SINGLE(11, 11, 0x7c),
659 /* original ABI has the differential channels with a gap in between */
660 AT91_SAMA5D2_CHAN_DIFF(12, 0, 1, 0x50),
661 AT91_SAMA5D2_CHAN_DIFF(14, 2, 3, 0x58),
662 AT91_SAMA5D2_CHAN_DIFF(16, 4, 5, 0x60),
663 AT91_SAMA5D2_CHAN_DIFF(18, 6, 7, 0x68),
664 AT91_SAMA5D2_CHAN_DIFF(20, 8, 9, 0x70),
665 AT91_SAMA5D2_CHAN_DIFF(22, 10, 11, 0x78),
666 IIO_CHAN_SOFT_TIMESTAMP(23),
667 AT91_SAMA5D2_CHAN_TOUCH(24, "x", IIO_MOD_X),
668 AT91_SAMA5D2_CHAN_TOUCH(25, "y", IIO_MOD_Y),
669 AT91_SAMA5D2_CHAN_PRESSURE(26, "pressure"),
670 };
671
672 static const struct iio_chan_spec at91_sama7g5_adc_channels[] = {
673 AT91_SAMA7G5_CHAN_SINGLE(0, 0, 0x60),
674 AT91_SAMA7G5_CHAN_SINGLE(1, 1, 0x64),
675 AT91_SAMA7G5_CHAN_SINGLE(2, 2, 0x68),
676 AT91_SAMA7G5_CHAN_SINGLE(3, 3, 0x6c),
677 AT91_SAMA7G5_CHAN_SINGLE(4, 4, 0x70),
678 AT91_SAMA7G5_CHAN_SINGLE(5, 5, 0x74),
679 AT91_SAMA7G5_CHAN_SINGLE(6, 6, 0x78),
680 AT91_SAMA7G5_CHAN_SINGLE(7, 7, 0x7c),
681 AT91_SAMA7G5_CHAN_SINGLE(8, 8, 0x80),
682 AT91_SAMA7G5_CHAN_SINGLE(9, 9, 0x84),
683 AT91_SAMA7G5_CHAN_SINGLE(10, 10, 0x88),
684 AT91_SAMA7G5_CHAN_SINGLE(11, 11, 0x8c),
685 AT91_SAMA7G5_CHAN_SINGLE(12, 12, 0x90),
686 AT91_SAMA7G5_CHAN_SINGLE(13, 13, 0x94),
687 AT91_SAMA7G5_CHAN_SINGLE(14, 14, 0x98),
688 AT91_SAMA7G5_CHAN_SINGLE(15, 15, 0x9c),
689 AT91_SAMA7G5_CHAN_DIFF(16, 0, 1, 0x60),
690 AT91_SAMA7G5_CHAN_DIFF(17, 2, 3, 0x68),
691 AT91_SAMA7G5_CHAN_DIFF(18, 4, 5, 0x70),
692 AT91_SAMA7G5_CHAN_DIFF(19, 6, 7, 0x78),
693 AT91_SAMA7G5_CHAN_DIFF(20, 8, 9, 0x80),
694 AT91_SAMA7G5_CHAN_DIFF(21, 10, 11, 0x88),
695 AT91_SAMA7G5_CHAN_DIFF(22, 12, 13, 0x90),
696 AT91_SAMA7G5_CHAN_DIFF(23, 14, 15, 0x98),
697 IIO_CHAN_SOFT_TIMESTAMP(24),
698 AT91_SAMA5D2_CHAN_TEMP(AT91_SAMA7G5_ADC_TEMP_CHANNEL, "temp", 0xdc),
699 };
700
701 static const struct at91_adc_platform sama5d2_platform = {
702 .layout = &sama5d2_layout,
703 .adc_channels = &at91_sama5d2_adc_channels,
704 #define AT91_SAMA5D2_SINGLE_CHAN_CNT 12
705 #define AT91_SAMA5D2_DIFF_CHAN_CNT 6
706 .nr_channels = AT91_SAMA5D2_SINGLE_CHAN_CNT +
707 AT91_SAMA5D2_DIFF_CHAN_CNT,
708 #define AT91_SAMA5D2_TOUCH_X_CHAN_IDX (AT91_SAMA5D2_SINGLE_CHAN_CNT + \
709 AT91_SAMA5D2_DIFF_CHAN_CNT * 2)
710 .touch_chan_x = AT91_SAMA5D2_TOUCH_X_CHAN_IDX,
711 #define AT91_SAMA5D2_TOUCH_Y_CHAN_IDX (AT91_SAMA5D2_TOUCH_X_CHAN_IDX + 1)
712 .touch_chan_y = AT91_SAMA5D2_TOUCH_Y_CHAN_IDX,
713 #define AT91_SAMA5D2_TOUCH_P_CHAN_IDX (AT91_SAMA5D2_TOUCH_Y_CHAN_IDX + 1)
714 .touch_chan_p = AT91_SAMA5D2_TOUCH_P_CHAN_IDX,
715 #define AT91_SAMA5D2_MAX_CHAN_IDX AT91_SAMA5D2_TOUCH_P_CHAN_IDX
716 .max_channels = ARRAY_SIZE(at91_sama5d2_adc_channels),
717 .max_index = AT91_SAMA5D2_MAX_CHAN_IDX,
718 #define AT91_SAMA5D2_HW_TRIG_CNT 3
719 .hw_trig_cnt = AT91_SAMA5D2_HW_TRIG_CNT,
720 .osr_mask = GENMASK(17, 16),
721 .oversampling_avail = { 1, 4, 16, },
722 .oversampling_avail_no = 3,
723 .chan_realbits = 14,
724 };
725
726 static const struct at91_adc_platform sama7g5_platform = {
727 .layout = &sama7g5_layout,
728 .adc_channels = &at91_sama7g5_adc_channels,
729 #define AT91_SAMA7G5_SINGLE_CHAN_CNT 16
730 #define AT91_SAMA7G5_DIFF_CHAN_CNT 8
731 #define AT91_SAMA7G5_TEMP_CHAN_CNT 1
732 .nr_channels = AT91_SAMA7G5_SINGLE_CHAN_CNT +
733 AT91_SAMA7G5_DIFF_CHAN_CNT +
734 AT91_SAMA7G5_TEMP_CHAN_CNT,
735 #define AT91_SAMA7G5_MAX_CHAN_IDX (AT91_SAMA7G5_SINGLE_CHAN_CNT + \
736 AT91_SAMA7G5_DIFF_CHAN_CNT + \
737 AT91_SAMA7G5_TEMP_CHAN_CNT)
738 .max_channels = ARRAY_SIZE(at91_sama7g5_adc_channels),
739 .max_index = AT91_SAMA7G5_MAX_CHAN_IDX,
740 #define AT91_SAMA7G5_HW_TRIG_CNT 3
741 .hw_trig_cnt = AT91_SAMA7G5_HW_TRIG_CNT,
742 .osr_mask = GENMASK(18, 16),
743 .oversampling_avail = { 1, 4, 16, 64, 256, },
744 .oversampling_avail_no = 5,
745 .chan_realbits = 16,
746 .temp_sensor = true,
747 .temp_chan = AT91_SAMA7G5_ADC_TEMP_CHANNEL,
748 };
749
at91_adc_chan_xlate(struct iio_dev * indio_dev,int chan)750 static int at91_adc_chan_xlate(struct iio_dev *indio_dev, int chan)
751 {
752 int i;
753
754 for (i = 0; i < indio_dev->num_channels; i++) {
755 if (indio_dev->channels[i].scan_index == chan)
756 return i;
757 }
758 return -EINVAL;
759 }
760
761 static inline struct iio_chan_spec const *
at91_adc_chan_get(struct iio_dev * indio_dev,int chan)762 at91_adc_chan_get(struct iio_dev *indio_dev, int chan)
763 {
764 int index = at91_adc_chan_xlate(indio_dev, chan);
765
766 if (index < 0)
767 return NULL;
768 return indio_dev->channels + index;
769 }
770
at91_adc_fwnode_xlate(struct iio_dev * indio_dev,const struct fwnode_reference_args * iiospec)771 static inline int at91_adc_fwnode_xlate(struct iio_dev *indio_dev,
772 const struct fwnode_reference_args *iiospec)
773 {
774 return at91_adc_chan_xlate(indio_dev, iiospec->args[0]);
775 }
776
at91_adc_active_scan_mask_to_reg(struct iio_dev * indio_dev)777 static unsigned int at91_adc_active_scan_mask_to_reg(struct iio_dev *indio_dev)
778 {
779 u32 mask = 0;
780 u8 bit;
781 struct at91_adc_state *st = iio_priv(indio_dev);
782
783 for_each_set_bit(bit, indio_dev->active_scan_mask,
784 indio_dev->num_channels) {
785 struct iio_chan_spec const *chan =
786 at91_adc_chan_get(indio_dev, bit);
787 mask |= BIT(chan->channel);
788 }
789
790 return mask & GENMASK(st->soc_info.platform->nr_channels, 0);
791 }
792
at91_adc_cor(struct at91_adc_state * st,struct iio_chan_spec const * chan)793 static void at91_adc_cor(struct at91_adc_state *st,
794 struct iio_chan_spec const *chan)
795 {
796 u32 cor, cur_cor;
797
798 cor = BIT(chan->channel) | BIT(chan->channel2);
799
800 cur_cor = at91_adc_readl(st, COR);
801 cor <<= st->soc_info.platform->layout->COR_diff_offset;
802 if (chan->differential)
803 at91_adc_writel(st, COR, cur_cor | cor);
804 else
805 at91_adc_writel(st, COR, cur_cor & ~cor);
806 }
807
at91_adc_irq_status(struct at91_adc_state * st,u32 * status,u32 * eoc)808 static void at91_adc_irq_status(struct at91_adc_state *st, u32 *status,
809 u32 *eoc)
810 {
811 *status = at91_adc_readl(st, ISR);
812 if (st->soc_info.platform->layout->EOC_ISR)
813 *eoc = at91_adc_readl(st, EOC_ISR);
814 else
815 *eoc = *status;
816 }
817
at91_adc_irq_mask(struct at91_adc_state * st,u32 * status,u32 * eoc)818 static void at91_adc_irq_mask(struct at91_adc_state *st, u32 *status, u32 *eoc)
819 {
820 *status = at91_adc_readl(st, IMR);
821 if (st->soc_info.platform->layout->EOC_IMR)
822 *eoc = at91_adc_readl(st, EOC_IMR);
823 else
824 *eoc = *status;
825 }
826
at91_adc_eoc_dis(struct at91_adc_state * st,unsigned int channel)827 static void at91_adc_eoc_dis(struct at91_adc_state *st, unsigned int channel)
828 {
829 /*
830 * On some products having the EOC bits in a separate register,
831 * errata recommends not writing this register (EOC_IDR).
832 * On products having the EOC bits in the IDR register, it's fine to write it.
833 */
834 if (!st->soc_info.platform->layout->EOC_IDR)
835 at91_adc_writel(st, IDR, BIT(channel));
836 }
837
at91_adc_eoc_ena(struct at91_adc_state * st,unsigned int channel)838 static void at91_adc_eoc_ena(struct at91_adc_state *st, unsigned int channel)
839 {
840 if (!st->soc_info.platform->layout->EOC_IDR)
841 at91_adc_writel(st, IER, BIT(channel));
842 else
843 at91_adc_writel(st, EOC_IER, BIT(channel));
844 }
845
at91_adc_config_emr(struct at91_adc_state * st,u32 oversampling_ratio,u32 trackx)846 static int at91_adc_config_emr(struct at91_adc_state *st,
847 u32 oversampling_ratio, u32 trackx)
848 {
849 /* configure the extended mode register */
850 unsigned int emr, osr;
851 unsigned int osr_mask = st->soc_info.platform->osr_mask;
852 int i, ret;
853
854 /* Check against supported oversampling values. */
855 for (i = 0; i < st->soc_info.platform->oversampling_avail_no; i++) {
856 if (oversampling_ratio == st->soc_info.platform->oversampling_avail[i])
857 break;
858 }
859 if (i == st->soc_info.platform->oversampling_avail_no)
860 return -EINVAL;
861
862 /* select oversampling ratio from configuration */
863 switch (oversampling_ratio) {
864 case 1:
865 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_1SAMPLES,
866 osr_mask);
867 break;
868 case 4:
869 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_4SAMPLES,
870 osr_mask);
871 break;
872 case 16:
873 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_16SAMPLES,
874 osr_mask);
875 break;
876 case 64:
877 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_64SAMPLES,
878 osr_mask);
879 break;
880 case 256:
881 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_256SAMPLES,
882 osr_mask);
883 break;
884 }
885
886 ret = pm_runtime_resume_and_get(st->dev);
887 if (ret < 0)
888 return ret;
889
890 emr = at91_adc_readl(st, EMR);
891 /* select oversampling per single trigger event */
892 emr |= AT91_SAMA5D2_EMR_ASTE(1);
893 /* delete leftover content if it's the case */
894 emr &= ~(osr_mask | AT91_SAMA5D2_TRACKX_MASK);
895 /* Update osr and trackx. */
896 emr |= osr | AT91_SAMA5D2_TRACKX(trackx);
897 at91_adc_writel(st, EMR, emr);
898
899 pm_runtime_put_autosuspend(st->dev);
900
901 st->oversampling_ratio = oversampling_ratio;
902
903 return 0;
904 }
905
at91_adc_adjust_val_osr(struct at91_adc_state * st,int * val)906 static int at91_adc_adjust_val_osr(struct at91_adc_state *st, int *val)
907 {
908 int nbits, diff;
909
910 if (st->oversampling_ratio == 1)
911 nbits = 12;
912 else if (st->oversampling_ratio == 4)
913 nbits = 13;
914 else if (st->oversampling_ratio == 16)
915 nbits = 14;
916 else if (st->oversampling_ratio == 64)
917 nbits = 15;
918 else if (st->oversampling_ratio == 256)
919 nbits = 16;
920 else
921 /* Should not happen. */
922 return -EINVAL;
923
924 /*
925 * We have nbits of real data and channel is registered as
926 * st->soc_info.platform->chan_realbits, so shift left diff bits.
927 */
928 diff = st->soc_info.platform->chan_realbits - nbits;
929 *val <<= diff;
930
931 return IIO_VAL_INT;
932 }
933
at91_adc_adjust_val_osr_array(struct at91_adc_state * st,void * buf,int len)934 static void at91_adc_adjust_val_osr_array(struct at91_adc_state *st, void *buf,
935 int len)
936 {
937 int i = 0, val;
938 u16 *buf_u16 = (u16 *) buf;
939
940 /*
941 * We are converting each two bytes (each sample).
942 * First convert the byte based array to u16, and convert each sample
943 * separately.
944 * Each value is two bytes in an array of chars, so to not shift
945 * more than we need, save the value separately.
946 * len is in bytes, so divide by two to get number of samples.
947 */
948 while (i < len / 2) {
949 val = buf_u16[i];
950 at91_adc_adjust_val_osr(st, &val);
951 buf_u16[i] = val;
952 i++;
953 }
954 }
955
at91_adc_configure_touch(struct at91_adc_state * st,bool state)956 static int at91_adc_configure_touch(struct at91_adc_state *st, bool state)
957 {
958 u32 clk_khz = st->current_sample_rate / 1000;
959 int i = 0, ret;
960 u16 pendbc;
961 u32 tsmr, acr;
962
963 if (state) {
964 ret = pm_runtime_resume_and_get(st->dev);
965 if (ret < 0)
966 return ret;
967 } else {
968 /* disabling touch IRQs and setting mode to no touch enabled */
969 at91_adc_writel(st, IDR,
970 AT91_SAMA5D2_IER_PEN | AT91_SAMA5D2_IER_NOPEN);
971 at91_adc_writel(st, TSMR, 0);
972
973 pm_runtime_put_autosuspend(st->dev);
974 return 0;
975 }
976 /*
977 * debounce time is in microseconds, we need it in milliseconds to
978 * multiply with kilohertz, so, divide by 1000, but after the multiply.
979 * round up to make sure pendbc is at least 1
980 */
981 pendbc = round_up(AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US *
982 clk_khz / 1000, 1);
983
984 /* get the required exponent */
985 while (pendbc >> i++)
986 ;
987
988 pendbc = i;
989
990 tsmr = AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS;
991
992 tsmr |= AT91_SAMA5D2_TSMR_TSAV(2) & AT91_SAMA5D2_TSMR_TSAV_MASK;
993 tsmr |= AT91_SAMA5D2_TSMR_PENDBC(pendbc) &
994 AT91_SAMA5D2_TSMR_PENDBC_MASK;
995 tsmr |= AT91_SAMA5D2_TSMR_NOTSDMA;
996 tsmr |= AT91_SAMA5D2_TSMR_PENDET_ENA;
997 tsmr |= AT91_SAMA5D2_TSMR_TSFREQ(2) & AT91_SAMA5D2_TSMR_TSFREQ_MASK;
998
999 at91_adc_writel(st, TSMR, tsmr);
1000
1001 acr = at91_adc_readl(st, ACR);
1002 acr &= ~AT91_SAMA5D2_ACR_PENDETSENS_MASK;
1003 acr |= 0x02 & AT91_SAMA5D2_ACR_PENDETSENS_MASK;
1004 at91_adc_writel(st, ACR, acr);
1005
1006 /* Sample Period Time = (TRGPER + 1) / ADCClock */
1007 st->touch_st.sample_period_val =
1008 round_up((AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US *
1009 clk_khz / 1000) - 1, 1);
1010 /* enable pen detect IRQ */
1011 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN);
1012
1013 return 0;
1014 }
1015
at91_adc_touch_pos(struct at91_adc_state * st,int reg)1016 static u16 at91_adc_touch_pos(struct at91_adc_state *st, int reg)
1017 {
1018 u32 val = 0;
1019 u32 scale, result, pos;
1020
1021 /*
1022 * to obtain the actual position we must divide by scale
1023 * and multiply with max, where
1024 * max = 2^AT91_SAMA5D2_MAX_POS_BITS - 1
1025 */
1026 /* first half of register is the x or y, second half is the scale */
1027 if (reg == st->soc_info.platform->layout->XPOSR)
1028 val = at91_adc_readl(st, XPOSR);
1029 else if (reg == st->soc_info.platform->layout->YPOSR)
1030 val = at91_adc_readl(st, YPOSR);
1031
1032 if (!val)
1033 dev_dbg(&st->indio_dev->dev, "pos is 0\n");
1034
1035 pos = val & AT91_SAMA5D2_XYZ_MASK;
1036 result = (pos << AT91_SAMA5D2_MAX_POS_BITS) - pos;
1037 scale = (val >> 16) & AT91_SAMA5D2_XYZ_MASK;
1038 if (scale == 0) {
1039 dev_err(&st->indio_dev->dev, "scale is 0\n");
1040 return 0;
1041 }
1042 result /= scale;
1043
1044 return result;
1045 }
1046
at91_adc_touch_x_pos(struct at91_adc_state * st)1047 static u16 at91_adc_touch_x_pos(struct at91_adc_state *st)
1048 {
1049 st->touch_st.x_pos = at91_adc_touch_pos(st, st->soc_info.platform->layout->XPOSR);
1050 return st->touch_st.x_pos;
1051 }
1052
at91_adc_touch_y_pos(struct at91_adc_state * st)1053 static u16 at91_adc_touch_y_pos(struct at91_adc_state *st)
1054 {
1055 return at91_adc_touch_pos(st, st->soc_info.platform->layout->YPOSR);
1056 }
1057
at91_adc_touch_pressure(struct at91_adc_state * st)1058 static u16 at91_adc_touch_pressure(struct at91_adc_state *st)
1059 {
1060 u32 val;
1061 u32 z1, z2;
1062 u32 pres;
1063 u32 rxp = 1;
1064 u32 factor = 1000;
1065
1066 /* calculate the pressure */
1067 val = at91_adc_readl(st, PRESSR);
1068 z1 = val & AT91_SAMA5D2_XYZ_MASK;
1069 z2 = (val >> 16) & AT91_SAMA5D2_XYZ_MASK;
1070
1071 if (z1 != 0)
1072 pres = rxp * (st->touch_st.x_pos * factor / 1024) *
1073 (z2 * factor / z1 - factor) /
1074 factor;
1075 else
1076 pres = 0xFFFF; /* no pen contact */
1077
1078 /*
1079 * The pressure from device grows down, minimum is 0xFFFF, maximum 0x0.
1080 * We compute it this way, but let's return it in the expected way,
1081 * growing from 0 to 0xFFFF.
1082 */
1083 return 0xFFFF - pres;
1084 }
1085
at91_adc_read_position(struct at91_adc_state * st,int chan,u16 * val)1086 static int at91_adc_read_position(struct at91_adc_state *st, int chan, u16 *val)
1087 {
1088 *val = 0;
1089 if (!st->touch_st.touching)
1090 return -ENODATA;
1091 if (chan == st->soc_info.platform->touch_chan_x)
1092 *val = at91_adc_touch_x_pos(st);
1093 else if (chan == st->soc_info.platform->touch_chan_y)
1094 *val = at91_adc_touch_y_pos(st);
1095 else
1096 return -ENODATA;
1097
1098 return IIO_VAL_INT;
1099 }
1100
at91_adc_read_pressure(struct at91_adc_state * st,int chan,u16 * val)1101 static int at91_adc_read_pressure(struct at91_adc_state *st, int chan, u16 *val)
1102 {
1103 *val = 0;
1104 if (!st->touch_st.touching)
1105 return -ENODATA;
1106 if (chan == st->soc_info.platform->touch_chan_p)
1107 *val = at91_adc_touch_pressure(st);
1108 else
1109 return -ENODATA;
1110
1111 return IIO_VAL_INT;
1112 }
1113
at91_adc_configure_trigger_registers(struct at91_adc_state * st,bool state)1114 static void at91_adc_configure_trigger_registers(struct at91_adc_state *st,
1115 bool state)
1116 {
1117 u32 status = at91_adc_readl(st, TRGR);
1118
1119 /* clear TRGMOD */
1120 status &= ~AT91_SAMA5D2_TRGR_TRGMOD_MASK;
1121
1122 if (state)
1123 status |= st->selected_trig->trgmod_value;
1124
1125 /* set/unset hw trigger */
1126 at91_adc_writel(st, TRGR, status);
1127 }
1128
at91_adc_configure_trigger(struct iio_trigger * trig,bool state)1129 static int at91_adc_configure_trigger(struct iio_trigger *trig, bool state)
1130 {
1131 struct iio_dev *indio = iio_trigger_get_drvdata(trig);
1132 struct at91_adc_state *st = iio_priv(indio);
1133 int ret;
1134
1135 if (state) {
1136 ret = pm_runtime_resume_and_get(st->dev);
1137 if (ret < 0)
1138 return ret;
1139 }
1140
1141 at91_adc_configure_trigger_registers(st, state);
1142
1143 if (!state)
1144 pm_runtime_put_autosuspend(st->dev);
1145
1146 return 0;
1147 }
1148
at91_adc_reenable_trigger(struct iio_trigger * trig)1149 static void at91_adc_reenable_trigger(struct iio_trigger *trig)
1150 {
1151 struct iio_dev *indio = iio_trigger_get_drvdata(trig);
1152 struct at91_adc_state *st = iio_priv(indio);
1153
1154 /* if we are using DMA, we must not reenable irq after each trigger */
1155 if (st->dma_st.dma_chan)
1156 return;
1157
1158 enable_irq(st->irq);
1159
1160 /* Needed to ACK the DRDY interruption */
1161 at91_adc_readl(st, LCDR);
1162 }
1163
1164 static const struct iio_trigger_ops at91_adc_trigger_ops = {
1165 .set_trigger_state = &at91_adc_configure_trigger,
1166 .reenable = &at91_adc_reenable_trigger,
1167 .validate_device = iio_trigger_validate_own_device,
1168 };
1169
at91_adc_dma_size_done(struct at91_adc_state * st)1170 static int at91_adc_dma_size_done(struct at91_adc_state *st)
1171 {
1172 struct dma_tx_state state;
1173 enum dma_status status;
1174 int i, size;
1175
1176 status = dmaengine_tx_status(st->dma_st.dma_chan,
1177 st->dma_st.dma_chan->cookie,
1178 &state);
1179 if (status != DMA_IN_PROGRESS)
1180 return 0;
1181
1182 /* Transferred length is size in bytes from end of buffer */
1183 i = st->dma_st.rx_buf_sz - state.residue;
1184
1185 /* Return available bytes */
1186 if (i >= st->dma_st.buf_idx)
1187 size = i - st->dma_st.buf_idx;
1188 else
1189 size = st->dma_st.rx_buf_sz + i - st->dma_st.buf_idx;
1190 return size;
1191 }
1192
at91_dma_buffer_done(void * data)1193 static void at91_dma_buffer_done(void *data)
1194 {
1195 struct iio_dev *indio_dev = data;
1196
1197 iio_trigger_poll_nested(indio_dev->trig);
1198 }
1199
at91_adc_dma_start(struct iio_dev * indio_dev)1200 static int at91_adc_dma_start(struct iio_dev *indio_dev)
1201 {
1202 struct at91_adc_state *st = iio_priv(indio_dev);
1203 struct dma_async_tx_descriptor *desc;
1204 dma_cookie_t cookie;
1205 int ret;
1206 u8 bit;
1207
1208 if (!st->dma_st.dma_chan)
1209 return 0;
1210
1211 /* we start a new DMA, so set buffer index to start */
1212 st->dma_st.buf_idx = 0;
1213
1214 /*
1215 * compute buffer size w.r.t. watermark and enabled channels.
1216 * scan_bytes is aligned so we need an exact size for DMA
1217 */
1218 st->dma_st.rx_buf_sz = 0;
1219
1220 for_each_set_bit(bit, indio_dev->active_scan_mask,
1221 indio_dev->num_channels) {
1222 struct iio_chan_spec const *chan =
1223 at91_adc_chan_get(indio_dev, bit);
1224
1225 if (!chan)
1226 continue;
1227
1228 st->dma_st.rx_buf_sz += chan->scan_type.storagebits / 8;
1229 }
1230 st->dma_st.rx_buf_sz *= st->dma_st.watermark;
1231
1232 /* Prepare a DMA cyclic transaction */
1233 desc = dmaengine_prep_dma_cyclic(st->dma_st.dma_chan,
1234 st->dma_st.rx_dma_buf,
1235 st->dma_st.rx_buf_sz,
1236 st->dma_st.rx_buf_sz / 2,
1237 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1238
1239 if (!desc) {
1240 dev_err(&indio_dev->dev, "cannot prepare DMA cyclic\n");
1241 return -EBUSY;
1242 }
1243
1244 desc->callback = at91_dma_buffer_done;
1245 desc->callback_param = indio_dev;
1246
1247 cookie = dmaengine_submit(desc);
1248 ret = dma_submit_error(cookie);
1249 if (ret) {
1250 dev_err(&indio_dev->dev, "cannot submit DMA cyclic\n");
1251 dmaengine_terminate_async(st->dma_st.dma_chan);
1252 return ret;
1253 }
1254
1255 /* enable general overrun error signaling */
1256 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_GOVRE);
1257 /* Issue pending DMA requests */
1258 dma_async_issue_pending(st->dma_st.dma_chan);
1259
1260 /* consider current time as DMA start time for timestamps */
1261 st->dma_st.dma_ts = iio_get_time_ns(indio_dev);
1262
1263 dev_dbg(&indio_dev->dev, "DMA cyclic started\n");
1264
1265 return 0;
1266 }
1267
at91_adc_buffer_check_use_irq(struct iio_dev * indio,struct at91_adc_state * st)1268 static bool at91_adc_buffer_check_use_irq(struct iio_dev *indio,
1269 struct at91_adc_state *st)
1270 {
1271 /* if using DMA, we do not use our own IRQ (we use DMA-controller) */
1272 if (st->dma_st.dma_chan)
1273 return false;
1274 /* if the trigger is not ours, then it has its own IRQ */
1275 if (iio_trigger_validate_own_device(indio->trig, indio))
1276 return false;
1277 return true;
1278 }
1279
at91_adc_current_chan_is_touch(struct iio_dev * indio_dev)1280 static bool at91_adc_current_chan_is_touch(struct iio_dev *indio_dev)
1281 {
1282 struct at91_adc_state *st = iio_priv(indio_dev);
1283
1284 return !!bitmap_subset(indio_dev->active_scan_mask,
1285 &st->touch_st.channels_bitmask,
1286 st->soc_info.platform->max_index + 1);
1287 }
1288
at91_adc_buffer_prepare(struct iio_dev * indio_dev)1289 static int at91_adc_buffer_prepare(struct iio_dev *indio_dev)
1290 {
1291 int ret;
1292 u8 bit;
1293 struct at91_adc_state *st = iio_priv(indio_dev);
1294
1295 /* check if we are enabling triggered buffer or the touchscreen */
1296 if (at91_adc_current_chan_is_touch(indio_dev))
1297 return at91_adc_configure_touch(st, true);
1298
1299 /* if we are not in triggered mode, we cannot enable the buffer. */
1300 if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES))
1301 return -EINVAL;
1302
1303 ret = pm_runtime_resume_and_get(st->dev);
1304 if (ret < 0)
1305 return ret;
1306
1307 /* we continue with the triggered buffer */
1308 ret = at91_adc_dma_start(indio_dev);
1309 if (ret) {
1310 dev_err(&indio_dev->dev, "buffer prepare failed\n");
1311 goto pm_runtime_put;
1312 }
1313
1314 for_each_set_bit(bit, indio_dev->active_scan_mask,
1315 indio_dev->num_channels) {
1316 struct iio_chan_spec const *chan =
1317 at91_adc_chan_get(indio_dev, bit);
1318 if (!chan)
1319 continue;
1320 /* these channel types cannot be handled by this trigger */
1321 if (chan->type == IIO_POSITIONRELATIVE ||
1322 chan->type == IIO_PRESSURE ||
1323 chan->type == IIO_TEMP)
1324 continue;
1325
1326 at91_adc_cor(st, chan);
1327
1328 at91_adc_writel(st, CHER, BIT(chan->channel));
1329 }
1330
1331 if (at91_adc_buffer_check_use_irq(indio_dev, st))
1332 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_DRDY);
1333
1334 pm_runtime_put:
1335 pm_runtime_put_autosuspend(st->dev);
1336 return ret;
1337 }
1338
at91_adc_buffer_postdisable(struct iio_dev * indio_dev)1339 static int at91_adc_buffer_postdisable(struct iio_dev *indio_dev)
1340 {
1341 struct at91_adc_state *st = iio_priv(indio_dev);
1342 int ret;
1343 u8 bit;
1344
1345 /* check if we are disabling triggered buffer or the touchscreen */
1346 if (at91_adc_current_chan_is_touch(indio_dev))
1347 return at91_adc_configure_touch(st, false);
1348
1349 /* if we are not in triggered mode, nothing to do here */
1350 if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES))
1351 return -EINVAL;
1352
1353 ret = pm_runtime_resume_and_get(st->dev);
1354 if (ret < 0)
1355 return ret;
1356
1357 /*
1358 * For each enable channel we must disable it in hardware.
1359 * In the case of DMA, we must read the last converted value
1360 * to clear EOC status and not get a possible interrupt later.
1361 * This value is being read by DMA from LCDR anyway, so it's not lost.
1362 */
1363 for_each_set_bit(bit, indio_dev->active_scan_mask,
1364 indio_dev->num_channels) {
1365 struct iio_chan_spec const *chan =
1366 at91_adc_chan_get(indio_dev, bit);
1367
1368 if (!chan)
1369 continue;
1370 /* these channel types are virtual, no need to do anything */
1371 if (chan->type == IIO_POSITIONRELATIVE ||
1372 chan->type == IIO_PRESSURE ||
1373 chan->type == IIO_TEMP)
1374 continue;
1375
1376 at91_adc_writel(st, CHDR, BIT(chan->channel));
1377
1378 if (st->dma_st.dma_chan)
1379 at91_adc_read_chan(st, chan->address);
1380 }
1381
1382 if (at91_adc_buffer_check_use_irq(indio_dev, st))
1383 at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_DRDY);
1384
1385 /* read overflow register to clear possible overflow status */
1386 at91_adc_readl(st, OVER);
1387
1388 /* if we are using DMA we must clear registers and end DMA */
1389 if (st->dma_st.dma_chan)
1390 dmaengine_terminate_sync(st->dma_st.dma_chan);
1391
1392 pm_runtime_put_autosuspend(st->dev);
1393
1394 return 0;
1395 }
1396
1397 static const struct iio_buffer_setup_ops at91_buffer_setup_ops = {
1398 .postdisable = &at91_adc_buffer_postdisable,
1399 };
1400
at91_adc_allocate_trigger(struct iio_dev * indio,char * trigger_name)1401 static struct iio_trigger *at91_adc_allocate_trigger(struct iio_dev *indio,
1402 char *trigger_name)
1403 {
1404 struct iio_trigger *trig;
1405 int ret;
1406
1407 trig = devm_iio_trigger_alloc(&indio->dev, "%s-dev%d-%s", indio->name,
1408 iio_device_id(indio), trigger_name);
1409 if (!trig)
1410 return ERR_PTR(-ENOMEM);
1411
1412 trig->dev.parent = indio->dev.parent;
1413 iio_trigger_set_drvdata(trig, indio);
1414 trig->ops = &at91_adc_trigger_ops;
1415
1416 ret = devm_iio_trigger_register(&indio->dev, trig);
1417 if (ret)
1418 return ERR_PTR(ret);
1419
1420 return trig;
1421 }
1422
at91_adc_trigger_handler_nodma(struct iio_dev * indio_dev,struct iio_poll_func * pf)1423 static void at91_adc_trigger_handler_nodma(struct iio_dev *indio_dev,
1424 struct iio_poll_func *pf)
1425 {
1426 struct at91_adc_state *st = iio_priv(indio_dev);
1427 int i = 0;
1428 int val;
1429 u8 bit;
1430 u32 mask = at91_adc_active_scan_mask_to_reg(indio_dev);
1431 unsigned int timeout = 50;
1432 u32 status, imr, eoc = 0, eoc_imr;
1433
1434 /*
1435 * Check if the conversion is ready. If not, wait a little bit, and
1436 * in case of timeout exit with an error.
1437 */
1438 while (((eoc & mask) != mask) && timeout) {
1439 at91_adc_irq_status(st, &status, &eoc);
1440 at91_adc_irq_mask(st, &imr, &eoc_imr);
1441 usleep_range(50, 100);
1442 timeout--;
1443 }
1444
1445 /* Cannot read data, not ready. Continue without reporting data */
1446 if (!timeout)
1447 return;
1448
1449 for_each_set_bit(bit, indio_dev->active_scan_mask,
1450 indio_dev->num_channels) {
1451 struct iio_chan_spec const *chan =
1452 at91_adc_chan_get(indio_dev, bit);
1453
1454 if (!chan)
1455 continue;
1456 /*
1457 * Our external trigger only supports the voltage channels.
1458 * In case someone requested a different type of channel
1459 * just put zeroes to buffer.
1460 * This should not happen because we check the scan mode
1461 * and scan mask when we enable the buffer, and we don't allow
1462 * the buffer to start with a mixed mask (voltage and something
1463 * else).
1464 * Thus, emit a warning.
1465 */
1466 if (chan->type == IIO_VOLTAGE) {
1467 val = at91_adc_read_chan(st, chan->address);
1468 at91_adc_adjust_val_osr(st, &val);
1469 st->buffer[i] = val;
1470 } else {
1471 st->buffer[i] = 0;
1472 WARN(true, "This trigger cannot handle this type of channel");
1473 }
1474 i++;
1475 }
1476 iio_push_to_buffers_with_timestamp(indio_dev, st->buffer,
1477 pf->timestamp);
1478 }
1479
at91_adc_trigger_handler_dma(struct iio_dev * indio_dev)1480 static void at91_adc_trigger_handler_dma(struct iio_dev *indio_dev)
1481 {
1482 struct at91_adc_state *st = iio_priv(indio_dev);
1483 int transferred_len = at91_adc_dma_size_done(st);
1484 s64 ns = iio_get_time_ns(indio_dev);
1485 s64 interval;
1486 int sample_index = 0, sample_count, sample_size;
1487
1488 u32 status = at91_adc_readl(st, ISR);
1489 /* if we reached this point, we cannot sample faster */
1490 if (status & AT91_SAMA5D2_IER_GOVRE)
1491 pr_info_ratelimited("%s: conversion overrun detected\n",
1492 indio_dev->name);
1493
1494 sample_size = div_s64(st->dma_st.rx_buf_sz, st->dma_st.watermark);
1495
1496 sample_count = div_s64(transferred_len, sample_size);
1497
1498 /*
1499 * interval between samples is total time since last transfer handling
1500 * divided by the number of samples (total size divided by sample size)
1501 */
1502 interval = div_s64((ns - st->dma_st.dma_ts), sample_count);
1503
1504 while (transferred_len >= sample_size) {
1505 /*
1506 * for all the values in the current sample,
1507 * adjust the values inside the buffer for oversampling
1508 */
1509 at91_adc_adjust_val_osr_array(st,
1510 &st->dma_st.rx_buf[st->dma_st.buf_idx],
1511 sample_size);
1512
1513 iio_push_to_buffers_with_timestamp(indio_dev,
1514 (st->dma_st.rx_buf + st->dma_st.buf_idx),
1515 (st->dma_st.dma_ts + interval * sample_index));
1516 /* adjust remaining length */
1517 transferred_len -= sample_size;
1518 /* adjust buffer index */
1519 st->dma_st.buf_idx += sample_size;
1520 /* in case of reaching end of buffer, reset index */
1521 if (st->dma_st.buf_idx >= st->dma_st.rx_buf_sz)
1522 st->dma_st.buf_idx = 0;
1523 sample_index++;
1524 }
1525 /* adjust saved time for next transfer handling */
1526 st->dma_st.dma_ts = iio_get_time_ns(indio_dev);
1527 }
1528
at91_adc_trigger_handler(int irq,void * p)1529 static irqreturn_t at91_adc_trigger_handler(int irq, void *p)
1530 {
1531 struct iio_poll_func *pf = p;
1532 struct iio_dev *indio_dev = pf->indio_dev;
1533 struct at91_adc_state *st = iio_priv(indio_dev);
1534
1535 /*
1536 * If it's not our trigger, start a conversion now, as we are
1537 * actually polling the trigger now.
1538 */
1539 if (iio_trigger_validate_own_device(indio_dev->trig, indio_dev))
1540 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START);
1541
1542 if (st->dma_st.dma_chan)
1543 at91_adc_trigger_handler_dma(indio_dev);
1544 else
1545 at91_adc_trigger_handler_nodma(indio_dev, pf);
1546
1547 iio_trigger_notify_done(indio_dev->trig);
1548
1549 return IRQ_HANDLED;
1550 }
1551
at91_adc_startup_time(unsigned startup_time_min,unsigned adc_clk_khz)1552 static unsigned at91_adc_startup_time(unsigned startup_time_min,
1553 unsigned adc_clk_khz)
1554 {
1555 static const unsigned int startup_lookup[] = {
1556 0, 8, 16, 24,
1557 64, 80, 96, 112,
1558 512, 576, 640, 704,
1559 768, 832, 896, 960
1560 };
1561 unsigned ticks_min, i;
1562
1563 /*
1564 * Since the adc frequency is checked before, there is no reason
1565 * to not meet the startup time constraint.
1566 */
1567
1568 ticks_min = startup_time_min * adc_clk_khz / 1000;
1569 for (i = 0; i < ARRAY_SIZE(startup_lookup); i++)
1570 if (startup_lookup[i] > ticks_min)
1571 break;
1572
1573 return i;
1574 }
1575
at91_adc_setup_samp_freq(struct iio_dev * indio_dev,unsigned freq,unsigned int startup_time,unsigned int tracktim)1576 static void at91_adc_setup_samp_freq(struct iio_dev *indio_dev, unsigned freq,
1577 unsigned int startup_time,
1578 unsigned int tracktim)
1579 {
1580 struct at91_adc_state *st = iio_priv(indio_dev);
1581 unsigned f_per, prescal, startup, mr;
1582 int ret;
1583
1584 f_per = clk_get_rate(st->per_clk);
1585 prescal = (f_per / (2 * freq)) - 1;
1586
1587 startup = at91_adc_startup_time(startup_time, freq / 1000);
1588
1589 ret = pm_runtime_resume_and_get(st->dev);
1590 if (ret < 0)
1591 return;
1592
1593 mr = at91_adc_readl(st, MR);
1594 mr &= ~(AT91_SAMA5D2_MR_STARTUP_MASK | AT91_SAMA5D2_MR_PRESCAL_MASK);
1595 mr |= AT91_SAMA5D2_MR_STARTUP(startup);
1596 mr |= AT91_SAMA5D2_MR_PRESCAL(prescal);
1597 mr |= AT91_SAMA5D2_MR_TRACKTIM(tracktim);
1598 at91_adc_writel(st, MR, mr);
1599
1600 pm_runtime_put_autosuspend(st->dev);
1601
1602 dev_dbg(&indio_dev->dev, "freq: %u, startup: %u, prescal: %u, tracktim=%u\n",
1603 freq, startup, prescal, tracktim);
1604 st->current_sample_rate = freq;
1605 }
1606
at91_adc_get_sample_freq(struct at91_adc_state * st)1607 static inline unsigned at91_adc_get_sample_freq(struct at91_adc_state *st)
1608 {
1609 return st->current_sample_rate;
1610 }
1611
at91_adc_touch_data_handler(struct iio_dev * indio_dev)1612 static void at91_adc_touch_data_handler(struct iio_dev *indio_dev)
1613 {
1614 struct at91_adc_state *st = iio_priv(indio_dev);
1615 u8 bit;
1616 u16 val;
1617 int i = 0;
1618
1619 for_each_set_bit(bit, indio_dev->active_scan_mask,
1620 st->soc_info.platform->max_index + 1) {
1621 struct iio_chan_spec const *chan =
1622 at91_adc_chan_get(indio_dev, bit);
1623
1624 if (chan->type == IIO_POSITIONRELATIVE)
1625 at91_adc_read_position(st, chan->channel, &val);
1626 else if (chan->type == IIO_PRESSURE)
1627 at91_adc_read_pressure(st, chan->channel, &val);
1628 else
1629 continue;
1630 st->buffer[i] = val;
1631 i++;
1632 }
1633 /*
1634 * Schedule work to push to buffers.
1635 * This is intended to push to the callback buffer that another driver
1636 * registered. We are still in a handler from our IRQ. If we push
1637 * directly, it means the other driver has it's callback called
1638 * from our IRQ context. Which is something we better avoid.
1639 * Let's schedule it after our IRQ is completed.
1640 */
1641 schedule_work(&st->touch_st.workq);
1642 }
1643
at91_adc_pen_detect_interrupt(struct at91_adc_state * st)1644 static void at91_adc_pen_detect_interrupt(struct at91_adc_state *st)
1645 {
1646 at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_PEN);
1647 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_NOPEN |
1648 AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
1649 AT91_SAMA5D2_IER_PRDY);
1650 at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC |
1651 AT91_SAMA5D2_TRGR_TRGPER(st->touch_st.sample_period_val));
1652 st->touch_st.touching = true;
1653 }
1654
at91_adc_no_pen_detect_interrupt(struct iio_dev * indio_dev)1655 static void at91_adc_no_pen_detect_interrupt(struct iio_dev *indio_dev)
1656 {
1657 struct at91_adc_state *st = iio_priv(indio_dev);
1658
1659 at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER);
1660 at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_NOPEN |
1661 AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
1662 AT91_SAMA5D2_IER_PRDY);
1663 st->touch_st.touching = false;
1664
1665 at91_adc_touch_data_handler(indio_dev);
1666
1667 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN);
1668 }
1669
at91_adc_workq_handler(struct work_struct * workq)1670 static void at91_adc_workq_handler(struct work_struct *workq)
1671 {
1672 struct at91_adc_touch *touch_st = container_of(workq,
1673 struct at91_adc_touch, workq);
1674 struct at91_adc_state *st = container_of(touch_st,
1675 struct at91_adc_state, touch_st);
1676 struct iio_dev *indio_dev = st->indio_dev;
1677
1678 iio_push_to_buffers(indio_dev, st->buffer);
1679 }
1680
at91_adc_interrupt(int irq,void * private)1681 static irqreturn_t at91_adc_interrupt(int irq, void *private)
1682 {
1683 struct iio_dev *indio = private;
1684 struct at91_adc_state *st = iio_priv(indio);
1685 u32 status, eoc, imr, eoc_imr;
1686 u32 rdy_mask = AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
1687 AT91_SAMA5D2_IER_PRDY;
1688
1689 at91_adc_irq_status(st, &status, &eoc);
1690 at91_adc_irq_mask(st, &imr, &eoc_imr);
1691
1692 if (!(status & imr) && !(eoc & eoc_imr))
1693 return IRQ_NONE;
1694 if (status & AT91_SAMA5D2_IER_PEN) {
1695 /* pen detected IRQ */
1696 at91_adc_pen_detect_interrupt(st);
1697 } else if ((status & AT91_SAMA5D2_IER_NOPEN)) {
1698 /* nopen detected IRQ */
1699 at91_adc_no_pen_detect_interrupt(indio);
1700 } else if ((status & AT91_SAMA5D2_ISR_PENS) &&
1701 ((status & rdy_mask) == rdy_mask)) {
1702 /* periodic trigger IRQ - during pen sense */
1703 at91_adc_touch_data_handler(indio);
1704 } else if (status & AT91_SAMA5D2_ISR_PENS) {
1705 /*
1706 * touching, but the measurements are not ready yet.
1707 * read and ignore.
1708 */
1709 status = at91_adc_readl(st, XPOSR);
1710 status = at91_adc_readl(st, YPOSR);
1711 status = at91_adc_readl(st, PRESSR);
1712 } else if (iio_buffer_enabled(indio) &&
1713 (status & AT91_SAMA5D2_IER_DRDY)) {
1714 /* triggered buffer without DMA */
1715 disable_irq_nosync(irq);
1716 iio_trigger_poll(indio->trig);
1717 } else if (iio_buffer_enabled(indio) && st->dma_st.dma_chan) {
1718 /* triggered buffer with DMA - should not happen */
1719 disable_irq_nosync(irq);
1720 WARN(true, "Unexpected irq occurred\n");
1721 } else if (!iio_buffer_enabled(indio)) {
1722 /* software requested conversion */
1723 st->conversion_value = at91_adc_read_chan(st, st->chan->address);
1724 st->conversion_done = true;
1725 wake_up_interruptible(&st->wq_data_available);
1726 }
1727 return IRQ_HANDLED;
1728 }
1729
1730 /* This needs to be called with direct mode claimed and st->lock locked. */
at91_adc_read_info_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1731 static int at91_adc_read_info_raw(struct iio_dev *indio_dev,
1732 struct iio_chan_spec const *chan, int *val)
1733 {
1734 struct at91_adc_state *st = iio_priv(indio_dev);
1735 u16 tmp_val;
1736 int ret;
1737
1738 ret = pm_runtime_resume_and_get(st->dev);
1739 if (ret < 0)
1740 return ret;
1741
1742 /*
1743 * Keep in mind that we cannot use software trigger or touchscreen
1744 * if external trigger is enabled
1745 */
1746 if (chan->type == IIO_POSITIONRELATIVE) {
1747 ret = at91_adc_read_position(st, chan->channel,
1748 &tmp_val);
1749 *val = tmp_val;
1750 if (ret > 0)
1751 ret = at91_adc_adjust_val_osr(st, val);
1752
1753 goto pm_runtime_put;
1754 }
1755 if (chan->type == IIO_PRESSURE) {
1756 ret = at91_adc_read_pressure(st, chan->channel,
1757 &tmp_val);
1758 *val = tmp_val;
1759 if (ret > 0)
1760 ret = at91_adc_adjust_val_osr(st, val);
1761
1762 goto pm_runtime_put;
1763 }
1764
1765 /* in this case we have a voltage or temperature channel */
1766
1767 st->chan = chan;
1768
1769 at91_adc_cor(st, chan);
1770 at91_adc_writel(st, CHER, BIT(chan->channel));
1771 /*
1772 * TEMPMR.TEMPON needs to update after CHER otherwise if none
1773 * of the channels are enabled and TEMPMR.TEMPON = 1 will
1774 * trigger DRDY interruption while preparing for temperature read.
1775 */
1776 if (chan->type == IIO_TEMP)
1777 at91_adc_writel(st, TEMPMR, AT91_SAMA5D2_TEMPMR_TEMPON);
1778 at91_adc_eoc_ena(st, chan->channel);
1779 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START);
1780
1781 ret = wait_event_interruptible_timeout(st->wq_data_available,
1782 st->conversion_done,
1783 msecs_to_jiffies(1000));
1784 if (ret == 0)
1785 ret = -ETIMEDOUT;
1786
1787 if (ret > 0) {
1788 *val = st->conversion_value;
1789 ret = at91_adc_adjust_val_osr(st, val);
1790 if (chan->scan_type.sign == 's')
1791 *val = sign_extend32(*val,
1792 chan->scan_type.realbits - 1);
1793 st->conversion_done = false;
1794 }
1795
1796 at91_adc_eoc_dis(st, st->chan->channel);
1797 if (chan->type == IIO_TEMP)
1798 at91_adc_writel(st, TEMPMR, 0U);
1799 at91_adc_writel(st, CHDR, BIT(chan->channel));
1800
1801 /* Needed to ACK the DRDY interruption */
1802 at91_adc_readl(st, LCDR);
1803
1804 pm_runtime_put:
1805 pm_runtime_put_autosuspend(st->dev);
1806 return ret;
1807 }
1808
at91_adc_read_info_locked(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1809 static int at91_adc_read_info_locked(struct iio_dev *indio_dev,
1810 struct iio_chan_spec const *chan, int *val)
1811 {
1812 struct at91_adc_state *st = iio_priv(indio_dev);
1813
1814 guard(mutex)(&st->lock);
1815
1816 return at91_adc_read_info_raw(indio_dev, chan, val);
1817 }
1818
at91_adc_temp_sensor_configure(struct at91_adc_state * st,bool start)1819 static void at91_adc_temp_sensor_configure(struct at91_adc_state *st,
1820 bool start)
1821 {
1822 u32 sample_rate, oversampling_ratio;
1823 u32 startup_time, tracktim, trackx;
1824
1825 if (start) {
1826 /*
1827 * Configure the sensor for best accuracy: 10MHz frequency,
1828 * oversampling rate of 256, tracktim=0xf and trackx=1.
1829 */
1830 sample_rate = 10 * MEGA;
1831 oversampling_ratio = 256;
1832 startup_time = AT91_SAMA5D2_MR_STARTUP_TS_MIN;
1833 tracktim = AT91_SAMA5D2_MR_TRACKTIM_TS;
1834 trackx = AT91_SAMA5D2_TRACKX_TS;
1835
1836 st->temp_st.saved_sample_rate = st->current_sample_rate;
1837 st->temp_st.saved_oversampling = st->oversampling_ratio;
1838 } else {
1839 /* Go back to previous settings. */
1840 sample_rate = st->temp_st.saved_sample_rate;
1841 oversampling_ratio = st->temp_st.saved_oversampling;
1842 startup_time = st->soc_info.startup_time;
1843 tracktim = 0;
1844 trackx = 0;
1845 }
1846
1847 at91_adc_setup_samp_freq(st->indio_dev, sample_rate, startup_time,
1848 tracktim);
1849 at91_adc_config_emr(st, oversampling_ratio, trackx);
1850 }
1851
at91_adc_read_temp(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1852 static int at91_adc_read_temp(struct iio_dev *indio_dev,
1853 struct iio_chan_spec const *chan, int *val)
1854 {
1855 struct at91_adc_state *st = iio_priv(indio_dev);
1856 struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb;
1857 u64 div1, div2;
1858 u32 tmp;
1859 int ret, vbg, vtemp;
1860
1861 guard(mutex)(&st->lock);
1862
1863 ret = pm_runtime_resume_and_get(st->dev);
1864 if (ret < 0)
1865 return ret;
1866
1867 at91_adc_temp_sensor_configure(st, true);
1868
1869 /* Read VBG. */
1870 tmp = at91_adc_readl(st, ACR);
1871 tmp |= AT91_SAMA5D2_ACR_SRCLCH;
1872 at91_adc_writel(st, ACR, tmp);
1873 ret = at91_adc_read_info_raw(indio_dev, chan, &vbg);
1874 if (ret < 0)
1875 goto restore_config;
1876
1877 /* Read VTEMP. */
1878 tmp &= ~AT91_SAMA5D2_ACR_SRCLCH;
1879 at91_adc_writel(st, ACR, tmp);
1880 ret = at91_adc_read_info_raw(indio_dev, chan, &vtemp);
1881
1882 restore_config:
1883 /* Revert previous settings. */
1884 at91_adc_temp_sensor_configure(st, false);
1885 pm_runtime_put_autosuspend(st->dev);
1886 if (ret < 0)
1887 return ret;
1888
1889 /*
1890 * Temp[milli] = p1[milli] + (vtemp * clb->p6 - clb->p4 * vbg)/
1891 * (vbg * AT91_ADC_TS_VTEMP_DT)
1892 */
1893 div1 = DIV_ROUND_CLOSEST_ULL(((u64)vtemp * clb->p6), vbg);
1894 div1 = DIV_ROUND_CLOSEST_ULL((div1 * 1000), AT91_ADC_TS_VTEMP_DT);
1895 div2 = DIV_ROUND_CLOSEST_ULL((u64)clb->p4, AT91_ADC_TS_VTEMP_DT);
1896 div2 *= 1000;
1897 *val = clb->p1 + (int)div1 - (int)div2;
1898
1899 return ret;
1900 }
1901
at91_adc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)1902 static int at91_adc_read_raw(struct iio_dev *indio_dev,
1903 struct iio_chan_spec const *chan,
1904 int *val, int *val2, long mask)
1905 {
1906 struct at91_adc_state *st = iio_priv(indio_dev);
1907 int ret;
1908
1909 switch (mask) {
1910 case IIO_CHAN_INFO_RAW:
1911 if (!iio_device_claim_direct(indio_dev))
1912 return -EBUSY;
1913
1914 ret = at91_adc_read_info_locked(indio_dev, chan, val);
1915 iio_device_release_direct(indio_dev);
1916 return ret;
1917
1918 case IIO_CHAN_INFO_SCALE:
1919 *val = st->vref_uv / 1000;
1920 if (chan->differential)
1921 *val *= 2;
1922 *val2 = chan->scan_type.realbits;
1923 return IIO_VAL_FRACTIONAL_LOG2;
1924
1925 case IIO_CHAN_INFO_PROCESSED:
1926 if (chan->type != IIO_TEMP)
1927 return -EINVAL;
1928 if (!iio_device_claim_direct(indio_dev))
1929 return -EBUSY;
1930
1931 ret = at91_adc_read_temp(indio_dev, chan, val);
1932 iio_device_release_direct(indio_dev);
1933
1934 return ret;
1935
1936 case IIO_CHAN_INFO_SAMP_FREQ:
1937 *val = at91_adc_get_sample_freq(st);
1938 return IIO_VAL_INT;
1939
1940 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1941 *val = st->oversampling_ratio;
1942 return IIO_VAL_INT;
1943
1944 default:
1945 return -EINVAL;
1946 }
1947 }
1948
at91_adc_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1949 static int at91_adc_write_raw(struct iio_dev *indio_dev,
1950 struct iio_chan_spec const *chan,
1951 int val, int val2, long mask)
1952 {
1953 struct at91_adc_state *st = iio_priv(indio_dev);
1954 int ret;
1955
1956 switch (mask) {
1957 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1958 /* if no change, optimize out */
1959 if (val == st->oversampling_ratio)
1960 return 0;
1961
1962 if (!iio_device_claim_direct(indio_dev))
1963 return -EBUSY;
1964 mutex_lock(&st->lock);
1965 /* update ratio */
1966 ret = at91_adc_config_emr(st, val, 0);
1967 mutex_unlock(&st->lock);
1968 iio_device_release_direct(indio_dev);
1969 return ret;
1970 case IIO_CHAN_INFO_SAMP_FREQ:
1971 if (val < st->soc_info.min_sample_rate ||
1972 val > st->soc_info.max_sample_rate)
1973 return -EINVAL;
1974
1975 if (!iio_device_claim_direct(indio_dev))
1976 return -EBUSY;
1977 mutex_lock(&st->lock);
1978 at91_adc_setup_samp_freq(indio_dev, val,
1979 st->soc_info.startup_time, 0);
1980 mutex_unlock(&st->lock);
1981 iio_device_release_direct(indio_dev);
1982 return 0;
1983 default:
1984 return -EINVAL;
1985 }
1986 }
1987
at91_adc_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)1988 static int at91_adc_read_avail(struct iio_dev *indio_dev,
1989 struct iio_chan_spec const *chan,
1990 const int **vals, int *type, int *length,
1991 long mask)
1992 {
1993 struct at91_adc_state *st = iio_priv(indio_dev);
1994
1995 switch (mask) {
1996 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1997 *vals = (int *)st->soc_info.platform->oversampling_avail;
1998 *type = IIO_VAL_INT;
1999 *length = st->soc_info.platform->oversampling_avail_no;
2000 return IIO_AVAIL_LIST;
2001 default:
2002 return -EINVAL;
2003 }
2004 }
2005
at91_adc_dma_init(struct at91_adc_state * st)2006 static void at91_adc_dma_init(struct at91_adc_state *st)
2007 {
2008 struct device *dev = &st->indio_dev->dev;
2009 struct dma_slave_config config = {0};
2010 /* we have 2 bytes for each channel */
2011 unsigned int sample_size = st->soc_info.platform->nr_channels * 2;
2012 /*
2013 * We make the buffer double the size of the fifo,
2014 * such that DMA uses one half of the buffer (full fifo size)
2015 * and the software uses the other half to read/write.
2016 */
2017 unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE *
2018 sample_size * 2, PAGE_SIZE);
2019
2020 if (st->dma_st.dma_chan)
2021 return;
2022
2023 st->dma_st.dma_chan = dma_request_chan(dev, "rx");
2024 if (IS_ERR(st->dma_st.dma_chan)) {
2025 dev_info(dev, "can't get DMA channel\n");
2026 st->dma_st.dma_chan = NULL;
2027 goto dma_exit;
2028 }
2029
2030 st->dma_st.rx_buf = dma_alloc_coherent(st->dma_st.dma_chan->device->dev,
2031 pages * PAGE_SIZE,
2032 &st->dma_st.rx_dma_buf,
2033 GFP_KERNEL);
2034 if (!st->dma_st.rx_buf) {
2035 dev_info(dev, "can't allocate coherent DMA area\n");
2036 goto dma_chan_disable;
2037 }
2038
2039 /* Configure DMA channel to read data register */
2040 config.direction = DMA_DEV_TO_MEM;
2041 config.src_addr = (phys_addr_t)(st->dma_st.phys_addr
2042 + st->soc_info.platform->layout->LCDR);
2043 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
2044 config.src_maxburst = 1;
2045 config.dst_maxburst = 1;
2046
2047 if (dmaengine_slave_config(st->dma_st.dma_chan, &config)) {
2048 dev_info(dev, "can't configure DMA slave\n");
2049 goto dma_free_area;
2050 }
2051
2052 dev_info(dev, "using %s for rx DMA transfers\n",
2053 dma_chan_name(st->dma_st.dma_chan));
2054
2055 return;
2056
2057 dma_free_area:
2058 dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE,
2059 st->dma_st.rx_buf, st->dma_st.rx_dma_buf);
2060 dma_chan_disable:
2061 dma_release_channel(st->dma_st.dma_chan);
2062 st->dma_st.dma_chan = NULL;
2063 dma_exit:
2064 dev_info(dev, "continuing without DMA support\n");
2065 }
2066
at91_adc_dma_disable(struct at91_adc_state * st)2067 static void at91_adc_dma_disable(struct at91_adc_state *st)
2068 {
2069 struct device *dev = &st->indio_dev->dev;
2070 /* we have 2 bytes for each channel */
2071 unsigned int sample_size = st->soc_info.platform->nr_channels * 2;
2072 unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE *
2073 sample_size * 2, PAGE_SIZE);
2074
2075 /* if we are not using DMA, just return */
2076 if (!st->dma_st.dma_chan)
2077 return;
2078
2079 /* wait for all transactions to be terminated first*/
2080 dmaengine_terminate_sync(st->dma_st.dma_chan);
2081
2082 dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE,
2083 st->dma_st.rx_buf, st->dma_st.rx_dma_buf);
2084 dma_release_channel(st->dma_st.dma_chan);
2085 st->dma_st.dma_chan = NULL;
2086
2087 dev_info(dev, "continuing without DMA support\n");
2088 }
2089
at91_adc_set_watermark(struct iio_dev * indio_dev,unsigned int val)2090 static int at91_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
2091 {
2092 struct at91_adc_state *st = iio_priv(indio_dev);
2093 int ret;
2094
2095 if (val > AT91_HWFIFO_MAX_SIZE)
2096 val = AT91_HWFIFO_MAX_SIZE;
2097
2098 if (!st->selected_trig->hw_trig) {
2099 dev_dbg(&indio_dev->dev, "we need hw trigger for DMA\n");
2100 return 0;
2101 }
2102
2103 dev_dbg(&indio_dev->dev, "new watermark is %u\n", val);
2104 st->dma_st.watermark = val;
2105
2106 /*
2107 * The logic here is: if we have watermark 1, it means we do
2108 * each conversion with it's own IRQ, thus we don't need DMA.
2109 * If the watermark is higher, we do DMA to do all the transfers in bulk
2110 */
2111
2112 if (val == 1)
2113 at91_adc_dma_disable(st);
2114 else if (val > 1)
2115 at91_adc_dma_init(st);
2116
2117 /*
2118 * We can start the DMA only after setting the watermark and
2119 * having the DMA initialization completed
2120 */
2121 ret = at91_adc_buffer_prepare(indio_dev);
2122 if (ret)
2123 at91_adc_dma_disable(st);
2124
2125 return ret;
2126 }
2127
at91_adc_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)2128 static int at91_adc_update_scan_mode(struct iio_dev *indio_dev,
2129 const unsigned long *scan_mask)
2130 {
2131 struct at91_adc_state *st = iio_priv(indio_dev);
2132
2133 if (bitmap_subset(scan_mask, &st->touch_st.channels_bitmask,
2134 st->soc_info.platform->max_index + 1))
2135 return 0;
2136 /*
2137 * if the new bitmap is a combination of touchscreen and regular
2138 * channels, then we are not fine
2139 */
2140 if (bitmap_intersects(&st->touch_st.channels_bitmask, scan_mask,
2141 st->soc_info.platform->max_index + 1))
2142 return -EINVAL;
2143 return 0;
2144 }
2145
at91_adc_hw_init(struct iio_dev * indio_dev)2146 static void at91_adc_hw_init(struct iio_dev *indio_dev)
2147 {
2148 struct at91_adc_state *st = iio_priv(indio_dev);
2149
2150 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST);
2151 if (st->soc_info.platform->layout->EOC_IDR)
2152 at91_adc_writel(st, EOC_IDR, 0xffffffff);
2153 at91_adc_writel(st, IDR, 0xffffffff);
2154 /*
2155 * Transfer field must be set to 2 according to the datasheet and
2156 * allows different analog settings for each channel.
2157 */
2158 at91_adc_writel(st, MR,
2159 AT91_SAMA5D2_MR_TRANSFER(2) | AT91_SAMA5D2_MR_ANACH);
2160
2161 at91_adc_setup_samp_freq(indio_dev, st->soc_info.min_sample_rate,
2162 st->soc_info.startup_time, 0);
2163
2164 /* configure extended mode register */
2165 at91_adc_config_emr(st, st->oversampling_ratio, 0);
2166 }
2167
at91_adc_get_fifo_state(struct device * dev,struct device_attribute * attr,char * buf)2168 static ssize_t at91_adc_get_fifo_state(struct device *dev,
2169 struct device_attribute *attr, char *buf)
2170 {
2171 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
2172 struct at91_adc_state *st = iio_priv(indio_dev);
2173
2174 return sysfs_emit(buf, "%d\n", !!st->dma_st.dma_chan);
2175 }
2176
at91_adc_get_watermark(struct device * dev,struct device_attribute * attr,char * buf)2177 static ssize_t at91_adc_get_watermark(struct device *dev,
2178 struct device_attribute *attr, char *buf)
2179 {
2180 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
2181 struct at91_adc_state *st = iio_priv(indio_dev);
2182
2183 return sysfs_emit(buf, "%d\n", st->dma_st.watermark);
2184 }
2185
2186 static IIO_DEVICE_ATTR(hwfifo_enabled, 0444,
2187 at91_adc_get_fifo_state, NULL, 0);
2188 static IIO_DEVICE_ATTR(hwfifo_watermark, 0444,
2189 at91_adc_get_watermark, NULL, 0);
2190
2191 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "2");
2192 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max, AT91_HWFIFO_MAX_SIZE_STR);
2193
2194 static const struct iio_dev_attr *at91_adc_fifo_attributes[] = {
2195 &iio_dev_attr_hwfifo_watermark_min,
2196 &iio_dev_attr_hwfifo_watermark_max,
2197 &iio_dev_attr_hwfifo_watermark,
2198 &iio_dev_attr_hwfifo_enabled,
2199 NULL,
2200 };
2201
2202 static const struct iio_info at91_adc_info = {
2203 .read_avail = &at91_adc_read_avail,
2204 .read_raw = &at91_adc_read_raw,
2205 .write_raw = &at91_adc_write_raw,
2206 .update_scan_mode = &at91_adc_update_scan_mode,
2207 .fwnode_xlate = &at91_adc_fwnode_xlate,
2208 .hwfifo_set_watermark = &at91_adc_set_watermark,
2209 };
2210
at91_adc_buffer_and_trigger_init(struct device * dev,struct iio_dev * indio)2211 static int at91_adc_buffer_and_trigger_init(struct device *dev,
2212 struct iio_dev *indio)
2213 {
2214 struct at91_adc_state *st = iio_priv(indio);
2215 const struct iio_dev_attr **fifo_attrs;
2216 int ret;
2217
2218 if (st->selected_trig->hw_trig)
2219 fifo_attrs = at91_adc_fifo_attributes;
2220 else
2221 fifo_attrs = NULL;
2222
2223 ret = devm_iio_triggered_buffer_setup_ext(&indio->dev, indio,
2224 &iio_pollfunc_store_time, &at91_adc_trigger_handler,
2225 IIO_BUFFER_DIRECTION_IN, &at91_buffer_setup_ops, fifo_attrs);
2226 if (ret < 0) {
2227 dev_err(dev, "couldn't initialize the buffer.\n");
2228 return ret;
2229 }
2230
2231 if (!st->selected_trig->hw_trig)
2232 return 0;
2233
2234 st->trig = at91_adc_allocate_trigger(indio, st->selected_trig->name);
2235 if (IS_ERR(st->trig)) {
2236 dev_err(dev, "could not allocate trigger\n");
2237 return PTR_ERR(st->trig);
2238 }
2239
2240 /*
2241 * Initially the iio buffer has a length of 2 and
2242 * a watermark of 1
2243 */
2244 st->dma_st.watermark = 1;
2245
2246 return 0;
2247 }
2248
at91_adc_temp_sensor_init(struct at91_adc_state * st,struct device * dev)2249 static int at91_adc_temp_sensor_init(struct at91_adc_state *st,
2250 struct device *dev)
2251 {
2252 struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb;
2253 struct nvmem_cell *temp_calib;
2254 u32 *buf;
2255 size_t len;
2256 int ret = 0;
2257
2258 if (!st->soc_info.platform->temp_sensor)
2259 return 0;
2260
2261 /* Get the calibration data from NVMEM. */
2262 temp_calib = devm_nvmem_cell_get(dev, "temperature_calib");
2263 if (IS_ERR(temp_calib)) {
2264 ret = PTR_ERR(temp_calib);
2265 if (ret != -ENOENT)
2266 dev_err(dev, "Failed to get temperature_calib cell!\n");
2267 return ret;
2268 }
2269
2270 buf = nvmem_cell_read(temp_calib, &len);
2271 if (IS_ERR(buf)) {
2272 dev_err(dev, "Failed to read calibration data!\n");
2273 return PTR_ERR(buf);
2274 }
2275 if (len < AT91_ADC_TS_CLB_IDX_MAX * 4) {
2276 dev_err(dev, "Invalid calibration data!\n");
2277 ret = -EINVAL;
2278 goto free_buf;
2279 }
2280
2281 /* Store calibration data for later use. */
2282 clb->p1 = buf[AT91_ADC_TS_CLB_IDX_P1];
2283 clb->p4 = buf[AT91_ADC_TS_CLB_IDX_P4];
2284 clb->p6 = buf[AT91_ADC_TS_CLB_IDX_P6];
2285
2286 /*
2287 * We prepare here the conversion to milli to avoid doing it on hotpath.
2288 */
2289 clb->p1 = clb->p1 * 1000;
2290
2291 free_buf:
2292 kfree(buf);
2293 return ret;
2294 }
2295
at91_adc_probe(struct platform_device * pdev)2296 static int at91_adc_probe(struct platform_device *pdev)
2297 {
2298 struct device *dev = &pdev->dev;
2299 struct iio_dev *indio_dev;
2300 struct at91_adc_state *st;
2301 struct resource *res;
2302 int ret, i, num_channels;
2303 u32 edge_type = IRQ_TYPE_NONE;
2304
2305 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*st));
2306 if (!indio_dev)
2307 return -ENOMEM;
2308
2309 st = iio_priv(indio_dev);
2310 st->indio_dev = indio_dev;
2311
2312 st->soc_info.platform = device_get_match_data(dev);
2313
2314 ret = at91_adc_temp_sensor_init(st, &pdev->dev);
2315 /* Don't register temperature channel if initialization failed. */
2316 if (ret)
2317 num_channels = st->soc_info.platform->max_channels - 1;
2318 else
2319 num_channels = st->soc_info.platform->max_channels;
2320
2321 indio_dev->name = dev_name(&pdev->dev);
2322 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
2323 indio_dev->info = &at91_adc_info;
2324 indio_dev->channels = *st->soc_info.platform->adc_channels;
2325 indio_dev->num_channels = num_channels;
2326
2327 bitmap_set(&st->touch_st.channels_bitmask,
2328 st->soc_info.platform->touch_chan_x, 1);
2329 bitmap_set(&st->touch_st.channels_bitmask,
2330 st->soc_info.platform->touch_chan_y, 1);
2331 bitmap_set(&st->touch_st.channels_bitmask,
2332 st->soc_info.platform->touch_chan_p, 1);
2333
2334 st->oversampling_ratio = 1;
2335
2336 ret = device_property_read_u32(dev, "atmel,min-sample-rate-hz",
2337 &st->soc_info.min_sample_rate);
2338 if (ret) {
2339 dev_err(&pdev->dev,
2340 "invalid or missing value for atmel,min-sample-rate-hz\n");
2341 return ret;
2342 }
2343
2344 ret = device_property_read_u32(dev, "atmel,max-sample-rate-hz",
2345 &st->soc_info.max_sample_rate);
2346 if (ret) {
2347 dev_err(&pdev->dev,
2348 "invalid or missing value for atmel,max-sample-rate-hz\n");
2349 return ret;
2350 }
2351
2352 ret = device_property_read_u32(dev, "atmel,startup-time-ms",
2353 &st->soc_info.startup_time);
2354 if (ret) {
2355 dev_err(&pdev->dev,
2356 "invalid or missing value for atmel,startup-time-ms\n");
2357 return ret;
2358 }
2359
2360 ret = device_property_read_u32(dev, "atmel,trigger-edge-type",
2361 &edge_type);
2362 if (ret) {
2363 dev_dbg(&pdev->dev,
2364 "atmel,trigger-edge-type not specified, only software trigger available\n");
2365 }
2366
2367 st->selected_trig = NULL;
2368
2369 /* find the right trigger, or no trigger at all */
2370 for (i = 0; i < st->soc_info.platform->hw_trig_cnt + 1; i++)
2371 if (at91_adc_trigger_list[i].edge_type == edge_type) {
2372 st->selected_trig = &at91_adc_trigger_list[i];
2373 break;
2374 }
2375
2376 if (!st->selected_trig) {
2377 dev_err(&pdev->dev, "invalid external trigger edge value\n");
2378 return -EINVAL;
2379 }
2380
2381 init_waitqueue_head(&st->wq_data_available);
2382 mutex_init(&st->lock);
2383 INIT_WORK(&st->touch_st.workq, at91_adc_workq_handler);
2384
2385 st->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2386 if (IS_ERR(st->base))
2387 return PTR_ERR(st->base);
2388
2389 /* if we plan to use DMA, we need the physical address of the regs */
2390 st->dma_st.phys_addr = res->start;
2391
2392 st->irq = platform_get_irq(pdev, 0);
2393 if (st->irq < 0)
2394 return st->irq;
2395
2396 st->per_clk = devm_clk_get(&pdev->dev, "adc_clk");
2397 if (IS_ERR(st->per_clk))
2398 return PTR_ERR(st->per_clk);
2399
2400 st->reg = devm_regulator_get(&pdev->dev, "vddana");
2401 if (IS_ERR(st->reg))
2402 return PTR_ERR(st->reg);
2403
2404 st->vref = devm_regulator_get(&pdev->dev, "vref");
2405 if (IS_ERR(st->vref))
2406 return PTR_ERR(st->vref);
2407
2408 ret = devm_request_irq(&pdev->dev, st->irq, at91_adc_interrupt, 0,
2409 pdev->dev.driver->name, indio_dev);
2410 if (ret)
2411 return ret;
2412
2413 ret = regulator_enable(st->reg);
2414 if (ret)
2415 return ret;
2416
2417 ret = regulator_enable(st->vref);
2418 if (ret)
2419 goto reg_disable;
2420
2421 st->vref_uv = regulator_get_voltage(st->vref);
2422 if (st->vref_uv <= 0) {
2423 ret = -EINVAL;
2424 goto vref_disable;
2425 }
2426
2427 ret = clk_prepare_enable(st->per_clk);
2428 if (ret)
2429 goto vref_disable;
2430
2431 platform_set_drvdata(pdev, indio_dev);
2432 st->dev = &pdev->dev;
2433 pm_runtime_set_autosuspend_delay(st->dev, 500);
2434 pm_runtime_use_autosuspend(st->dev);
2435 pm_runtime_set_active(st->dev);
2436 pm_runtime_enable(st->dev);
2437 pm_runtime_get_noresume(st->dev);
2438
2439 at91_adc_hw_init(indio_dev);
2440
2441 ret = at91_adc_buffer_and_trigger_init(&pdev->dev, indio_dev);
2442 if (ret < 0)
2443 goto err_pm_disable;
2444
2445 if (dma_coerce_mask_and_coherent(&indio_dev->dev, DMA_BIT_MASK(32)))
2446 dev_info(&pdev->dev, "cannot set DMA mask to 32-bit\n");
2447
2448 ret = iio_device_register(indio_dev);
2449 if (ret < 0)
2450 goto dma_disable;
2451
2452 if (st->selected_trig->hw_trig)
2453 dev_info(&pdev->dev, "setting up trigger as %s\n",
2454 st->selected_trig->name);
2455
2456 dev_info(&pdev->dev, "version: %x\n",
2457 readl_relaxed(st->base + st->soc_info.platform->layout->VERSION));
2458
2459 pm_runtime_put_autosuspend(st->dev);
2460
2461 return 0;
2462
2463 dma_disable:
2464 at91_adc_dma_disable(st);
2465 err_pm_disable:
2466 pm_runtime_put_noidle(st->dev);
2467 pm_runtime_disable(st->dev);
2468 pm_runtime_set_suspended(st->dev);
2469 pm_runtime_dont_use_autosuspend(st->dev);
2470 clk_disable_unprepare(st->per_clk);
2471 vref_disable:
2472 regulator_disable(st->vref);
2473 reg_disable:
2474 regulator_disable(st->reg);
2475 return ret;
2476 }
2477
at91_adc_remove(struct platform_device * pdev)2478 static void at91_adc_remove(struct platform_device *pdev)
2479 {
2480 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
2481 struct at91_adc_state *st = iio_priv(indio_dev);
2482
2483 iio_device_unregister(indio_dev);
2484
2485 at91_adc_dma_disable(st);
2486
2487 pm_runtime_disable(st->dev);
2488 pm_runtime_set_suspended(st->dev);
2489 clk_disable_unprepare(st->per_clk);
2490
2491 regulator_disable(st->vref);
2492 regulator_disable(st->reg);
2493 }
2494
at91_adc_suspend(struct device * dev)2495 static int at91_adc_suspend(struct device *dev)
2496 {
2497 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2498 struct at91_adc_state *st = iio_priv(indio_dev);
2499 int ret;
2500
2501 ret = pm_runtime_resume_and_get(st->dev);
2502 if (ret < 0)
2503 return ret;
2504
2505 if (iio_buffer_enabled(indio_dev))
2506 at91_adc_buffer_postdisable(indio_dev);
2507
2508 /*
2509 * Do a sofware reset of the ADC before we go to suspend.
2510 * this will ensure that all pins are free from being muxed by the ADC
2511 * and can be used by for other devices.
2512 * Otherwise, ADC will hog them and we can't go to suspend mode.
2513 */
2514 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST);
2515
2516 pm_runtime_mark_last_busy(st->dev);
2517 pm_runtime_put_noidle(st->dev);
2518 clk_disable_unprepare(st->per_clk);
2519 regulator_disable(st->vref);
2520 regulator_disable(st->reg);
2521
2522 return pinctrl_pm_select_sleep_state(dev);
2523 }
2524
at91_adc_resume(struct device * dev)2525 static int at91_adc_resume(struct device *dev)
2526 {
2527 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2528 struct at91_adc_state *st = iio_priv(indio_dev);
2529 int ret;
2530
2531 ret = pinctrl_pm_select_default_state(dev);
2532 if (ret)
2533 goto resume_failed;
2534
2535 ret = regulator_enable(st->reg);
2536 if (ret)
2537 goto resume_failed;
2538
2539 ret = regulator_enable(st->vref);
2540 if (ret)
2541 goto reg_disable_resume;
2542
2543 ret = clk_prepare_enable(st->per_clk);
2544 if (ret)
2545 goto vref_disable_resume;
2546
2547 pm_runtime_get_noresume(st->dev);
2548
2549 at91_adc_hw_init(indio_dev);
2550
2551 /* reconfiguring trigger hardware state */
2552 if (iio_buffer_enabled(indio_dev)) {
2553 ret = at91_adc_buffer_prepare(indio_dev);
2554 if (ret)
2555 goto pm_runtime_put;
2556
2557 at91_adc_configure_trigger_registers(st, true);
2558 }
2559
2560 pm_runtime_put_autosuspend(st->dev);
2561
2562 return 0;
2563
2564 pm_runtime_put:
2565 pm_runtime_mark_last_busy(st->dev);
2566 pm_runtime_put_noidle(st->dev);
2567 clk_disable_unprepare(st->per_clk);
2568 vref_disable_resume:
2569 regulator_disable(st->vref);
2570 reg_disable_resume:
2571 regulator_disable(st->reg);
2572 resume_failed:
2573 dev_err(&indio_dev->dev, "failed to resume\n");
2574 return ret;
2575 }
2576
at91_adc_runtime_suspend(struct device * dev)2577 static int at91_adc_runtime_suspend(struct device *dev)
2578 {
2579 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2580 struct at91_adc_state *st = iio_priv(indio_dev);
2581
2582 clk_disable(st->per_clk);
2583
2584 return 0;
2585 }
2586
at91_adc_runtime_resume(struct device * dev)2587 static int at91_adc_runtime_resume(struct device *dev)
2588 {
2589 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2590 struct at91_adc_state *st = iio_priv(indio_dev);
2591
2592 return clk_enable(st->per_clk);
2593 }
2594
2595 static const struct dev_pm_ops at91_adc_pm_ops = {
2596 SYSTEM_SLEEP_PM_OPS(at91_adc_suspend, at91_adc_resume)
2597 RUNTIME_PM_OPS(at91_adc_runtime_suspend, at91_adc_runtime_resume,
2598 NULL)
2599 };
2600
2601 static const struct of_device_id at91_adc_dt_match[] = {
2602 {
2603 .compatible = "atmel,sama5d2-adc",
2604 .data = (const void *)&sama5d2_platform,
2605 }, {
2606 .compatible = "microchip,sama7g5-adc",
2607 .data = (const void *)&sama7g5_platform,
2608 }, {
2609 /* sentinel */
2610 }
2611 };
2612 MODULE_DEVICE_TABLE(of, at91_adc_dt_match);
2613
2614 static struct platform_driver at91_adc_driver = {
2615 .probe = at91_adc_probe,
2616 .remove = at91_adc_remove,
2617 .driver = {
2618 .name = "at91-sama5d2_adc",
2619 .of_match_table = at91_adc_dt_match,
2620 .pm = pm_ptr(&at91_adc_pm_ops),
2621 },
2622 };
2623 module_platform_driver(at91_adc_driver)
2624
2625 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@microchip.com>");
2626 MODULE_AUTHOR("Eugen Hristev <eugen.hristev@microchip.com");
2627 MODULE_DESCRIPTION("Atmel AT91 SAMA5D2 ADC");
2628 MODULE_LICENSE("GPL v2");
2629