1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_rw.h"
39 #include "xfs_trace.h"
40
41 kmem_zone_t *xfs_log_ticket_zone;
42
43 /* Local miscellaneous function prototypes */
44 STATIC int xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
45 xlog_in_core_t **, xfs_lsn_t *);
46 STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp,
47 xfs_buftarg_t *log_target,
48 xfs_daddr_t blk_offset,
49 int num_bblks);
50 STATIC int xlog_space_left(struct log *log, atomic64_t *head);
51 STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
52 STATIC void xlog_dealloc_log(xlog_t *log);
53
54 /* local state machine functions */
55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
57 STATIC int xlog_state_get_iclog_space(xlog_t *log,
58 int len,
59 xlog_in_core_t **iclog,
60 xlog_ticket_t *ticket,
61 int *continued_write,
62 int *logoffsetp);
63 STATIC int xlog_state_release_iclog(xlog_t *log,
64 xlog_in_core_t *iclog);
65 STATIC void xlog_state_switch_iclogs(xlog_t *log,
66 xlog_in_core_t *iclog,
67 int eventual_size);
68 STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog);
69
70 /* local functions to manipulate grant head */
71 STATIC int xlog_grant_log_space(xlog_t *log,
72 xlog_ticket_t *xtic);
73 STATIC void xlog_grant_push_ail(struct log *log,
74 int need_bytes);
75 STATIC void xlog_regrant_reserve_log_space(xlog_t *log,
76 xlog_ticket_t *ticket);
77 STATIC int xlog_regrant_write_log_space(xlog_t *log,
78 xlog_ticket_t *ticket);
79 STATIC void xlog_ungrant_log_space(xlog_t *log,
80 xlog_ticket_t *ticket);
81
82 #if defined(DEBUG)
83 STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr);
84 STATIC void xlog_verify_grant_tail(struct log *log);
85 STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
86 int count, boolean_t syncing);
87 STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
88 xfs_lsn_t tail_lsn);
89 #else
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_tail(a)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
94 #endif
95
96 STATIC int xlog_iclogs_empty(xlog_t *log);
97
98 static void
xlog_grant_sub_space(struct log * log,atomic64_t * head,int bytes)99 xlog_grant_sub_space(
100 struct log *log,
101 atomic64_t *head,
102 int bytes)
103 {
104 int64_t head_val = atomic64_read(head);
105 int64_t new, old;
106
107 do {
108 int cycle, space;
109
110 xlog_crack_grant_head_val(head_val, &cycle, &space);
111
112 space -= bytes;
113 if (space < 0) {
114 space += log->l_logsize;
115 cycle--;
116 }
117
118 old = head_val;
119 new = xlog_assign_grant_head_val(cycle, space);
120 head_val = atomic64_cmpxchg(head, old, new);
121 } while (head_val != old);
122 }
123
124 static void
xlog_grant_add_space(struct log * log,atomic64_t * head,int bytes)125 xlog_grant_add_space(
126 struct log *log,
127 atomic64_t *head,
128 int bytes)
129 {
130 int64_t head_val = atomic64_read(head);
131 int64_t new, old;
132
133 do {
134 int tmp;
135 int cycle, space;
136
137 xlog_crack_grant_head_val(head_val, &cycle, &space);
138
139 tmp = log->l_logsize - space;
140 if (tmp > bytes)
141 space += bytes;
142 else {
143 space = bytes - tmp;
144 cycle++;
145 }
146
147 old = head_val;
148 new = xlog_assign_grant_head_val(cycle, space);
149 head_val = atomic64_cmpxchg(head, old, new);
150 } while (head_val != old);
151 }
152
153 STATIC bool
xlog_reserveq_wake(struct log * log,int * free_bytes)154 xlog_reserveq_wake(
155 struct log *log,
156 int *free_bytes)
157 {
158 struct xlog_ticket *tic;
159 int need_bytes;
160
161 list_for_each_entry(tic, &log->l_reserveq, t_queue) {
162 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
163 need_bytes = tic->t_unit_res * tic->t_cnt;
164 else
165 need_bytes = tic->t_unit_res;
166
167 if (*free_bytes < need_bytes)
168 return false;
169 *free_bytes -= need_bytes;
170
171 trace_xfs_log_grant_wake_up(log, tic);
172 wake_up(&tic->t_wait);
173 }
174
175 return true;
176 }
177
178 STATIC bool
xlog_writeq_wake(struct log * log,int * free_bytes)179 xlog_writeq_wake(
180 struct log *log,
181 int *free_bytes)
182 {
183 struct xlog_ticket *tic;
184 int need_bytes;
185
186 list_for_each_entry(tic, &log->l_writeq, t_queue) {
187 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
188
189 need_bytes = tic->t_unit_res;
190
191 if (*free_bytes < need_bytes)
192 return false;
193 *free_bytes -= need_bytes;
194
195 trace_xfs_log_regrant_write_wake_up(log, tic);
196 wake_up(&tic->t_wait);
197 }
198
199 return true;
200 }
201
202 STATIC int
xlog_reserveq_wait(struct log * log,struct xlog_ticket * tic,int need_bytes)203 xlog_reserveq_wait(
204 struct log *log,
205 struct xlog_ticket *tic,
206 int need_bytes)
207 {
208 list_add_tail(&tic->t_queue, &log->l_reserveq);
209
210 do {
211 if (XLOG_FORCED_SHUTDOWN(log))
212 goto shutdown;
213 xlog_grant_push_ail(log, need_bytes);
214
215 XFS_STATS_INC(xs_sleep_logspace);
216 trace_xfs_log_grant_sleep(log, tic);
217
218 xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
219 trace_xfs_log_grant_wake(log, tic);
220
221 spin_lock(&log->l_grant_reserve_lock);
222 if (XLOG_FORCED_SHUTDOWN(log))
223 goto shutdown;
224 } while (xlog_space_left(log, &log->l_grant_reserve_head) < need_bytes);
225
226 list_del_init(&tic->t_queue);
227 return 0;
228 shutdown:
229 list_del_init(&tic->t_queue);
230 return XFS_ERROR(EIO);
231 }
232
233 STATIC int
xlog_writeq_wait(struct log * log,struct xlog_ticket * tic,int need_bytes)234 xlog_writeq_wait(
235 struct log *log,
236 struct xlog_ticket *tic,
237 int need_bytes)
238 {
239 list_add_tail(&tic->t_queue, &log->l_writeq);
240
241 do {
242 if (XLOG_FORCED_SHUTDOWN(log))
243 goto shutdown;
244 xlog_grant_push_ail(log, need_bytes);
245
246 XFS_STATS_INC(xs_sleep_logspace);
247 trace_xfs_log_regrant_write_sleep(log, tic);
248
249 xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
250 trace_xfs_log_regrant_write_wake(log, tic);
251
252 spin_lock(&log->l_grant_write_lock);
253 if (XLOG_FORCED_SHUTDOWN(log))
254 goto shutdown;
255 } while (xlog_space_left(log, &log->l_grant_write_head) < need_bytes);
256
257 list_del_init(&tic->t_queue);
258 return 0;
259 shutdown:
260 list_del_init(&tic->t_queue);
261 return XFS_ERROR(EIO);
262 }
263
264 static void
xlog_tic_reset_res(xlog_ticket_t * tic)265 xlog_tic_reset_res(xlog_ticket_t *tic)
266 {
267 tic->t_res_num = 0;
268 tic->t_res_arr_sum = 0;
269 tic->t_res_num_ophdrs = 0;
270 }
271
272 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)273 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
274 {
275 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
276 /* add to overflow and start again */
277 tic->t_res_o_flow += tic->t_res_arr_sum;
278 tic->t_res_num = 0;
279 tic->t_res_arr_sum = 0;
280 }
281
282 tic->t_res_arr[tic->t_res_num].r_len = len;
283 tic->t_res_arr[tic->t_res_num].r_type = type;
284 tic->t_res_arr_sum += len;
285 tic->t_res_num++;
286 }
287
288 /*
289 * NOTES:
290 *
291 * 1. currblock field gets updated at startup and after in-core logs
292 * marked as with WANT_SYNC.
293 */
294
295 /*
296 * This routine is called when a user of a log manager ticket is done with
297 * the reservation. If the ticket was ever used, then a commit record for
298 * the associated transaction is written out as a log operation header with
299 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
300 * a given ticket. If the ticket was one with a permanent reservation, then
301 * a few operations are done differently. Permanent reservation tickets by
302 * default don't release the reservation. They just commit the current
303 * transaction with the belief that the reservation is still needed. A flag
304 * must be passed in before permanent reservations are actually released.
305 * When these type of tickets are not released, they need to be set into
306 * the inited state again. By doing this, a start record will be written
307 * out when the next write occurs.
308 */
309 xfs_lsn_t
xfs_log_done(struct xfs_mount * mp,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,uint flags)310 xfs_log_done(
311 struct xfs_mount *mp,
312 struct xlog_ticket *ticket,
313 struct xlog_in_core **iclog,
314 uint flags)
315 {
316 struct log *log = mp->m_log;
317 xfs_lsn_t lsn = 0;
318
319 if (XLOG_FORCED_SHUTDOWN(log) ||
320 /*
321 * If nothing was ever written, don't write out commit record.
322 * If we get an error, just continue and give back the log ticket.
323 */
324 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
325 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
326 lsn = (xfs_lsn_t) -1;
327 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
328 flags |= XFS_LOG_REL_PERM_RESERV;
329 }
330 }
331
332
333 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
334 (flags & XFS_LOG_REL_PERM_RESERV)) {
335 trace_xfs_log_done_nonperm(log, ticket);
336
337 /*
338 * Release ticket if not permanent reservation or a specific
339 * request has been made to release a permanent reservation.
340 */
341 xlog_ungrant_log_space(log, ticket);
342 xfs_log_ticket_put(ticket);
343 } else {
344 trace_xfs_log_done_perm(log, ticket);
345
346 xlog_regrant_reserve_log_space(log, ticket);
347 /* If this ticket was a permanent reservation and we aren't
348 * trying to release it, reset the inited flags; so next time
349 * we write, a start record will be written out.
350 */
351 ticket->t_flags |= XLOG_TIC_INITED;
352 }
353
354 return lsn;
355 }
356
357 /*
358 * Attaches a new iclog I/O completion callback routine during
359 * transaction commit. If the log is in error state, a non-zero
360 * return code is handed back and the caller is responsible for
361 * executing the callback at an appropriate time.
362 */
363 int
xfs_log_notify(struct xfs_mount * mp,struct xlog_in_core * iclog,xfs_log_callback_t * cb)364 xfs_log_notify(
365 struct xfs_mount *mp,
366 struct xlog_in_core *iclog,
367 xfs_log_callback_t *cb)
368 {
369 int abortflg;
370
371 spin_lock(&iclog->ic_callback_lock);
372 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
373 if (!abortflg) {
374 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
375 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
376 cb->cb_next = NULL;
377 *(iclog->ic_callback_tail) = cb;
378 iclog->ic_callback_tail = &(cb->cb_next);
379 }
380 spin_unlock(&iclog->ic_callback_lock);
381 return abortflg;
382 }
383
384 int
xfs_log_release_iclog(struct xfs_mount * mp,struct xlog_in_core * iclog)385 xfs_log_release_iclog(
386 struct xfs_mount *mp,
387 struct xlog_in_core *iclog)
388 {
389 if (xlog_state_release_iclog(mp->m_log, iclog)) {
390 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
391 return EIO;
392 }
393
394 return 0;
395 }
396
397 /*
398 * 1. Reserve an amount of on-disk log space and return a ticket corresponding
399 * to the reservation.
400 * 2. Potentially, push buffers at tail of log to disk.
401 *
402 * Each reservation is going to reserve extra space for a log record header.
403 * When writes happen to the on-disk log, we don't subtract the length of the
404 * log record header from any reservation. By wasting space in each
405 * reservation, we prevent over allocation problems.
406 */
407 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticket,__uint8_t client,uint flags,uint t_type)408 xfs_log_reserve(
409 struct xfs_mount *mp,
410 int unit_bytes,
411 int cnt,
412 struct xlog_ticket **ticket,
413 __uint8_t client,
414 uint flags,
415 uint t_type)
416 {
417 struct log *log = mp->m_log;
418 struct xlog_ticket *internal_ticket;
419 int retval = 0;
420
421 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
422
423 if (XLOG_FORCED_SHUTDOWN(log))
424 return XFS_ERROR(EIO);
425
426 XFS_STATS_INC(xs_try_logspace);
427
428
429 if (*ticket != NULL) {
430 ASSERT(flags & XFS_LOG_PERM_RESERV);
431 internal_ticket = *ticket;
432
433 /*
434 * this is a new transaction on the ticket, so we need to
435 * change the transaction ID so that the next transaction has a
436 * different TID in the log. Just add one to the existing tid
437 * so that we can see chains of rolling transactions in the log
438 * easily.
439 */
440 internal_ticket->t_tid++;
441
442 trace_xfs_log_reserve(log, internal_ticket);
443
444 xlog_grant_push_ail(log, internal_ticket->t_unit_res);
445 retval = xlog_regrant_write_log_space(log, internal_ticket);
446 } else {
447 /* may sleep if need to allocate more tickets */
448 internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt,
449 client, flags,
450 KM_SLEEP|KM_MAYFAIL);
451 if (!internal_ticket)
452 return XFS_ERROR(ENOMEM);
453 internal_ticket->t_trans_type = t_type;
454 *ticket = internal_ticket;
455
456 trace_xfs_log_reserve(log, internal_ticket);
457
458 xlog_grant_push_ail(log,
459 (internal_ticket->t_unit_res *
460 internal_ticket->t_cnt));
461 retval = xlog_grant_log_space(log, internal_ticket);
462 }
463
464 if (unlikely(retval)) {
465 /*
466 * If we are failing, make sure the ticket doesn't have any
467 * current reservations. We don't want to add this back
468 * when the ticket/ transaction gets cancelled.
469 */
470 internal_ticket->t_curr_res = 0;
471 /* ungrant will give back unit_res * t_cnt. */
472 internal_ticket->t_cnt = 0;
473 }
474
475 return retval;
476 }
477
478
479 /*
480 * Mount a log filesystem
481 *
482 * mp - ubiquitous xfs mount point structure
483 * log_target - buftarg of on-disk log device
484 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
485 * num_bblocks - Number of BBSIZE blocks in on-disk log
486 *
487 * Return error or zero.
488 */
489 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)490 xfs_log_mount(
491 xfs_mount_t *mp,
492 xfs_buftarg_t *log_target,
493 xfs_daddr_t blk_offset,
494 int num_bblks)
495 {
496 int error;
497
498 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
499 xfs_notice(mp, "Mounting Filesystem");
500 else {
501 xfs_notice(mp,
502 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
503 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
504 }
505
506 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
507 if (IS_ERR(mp->m_log)) {
508 error = -PTR_ERR(mp->m_log);
509 goto out;
510 }
511
512 /*
513 * Initialize the AIL now we have a log.
514 */
515 error = xfs_trans_ail_init(mp);
516 if (error) {
517 xfs_warn(mp, "AIL initialisation failed: error %d", error);
518 goto out_free_log;
519 }
520 mp->m_log->l_ailp = mp->m_ail;
521
522 /*
523 * skip log recovery on a norecovery mount. pretend it all
524 * just worked.
525 */
526 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
527 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
528
529 if (readonly)
530 mp->m_flags &= ~XFS_MOUNT_RDONLY;
531
532 error = xlog_recover(mp->m_log);
533
534 if (readonly)
535 mp->m_flags |= XFS_MOUNT_RDONLY;
536 if (error) {
537 xfs_warn(mp, "log mount/recovery failed: error %d",
538 error);
539 goto out_destroy_ail;
540 }
541 }
542
543 /* Normal transactions can now occur */
544 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
545
546 /*
547 * Now the log has been fully initialised and we know were our
548 * space grant counters are, we can initialise the permanent ticket
549 * needed for delayed logging to work.
550 */
551 xlog_cil_init_post_recovery(mp->m_log);
552
553 return 0;
554
555 out_destroy_ail:
556 xfs_trans_ail_destroy(mp);
557 out_free_log:
558 xlog_dealloc_log(mp->m_log);
559 out:
560 return error;
561 }
562
563 /*
564 * Finish the recovery of the file system. This is separate from
565 * the xfs_log_mount() call, because it depends on the code in
566 * xfs_mountfs() to read in the root and real-time bitmap inodes
567 * between calling xfs_log_mount() and here.
568 *
569 * mp - ubiquitous xfs mount point structure
570 */
571 int
xfs_log_mount_finish(xfs_mount_t * mp)572 xfs_log_mount_finish(xfs_mount_t *mp)
573 {
574 int error;
575
576 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
577 error = xlog_recover_finish(mp->m_log);
578 else {
579 error = 0;
580 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
581 }
582
583 return error;
584 }
585
586 /*
587 * Final log writes as part of unmount.
588 *
589 * Mark the filesystem clean as unmount happens. Note that during relocation
590 * this routine needs to be executed as part of source-bag while the
591 * deallocation must not be done until source-end.
592 */
593
594 /*
595 * Unmount record used to have a string "Unmount filesystem--" in the
596 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
597 * We just write the magic number now since that particular field isn't
598 * currently architecture converted and "nUmount" is a bit foo.
599 * As far as I know, there weren't any dependencies on the old behaviour.
600 */
601
602 int
xfs_log_unmount_write(xfs_mount_t * mp)603 xfs_log_unmount_write(xfs_mount_t *mp)
604 {
605 xlog_t *log = mp->m_log;
606 xlog_in_core_t *iclog;
607 #ifdef DEBUG
608 xlog_in_core_t *first_iclog;
609 #endif
610 xlog_ticket_t *tic = NULL;
611 xfs_lsn_t lsn;
612 int error;
613
614 /*
615 * Don't write out unmount record on read-only mounts.
616 * Or, if we are doing a forced umount (typically because of IO errors).
617 */
618 if (mp->m_flags & XFS_MOUNT_RDONLY)
619 return 0;
620
621 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
622 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
623
624 #ifdef DEBUG
625 first_iclog = iclog = log->l_iclog;
626 do {
627 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
628 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
629 ASSERT(iclog->ic_offset == 0);
630 }
631 iclog = iclog->ic_next;
632 } while (iclog != first_iclog);
633 #endif
634 if (! (XLOG_FORCED_SHUTDOWN(log))) {
635 error = xfs_log_reserve(mp, 600, 1, &tic,
636 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
637 if (!error) {
638 /* the data section must be 32 bit size aligned */
639 struct {
640 __uint16_t magic;
641 __uint16_t pad1;
642 __uint32_t pad2; /* may as well make it 64 bits */
643 } magic = {
644 .magic = XLOG_UNMOUNT_TYPE,
645 };
646 struct xfs_log_iovec reg = {
647 .i_addr = &magic,
648 .i_len = sizeof(magic),
649 .i_type = XLOG_REG_TYPE_UNMOUNT,
650 };
651 struct xfs_log_vec vec = {
652 .lv_niovecs = 1,
653 .lv_iovecp = ®,
654 };
655
656 /* remove inited flag */
657 tic->t_flags = 0;
658 error = xlog_write(log, &vec, tic, &lsn,
659 NULL, XLOG_UNMOUNT_TRANS);
660 /*
661 * At this point, we're umounting anyway,
662 * so there's no point in transitioning log state
663 * to IOERROR. Just continue...
664 */
665 }
666
667 if (error)
668 xfs_alert(mp, "%s: unmount record failed", __func__);
669
670
671 spin_lock(&log->l_icloglock);
672 iclog = log->l_iclog;
673 atomic_inc(&iclog->ic_refcnt);
674 xlog_state_want_sync(log, iclog);
675 spin_unlock(&log->l_icloglock);
676 error = xlog_state_release_iclog(log, iclog);
677
678 spin_lock(&log->l_icloglock);
679 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
680 iclog->ic_state == XLOG_STATE_DIRTY)) {
681 if (!XLOG_FORCED_SHUTDOWN(log)) {
682 xlog_wait(&iclog->ic_force_wait,
683 &log->l_icloglock);
684 } else {
685 spin_unlock(&log->l_icloglock);
686 }
687 } else {
688 spin_unlock(&log->l_icloglock);
689 }
690 if (tic) {
691 trace_xfs_log_umount_write(log, tic);
692 xlog_ungrant_log_space(log, tic);
693 xfs_log_ticket_put(tic);
694 }
695 } else {
696 /*
697 * We're already in forced_shutdown mode, couldn't
698 * even attempt to write out the unmount transaction.
699 *
700 * Go through the motions of sync'ing and releasing
701 * the iclog, even though no I/O will actually happen,
702 * we need to wait for other log I/Os that may already
703 * be in progress. Do this as a separate section of
704 * code so we'll know if we ever get stuck here that
705 * we're in this odd situation of trying to unmount
706 * a file system that went into forced_shutdown as
707 * the result of an unmount..
708 */
709 spin_lock(&log->l_icloglock);
710 iclog = log->l_iclog;
711 atomic_inc(&iclog->ic_refcnt);
712
713 xlog_state_want_sync(log, iclog);
714 spin_unlock(&log->l_icloglock);
715 error = xlog_state_release_iclog(log, iclog);
716
717 spin_lock(&log->l_icloglock);
718
719 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
720 || iclog->ic_state == XLOG_STATE_DIRTY
721 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
722
723 xlog_wait(&iclog->ic_force_wait,
724 &log->l_icloglock);
725 } else {
726 spin_unlock(&log->l_icloglock);
727 }
728 }
729
730 return error;
731 } /* xfs_log_unmount_write */
732
733 /*
734 * Deallocate log structures for unmount/relocation.
735 *
736 * We need to stop the aild from running before we destroy
737 * and deallocate the log as the aild references the log.
738 */
739 void
xfs_log_unmount(xfs_mount_t * mp)740 xfs_log_unmount(xfs_mount_t *mp)
741 {
742 xfs_trans_ail_destroy(mp);
743 xlog_dealloc_log(mp->m_log);
744 }
745
746 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)747 xfs_log_item_init(
748 struct xfs_mount *mp,
749 struct xfs_log_item *item,
750 int type,
751 const struct xfs_item_ops *ops)
752 {
753 item->li_mountp = mp;
754 item->li_ailp = mp->m_ail;
755 item->li_type = type;
756 item->li_ops = ops;
757 item->li_lv = NULL;
758
759 INIT_LIST_HEAD(&item->li_ail);
760 INIT_LIST_HEAD(&item->li_cil);
761 }
762
763 void
xfs_log_move_tail(xfs_mount_t * mp,xfs_lsn_t tail_lsn)764 xfs_log_move_tail(xfs_mount_t *mp,
765 xfs_lsn_t tail_lsn)
766 {
767 xlog_ticket_t *tic;
768 xlog_t *log = mp->m_log;
769 int need_bytes, free_bytes;
770
771 if (XLOG_FORCED_SHUTDOWN(log))
772 return;
773
774 if (tail_lsn == 0)
775 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
776
777 /* tail_lsn == 1 implies that we weren't passed a valid value. */
778 if (tail_lsn != 1)
779 atomic64_set(&log->l_tail_lsn, tail_lsn);
780
781 if (!list_empty_careful(&log->l_writeq)) {
782 #ifdef DEBUG
783 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
784 panic("Recovery problem");
785 #endif
786 spin_lock(&log->l_grant_write_lock);
787 free_bytes = xlog_space_left(log, &log->l_grant_write_head);
788 list_for_each_entry(tic, &log->l_writeq, t_queue) {
789 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
790
791 if (free_bytes < tic->t_unit_res && tail_lsn != 1)
792 break;
793 tail_lsn = 0;
794 free_bytes -= tic->t_unit_res;
795 trace_xfs_log_regrant_write_wake_up(log, tic);
796 wake_up(&tic->t_wait);
797 }
798 spin_unlock(&log->l_grant_write_lock);
799 }
800
801 if (!list_empty_careful(&log->l_reserveq)) {
802 #ifdef DEBUG
803 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
804 panic("Recovery problem");
805 #endif
806 spin_lock(&log->l_grant_reserve_lock);
807 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
808 list_for_each_entry(tic, &log->l_reserveq, t_queue) {
809 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
810 need_bytes = tic->t_unit_res*tic->t_cnt;
811 else
812 need_bytes = tic->t_unit_res;
813 if (free_bytes < need_bytes && tail_lsn != 1)
814 break;
815 tail_lsn = 0;
816 free_bytes -= need_bytes;
817 trace_xfs_log_grant_wake_up(log, tic);
818 wake_up(&tic->t_wait);
819 }
820 spin_unlock(&log->l_grant_reserve_lock);
821 }
822 }
823
824 /*
825 * Determine if we have a transaction that has gone to disk
826 * that needs to be covered. To begin the transition to the idle state
827 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
828 * If we are then in a state where covering is needed, the caller is informed
829 * that dummy transactions are required to move the log into the idle state.
830 *
831 * Because this is called as part of the sync process, we should also indicate
832 * that dummy transactions should be issued in anything but the covered or
833 * idle states. This ensures that the log tail is accurately reflected in
834 * the log at the end of the sync, hence if a crash occurrs avoids replay
835 * of transactions where the metadata is already on disk.
836 */
837 int
xfs_log_need_covered(xfs_mount_t * mp)838 xfs_log_need_covered(xfs_mount_t *mp)
839 {
840 int needed = 0;
841 xlog_t *log = mp->m_log;
842
843 if (!xfs_fs_writable(mp))
844 return 0;
845
846 spin_lock(&log->l_icloglock);
847 switch (log->l_covered_state) {
848 case XLOG_STATE_COVER_DONE:
849 case XLOG_STATE_COVER_DONE2:
850 case XLOG_STATE_COVER_IDLE:
851 break;
852 case XLOG_STATE_COVER_NEED:
853 case XLOG_STATE_COVER_NEED2:
854 if (!xfs_ail_min_lsn(log->l_ailp) &&
855 xlog_iclogs_empty(log)) {
856 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
857 log->l_covered_state = XLOG_STATE_COVER_DONE;
858 else
859 log->l_covered_state = XLOG_STATE_COVER_DONE2;
860 }
861 /* FALLTHRU */
862 default:
863 needed = 1;
864 break;
865 }
866 spin_unlock(&log->l_icloglock);
867 return needed;
868 }
869
870 /******************************************************************************
871 *
872 * local routines
873 *
874 ******************************************************************************
875 */
876
877 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
878 * The log manager must keep track of the last LR which was committed
879 * to disk. The lsn of this LR will become the new tail_lsn whenever
880 * xfs_trans_tail_ail returns 0. If we don't do this, we run into
881 * the situation where stuff could be written into the log but nothing
882 * was ever in the AIL when asked. Eventually, we panic since the
883 * tail hits the head.
884 *
885 * We may be holding the log iclog lock upon entering this routine.
886 */
887 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)888 xlog_assign_tail_lsn(
889 struct xfs_mount *mp)
890 {
891 xfs_lsn_t tail_lsn;
892 struct log *log = mp->m_log;
893
894 tail_lsn = xfs_ail_min_lsn(mp->m_ail);
895 if (!tail_lsn)
896 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
897
898 atomic64_set(&log->l_tail_lsn, tail_lsn);
899 return tail_lsn;
900 }
901
902 /*
903 * Return the space in the log between the tail and the head. The head
904 * is passed in the cycle/bytes formal parms. In the special case where
905 * the reserve head has wrapped passed the tail, this calculation is no
906 * longer valid. In this case, just return 0 which means there is no space
907 * in the log. This works for all places where this function is called
908 * with the reserve head. Of course, if the write head were to ever
909 * wrap the tail, we should blow up. Rather than catch this case here,
910 * we depend on other ASSERTions in other parts of the code. XXXmiken
911 *
912 * This code also handles the case where the reservation head is behind
913 * the tail. The details of this case are described below, but the end
914 * result is that we return the size of the log as the amount of space left.
915 */
916 STATIC int
xlog_space_left(struct log * log,atomic64_t * head)917 xlog_space_left(
918 struct log *log,
919 atomic64_t *head)
920 {
921 int free_bytes;
922 int tail_bytes;
923 int tail_cycle;
924 int head_cycle;
925 int head_bytes;
926
927 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
928 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
929 tail_bytes = BBTOB(tail_bytes);
930 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
931 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
932 else if (tail_cycle + 1 < head_cycle)
933 return 0;
934 else if (tail_cycle < head_cycle) {
935 ASSERT(tail_cycle == (head_cycle - 1));
936 free_bytes = tail_bytes - head_bytes;
937 } else {
938 /*
939 * The reservation head is behind the tail.
940 * In this case we just want to return the size of the
941 * log as the amount of space left.
942 */
943 xfs_alert(log->l_mp,
944 "xlog_space_left: head behind tail\n"
945 " tail_cycle = %d, tail_bytes = %d\n"
946 " GH cycle = %d, GH bytes = %d",
947 tail_cycle, tail_bytes, head_cycle, head_bytes);
948 ASSERT(0);
949 free_bytes = log->l_logsize;
950 }
951 return free_bytes;
952 }
953
954
955 /*
956 * Log function which is called when an io completes.
957 *
958 * The log manager needs its own routine, in order to control what
959 * happens with the buffer after the write completes.
960 */
961 void
xlog_iodone(xfs_buf_t * bp)962 xlog_iodone(xfs_buf_t *bp)
963 {
964 xlog_in_core_t *iclog = bp->b_fspriv;
965 xlog_t *l = iclog->ic_log;
966 int aborted = 0;
967
968 /*
969 * Race to shutdown the filesystem if we see an error.
970 */
971 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
972 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
973 xfs_buf_ioerror_alert(bp, __func__);
974 xfs_buf_stale(bp);
975 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
976 /*
977 * This flag will be propagated to the trans-committed
978 * callback routines to let them know that the log-commit
979 * didn't succeed.
980 */
981 aborted = XFS_LI_ABORTED;
982 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
983 aborted = XFS_LI_ABORTED;
984 }
985
986 /* log I/O is always issued ASYNC */
987 ASSERT(XFS_BUF_ISASYNC(bp));
988 xlog_state_done_syncing(iclog, aborted);
989 /*
990 * do not reference the buffer (bp) here as we could race
991 * with it being freed after writing the unmount record to the
992 * log.
993 */
994
995 } /* xlog_iodone */
996
997 /*
998 * Return size of each in-core log record buffer.
999 *
1000 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1001 *
1002 * If the filesystem blocksize is too large, we may need to choose a
1003 * larger size since the directory code currently logs entire blocks.
1004 */
1005
1006 STATIC void
xlog_get_iclog_buffer_size(xfs_mount_t * mp,xlog_t * log)1007 xlog_get_iclog_buffer_size(xfs_mount_t *mp,
1008 xlog_t *log)
1009 {
1010 int size;
1011 int xhdrs;
1012
1013 if (mp->m_logbufs <= 0)
1014 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1015 else
1016 log->l_iclog_bufs = mp->m_logbufs;
1017
1018 /*
1019 * Buffer size passed in from mount system call.
1020 */
1021 if (mp->m_logbsize > 0) {
1022 size = log->l_iclog_size = mp->m_logbsize;
1023 log->l_iclog_size_log = 0;
1024 while (size != 1) {
1025 log->l_iclog_size_log++;
1026 size >>= 1;
1027 }
1028
1029 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1030 /* # headers = size / 32k
1031 * one header holds cycles from 32k of data
1032 */
1033
1034 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1035 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1036 xhdrs++;
1037 log->l_iclog_hsize = xhdrs << BBSHIFT;
1038 log->l_iclog_heads = xhdrs;
1039 } else {
1040 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1041 log->l_iclog_hsize = BBSIZE;
1042 log->l_iclog_heads = 1;
1043 }
1044 goto done;
1045 }
1046
1047 /* All machines use 32kB buffers by default. */
1048 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1049 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1050
1051 /* the default log size is 16k or 32k which is one header sector */
1052 log->l_iclog_hsize = BBSIZE;
1053 log->l_iclog_heads = 1;
1054
1055 done:
1056 /* are we being asked to make the sizes selected above visible? */
1057 if (mp->m_logbufs == 0)
1058 mp->m_logbufs = log->l_iclog_bufs;
1059 if (mp->m_logbsize == 0)
1060 mp->m_logbsize = log->l_iclog_size;
1061 } /* xlog_get_iclog_buffer_size */
1062
1063
1064 /*
1065 * This routine initializes some of the log structure for a given mount point.
1066 * Its primary purpose is to fill in enough, so recovery can occur. However,
1067 * some other stuff may be filled in too.
1068 */
1069 STATIC xlog_t *
xlog_alloc_log(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)1070 xlog_alloc_log(xfs_mount_t *mp,
1071 xfs_buftarg_t *log_target,
1072 xfs_daddr_t blk_offset,
1073 int num_bblks)
1074 {
1075 xlog_t *log;
1076 xlog_rec_header_t *head;
1077 xlog_in_core_t **iclogp;
1078 xlog_in_core_t *iclog, *prev_iclog=NULL;
1079 xfs_buf_t *bp;
1080 int i;
1081 int error = ENOMEM;
1082 uint log2_size = 0;
1083
1084 log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1085 if (!log) {
1086 xfs_warn(mp, "Log allocation failed: No memory!");
1087 goto out;
1088 }
1089
1090 log->l_mp = mp;
1091 log->l_targ = log_target;
1092 log->l_logsize = BBTOB(num_bblks);
1093 log->l_logBBstart = blk_offset;
1094 log->l_logBBsize = num_bblks;
1095 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1096 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1097
1098 log->l_prev_block = -1;
1099 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1100 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1101 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1102 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1103 xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0);
1104 xlog_assign_grant_head(&log->l_grant_write_head, 1, 0);
1105 INIT_LIST_HEAD(&log->l_reserveq);
1106 INIT_LIST_HEAD(&log->l_writeq);
1107 spin_lock_init(&log->l_grant_reserve_lock);
1108 spin_lock_init(&log->l_grant_write_lock);
1109
1110 error = EFSCORRUPTED;
1111 if (xfs_sb_version_hassector(&mp->m_sb)) {
1112 log2_size = mp->m_sb.sb_logsectlog;
1113 if (log2_size < BBSHIFT) {
1114 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1115 log2_size, BBSHIFT);
1116 goto out_free_log;
1117 }
1118
1119 log2_size -= BBSHIFT;
1120 if (log2_size > mp->m_sectbb_log) {
1121 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1122 log2_size, mp->m_sectbb_log);
1123 goto out_free_log;
1124 }
1125
1126 /* for larger sector sizes, must have v2 or external log */
1127 if (log2_size && log->l_logBBstart > 0 &&
1128 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1129 xfs_warn(mp,
1130 "log sector size (0x%x) invalid for configuration.",
1131 log2_size);
1132 goto out_free_log;
1133 }
1134 }
1135 log->l_sectBBsize = 1 << log2_size;
1136
1137 xlog_get_iclog_buffer_size(mp, log);
1138
1139 error = ENOMEM;
1140 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, log->l_iclog_size, 0);
1141 if (!bp)
1142 goto out_free_log;
1143 bp->b_iodone = xlog_iodone;
1144 ASSERT(xfs_buf_islocked(bp));
1145 log->l_xbuf = bp;
1146
1147 spin_lock_init(&log->l_icloglock);
1148 init_waitqueue_head(&log->l_flush_wait);
1149
1150 /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1151 ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1152
1153 iclogp = &log->l_iclog;
1154 /*
1155 * The amount of memory to allocate for the iclog structure is
1156 * rather funky due to the way the structure is defined. It is
1157 * done this way so that we can use different sizes for machines
1158 * with different amounts of memory. See the definition of
1159 * xlog_in_core_t in xfs_log_priv.h for details.
1160 */
1161 ASSERT(log->l_iclog_size >= 4096);
1162 for (i=0; i < log->l_iclog_bufs; i++) {
1163 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1164 if (!*iclogp)
1165 goto out_free_iclog;
1166
1167 iclog = *iclogp;
1168 iclog->ic_prev = prev_iclog;
1169 prev_iclog = iclog;
1170
1171 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1172 log->l_iclog_size, 0);
1173 if (!bp)
1174 goto out_free_iclog;
1175
1176 bp->b_iodone = xlog_iodone;
1177 iclog->ic_bp = bp;
1178 iclog->ic_data = bp->b_addr;
1179 #ifdef DEBUG
1180 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1181 #endif
1182 head = &iclog->ic_header;
1183 memset(head, 0, sizeof(xlog_rec_header_t));
1184 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1185 head->h_version = cpu_to_be32(
1186 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1187 head->h_size = cpu_to_be32(log->l_iclog_size);
1188 /* new fields */
1189 head->h_fmt = cpu_to_be32(XLOG_FMT);
1190 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1191
1192 iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1193 iclog->ic_state = XLOG_STATE_ACTIVE;
1194 iclog->ic_log = log;
1195 atomic_set(&iclog->ic_refcnt, 0);
1196 spin_lock_init(&iclog->ic_callback_lock);
1197 iclog->ic_callback_tail = &(iclog->ic_callback);
1198 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1199
1200 ASSERT(xfs_buf_islocked(iclog->ic_bp));
1201 init_waitqueue_head(&iclog->ic_force_wait);
1202 init_waitqueue_head(&iclog->ic_write_wait);
1203
1204 iclogp = &iclog->ic_next;
1205 }
1206 *iclogp = log->l_iclog; /* complete ring */
1207 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1208
1209 error = xlog_cil_init(log);
1210 if (error)
1211 goto out_free_iclog;
1212 return log;
1213
1214 out_free_iclog:
1215 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1216 prev_iclog = iclog->ic_next;
1217 if (iclog->ic_bp)
1218 xfs_buf_free(iclog->ic_bp);
1219 kmem_free(iclog);
1220 }
1221 spinlock_destroy(&log->l_icloglock);
1222 xfs_buf_free(log->l_xbuf);
1223 out_free_log:
1224 kmem_free(log);
1225 out:
1226 return ERR_PTR(-error);
1227 } /* xlog_alloc_log */
1228
1229
1230 /*
1231 * Write out the commit record of a transaction associated with the given
1232 * ticket. Return the lsn of the commit record.
1233 */
1234 STATIC int
xlog_commit_record(struct log * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * commitlsnp)1235 xlog_commit_record(
1236 struct log *log,
1237 struct xlog_ticket *ticket,
1238 struct xlog_in_core **iclog,
1239 xfs_lsn_t *commitlsnp)
1240 {
1241 struct xfs_mount *mp = log->l_mp;
1242 int error;
1243 struct xfs_log_iovec reg = {
1244 .i_addr = NULL,
1245 .i_len = 0,
1246 .i_type = XLOG_REG_TYPE_COMMIT,
1247 };
1248 struct xfs_log_vec vec = {
1249 .lv_niovecs = 1,
1250 .lv_iovecp = ®,
1251 };
1252
1253 ASSERT_ALWAYS(iclog);
1254 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1255 XLOG_COMMIT_TRANS);
1256 if (error)
1257 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1258 return error;
1259 }
1260
1261 /*
1262 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1263 * log space. This code pushes on the lsn which would supposedly free up
1264 * the 25% which we want to leave free. We may need to adopt a policy which
1265 * pushes on an lsn which is further along in the log once we reach the high
1266 * water mark. In this manner, we would be creating a low water mark.
1267 */
1268 STATIC void
xlog_grant_push_ail(struct log * log,int need_bytes)1269 xlog_grant_push_ail(
1270 struct log *log,
1271 int need_bytes)
1272 {
1273 xfs_lsn_t threshold_lsn = 0;
1274 xfs_lsn_t last_sync_lsn;
1275 int free_blocks;
1276 int free_bytes;
1277 int threshold_block;
1278 int threshold_cycle;
1279 int free_threshold;
1280
1281 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1282
1283 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
1284 free_blocks = BTOBBT(free_bytes);
1285
1286 /*
1287 * Set the threshold for the minimum number of free blocks in the
1288 * log to the maximum of what the caller needs, one quarter of the
1289 * log, and 256 blocks.
1290 */
1291 free_threshold = BTOBB(need_bytes);
1292 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1293 free_threshold = MAX(free_threshold, 256);
1294 if (free_blocks >= free_threshold)
1295 return;
1296
1297 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1298 &threshold_block);
1299 threshold_block += free_threshold;
1300 if (threshold_block >= log->l_logBBsize) {
1301 threshold_block -= log->l_logBBsize;
1302 threshold_cycle += 1;
1303 }
1304 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1305 threshold_block);
1306 /*
1307 * Don't pass in an lsn greater than the lsn of the last
1308 * log record known to be on disk. Use a snapshot of the last sync lsn
1309 * so that it doesn't change between the compare and the set.
1310 */
1311 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1312 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1313 threshold_lsn = last_sync_lsn;
1314
1315 /*
1316 * Get the transaction layer to kick the dirty buffers out to
1317 * disk asynchronously. No point in trying to do this if
1318 * the filesystem is shutting down.
1319 */
1320 if (!XLOG_FORCED_SHUTDOWN(log))
1321 xfs_ail_push(log->l_ailp, threshold_lsn);
1322 }
1323
1324 /*
1325 * The bdstrat callback function for log bufs. This gives us a central
1326 * place to trap bufs in case we get hit by a log I/O error and need to
1327 * shutdown. Actually, in practice, even when we didn't get a log error,
1328 * we transition the iclogs to IOERROR state *after* flushing all existing
1329 * iclogs to disk. This is because we don't want anymore new transactions to be
1330 * started or completed afterwards.
1331 */
1332 STATIC int
xlog_bdstrat(struct xfs_buf * bp)1333 xlog_bdstrat(
1334 struct xfs_buf *bp)
1335 {
1336 struct xlog_in_core *iclog = bp->b_fspriv;
1337
1338 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1339 xfs_buf_ioerror(bp, EIO);
1340 xfs_buf_stale(bp);
1341 xfs_buf_ioend(bp, 0);
1342 /*
1343 * It would seem logical to return EIO here, but we rely on
1344 * the log state machine to propagate I/O errors instead of
1345 * doing it here.
1346 */
1347 return 0;
1348 }
1349
1350 xfs_buf_iorequest(bp);
1351 return 0;
1352 }
1353
1354 /*
1355 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1356 * fashion. Previously, we should have moved the current iclog
1357 * ptr in the log to point to the next available iclog. This allows further
1358 * write to continue while this code syncs out an iclog ready to go.
1359 * Before an in-core log can be written out, the data section must be scanned
1360 * to save away the 1st word of each BBSIZE block into the header. We replace
1361 * it with the current cycle count. Each BBSIZE block is tagged with the
1362 * cycle count because there in an implicit assumption that drives will
1363 * guarantee that entire 512 byte blocks get written at once. In other words,
1364 * we can't have part of a 512 byte block written and part not written. By
1365 * tagging each block, we will know which blocks are valid when recovering
1366 * after an unclean shutdown.
1367 *
1368 * This routine is single threaded on the iclog. No other thread can be in
1369 * this routine with the same iclog. Changing contents of iclog can there-
1370 * fore be done without grabbing the state machine lock. Updating the global
1371 * log will require grabbing the lock though.
1372 *
1373 * The entire log manager uses a logical block numbering scheme. Only
1374 * log_sync (and then only bwrite()) know about the fact that the log may
1375 * not start with block zero on a given device. The log block start offset
1376 * is added immediately before calling bwrite().
1377 */
1378
1379 STATIC int
xlog_sync(xlog_t * log,xlog_in_core_t * iclog)1380 xlog_sync(xlog_t *log,
1381 xlog_in_core_t *iclog)
1382 {
1383 xfs_caddr_t dptr; /* pointer to byte sized element */
1384 xfs_buf_t *bp;
1385 int i;
1386 uint count; /* byte count of bwrite */
1387 uint count_init; /* initial count before roundup */
1388 int roundoff; /* roundoff to BB or stripe */
1389 int split = 0; /* split write into two regions */
1390 int error;
1391 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1392
1393 XFS_STATS_INC(xs_log_writes);
1394 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1395
1396 /* Add for LR header */
1397 count_init = log->l_iclog_hsize + iclog->ic_offset;
1398
1399 /* Round out the log write size */
1400 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1401 /* we have a v2 stripe unit to use */
1402 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1403 } else {
1404 count = BBTOB(BTOBB(count_init));
1405 }
1406 roundoff = count - count_init;
1407 ASSERT(roundoff >= 0);
1408 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1409 roundoff < log->l_mp->m_sb.sb_logsunit)
1410 ||
1411 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1412 roundoff < BBTOB(1)));
1413
1414 /* move grant heads by roundoff in sync */
1415 xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff);
1416 xlog_grant_add_space(log, &log->l_grant_write_head, roundoff);
1417
1418 /* put cycle number in every block */
1419 xlog_pack_data(log, iclog, roundoff);
1420
1421 /* real byte length */
1422 if (v2) {
1423 iclog->ic_header.h_len =
1424 cpu_to_be32(iclog->ic_offset + roundoff);
1425 } else {
1426 iclog->ic_header.h_len =
1427 cpu_to_be32(iclog->ic_offset);
1428 }
1429
1430 bp = iclog->ic_bp;
1431 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1432
1433 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1434
1435 /* Do we need to split this write into 2 parts? */
1436 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1437 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1438 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1439 iclog->ic_bwritecnt = 2; /* split into 2 writes */
1440 } else {
1441 iclog->ic_bwritecnt = 1;
1442 }
1443 XFS_BUF_SET_COUNT(bp, count);
1444 bp->b_fspriv = iclog;
1445 XFS_BUF_ZEROFLAGS(bp);
1446 XFS_BUF_ASYNC(bp);
1447 bp->b_flags |= XBF_SYNCIO;
1448
1449 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1450 bp->b_flags |= XBF_FUA;
1451
1452 /*
1453 * Flush the data device before flushing the log to make
1454 * sure all meta data written back from the AIL actually made
1455 * it to disk before stamping the new log tail LSN into the
1456 * log buffer. For an external log we need to issue the
1457 * flush explicitly, and unfortunately synchronously here;
1458 * for an internal log we can simply use the block layer
1459 * state machine for preflushes.
1460 */
1461 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1462 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1463 else
1464 bp->b_flags |= XBF_FLUSH;
1465 }
1466
1467 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1468 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1469
1470 xlog_verify_iclog(log, iclog, count, B_TRUE);
1471
1472 /* account for log which doesn't start at block #0 */
1473 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1474 /*
1475 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1476 * is shutting down.
1477 */
1478 XFS_BUF_WRITE(bp);
1479
1480 error = xlog_bdstrat(bp);
1481 if (error) {
1482 xfs_buf_ioerror_alert(bp, "xlog_sync");
1483 return error;
1484 }
1485 if (split) {
1486 bp = iclog->ic_log->l_xbuf;
1487 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1488 xfs_buf_associate_memory(bp,
1489 (char *)&iclog->ic_header + count, split);
1490 bp->b_fspriv = iclog;
1491 XFS_BUF_ZEROFLAGS(bp);
1492 XFS_BUF_ASYNC(bp);
1493 bp->b_flags |= XBF_SYNCIO;
1494 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1495 bp->b_flags |= XBF_FUA;
1496 dptr = bp->b_addr;
1497 /*
1498 * Bump the cycle numbers at the start of each block
1499 * since this part of the buffer is at the start of
1500 * a new cycle. Watch out for the header magic number
1501 * case, though.
1502 */
1503 for (i = 0; i < split; i += BBSIZE) {
1504 be32_add_cpu((__be32 *)dptr, 1);
1505 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1506 be32_add_cpu((__be32 *)dptr, 1);
1507 dptr += BBSIZE;
1508 }
1509
1510 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1511 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1512
1513 /* account for internal log which doesn't start at block #0 */
1514 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1515 XFS_BUF_WRITE(bp);
1516 error = xlog_bdstrat(bp);
1517 if (error) {
1518 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1519 return error;
1520 }
1521 }
1522 return 0;
1523 } /* xlog_sync */
1524
1525
1526 /*
1527 * Deallocate a log structure
1528 */
1529 STATIC void
xlog_dealloc_log(xlog_t * log)1530 xlog_dealloc_log(xlog_t *log)
1531 {
1532 xlog_in_core_t *iclog, *next_iclog;
1533 int i;
1534
1535 xlog_cil_destroy(log);
1536
1537 /*
1538 * always need to ensure that the extra buffer does not point to memory
1539 * owned by another log buffer before we free it.
1540 */
1541 xfs_buf_set_empty(log->l_xbuf, log->l_iclog_size);
1542 xfs_buf_free(log->l_xbuf);
1543
1544 iclog = log->l_iclog;
1545 for (i=0; i<log->l_iclog_bufs; i++) {
1546 xfs_buf_free(iclog->ic_bp);
1547 next_iclog = iclog->ic_next;
1548 kmem_free(iclog);
1549 iclog = next_iclog;
1550 }
1551 spinlock_destroy(&log->l_icloglock);
1552
1553 log->l_mp->m_log = NULL;
1554 kmem_free(log);
1555 } /* xlog_dealloc_log */
1556
1557 /*
1558 * Update counters atomically now that memcpy is done.
1559 */
1560 /* ARGSUSED */
1561 static inline void
xlog_state_finish_copy(xlog_t * log,xlog_in_core_t * iclog,int record_cnt,int copy_bytes)1562 xlog_state_finish_copy(xlog_t *log,
1563 xlog_in_core_t *iclog,
1564 int record_cnt,
1565 int copy_bytes)
1566 {
1567 spin_lock(&log->l_icloglock);
1568
1569 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1570 iclog->ic_offset += copy_bytes;
1571
1572 spin_unlock(&log->l_icloglock);
1573 } /* xlog_state_finish_copy */
1574
1575
1576
1577
1578 /*
1579 * print out info relating to regions written which consume
1580 * the reservation
1581 */
1582 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1583 xlog_print_tic_res(
1584 struct xfs_mount *mp,
1585 struct xlog_ticket *ticket)
1586 {
1587 uint i;
1588 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1589
1590 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1591 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1592 "bformat",
1593 "bchunk",
1594 "efi_format",
1595 "efd_format",
1596 "iformat",
1597 "icore",
1598 "iext",
1599 "ibroot",
1600 "ilocal",
1601 "iattr_ext",
1602 "iattr_broot",
1603 "iattr_local",
1604 "qformat",
1605 "dquot",
1606 "quotaoff",
1607 "LR header",
1608 "unmount",
1609 "commit",
1610 "trans header"
1611 };
1612 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1613 "SETATTR_NOT_SIZE",
1614 "SETATTR_SIZE",
1615 "INACTIVE",
1616 "CREATE",
1617 "CREATE_TRUNC",
1618 "TRUNCATE_FILE",
1619 "REMOVE",
1620 "LINK",
1621 "RENAME",
1622 "MKDIR",
1623 "RMDIR",
1624 "SYMLINK",
1625 "SET_DMATTRS",
1626 "GROWFS",
1627 "STRAT_WRITE",
1628 "DIOSTRAT",
1629 "WRITE_SYNC",
1630 "WRITEID",
1631 "ADDAFORK",
1632 "ATTRINVAL",
1633 "ATRUNCATE",
1634 "ATTR_SET",
1635 "ATTR_RM",
1636 "ATTR_FLAG",
1637 "CLEAR_AGI_BUCKET",
1638 "QM_SBCHANGE",
1639 "DUMMY1",
1640 "DUMMY2",
1641 "QM_QUOTAOFF",
1642 "QM_DQALLOC",
1643 "QM_SETQLIM",
1644 "QM_DQCLUSTER",
1645 "QM_QINOCREATE",
1646 "QM_QUOTAOFF_END",
1647 "SB_UNIT",
1648 "FSYNC_TS",
1649 "GROWFSRT_ALLOC",
1650 "GROWFSRT_ZERO",
1651 "GROWFSRT_FREE",
1652 "SWAPEXT"
1653 };
1654
1655 xfs_warn(mp,
1656 "xlog_write: reservation summary:\n"
1657 " trans type = %s (%u)\n"
1658 " unit res = %d bytes\n"
1659 " current res = %d bytes\n"
1660 " total reg = %u bytes (o/flow = %u bytes)\n"
1661 " ophdrs = %u (ophdr space = %u bytes)\n"
1662 " ophdr + reg = %u bytes\n"
1663 " num regions = %u\n",
1664 ((ticket->t_trans_type <= 0 ||
1665 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1666 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1667 ticket->t_trans_type,
1668 ticket->t_unit_res,
1669 ticket->t_curr_res,
1670 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1671 ticket->t_res_num_ophdrs, ophdr_spc,
1672 ticket->t_res_arr_sum +
1673 ticket->t_res_o_flow + ophdr_spc,
1674 ticket->t_res_num);
1675
1676 for (i = 0; i < ticket->t_res_num; i++) {
1677 uint r_type = ticket->t_res_arr[i].r_type;
1678 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1679 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1680 "bad-rtype" : res_type_str[r_type-1]),
1681 ticket->t_res_arr[i].r_len);
1682 }
1683
1684 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1685 "xlog_write: reservation ran out. Need to up reservation");
1686 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1687 }
1688
1689 /*
1690 * Calculate the potential space needed by the log vector. Each region gets
1691 * its own xlog_op_header_t and may need to be double word aligned.
1692 */
1693 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector)1694 xlog_write_calc_vec_length(
1695 struct xlog_ticket *ticket,
1696 struct xfs_log_vec *log_vector)
1697 {
1698 struct xfs_log_vec *lv;
1699 int headers = 0;
1700 int len = 0;
1701 int i;
1702
1703 /* acct for start rec of xact */
1704 if (ticket->t_flags & XLOG_TIC_INITED)
1705 headers++;
1706
1707 for (lv = log_vector; lv; lv = lv->lv_next) {
1708 headers += lv->lv_niovecs;
1709
1710 for (i = 0; i < lv->lv_niovecs; i++) {
1711 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
1712
1713 len += vecp->i_len;
1714 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1715 }
1716 }
1717
1718 ticket->t_res_num_ophdrs += headers;
1719 len += headers * sizeof(struct xlog_op_header);
1720
1721 return len;
1722 }
1723
1724 /*
1725 * If first write for transaction, insert start record We can't be trying to
1726 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1727 */
1728 static int
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)1729 xlog_write_start_rec(
1730 struct xlog_op_header *ophdr,
1731 struct xlog_ticket *ticket)
1732 {
1733 if (!(ticket->t_flags & XLOG_TIC_INITED))
1734 return 0;
1735
1736 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1737 ophdr->oh_clientid = ticket->t_clientid;
1738 ophdr->oh_len = 0;
1739 ophdr->oh_flags = XLOG_START_TRANS;
1740 ophdr->oh_res2 = 0;
1741
1742 ticket->t_flags &= ~XLOG_TIC_INITED;
1743
1744 return sizeof(struct xlog_op_header);
1745 }
1746
1747 static xlog_op_header_t *
xlog_write_setup_ophdr(struct log * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)1748 xlog_write_setup_ophdr(
1749 struct log *log,
1750 struct xlog_op_header *ophdr,
1751 struct xlog_ticket *ticket,
1752 uint flags)
1753 {
1754 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1755 ophdr->oh_clientid = ticket->t_clientid;
1756 ophdr->oh_res2 = 0;
1757
1758 /* are we copying a commit or unmount record? */
1759 ophdr->oh_flags = flags;
1760
1761 /*
1762 * We've seen logs corrupted with bad transaction client ids. This
1763 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1764 * and shut down the filesystem.
1765 */
1766 switch (ophdr->oh_clientid) {
1767 case XFS_TRANSACTION:
1768 case XFS_VOLUME:
1769 case XFS_LOG:
1770 break;
1771 default:
1772 xfs_warn(log->l_mp,
1773 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1774 ophdr->oh_clientid, ticket);
1775 return NULL;
1776 }
1777
1778 return ophdr;
1779 }
1780
1781 /*
1782 * Set up the parameters of the region copy into the log. This has
1783 * to handle region write split across multiple log buffers - this
1784 * state is kept external to this function so that this code can
1785 * can be written in an obvious, self documenting manner.
1786 */
1787 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)1788 xlog_write_setup_copy(
1789 struct xlog_ticket *ticket,
1790 struct xlog_op_header *ophdr,
1791 int space_available,
1792 int space_required,
1793 int *copy_off,
1794 int *copy_len,
1795 int *last_was_partial_copy,
1796 int *bytes_consumed)
1797 {
1798 int still_to_copy;
1799
1800 still_to_copy = space_required - *bytes_consumed;
1801 *copy_off = *bytes_consumed;
1802
1803 if (still_to_copy <= space_available) {
1804 /* write of region completes here */
1805 *copy_len = still_to_copy;
1806 ophdr->oh_len = cpu_to_be32(*copy_len);
1807 if (*last_was_partial_copy)
1808 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1809 *last_was_partial_copy = 0;
1810 *bytes_consumed = 0;
1811 return 0;
1812 }
1813
1814 /* partial write of region, needs extra log op header reservation */
1815 *copy_len = space_available;
1816 ophdr->oh_len = cpu_to_be32(*copy_len);
1817 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1818 if (*last_was_partial_copy)
1819 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1820 *bytes_consumed += *copy_len;
1821 (*last_was_partial_copy)++;
1822
1823 /* account for new log op header */
1824 ticket->t_curr_res -= sizeof(struct xlog_op_header);
1825 ticket->t_res_num_ophdrs++;
1826
1827 return sizeof(struct xlog_op_header);
1828 }
1829
1830 static int
xlog_write_copy_finish(struct log * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)1831 xlog_write_copy_finish(
1832 struct log *log,
1833 struct xlog_in_core *iclog,
1834 uint flags,
1835 int *record_cnt,
1836 int *data_cnt,
1837 int *partial_copy,
1838 int *partial_copy_len,
1839 int log_offset,
1840 struct xlog_in_core **commit_iclog)
1841 {
1842 if (*partial_copy) {
1843 /*
1844 * This iclog has already been marked WANT_SYNC by
1845 * xlog_state_get_iclog_space.
1846 */
1847 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1848 *record_cnt = 0;
1849 *data_cnt = 0;
1850 return xlog_state_release_iclog(log, iclog);
1851 }
1852
1853 *partial_copy = 0;
1854 *partial_copy_len = 0;
1855
1856 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1857 /* no more space in this iclog - push it. */
1858 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1859 *record_cnt = 0;
1860 *data_cnt = 0;
1861
1862 spin_lock(&log->l_icloglock);
1863 xlog_state_want_sync(log, iclog);
1864 spin_unlock(&log->l_icloglock);
1865
1866 if (!commit_iclog)
1867 return xlog_state_release_iclog(log, iclog);
1868 ASSERT(flags & XLOG_COMMIT_TRANS);
1869 *commit_iclog = iclog;
1870 }
1871
1872 return 0;
1873 }
1874
1875 /*
1876 * Write some region out to in-core log
1877 *
1878 * This will be called when writing externally provided regions or when
1879 * writing out a commit record for a given transaction.
1880 *
1881 * General algorithm:
1882 * 1. Find total length of this write. This may include adding to the
1883 * lengths passed in.
1884 * 2. Check whether we violate the tickets reservation.
1885 * 3. While writing to this iclog
1886 * A. Reserve as much space in this iclog as can get
1887 * B. If this is first write, save away start lsn
1888 * C. While writing this region:
1889 * 1. If first write of transaction, write start record
1890 * 2. Write log operation header (header per region)
1891 * 3. Find out if we can fit entire region into this iclog
1892 * 4. Potentially, verify destination memcpy ptr
1893 * 5. Memcpy (partial) region
1894 * 6. If partial copy, release iclog; otherwise, continue
1895 * copying more regions into current iclog
1896 * 4. Mark want sync bit (in simulation mode)
1897 * 5. Release iclog for potential flush to on-disk log.
1898 *
1899 * ERRORS:
1900 * 1. Panic if reservation is overrun. This should never happen since
1901 * reservation amounts are generated internal to the filesystem.
1902 * NOTES:
1903 * 1. Tickets are single threaded data structures.
1904 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1905 * syncing routine. When a single log_write region needs to span
1906 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1907 * on all log operation writes which don't contain the end of the
1908 * region. The XLOG_END_TRANS bit is used for the in-core log
1909 * operation which contains the end of the continued log_write region.
1910 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1911 * we don't really know exactly how much space will be used. As a result,
1912 * we don't update ic_offset until the end when we know exactly how many
1913 * bytes have been written out.
1914 */
1915 int
xlog_write(struct log * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags)1916 xlog_write(
1917 struct log *log,
1918 struct xfs_log_vec *log_vector,
1919 struct xlog_ticket *ticket,
1920 xfs_lsn_t *start_lsn,
1921 struct xlog_in_core **commit_iclog,
1922 uint flags)
1923 {
1924 struct xlog_in_core *iclog = NULL;
1925 struct xfs_log_iovec *vecp;
1926 struct xfs_log_vec *lv;
1927 int len;
1928 int index;
1929 int partial_copy = 0;
1930 int partial_copy_len = 0;
1931 int contwr = 0;
1932 int record_cnt = 0;
1933 int data_cnt = 0;
1934 int error;
1935
1936 *start_lsn = 0;
1937
1938 len = xlog_write_calc_vec_length(ticket, log_vector);
1939
1940 /*
1941 * Region headers and bytes are already accounted for.
1942 * We only need to take into account start records and
1943 * split regions in this function.
1944 */
1945 if (ticket->t_flags & XLOG_TIC_INITED)
1946 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1947
1948 /*
1949 * Commit record headers need to be accounted for. These
1950 * come in as separate writes so are easy to detect.
1951 */
1952 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1953 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1954
1955 if (ticket->t_curr_res < 0)
1956 xlog_print_tic_res(log->l_mp, ticket);
1957
1958 index = 0;
1959 lv = log_vector;
1960 vecp = lv->lv_iovecp;
1961 while (lv && index < lv->lv_niovecs) {
1962 void *ptr;
1963 int log_offset;
1964
1965 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
1966 &contwr, &log_offset);
1967 if (error)
1968 return error;
1969
1970 ASSERT(log_offset <= iclog->ic_size - 1);
1971 ptr = iclog->ic_datap + log_offset;
1972
1973 /* start_lsn is the first lsn written to. That's all we need. */
1974 if (!*start_lsn)
1975 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1976
1977 /*
1978 * This loop writes out as many regions as can fit in the amount
1979 * of space which was allocated by xlog_state_get_iclog_space().
1980 */
1981 while (lv && index < lv->lv_niovecs) {
1982 struct xfs_log_iovec *reg = &vecp[index];
1983 struct xlog_op_header *ophdr;
1984 int start_rec_copy;
1985 int copy_len;
1986 int copy_off;
1987
1988 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
1989 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
1990
1991 start_rec_copy = xlog_write_start_rec(ptr, ticket);
1992 if (start_rec_copy) {
1993 record_cnt++;
1994 xlog_write_adv_cnt(&ptr, &len, &log_offset,
1995 start_rec_copy);
1996 }
1997
1998 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
1999 if (!ophdr)
2000 return XFS_ERROR(EIO);
2001
2002 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2003 sizeof(struct xlog_op_header));
2004
2005 len += xlog_write_setup_copy(ticket, ophdr,
2006 iclog->ic_size-log_offset,
2007 reg->i_len,
2008 ©_off, ©_len,
2009 &partial_copy,
2010 &partial_copy_len);
2011 xlog_verify_dest_ptr(log, ptr);
2012
2013 /* copy region */
2014 ASSERT(copy_len >= 0);
2015 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2016 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2017
2018 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2019 record_cnt++;
2020 data_cnt += contwr ? copy_len : 0;
2021
2022 error = xlog_write_copy_finish(log, iclog, flags,
2023 &record_cnt, &data_cnt,
2024 &partial_copy,
2025 &partial_copy_len,
2026 log_offset,
2027 commit_iclog);
2028 if (error)
2029 return error;
2030
2031 /*
2032 * if we had a partial copy, we need to get more iclog
2033 * space but we don't want to increment the region
2034 * index because there is still more is this region to
2035 * write.
2036 *
2037 * If we completed writing this region, and we flushed
2038 * the iclog (indicated by resetting of the record
2039 * count), then we also need to get more log space. If
2040 * this was the last record, though, we are done and
2041 * can just return.
2042 */
2043 if (partial_copy)
2044 break;
2045
2046 if (++index == lv->lv_niovecs) {
2047 lv = lv->lv_next;
2048 index = 0;
2049 if (lv)
2050 vecp = lv->lv_iovecp;
2051 }
2052 if (record_cnt == 0) {
2053 if (!lv)
2054 return 0;
2055 break;
2056 }
2057 }
2058 }
2059
2060 ASSERT(len == 0);
2061
2062 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2063 if (!commit_iclog)
2064 return xlog_state_release_iclog(log, iclog);
2065
2066 ASSERT(flags & XLOG_COMMIT_TRANS);
2067 *commit_iclog = iclog;
2068 return 0;
2069 }
2070
2071
2072 /*****************************************************************************
2073 *
2074 * State Machine functions
2075 *
2076 *****************************************************************************
2077 */
2078
2079 /* Clean iclogs starting from the head. This ordering must be
2080 * maintained, so an iclog doesn't become ACTIVE beyond one that
2081 * is SYNCING. This is also required to maintain the notion that we use
2082 * a ordered wait queue to hold off would be writers to the log when every
2083 * iclog is trying to sync to disk.
2084 *
2085 * State Change: DIRTY -> ACTIVE
2086 */
2087 STATIC void
xlog_state_clean_log(xlog_t * log)2088 xlog_state_clean_log(xlog_t *log)
2089 {
2090 xlog_in_core_t *iclog;
2091 int changed = 0;
2092
2093 iclog = log->l_iclog;
2094 do {
2095 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2096 iclog->ic_state = XLOG_STATE_ACTIVE;
2097 iclog->ic_offset = 0;
2098 ASSERT(iclog->ic_callback == NULL);
2099 /*
2100 * If the number of ops in this iclog indicate it just
2101 * contains the dummy transaction, we can
2102 * change state into IDLE (the second time around).
2103 * Otherwise we should change the state into
2104 * NEED a dummy.
2105 * We don't need to cover the dummy.
2106 */
2107 if (!changed &&
2108 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2109 XLOG_COVER_OPS)) {
2110 changed = 1;
2111 } else {
2112 /*
2113 * We have two dirty iclogs so start over
2114 * This could also be num of ops indicates
2115 * this is not the dummy going out.
2116 */
2117 changed = 2;
2118 }
2119 iclog->ic_header.h_num_logops = 0;
2120 memset(iclog->ic_header.h_cycle_data, 0,
2121 sizeof(iclog->ic_header.h_cycle_data));
2122 iclog->ic_header.h_lsn = 0;
2123 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2124 /* do nothing */;
2125 else
2126 break; /* stop cleaning */
2127 iclog = iclog->ic_next;
2128 } while (iclog != log->l_iclog);
2129
2130 /* log is locked when we are called */
2131 /*
2132 * Change state for the dummy log recording.
2133 * We usually go to NEED. But we go to NEED2 if the changed indicates
2134 * we are done writing the dummy record.
2135 * If we are done with the second dummy recored (DONE2), then
2136 * we go to IDLE.
2137 */
2138 if (changed) {
2139 switch (log->l_covered_state) {
2140 case XLOG_STATE_COVER_IDLE:
2141 case XLOG_STATE_COVER_NEED:
2142 case XLOG_STATE_COVER_NEED2:
2143 log->l_covered_state = XLOG_STATE_COVER_NEED;
2144 break;
2145
2146 case XLOG_STATE_COVER_DONE:
2147 if (changed == 1)
2148 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2149 else
2150 log->l_covered_state = XLOG_STATE_COVER_NEED;
2151 break;
2152
2153 case XLOG_STATE_COVER_DONE2:
2154 if (changed == 1)
2155 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2156 else
2157 log->l_covered_state = XLOG_STATE_COVER_NEED;
2158 break;
2159
2160 default:
2161 ASSERT(0);
2162 }
2163 }
2164 } /* xlog_state_clean_log */
2165
2166 STATIC xfs_lsn_t
xlog_get_lowest_lsn(xlog_t * log)2167 xlog_get_lowest_lsn(
2168 xlog_t *log)
2169 {
2170 xlog_in_core_t *lsn_log;
2171 xfs_lsn_t lowest_lsn, lsn;
2172
2173 lsn_log = log->l_iclog;
2174 lowest_lsn = 0;
2175 do {
2176 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2177 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2178 if ((lsn && !lowest_lsn) ||
2179 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2180 lowest_lsn = lsn;
2181 }
2182 }
2183 lsn_log = lsn_log->ic_next;
2184 } while (lsn_log != log->l_iclog);
2185 return lowest_lsn;
2186 }
2187
2188
2189 STATIC void
xlog_state_do_callback(xlog_t * log,int aborted,xlog_in_core_t * ciclog)2190 xlog_state_do_callback(
2191 xlog_t *log,
2192 int aborted,
2193 xlog_in_core_t *ciclog)
2194 {
2195 xlog_in_core_t *iclog;
2196 xlog_in_core_t *first_iclog; /* used to know when we've
2197 * processed all iclogs once */
2198 xfs_log_callback_t *cb, *cb_next;
2199 int flushcnt = 0;
2200 xfs_lsn_t lowest_lsn;
2201 int ioerrors; /* counter: iclogs with errors */
2202 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2203 int funcdidcallbacks; /* flag: function did callbacks */
2204 int repeats; /* for issuing console warnings if
2205 * looping too many times */
2206 int wake = 0;
2207
2208 spin_lock(&log->l_icloglock);
2209 first_iclog = iclog = log->l_iclog;
2210 ioerrors = 0;
2211 funcdidcallbacks = 0;
2212 repeats = 0;
2213
2214 do {
2215 /*
2216 * Scan all iclogs starting with the one pointed to by the
2217 * log. Reset this starting point each time the log is
2218 * unlocked (during callbacks).
2219 *
2220 * Keep looping through iclogs until one full pass is made
2221 * without running any callbacks.
2222 */
2223 first_iclog = log->l_iclog;
2224 iclog = log->l_iclog;
2225 loopdidcallbacks = 0;
2226 repeats++;
2227
2228 do {
2229
2230 /* skip all iclogs in the ACTIVE & DIRTY states */
2231 if (iclog->ic_state &
2232 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2233 iclog = iclog->ic_next;
2234 continue;
2235 }
2236
2237 /*
2238 * Between marking a filesystem SHUTDOWN and stopping
2239 * the log, we do flush all iclogs to disk (if there
2240 * wasn't a log I/O error). So, we do want things to
2241 * go smoothly in case of just a SHUTDOWN w/o a
2242 * LOG_IO_ERROR.
2243 */
2244 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2245 /*
2246 * Can only perform callbacks in order. Since
2247 * this iclog is not in the DONE_SYNC/
2248 * DO_CALLBACK state, we skip the rest and
2249 * just try to clean up. If we set our iclog
2250 * to DO_CALLBACK, we will not process it when
2251 * we retry since a previous iclog is in the
2252 * CALLBACK and the state cannot change since
2253 * we are holding the l_icloglock.
2254 */
2255 if (!(iclog->ic_state &
2256 (XLOG_STATE_DONE_SYNC |
2257 XLOG_STATE_DO_CALLBACK))) {
2258 if (ciclog && (ciclog->ic_state ==
2259 XLOG_STATE_DONE_SYNC)) {
2260 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2261 }
2262 break;
2263 }
2264 /*
2265 * We now have an iclog that is in either the
2266 * DO_CALLBACK or DONE_SYNC states. The other
2267 * states (WANT_SYNC, SYNCING, or CALLBACK were
2268 * caught by the above if and are going to
2269 * clean (i.e. we aren't doing their callbacks)
2270 * see the above if.
2271 */
2272
2273 /*
2274 * We will do one more check here to see if we
2275 * have chased our tail around.
2276 */
2277
2278 lowest_lsn = xlog_get_lowest_lsn(log);
2279 if (lowest_lsn &&
2280 XFS_LSN_CMP(lowest_lsn,
2281 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2282 iclog = iclog->ic_next;
2283 continue; /* Leave this iclog for
2284 * another thread */
2285 }
2286
2287 iclog->ic_state = XLOG_STATE_CALLBACK;
2288
2289
2290 /*
2291 * update the last_sync_lsn before we drop the
2292 * icloglock to ensure we are the only one that
2293 * can update it.
2294 */
2295 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2296 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2297 atomic64_set(&log->l_last_sync_lsn,
2298 be64_to_cpu(iclog->ic_header.h_lsn));
2299
2300 } else
2301 ioerrors++;
2302
2303 spin_unlock(&log->l_icloglock);
2304
2305 /*
2306 * Keep processing entries in the callback list until
2307 * we come around and it is empty. We need to
2308 * atomically see that the list is empty and change the
2309 * state to DIRTY so that we don't miss any more
2310 * callbacks being added.
2311 */
2312 spin_lock(&iclog->ic_callback_lock);
2313 cb = iclog->ic_callback;
2314 while (cb) {
2315 iclog->ic_callback_tail = &(iclog->ic_callback);
2316 iclog->ic_callback = NULL;
2317 spin_unlock(&iclog->ic_callback_lock);
2318
2319 /* perform callbacks in the order given */
2320 for (; cb; cb = cb_next) {
2321 cb_next = cb->cb_next;
2322 cb->cb_func(cb->cb_arg, aborted);
2323 }
2324 spin_lock(&iclog->ic_callback_lock);
2325 cb = iclog->ic_callback;
2326 }
2327
2328 loopdidcallbacks++;
2329 funcdidcallbacks++;
2330
2331 spin_lock(&log->l_icloglock);
2332 ASSERT(iclog->ic_callback == NULL);
2333 spin_unlock(&iclog->ic_callback_lock);
2334 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2335 iclog->ic_state = XLOG_STATE_DIRTY;
2336
2337 /*
2338 * Transition from DIRTY to ACTIVE if applicable.
2339 * NOP if STATE_IOERROR.
2340 */
2341 xlog_state_clean_log(log);
2342
2343 /* wake up threads waiting in xfs_log_force() */
2344 wake_up_all(&iclog->ic_force_wait);
2345
2346 iclog = iclog->ic_next;
2347 } while (first_iclog != iclog);
2348
2349 if (repeats > 5000) {
2350 flushcnt += repeats;
2351 repeats = 0;
2352 xfs_warn(log->l_mp,
2353 "%s: possible infinite loop (%d iterations)",
2354 __func__, flushcnt);
2355 }
2356 } while (!ioerrors && loopdidcallbacks);
2357
2358 /*
2359 * make one last gasp attempt to see if iclogs are being left in
2360 * limbo..
2361 */
2362 #ifdef DEBUG
2363 if (funcdidcallbacks) {
2364 first_iclog = iclog = log->l_iclog;
2365 do {
2366 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2367 /*
2368 * Terminate the loop if iclogs are found in states
2369 * which will cause other threads to clean up iclogs.
2370 *
2371 * SYNCING - i/o completion will go through logs
2372 * DONE_SYNC - interrupt thread should be waiting for
2373 * l_icloglock
2374 * IOERROR - give up hope all ye who enter here
2375 */
2376 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2377 iclog->ic_state == XLOG_STATE_SYNCING ||
2378 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2379 iclog->ic_state == XLOG_STATE_IOERROR )
2380 break;
2381 iclog = iclog->ic_next;
2382 } while (first_iclog != iclog);
2383 }
2384 #endif
2385
2386 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2387 wake = 1;
2388 spin_unlock(&log->l_icloglock);
2389
2390 if (wake)
2391 wake_up_all(&log->l_flush_wait);
2392 }
2393
2394
2395 /*
2396 * Finish transitioning this iclog to the dirty state.
2397 *
2398 * Make sure that we completely execute this routine only when this is
2399 * the last call to the iclog. There is a good chance that iclog flushes,
2400 * when we reach the end of the physical log, get turned into 2 separate
2401 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2402 * routine. By using the reference count bwritecnt, we guarantee that only
2403 * the second completion goes through.
2404 *
2405 * Callbacks could take time, so they are done outside the scope of the
2406 * global state machine log lock.
2407 */
2408 STATIC void
xlog_state_done_syncing(xlog_in_core_t * iclog,int aborted)2409 xlog_state_done_syncing(
2410 xlog_in_core_t *iclog,
2411 int aborted)
2412 {
2413 xlog_t *log = iclog->ic_log;
2414
2415 spin_lock(&log->l_icloglock);
2416
2417 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2418 iclog->ic_state == XLOG_STATE_IOERROR);
2419 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2420 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2421
2422
2423 /*
2424 * If we got an error, either on the first buffer, or in the case of
2425 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2426 * and none should ever be attempted to be written to disk
2427 * again.
2428 */
2429 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2430 if (--iclog->ic_bwritecnt == 1) {
2431 spin_unlock(&log->l_icloglock);
2432 return;
2433 }
2434 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2435 }
2436
2437 /*
2438 * Someone could be sleeping prior to writing out the next
2439 * iclog buffer, we wake them all, one will get to do the
2440 * I/O, the others get to wait for the result.
2441 */
2442 wake_up_all(&iclog->ic_write_wait);
2443 spin_unlock(&log->l_icloglock);
2444 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2445 } /* xlog_state_done_syncing */
2446
2447
2448 /*
2449 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2450 * sleep. We wait on the flush queue on the head iclog as that should be
2451 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2452 * we will wait here and all new writes will sleep until a sync completes.
2453 *
2454 * The in-core logs are used in a circular fashion. They are not used
2455 * out-of-order even when an iclog past the head is free.
2456 *
2457 * return:
2458 * * log_offset where xlog_write() can start writing into the in-core
2459 * log's data space.
2460 * * in-core log pointer to which xlog_write() should write.
2461 * * boolean indicating this is a continued write to an in-core log.
2462 * If this is the last write, then the in-core log's offset field
2463 * needs to be incremented, depending on the amount of data which
2464 * is copied.
2465 */
2466 STATIC int
xlog_state_get_iclog_space(xlog_t * log,int len,xlog_in_core_t ** iclogp,xlog_ticket_t * ticket,int * continued_write,int * logoffsetp)2467 xlog_state_get_iclog_space(xlog_t *log,
2468 int len,
2469 xlog_in_core_t **iclogp,
2470 xlog_ticket_t *ticket,
2471 int *continued_write,
2472 int *logoffsetp)
2473 {
2474 int log_offset;
2475 xlog_rec_header_t *head;
2476 xlog_in_core_t *iclog;
2477 int error;
2478
2479 restart:
2480 spin_lock(&log->l_icloglock);
2481 if (XLOG_FORCED_SHUTDOWN(log)) {
2482 spin_unlock(&log->l_icloglock);
2483 return XFS_ERROR(EIO);
2484 }
2485
2486 iclog = log->l_iclog;
2487 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2488 XFS_STATS_INC(xs_log_noiclogs);
2489
2490 /* Wait for log writes to have flushed */
2491 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2492 goto restart;
2493 }
2494
2495 head = &iclog->ic_header;
2496
2497 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2498 log_offset = iclog->ic_offset;
2499
2500 /* On the 1st write to an iclog, figure out lsn. This works
2501 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2502 * committing to. If the offset is set, that's how many blocks
2503 * must be written.
2504 */
2505 if (log_offset == 0) {
2506 ticket->t_curr_res -= log->l_iclog_hsize;
2507 xlog_tic_add_region(ticket,
2508 log->l_iclog_hsize,
2509 XLOG_REG_TYPE_LRHEADER);
2510 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2511 head->h_lsn = cpu_to_be64(
2512 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2513 ASSERT(log->l_curr_block >= 0);
2514 }
2515
2516 /* If there is enough room to write everything, then do it. Otherwise,
2517 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2518 * bit is on, so this will get flushed out. Don't update ic_offset
2519 * until you know exactly how many bytes get copied. Therefore, wait
2520 * until later to update ic_offset.
2521 *
2522 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2523 * can fit into remaining data section.
2524 */
2525 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2526 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2527
2528 /*
2529 * If I'm the only one writing to this iclog, sync it to disk.
2530 * We need to do an atomic compare and decrement here to avoid
2531 * racing with concurrent atomic_dec_and_lock() calls in
2532 * xlog_state_release_iclog() when there is more than one
2533 * reference to the iclog.
2534 */
2535 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2536 /* we are the only one */
2537 spin_unlock(&log->l_icloglock);
2538 error = xlog_state_release_iclog(log, iclog);
2539 if (error)
2540 return error;
2541 } else {
2542 spin_unlock(&log->l_icloglock);
2543 }
2544 goto restart;
2545 }
2546
2547 /* Do we have enough room to write the full amount in the remainder
2548 * of this iclog? Or must we continue a write on the next iclog and
2549 * mark this iclog as completely taken? In the case where we switch
2550 * iclogs (to mark it taken), this particular iclog will release/sync
2551 * to disk in xlog_write().
2552 */
2553 if (len <= iclog->ic_size - iclog->ic_offset) {
2554 *continued_write = 0;
2555 iclog->ic_offset += len;
2556 } else {
2557 *continued_write = 1;
2558 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2559 }
2560 *iclogp = iclog;
2561
2562 ASSERT(iclog->ic_offset <= iclog->ic_size);
2563 spin_unlock(&log->l_icloglock);
2564
2565 *logoffsetp = log_offset;
2566 return 0;
2567 } /* xlog_state_get_iclog_space */
2568
2569 /*
2570 * Atomically get the log space required for a log ticket.
2571 *
2572 * Once a ticket gets put onto the reserveq, it will only return after the
2573 * needed reservation is satisfied.
2574 *
2575 * This function is structured so that it has a lock free fast path. This is
2576 * necessary because every new transaction reservation will come through this
2577 * path. Hence any lock will be globally hot if we take it unconditionally on
2578 * every pass.
2579 *
2580 * As tickets are only ever moved on and off the reserveq under the
2581 * l_grant_reserve_lock, we only need to take that lock if we are going to add
2582 * the ticket to the queue and sleep. We can avoid taking the lock if the ticket
2583 * was never added to the reserveq because the t_queue list head will be empty
2584 * and we hold the only reference to it so it can safely be checked unlocked.
2585 */
2586 STATIC int
xlog_grant_log_space(struct log * log,struct xlog_ticket * tic)2587 xlog_grant_log_space(
2588 struct log *log,
2589 struct xlog_ticket *tic)
2590 {
2591 int free_bytes, need_bytes;
2592 int error = 0;
2593
2594 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
2595
2596 trace_xfs_log_grant_enter(log, tic);
2597
2598 /*
2599 * If there are other waiters on the queue then give them a chance at
2600 * logspace before us. Wake up the first waiters, if we do not wake
2601 * up all the waiters then go to sleep waiting for more free space,
2602 * otherwise try to get some space for this transaction.
2603 */
2604 need_bytes = tic->t_unit_res;
2605 if (tic->t_flags & XFS_LOG_PERM_RESERV)
2606 need_bytes *= tic->t_ocnt;
2607 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
2608 if (!list_empty_careful(&log->l_reserveq)) {
2609 spin_lock(&log->l_grant_reserve_lock);
2610 if (!xlog_reserveq_wake(log, &free_bytes) ||
2611 free_bytes < need_bytes)
2612 error = xlog_reserveq_wait(log, tic, need_bytes);
2613 spin_unlock(&log->l_grant_reserve_lock);
2614 } else if (free_bytes < need_bytes) {
2615 spin_lock(&log->l_grant_reserve_lock);
2616 error = xlog_reserveq_wait(log, tic, need_bytes);
2617 spin_unlock(&log->l_grant_reserve_lock);
2618 }
2619 if (error)
2620 return error;
2621
2622 xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes);
2623 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2624 trace_xfs_log_grant_exit(log, tic);
2625 xlog_verify_grant_tail(log);
2626 return 0;
2627 }
2628
2629 /*
2630 * Replenish the byte reservation required by moving the grant write head.
2631 *
2632 * Similar to xlog_grant_log_space, the function is structured to have a lock
2633 * free fast path.
2634 */
2635 STATIC int
xlog_regrant_write_log_space(struct log * log,struct xlog_ticket * tic)2636 xlog_regrant_write_log_space(
2637 struct log *log,
2638 struct xlog_ticket *tic)
2639 {
2640 int free_bytes, need_bytes;
2641 int error = 0;
2642
2643 tic->t_curr_res = tic->t_unit_res;
2644 xlog_tic_reset_res(tic);
2645
2646 if (tic->t_cnt > 0)
2647 return 0;
2648
2649 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
2650
2651 trace_xfs_log_regrant_write_enter(log, tic);
2652
2653 /*
2654 * If there are other waiters on the queue then give them a chance at
2655 * logspace before us. Wake up the first waiters, if we do not wake
2656 * up all the waiters then go to sleep waiting for more free space,
2657 * otherwise try to get some space for this transaction.
2658 */
2659 need_bytes = tic->t_unit_res;
2660 free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2661 if (!list_empty_careful(&log->l_writeq)) {
2662 spin_lock(&log->l_grant_write_lock);
2663 if (!xlog_writeq_wake(log, &free_bytes) ||
2664 free_bytes < need_bytes)
2665 error = xlog_writeq_wait(log, tic, need_bytes);
2666 spin_unlock(&log->l_grant_write_lock);
2667 } else if (free_bytes < need_bytes) {
2668 spin_lock(&log->l_grant_write_lock);
2669 error = xlog_writeq_wait(log, tic, need_bytes);
2670 spin_unlock(&log->l_grant_write_lock);
2671 }
2672
2673 if (error)
2674 return error;
2675
2676 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2677 trace_xfs_log_regrant_write_exit(log, tic);
2678 xlog_verify_grant_tail(log);
2679 return 0;
2680 }
2681
2682 /* The first cnt-1 times through here we don't need to
2683 * move the grant write head because the permanent
2684 * reservation has reserved cnt times the unit amount.
2685 * Release part of current permanent unit reservation and
2686 * reset current reservation to be one units worth. Also
2687 * move grant reservation head forward.
2688 */
2689 STATIC void
xlog_regrant_reserve_log_space(xlog_t * log,xlog_ticket_t * ticket)2690 xlog_regrant_reserve_log_space(xlog_t *log,
2691 xlog_ticket_t *ticket)
2692 {
2693 trace_xfs_log_regrant_reserve_enter(log, ticket);
2694
2695 if (ticket->t_cnt > 0)
2696 ticket->t_cnt--;
2697
2698 xlog_grant_sub_space(log, &log->l_grant_reserve_head,
2699 ticket->t_curr_res);
2700 xlog_grant_sub_space(log, &log->l_grant_write_head,
2701 ticket->t_curr_res);
2702 ticket->t_curr_res = ticket->t_unit_res;
2703 xlog_tic_reset_res(ticket);
2704
2705 trace_xfs_log_regrant_reserve_sub(log, ticket);
2706
2707 /* just return if we still have some of the pre-reserved space */
2708 if (ticket->t_cnt > 0)
2709 return;
2710
2711 xlog_grant_add_space(log, &log->l_grant_reserve_head,
2712 ticket->t_unit_res);
2713
2714 trace_xfs_log_regrant_reserve_exit(log, ticket);
2715
2716 ticket->t_curr_res = ticket->t_unit_res;
2717 xlog_tic_reset_res(ticket);
2718 } /* xlog_regrant_reserve_log_space */
2719
2720
2721 /*
2722 * Give back the space left from a reservation.
2723 *
2724 * All the information we need to make a correct determination of space left
2725 * is present. For non-permanent reservations, things are quite easy. The
2726 * count should have been decremented to zero. We only need to deal with the
2727 * space remaining in the current reservation part of the ticket. If the
2728 * ticket contains a permanent reservation, there may be left over space which
2729 * needs to be released. A count of N means that N-1 refills of the current
2730 * reservation can be done before we need to ask for more space. The first
2731 * one goes to fill up the first current reservation. Once we run out of
2732 * space, the count will stay at zero and the only space remaining will be
2733 * in the current reservation field.
2734 */
2735 STATIC void
xlog_ungrant_log_space(xlog_t * log,xlog_ticket_t * ticket)2736 xlog_ungrant_log_space(xlog_t *log,
2737 xlog_ticket_t *ticket)
2738 {
2739 int bytes;
2740
2741 if (ticket->t_cnt > 0)
2742 ticket->t_cnt--;
2743
2744 trace_xfs_log_ungrant_enter(log, ticket);
2745 trace_xfs_log_ungrant_sub(log, ticket);
2746
2747 /*
2748 * If this is a permanent reservation ticket, we may be able to free
2749 * up more space based on the remaining count.
2750 */
2751 bytes = ticket->t_curr_res;
2752 if (ticket->t_cnt > 0) {
2753 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2754 bytes += ticket->t_unit_res*ticket->t_cnt;
2755 }
2756
2757 xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes);
2758 xlog_grant_sub_space(log, &log->l_grant_write_head, bytes);
2759
2760 trace_xfs_log_ungrant_exit(log, ticket);
2761
2762 xfs_log_move_tail(log->l_mp, 1);
2763 } /* xlog_ungrant_log_space */
2764
2765
2766 /*
2767 * Flush iclog to disk if this is the last reference to the given iclog and
2768 * the WANT_SYNC bit is set.
2769 *
2770 * When this function is entered, the iclog is not necessarily in the
2771 * WANT_SYNC state. It may be sitting around waiting to get filled.
2772 *
2773 *
2774 */
2775 STATIC int
xlog_state_release_iclog(xlog_t * log,xlog_in_core_t * iclog)2776 xlog_state_release_iclog(
2777 xlog_t *log,
2778 xlog_in_core_t *iclog)
2779 {
2780 int sync = 0; /* do we sync? */
2781
2782 if (iclog->ic_state & XLOG_STATE_IOERROR)
2783 return XFS_ERROR(EIO);
2784
2785 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2786 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2787 return 0;
2788
2789 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2790 spin_unlock(&log->l_icloglock);
2791 return XFS_ERROR(EIO);
2792 }
2793 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2794 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2795
2796 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2797 /* update tail before writing to iclog */
2798 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2799 sync++;
2800 iclog->ic_state = XLOG_STATE_SYNCING;
2801 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2802 xlog_verify_tail_lsn(log, iclog, tail_lsn);
2803 /* cycle incremented when incrementing curr_block */
2804 }
2805 spin_unlock(&log->l_icloglock);
2806
2807 /*
2808 * We let the log lock go, so it's possible that we hit a log I/O
2809 * error or some other SHUTDOWN condition that marks the iclog
2810 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2811 * this iclog has consistent data, so we ignore IOERROR
2812 * flags after this point.
2813 */
2814 if (sync)
2815 return xlog_sync(log, iclog);
2816 return 0;
2817 } /* xlog_state_release_iclog */
2818
2819
2820 /*
2821 * This routine will mark the current iclog in the ring as WANT_SYNC
2822 * and move the current iclog pointer to the next iclog in the ring.
2823 * When this routine is called from xlog_state_get_iclog_space(), the
2824 * exact size of the iclog has not yet been determined. All we know is
2825 * that every data block. We have run out of space in this log record.
2826 */
2827 STATIC void
xlog_state_switch_iclogs(xlog_t * log,xlog_in_core_t * iclog,int eventual_size)2828 xlog_state_switch_iclogs(xlog_t *log,
2829 xlog_in_core_t *iclog,
2830 int eventual_size)
2831 {
2832 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2833 if (!eventual_size)
2834 eventual_size = iclog->ic_offset;
2835 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2836 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2837 log->l_prev_block = log->l_curr_block;
2838 log->l_prev_cycle = log->l_curr_cycle;
2839
2840 /* roll log?: ic_offset changed later */
2841 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2842
2843 /* Round up to next log-sunit */
2844 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2845 log->l_mp->m_sb.sb_logsunit > 1) {
2846 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2847 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2848 }
2849
2850 if (log->l_curr_block >= log->l_logBBsize) {
2851 log->l_curr_cycle++;
2852 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2853 log->l_curr_cycle++;
2854 log->l_curr_block -= log->l_logBBsize;
2855 ASSERT(log->l_curr_block >= 0);
2856 }
2857 ASSERT(iclog == log->l_iclog);
2858 log->l_iclog = iclog->ic_next;
2859 } /* xlog_state_switch_iclogs */
2860
2861 /*
2862 * Write out all data in the in-core log as of this exact moment in time.
2863 *
2864 * Data may be written to the in-core log during this call. However,
2865 * we don't guarantee this data will be written out. A change from past
2866 * implementation means this routine will *not* write out zero length LRs.
2867 *
2868 * Basically, we try and perform an intelligent scan of the in-core logs.
2869 * If we determine there is no flushable data, we just return. There is no
2870 * flushable data if:
2871 *
2872 * 1. the current iclog is active and has no data; the previous iclog
2873 * is in the active or dirty state.
2874 * 2. the current iclog is drity, and the previous iclog is in the
2875 * active or dirty state.
2876 *
2877 * We may sleep if:
2878 *
2879 * 1. the current iclog is not in the active nor dirty state.
2880 * 2. the current iclog dirty, and the previous iclog is not in the
2881 * active nor dirty state.
2882 * 3. the current iclog is active, and there is another thread writing
2883 * to this particular iclog.
2884 * 4. a) the current iclog is active and has no other writers
2885 * b) when we return from flushing out this iclog, it is still
2886 * not in the active nor dirty state.
2887 */
2888 int
_xfs_log_force(struct xfs_mount * mp,uint flags,int * log_flushed)2889 _xfs_log_force(
2890 struct xfs_mount *mp,
2891 uint flags,
2892 int *log_flushed)
2893 {
2894 struct log *log = mp->m_log;
2895 struct xlog_in_core *iclog;
2896 xfs_lsn_t lsn;
2897
2898 XFS_STATS_INC(xs_log_force);
2899
2900 xlog_cil_force(log);
2901
2902 spin_lock(&log->l_icloglock);
2903
2904 iclog = log->l_iclog;
2905 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2906 spin_unlock(&log->l_icloglock);
2907 return XFS_ERROR(EIO);
2908 }
2909
2910 /* If the head iclog is not active nor dirty, we just attach
2911 * ourselves to the head and go to sleep.
2912 */
2913 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2914 iclog->ic_state == XLOG_STATE_DIRTY) {
2915 /*
2916 * If the head is dirty or (active and empty), then
2917 * we need to look at the previous iclog. If the previous
2918 * iclog is active or dirty we are done. There is nothing
2919 * to sync out. Otherwise, we attach ourselves to the
2920 * previous iclog and go to sleep.
2921 */
2922 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2923 (atomic_read(&iclog->ic_refcnt) == 0
2924 && iclog->ic_offset == 0)) {
2925 iclog = iclog->ic_prev;
2926 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2927 iclog->ic_state == XLOG_STATE_DIRTY)
2928 goto no_sleep;
2929 else
2930 goto maybe_sleep;
2931 } else {
2932 if (atomic_read(&iclog->ic_refcnt) == 0) {
2933 /* We are the only one with access to this
2934 * iclog. Flush it out now. There should
2935 * be a roundoff of zero to show that someone
2936 * has already taken care of the roundoff from
2937 * the previous sync.
2938 */
2939 atomic_inc(&iclog->ic_refcnt);
2940 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2941 xlog_state_switch_iclogs(log, iclog, 0);
2942 spin_unlock(&log->l_icloglock);
2943
2944 if (xlog_state_release_iclog(log, iclog))
2945 return XFS_ERROR(EIO);
2946
2947 if (log_flushed)
2948 *log_flushed = 1;
2949 spin_lock(&log->l_icloglock);
2950 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2951 iclog->ic_state != XLOG_STATE_DIRTY)
2952 goto maybe_sleep;
2953 else
2954 goto no_sleep;
2955 } else {
2956 /* Someone else is writing to this iclog.
2957 * Use its call to flush out the data. However,
2958 * the other thread may not force out this LR,
2959 * so we mark it WANT_SYNC.
2960 */
2961 xlog_state_switch_iclogs(log, iclog, 0);
2962 goto maybe_sleep;
2963 }
2964 }
2965 }
2966
2967 /* By the time we come around again, the iclog could've been filled
2968 * which would give it another lsn. If we have a new lsn, just
2969 * return because the relevant data has been flushed.
2970 */
2971 maybe_sleep:
2972 if (flags & XFS_LOG_SYNC) {
2973 /*
2974 * We must check if we're shutting down here, before
2975 * we wait, while we're holding the l_icloglock.
2976 * Then we check again after waking up, in case our
2977 * sleep was disturbed by a bad news.
2978 */
2979 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2980 spin_unlock(&log->l_icloglock);
2981 return XFS_ERROR(EIO);
2982 }
2983 XFS_STATS_INC(xs_log_force_sleep);
2984 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
2985 /*
2986 * No need to grab the log lock here since we're
2987 * only deciding whether or not to return EIO
2988 * and the memory read should be atomic.
2989 */
2990 if (iclog->ic_state & XLOG_STATE_IOERROR)
2991 return XFS_ERROR(EIO);
2992 if (log_flushed)
2993 *log_flushed = 1;
2994 } else {
2995
2996 no_sleep:
2997 spin_unlock(&log->l_icloglock);
2998 }
2999 return 0;
3000 }
3001
3002 /*
3003 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3004 * about errors or whether the log was flushed or not. This is the normal
3005 * interface to use when trying to unpin items or move the log forward.
3006 */
3007 void
xfs_log_force(xfs_mount_t * mp,uint flags)3008 xfs_log_force(
3009 xfs_mount_t *mp,
3010 uint flags)
3011 {
3012 int error;
3013
3014 error = _xfs_log_force(mp, flags, NULL);
3015 if (error)
3016 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3017 }
3018
3019 /*
3020 * Force the in-core log to disk for a specific LSN.
3021 *
3022 * Find in-core log with lsn.
3023 * If it is in the DIRTY state, just return.
3024 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3025 * state and go to sleep or return.
3026 * If it is in any other state, go to sleep or return.
3027 *
3028 * Synchronous forces are implemented with a signal variable. All callers
3029 * to force a given lsn to disk will wait on a the sv attached to the
3030 * specific in-core log. When given in-core log finally completes its
3031 * write to disk, that thread will wake up all threads waiting on the
3032 * sv.
3033 */
3034 int
_xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)3035 _xfs_log_force_lsn(
3036 struct xfs_mount *mp,
3037 xfs_lsn_t lsn,
3038 uint flags,
3039 int *log_flushed)
3040 {
3041 struct log *log = mp->m_log;
3042 struct xlog_in_core *iclog;
3043 int already_slept = 0;
3044
3045 ASSERT(lsn != 0);
3046
3047 XFS_STATS_INC(xs_log_force);
3048
3049 lsn = xlog_cil_force_lsn(log, lsn);
3050 if (lsn == NULLCOMMITLSN)
3051 return 0;
3052
3053 try_again:
3054 spin_lock(&log->l_icloglock);
3055 iclog = log->l_iclog;
3056 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3057 spin_unlock(&log->l_icloglock);
3058 return XFS_ERROR(EIO);
3059 }
3060
3061 do {
3062 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3063 iclog = iclog->ic_next;
3064 continue;
3065 }
3066
3067 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3068 spin_unlock(&log->l_icloglock);
3069 return 0;
3070 }
3071
3072 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3073 /*
3074 * We sleep here if we haven't already slept (e.g.
3075 * this is the first time we've looked at the correct
3076 * iclog buf) and the buffer before us is going to
3077 * be sync'ed. The reason for this is that if we
3078 * are doing sync transactions here, by waiting for
3079 * the previous I/O to complete, we can allow a few
3080 * more transactions into this iclog before we close
3081 * it down.
3082 *
3083 * Otherwise, we mark the buffer WANT_SYNC, and bump
3084 * up the refcnt so we can release the log (which
3085 * drops the ref count). The state switch keeps new
3086 * transaction commits from using this buffer. When
3087 * the current commits finish writing into the buffer,
3088 * the refcount will drop to zero and the buffer will
3089 * go out then.
3090 */
3091 if (!already_slept &&
3092 (iclog->ic_prev->ic_state &
3093 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3094 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3095
3096 XFS_STATS_INC(xs_log_force_sleep);
3097
3098 xlog_wait(&iclog->ic_prev->ic_write_wait,
3099 &log->l_icloglock);
3100 if (log_flushed)
3101 *log_flushed = 1;
3102 already_slept = 1;
3103 goto try_again;
3104 }
3105 atomic_inc(&iclog->ic_refcnt);
3106 xlog_state_switch_iclogs(log, iclog, 0);
3107 spin_unlock(&log->l_icloglock);
3108 if (xlog_state_release_iclog(log, iclog))
3109 return XFS_ERROR(EIO);
3110 if (log_flushed)
3111 *log_flushed = 1;
3112 spin_lock(&log->l_icloglock);
3113 }
3114
3115 if ((flags & XFS_LOG_SYNC) && /* sleep */
3116 !(iclog->ic_state &
3117 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3118 /*
3119 * Don't wait on completion if we know that we've
3120 * gotten a log write error.
3121 */
3122 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3123 spin_unlock(&log->l_icloglock);
3124 return XFS_ERROR(EIO);
3125 }
3126 XFS_STATS_INC(xs_log_force_sleep);
3127 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3128 /*
3129 * No need to grab the log lock here since we're
3130 * only deciding whether or not to return EIO
3131 * and the memory read should be atomic.
3132 */
3133 if (iclog->ic_state & XLOG_STATE_IOERROR)
3134 return XFS_ERROR(EIO);
3135
3136 if (log_flushed)
3137 *log_flushed = 1;
3138 } else { /* just return */
3139 spin_unlock(&log->l_icloglock);
3140 }
3141
3142 return 0;
3143 } while (iclog != log->l_iclog);
3144
3145 spin_unlock(&log->l_icloglock);
3146 return 0;
3147 }
3148
3149 /*
3150 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3151 * about errors or whether the log was flushed or not. This is the normal
3152 * interface to use when trying to unpin items or move the log forward.
3153 */
3154 void
xfs_log_force_lsn(xfs_mount_t * mp,xfs_lsn_t lsn,uint flags)3155 xfs_log_force_lsn(
3156 xfs_mount_t *mp,
3157 xfs_lsn_t lsn,
3158 uint flags)
3159 {
3160 int error;
3161
3162 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3163 if (error)
3164 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3165 }
3166
3167 /*
3168 * Called when we want to mark the current iclog as being ready to sync to
3169 * disk.
3170 */
3171 STATIC void
xlog_state_want_sync(xlog_t * log,xlog_in_core_t * iclog)3172 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3173 {
3174 assert_spin_locked(&log->l_icloglock);
3175
3176 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3177 xlog_state_switch_iclogs(log, iclog, 0);
3178 } else {
3179 ASSERT(iclog->ic_state &
3180 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3181 }
3182 }
3183
3184
3185 /*****************************************************************************
3186 *
3187 * TICKET functions
3188 *
3189 *****************************************************************************
3190 */
3191
3192 /*
3193 * Free a used ticket when its refcount falls to zero.
3194 */
3195 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3196 xfs_log_ticket_put(
3197 xlog_ticket_t *ticket)
3198 {
3199 ASSERT(atomic_read(&ticket->t_ref) > 0);
3200 if (atomic_dec_and_test(&ticket->t_ref))
3201 kmem_zone_free(xfs_log_ticket_zone, ticket);
3202 }
3203
3204 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3205 xfs_log_ticket_get(
3206 xlog_ticket_t *ticket)
3207 {
3208 ASSERT(atomic_read(&ticket->t_ref) > 0);
3209 atomic_inc(&ticket->t_ref);
3210 return ticket;
3211 }
3212
3213 /*
3214 * Allocate and initialise a new log ticket.
3215 */
3216 xlog_ticket_t *
xlog_ticket_alloc(struct log * log,int unit_bytes,int cnt,char client,uint xflags,int alloc_flags)3217 xlog_ticket_alloc(
3218 struct log *log,
3219 int unit_bytes,
3220 int cnt,
3221 char client,
3222 uint xflags,
3223 int alloc_flags)
3224 {
3225 struct xlog_ticket *tic;
3226 uint num_headers;
3227 int iclog_space;
3228
3229 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3230 if (!tic)
3231 return NULL;
3232
3233 /*
3234 * Permanent reservations have up to 'cnt'-1 active log operations
3235 * in the log. A unit in this case is the amount of space for one
3236 * of these log operations. Normal reservations have a cnt of 1
3237 * and their unit amount is the total amount of space required.
3238 *
3239 * The following lines of code account for non-transaction data
3240 * which occupy space in the on-disk log.
3241 *
3242 * Normal form of a transaction is:
3243 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3244 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3245 *
3246 * We need to account for all the leadup data and trailer data
3247 * around the transaction data.
3248 * And then we need to account for the worst case in terms of using
3249 * more space.
3250 * The worst case will happen if:
3251 * - the placement of the transaction happens to be such that the
3252 * roundoff is at its maximum
3253 * - the transaction data is synced before the commit record is synced
3254 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3255 * Therefore the commit record is in its own Log Record.
3256 * This can happen as the commit record is called with its
3257 * own region to xlog_write().
3258 * This then means that in the worst case, roundoff can happen for
3259 * the commit-rec as well.
3260 * The commit-rec is smaller than padding in this scenario and so it is
3261 * not added separately.
3262 */
3263
3264 /* for trans header */
3265 unit_bytes += sizeof(xlog_op_header_t);
3266 unit_bytes += sizeof(xfs_trans_header_t);
3267
3268 /* for start-rec */
3269 unit_bytes += sizeof(xlog_op_header_t);
3270
3271 /*
3272 * for LR headers - the space for data in an iclog is the size minus
3273 * the space used for the headers. If we use the iclog size, then we
3274 * undercalculate the number of headers required.
3275 *
3276 * Furthermore - the addition of op headers for split-recs might
3277 * increase the space required enough to require more log and op
3278 * headers, so take that into account too.
3279 *
3280 * IMPORTANT: This reservation makes the assumption that if this
3281 * transaction is the first in an iclog and hence has the LR headers
3282 * accounted to it, then the remaining space in the iclog is
3283 * exclusively for this transaction. i.e. if the transaction is larger
3284 * than the iclog, it will be the only thing in that iclog.
3285 * Fundamentally, this means we must pass the entire log vector to
3286 * xlog_write to guarantee this.
3287 */
3288 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3289 num_headers = howmany(unit_bytes, iclog_space);
3290
3291 /* for split-recs - ophdrs added when data split over LRs */
3292 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3293
3294 /* add extra header reservations if we overrun */
3295 while (!num_headers ||
3296 howmany(unit_bytes, iclog_space) > num_headers) {
3297 unit_bytes += sizeof(xlog_op_header_t);
3298 num_headers++;
3299 }
3300 unit_bytes += log->l_iclog_hsize * num_headers;
3301
3302 /* for commit-rec LR header - note: padding will subsume the ophdr */
3303 unit_bytes += log->l_iclog_hsize;
3304
3305 /* for roundoff padding for transaction data and one for commit record */
3306 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3307 log->l_mp->m_sb.sb_logsunit > 1) {
3308 /* log su roundoff */
3309 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3310 } else {
3311 /* BB roundoff */
3312 unit_bytes += 2*BBSIZE;
3313 }
3314
3315 atomic_set(&tic->t_ref, 1);
3316 INIT_LIST_HEAD(&tic->t_queue);
3317 tic->t_unit_res = unit_bytes;
3318 tic->t_curr_res = unit_bytes;
3319 tic->t_cnt = cnt;
3320 tic->t_ocnt = cnt;
3321 tic->t_tid = random32();
3322 tic->t_clientid = client;
3323 tic->t_flags = XLOG_TIC_INITED;
3324 tic->t_trans_type = 0;
3325 if (xflags & XFS_LOG_PERM_RESERV)
3326 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3327 init_waitqueue_head(&tic->t_wait);
3328
3329 xlog_tic_reset_res(tic);
3330
3331 return tic;
3332 }
3333
3334
3335 /******************************************************************************
3336 *
3337 * Log debug routines
3338 *
3339 ******************************************************************************
3340 */
3341 #if defined(DEBUG)
3342 /*
3343 * Make sure that the destination ptr is within the valid data region of
3344 * one of the iclogs. This uses backup pointers stored in a different
3345 * part of the log in case we trash the log structure.
3346 */
3347 void
xlog_verify_dest_ptr(struct log * log,char * ptr)3348 xlog_verify_dest_ptr(
3349 struct log *log,
3350 char *ptr)
3351 {
3352 int i;
3353 int good_ptr = 0;
3354
3355 for (i = 0; i < log->l_iclog_bufs; i++) {
3356 if (ptr >= log->l_iclog_bak[i] &&
3357 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3358 good_ptr++;
3359 }
3360
3361 if (!good_ptr)
3362 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3363 }
3364
3365 /*
3366 * Check to make sure the grant write head didn't just over lap the tail. If
3367 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3368 * the cycles differ by exactly one and check the byte count.
3369 *
3370 * This check is run unlocked, so can give false positives. Rather than assert
3371 * on failures, use a warn-once flag and a panic tag to allow the admin to
3372 * determine if they want to panic the machine when such an error occurs. For
3373 * debug kernels this will have the same effect as using an assert but, unlinke
3374 * an assert, it can be turned off at runtime.
3375 */
3376 STATIC void
xlog_verify_grant_tail(struct log * log)3377 xlog_verify_grant_tail(
3378 struct log *log)
3379 {
3380 int tail_cycle, tail_blocks;
3381 int cycle, space;
3382
3383 xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space);
3384 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3385 if (tail_cycle != cycle) {
3386 if (cycle - 1 != tail_cycle &&
3387 !(log->l_flags & XLOG_TAIL_WARN)) {
3388 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3389 "%s: cycle - 1 != tail_cycle", __func__);
3390 log->l_flags |= XLOG_TAIL_WARN;
3391 }
3392
3393 if (space > BBTOB(tail_blocks) &&
3394 !(log->l_flags & XLOG_TAIL_WARN)) {
3395 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3396 "%s: space > BBTOB(tail_blocks)", __func__);
3397 log->l_flags |= XLOG_TAIL_WARN;
3398 }
3399 }
3400 }
3401
3402 /* check if it will fit */
3403 STATIC void
xlog_verify_tail_lsn(xlog_t * log,xlog_in_core_t * iclog,xfs_lsn_t tail_lsn)3404 xlog_verify_tail_lsn(xlog_t *log,
3405 xlog_in_core_t *iclog,
3406 xfs_lsn_t tail_lsn)
3407 {
3408 int blocks;
3409
3410 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3411 blocks =
3412 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3413 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3414 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3415 } else {
3416 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3417
3418 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3419 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3420
3421 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3422 if (blocks < BTOBB(iclog->ic_offset) + 1)
3423 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3424 }
3425 } /* xlog_verify_tail_lsn */
3426
3427 /*
3428 * Perform a number of checks on the iclog before writing to disk.
3429 *
3430 * 1. Make sure the iclogs are still circular
3431 * 2. Make sure we have a good magic number
3432 * 3. Make sure we don't have magic numbers in the data
3433 * 4. Check fields of each log operation header for:
3434 * A. Valid client identifier
3435 * B. tid ptr value falls in valid ptr space (user space code)
3436 * C. Length in log record header is correct according to the
3437 * individual operation headers within record.
3438 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3439 * log, check the preceding blocks of the physical log to make sure all
3440 * the cycle numbers agree with the current cycle number.
3441 */
3442 STATIC void
xlog_verify_iclog(xlog_t * log,xlog_in_core_t * iclog,int count,boolean_t syncing)3443 xlog_verify_iclog(xlog_t *log,
3444 xlog_in_core_t *iclog,
3445 int count,
3446 boolean_t syncing)
3447 {
3448 xlog_op_header_t *ophead;
3449 xlog_in_core_t *icptr;
3450 xlog_in_core_2_t *xhdr;
3451 xfs_caddr_t ptr;
3452 xfs_caddr_t base_ptr;
3453 __psint_t field_offset;
3454 __uint8_t clientid;
3455 int len, i, j, k, op_len;
3456 int idx;
3457
3458 /* check validity of iclog pointers */
3459 spin_lock(&log->l_icloglock);
3460 icptr = log->l_iclog;
3461 for (i=0; i < log->l_iclog_bufs; i++) {
3462 if (icptr == NULL)
3463 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3464 icptr = icptr->ic_next;
3465 }
3466 if (icptr != log->l_iclog)
3467 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3468 spin_unlock(&log->l_icloglock);
3469
3470 /* check log magic numbers */
3471 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3472 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3473
3474 ptr = (xfs_caddr_t) &iclog->ic_header;
3475 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3476 ptr += BBSIZE) {
3477 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3478 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3479 __func__);
3480 }
3481
3482 /* check fields */
3483 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3484 ptr = iclog->ic_datap;
3485 base_ptr = ptr;
3486 ophead = (xlog_op_header_t *)ptr;
3487 xhdr = iclog->ic_data;
3488 for (i = 0; i < len; i++) {
3489 ophead = (xlog_op_header_t *)ptr;
3490
3491 /* clientid is only 1 byte */
3492 field_offset = (__psint_t)
3493 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3494 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3495 clientid = ophead->oh_clientid;
3496 } else {
3497 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3498 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3499 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3500 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3501 clientid = xlog_get_client_id(
3502 xhdr[j].hic_xheader.xh_cycle_data[k]);
3503 } else {
3504 clientid = xlog_get_client_id(
3505 iclog->ic_header.h_cycle_data[idx]);
3506 }
3507 }
3508 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3509 xfs_warn(log->l_mp,
3510 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3511 __func__, clientid, ophead,
3512 (unsigned long)field_offset);
3513
3514 /* check length */
3515 field_offset = (__psint_t)
3516 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3517 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3518 op_len = be32_to_cpu(ophead->oh_len);
3519 } else {
3520 idx = BTOBBT((__psint_t)&ophead->oh_len -
3521 (__psint_t)iclog->ic_datap);
3522 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3523 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3524 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3525 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3526 } else {
3527 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3528 }
3529 }
3530 ptr += sizeof(xlog_op_header_t) + op_len;
3531 }
3532 } /* xlog_verify_iclog */
3533 #endif
3534
3535 /*
3536 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3537 */
3538 STATIC int
xlog_state_ioerror(xlog_t * log)3539 xlog_state_ioerror(
3540 xlog_t *log)
3541 {
3542 xlog_in_core_t *iclog, *ic;
3543
3544 iclog = log->l_iclog;
3545 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3546 /*
3547 * Mark all the incore logs IOERROR.
3548 * From now on, no log flushes will result.
3549 */
3550 ic = iclog;
3551 do {
3552 ic->ic_state = XLOG_STATE_IOERROR;
3553 ic = ic->ic_next;
3554 } while (ic != iclog);
3555 return 0;
3556 }
3557 /*
3558 * Return non-zero, if state transition has already happened.
3559 */
3560 return 1;
3561 }
3562
3563 /*
3564 * This is called from xfs_force_shutdown, when we're forcibly
3565 * shutting down the filesystem, typically because of an IO error.
3566 * Our main objectives here are to make sure that:
3567 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3568 * parties to find out, 'atomically'.
3569 * b. those who're sleeping on log reservations, pinned objects and
3570 * other resources get woken up, and be told the bad news.
3571 * c. nothing new gets queued up after (a) and (b) are done.
3572 * d. if !logerror, flush the iclogs to disk, then seal them off
3573 * for business.
3574 *
3575 * Note: for delayed logging the !logerror case needs to flush the regions
3576 * held in memory out to the iclogs before flushing them to disk. This needs
3577 * to be done before the log is marked as shutdown, otherwise the flush to the
3578 * iclogs will fail.
3579 */
3580 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3581 xfs_log_force_umount(
3582 struct xfs_mount *mp,
3583 int logerror)
3584 {
3585 xlog_ticket_t *tic;
3586 xlog_t *log;
3587 int retval;
3588
3589 log = mp->m_log;
3590
3591 /*
3592 * If this happens during log recovery, don't worry about
3593 * locking; the log isn't open for business yet.
3594 */
3595 if (!log ||
3596 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3597 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3598 if (mp->m_sb_bp)
3599 XFS_BUF_DONE(mp->m_sb_bp);
3600 return 0;
3601 }
3602
3603 /*
3604 * Somebody could've already done the hard work for us.
3605 * No need to get locks for this.
3606 */
3607 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3608 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3609 return 1;
3610 }
3611 retval = 0;
3612
3613 /*
3614 * Flush the in memory commit item list before marking the log as
3615 * being shut down. We need to do it in this order to ensure all the
3616 * completed transactions are flushed to disk with the xfs_log_force()
3617 * call below.
3618 */
3619 if (!logerror)
3620 xlog_cil_force(log);
3621
3622 /*
3623 * mark the filesystem and the as in a shutdown state and wake
3624 * everybody up to tell them the bad news.
3625 */
3626 spin_lock(&log->l_icloglock);
3627 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3628 if (mp->m_sb_bp)
3629 XFS_BUF_DONE(mp->m_sb_bp);
3630
3631 /*
3632 * This flag is sort of redundant because of the mount flag, but
3633 * it's good to maintain the separation between the log and the rest
3634 * of XFS.
3635 */
3636 log->l_flags |= XLOG_IO_ERROR;
3637
3638 /*
3639 * If we hit a log error, we want to mark all the iclogs IOERROR
3640 * while we're still holding the loglock.
3641 */
3642 if (logerror)
3643 retval = xlog_state_ioerror(log);
3644 spin_unlock(&log->l_icloglock);
3645
3646 /*
3647 * We don't want anybody waiting for log reservations after this. That
3648 * means we have to wake up everybody queued up on reserveq as well as
3649 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3650 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3651 * action is protected by the grant locks.
3652 */
3653 spin_lock(&log->l_grant_reserve_lock);
3654 list_for_each_entry(tic, &log->l_reserveq, t_queue)
3655 wake_up(&tic->t_wait);
3656 spin_unlock(&log->l_grant_reserve_lock);
3657
3658 spin_lock(&log->l_grant_write_lock);
3659 list_for_each_entry(tic, &log->l_writeq, t_queue)
3660 wake_up(&tic->t_wait);
3661 spin_unlock(&log->l_grant_write_lock);
3662
3663 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3664 ASSERT(!logerror);
3665 /*
3666 * Force the incore logs to disk before shutting the
3667 * log down completely.
3668 */
3669 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3670
3671 spin_lock(&log->l_icloglock);
3672 retval = xlog_state_ioerror(log);
3673 spin_unlock(&log->l_icloglock);
3674 }
3675 /*
3676 * Wake up everybody waiting on xfs_log_force.
3677 * Callback all log item committed functions as if the
3678 * log writes were completed.
3679 */
3680 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3681
3682 #ifdef XFSERRORDEBUG
3683 {
3684 xlog_in_core_t *iclog;
3685
3686 spin_lock(&log->l_icloglock);
3687 iclog = log->l_iclog;
3688 do {
3689 ASSERT(iclog->ic_callback == 0);
3690 iclog = iclog->ic_next;
3691 } while (iclog != log->l_iclog);
3692 spin_unlock(&log->l_icloglock);
3693 }
3694 #endif
3695 /* return non-zero if log IOERROR transition had already happened */
3696 return retval;
3697 }
3698
3699 STATIC int
xlog_iclogs_empty(xlog_t * log)3700 xlog_iclogs_empty(xlog_t *log)
3701 {
3702 xlog_in_core_t *iclog;
3703
3704 iclog = log->l_iclog;
3705 do {
3706 /* endianness does not matter here, zero is zero in
3707 * any language.
3708 */
3709 if (iclog->ic_header.h_num_logops)
3710 return 0;
3711 iclog = iclog->ic_next;
3712 } while (iclog != log->l_iclog);
3713 return 1;
3714 }
3715