1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Core of Xen paravirt_ops implementation.
4 *
5 * This file contains the xen_paravirt_ops structure itself, and the
6 * implementations for:
7 * - privileged instructions
8 * - interrupt flags
9 * - segment operations
10 * - booting and setup
11 *
12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13 */
14
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/kstrtox.h>
27 #include <linux/memblock.h>
28 #include <linux/export.h>
29 #include <linux/mm.h>
30 #include <linux/page-flags.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/edd.h>
34 #include <linux/reboot.h>
35 #include <linux/virtio_anchor.h>
36 #include <linux/stackprotector.h>
37
38 #include <xen/xen.h>
39 #include <xen/events.h>
40 #include <xen/interface/xen.h>
41 #include <xen/interface/version.h>
42 #include <xen/interface/physdev.h>
43 #include <xen/interface/vcpu.h>
44 #include <xen/interface/memory.h>
45 #include <xen/interface/nmi.h>
46 #include <xen/interface/xen-mca.h>
47 #include <xen/features.h>
48 #include <xen/page.h>
49 #include <xen/hvc-console.h>
50 #include <xen/acpi.h>
51
52 #include <asm/cpuid/api.h>
53 #include <asm/paravirt.h>
54 #include <asm/apic.h>
55 #include <asm/page.h>
56 #include <asm/xen/pci.h>
57 #include <asm/xen/hypercall.h>
58 #include <asm/xen/hypervisor.h>
59 #include <asm/xen/cpuid.h>
60 #include <asm/fixmap.h>
61 #include <asm/processor.h>
62 #include <asm/proto.h>
63 #include <asm/msr-index.h>
64 #include <asm/msr.h>
65 #include <asm/traps.h>
66 #include <asm/setup.h>
67 #include <asm/desc.h>
68 #include <asm/pgalloc.h>
69 #include <asm/tlbflush.h>
70 #include <asm/reboot.h>
71 #include <asm/hypervisor.h>
72 #include <asm/mach_traps.h>
73 #include <asm/mtrr.h>
74 #include <asm/mwait.h>
75 #include <asm/pci_x86.h>
76 #include <asm/cpu.h>
77 #include <asm/irq_stack.h>
78 #ifdef CONFIG_X86_IOPL_IOPERM
79 #include <asm/io_bitmap.h>
80 #endif
81
82 #ifdef CONFIG_ACPI
83 #include <linux/acpi.h>
84 #include <asm/acpi.h>
85 #include <acpi/proc_cap_intel.h>
86 #include <acpi/processor.h>
87 #include <xen/interface/platform.h>
88 #endif
89
90 #include "xen-ops.h"
91
92 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
93
94 void *xen_initial_gdt;
95
96 static int xen_cpu_up_prepare_pv(unsigned int cpu);
97 static int xen_cpu_dead_pv(unsigned int cpu);
98
99 #ifndef CONFIG_PREEMPTION
100 /*
101 * Some hypercalls issued by the toolstack can take many 10s of
102 * seconds. Allow tasks running hypercalls via the privcmd driver to
103 * be voluntarily preempted even if full kernel preemption is
104 * disabled.
105 *
106 * Such preemptible hypercalls are bracketed by
107 * xen_preemptible_hcall_begin() and xen_preemptible_hcall_end()
108 * calls.
109 */
110 DEFINE_PER_CPU(bool, xen_in_preemptible_hcall);
111 EXPORT_SYMBOL_GPL(xen_in_preemptible_hcall);
112
113 /*
114 * In case of scheduling the flag must be cleared and restored after
115 * returning from schedule as the task might move to a different CPU.
116 */
get_and_clear_inhcall(void)117 static __always_inline bool get_and_clear_inhcall(void)
118 {
119 bool inhcall = __this_cpu_read(xen_in_preemptible_hcall);
120
121 __this_cpu_write(xen_in_preemptible_hcall, false);
122 return inhcall;
123 }
124
restore_inhcall(bool inhcall)125 static __always_inline void restore_inhcall(bool inhcall)
126 {
127 __this_cpu_write(xen_in_preemptible_hcall, inhcall);
128 }
129
130 #else
131
get_and_clear_inhcall(void)132 static __always_inline bool get_and_clear_inhcall(void) { return false; }
restore_inhcall(bool inhcall)133 static __always_inline void restore_inhcall(bool inhcall) { }
134
135 #endif
136
137 struct tls_descs {
138 struct desc_struct desc[3];
139 };
140
141 DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE;
142
xen_get_lazy_mode(void)143 enum xen_lazy_mode xen_get_lazy_mode(void)
144 {
145 if (in_interrupt())
146 return XEN_LAZY_NONE;
147
148 return this_cpu_read(xen_lazy_mode);
149 }
150
151 /*
152 * Updating the 3 TLS descriptors in the GDT on every task switch is
153 * surprisingly expensive so we avoid updating them if they haven't
154 * changed. Since Xen writes different descriptors than the one
155 * passed in the update_descriptor hypercall we keep shadow copies to
156 * compare against.
157 */
158 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
159
160 static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
161
parse_xen_msr_safe(char * str)162 static int __init parse_xen_msr_safe(char *str)
163 {
164 if (str)
165 return kstrtobool(str, &xen_msr_safe);
166 return -EINVAL;
167 }
168 early_param("xen_msr_safe", parse_xen_msr_safe);
169
170 /* Get MTRR settings from Xen and put them into mtrr_state. */
xen_set_mtrr_data(void)171 static void __init xen_set_mtrr_data(void)
172 {
173 #ifdef CONFIG_MTRR
174 struct xen_platform_op op = {
175 .cmd = XENPF_read_memtype,
176 .interface_version = XENPF_INTERFACE_VERSION,
177 };
178 unsigned int reg;
179 unsigned long mask;
180 uint32_t eax, width;
181 static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
182
183 /* Get physical address width (only 64-bit cpus supported). */
184 width = 36;
185 eax = cpuid_eax(0x80000000);
186 if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
187 eax = cpuid_eax(0x80000008);
188 width = eax & 0xff;
189 }
190
191 for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
192 op.u.read_memtype.reg = reg;
193 if (HYPERVISOR_platform_op(&op))
194 break;
195
196 /*
197 * Only called in dom0, which has all RAM PFNs mapped at
198 * RAM MFNs, and all PCI space etc. is identity mapped.
199 * This means we can treat MFN == PFN regarding MTRR settings.
200 */
201 var[reg].base_lo = op.u.read_memtype.type;
202 var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
203 var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
204 mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
205 mask &= (1UL << width) - 1;
206 if (mask)
207 mask |= MTRR_PHYSMASK_V;
208 var[reg].mask_lo = mask;
209 var[reg].mask_hi = mask >> 32;
210 }
211
212 /* Only overwrite MTRR state if any MTRR could be got from Xen. */
213 if (reg)
214 guest_force_mtrr_state(var, reg, MTRR_TYPE_UNCACHABLE);
215 #endif
216 }
217
xen_pv_init_platform(void)218 static void __init xen_pv_init_platform(void)
219 {
220 /* PV guests can't operate virtio devices without grants. */
221 if (IS_ENABLED(CONFIG_XEN_VIRTIO))
222 virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
223
224 populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
225
226 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
227 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
228
229 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
230 xen_vcpu_info_reset(0);
231
232 /* pvclock is in shared info area */
233 xen_init_time_ops();
234
235 if (xen_initial_domain())
236 xen_set_mtrr_data();
237 else
238 guest_force_mtrr_state(NULL, 0, MTRR_TYPE_WRBACK);
239
240 /* Adjust nr_cpu_ids before "enumeration" happens */
241 xen_smp_count_cpus();
242 }
243
xen_pv_guest_late_init(void)244 static void __init xen_pv_guest_late_init(void)
245 {
246 #ifndef CONFIG_SMP
247 /* Setup shared vcpu info for non-smp configurations */
248 xen_setup_vcpu_info_placement();
249 #endif
250 }
251
252 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
253 static __read_mostly unsigned int cpuid_leaf5_edx_val;
254
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)255 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
256 unsigned int *cx, unsigned int *dx)
257 {
258 unsigned int maskebx = ~0;
259 unsigned int or_ebx = 0;
260
261 /*
262 * Mask out inconvenient features, to try and disable as many
263 * unsupported kernel subsystems as possible.
264 */
265 switch (*ax) {
266 case 0x1:
267 /* Replace initial APIC ID in bits 24-31 of EBX. */
268 /* See xen_pv_smp_config() for related topology preparations. */
269 maskebx = 0x00ffffff;
270 or_ebx = smp_processor_id() << 24;
271 break;
272
273 case CPUID_LEAF_MWAIT:
274 /* Synthesize the values.. */
275 *ax = 0;
276 *bx = 0;
277 *cx = cpuid_leaf5_ecx_val;
278 *dx = cpuid_leaf5_edx_val;
279 return;
280
281 case 0xb:
282 /* Suppress extended topology stuff */
283 maskebx = 0;
284 break;
285 }
286
287 asm(XEN_EMULATE_PREFIX "cpuid"
288 : "=a" (*ax),
289 "=b" (*bx),
290 "=c" (*cx),
291 "=d" (*dx)
292 : "0" (*ax), "2" (*cx));
293
294 *bx &= maskebx;
295 *bx |= or_ebx;
296 }
297
xen_check_mwait(void)298 static bool __init xen_check_mwait(void)
299 {
300 #ifdef CONFIG_ACPI
301 struct xen_platform_op op = {
302 .cmd = XENPF_set_processor_pminfo,
303 .u.set_pminfo.id = -1,
304 .u.set_pminfo.type = XEN_PM_PDC,
305 };
306 uint32_t buf[3];
307 unsigned int ax, bx, cx, dx;
308 unsigned int mwait_mask;
309
310 /* We need to determine whether it is OK to expose the MWAIT
311 * capability to the kernel to harvest deeper than C3 states from ACPI
312 * _CST using the processor_harvest_xen.c module. For this to work, we
313 * need to gather the MWAIT_LEAF values (which the cstate.c code
314 * checks against). The hypervisor won't expose the MWAIT flag because
315 * it would break backwards compatibility; so we will find out directly
316 * from the hardware and hypercall.
317 */
318 if (!xen_initial_domain())
319 return false;
320
321 /*
322 * When running under platform earlier than Xen4.2, do not expose
323 * mwait, to avoid the risk of loading native acpi pad driver
324 */
325 if (!xen_running_on_version_or_later(4, 2))
326 return false;
327
328 ax = 1;
329 cx = 0;
330
331 native_cpuid(&ax, &bx, &cx, &dx);
332
333 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
334 (1 << (X86_FEATURE_MWAIT % 32));
335
336 if ((cx & mwait_mask) != mwait_mask)
337 return false;
338
339 /* We need to emulate the MWAIT_LEAF and for that we need both
340 * ecx and edx. The hypercall provides only partial information.
341 */
342
343 ax = CPUID_LEAF_MWAIT;
344 bx = 0;
345 cx = 0;
346 dx = 0;
347
348 native_cpuid(&ax, &bx, &cx, &dx);
349
350 /* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
351 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
352 */
353 buf[0] = ACPI_PDC_REVISION_ID;
354 buf[1] = 1;
355 buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
356
357 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
358
359 if ((HYPERVISOR_platform_op(&op) == 0) &&
360 (buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
361 cpuid_leaf5_ecx_val = cx;
362 cpuid_leaf5_edx_val = dx;
363 }
364 return true;
365 #else
366 return false;
367 #endif
368 }
369
xen_check_xsave(void)370 static bool __init xen_check_xsave(void)
371 {
372 unsigned int cx, xsave_mask;
373
374 cx = cpuid_ecx(1);
375
376 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
377 (1 << (X86_FEATURE_OSXSAVE % 32));
378
379 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
380 return (cx & xsave_mask) == xsave_mask;
381 }
382
xen_init_capabilities(void)383 static void __init xen_init_capabilities(void)
384 {
385 setup_force_cpu_cap(X86_FEATURE_XENPV);
386 setup_clear_cpu_cap(X86_FEATURE_DCA);
387 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
388 setup_clear_cpu_cap(X86_FEATURE_MTRR);
389 setup_clear_cpu_cap(X86_FEATURE_ACC);
390 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
391 setup_clear_cpu_cap(X86_FEATURE_SME);
392 setup_clear_cpu_cap(X86_FEATURE_LKGS);
393
394 /*
395 * Xen PV would need some work to support PCID: CR3 handling as well
396 * as xen_flush_tlb_others() would need updating.
397 */
398 setup_clear_cpu_cap(X86_FEATURE_PCID);
399
400 if (!xen_initial_domain())
401 setup_clear_cpu_cap(X86_FEATURE_ACPI);
402
403 if (xen_check_mwait())
404 setup_force_cpu_cap(X86_FEATURE_MWAIT);
405 else
406 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
407
408 if (!xen_check_xsave()) {
409 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
410 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
411 }
412 }
413
xen_set_debugreg(int reg,unsigned long val)414 static noinstr void xen_set_debugreg(int reg, unsigned long val)
415 {
416 HYPERVISOR_set_debugreg(reg, val);
417 }
418
xen_get_debugreg(int reg)419 static noinstr unsigned long xen_get_debugreg(int reg)
420 {
421 return HYPERVISOR_get_debugreg(reg);
422 }
423
xen_start_context_switch(struct task_struct * prev)424 static void xen_start_context_switch(struct task_struct *prev)
425 {
426 BUG_ON(preemptible());
427
428 if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) {
429 arch_leave_lazy_mmu_mode();
430 set_ti_thread_flag(task_thread_info(prev), TIF_LAZY_MMU_UPDATES);
431 }
432 enter_lazy(XEN_LAZY_CPU);
433 }
434
xen_end_context_switch(struct task_struct * next)435 static void xen_end_context_switch(struct task_struct *next)
436 {
437 BUG_ON(preemptible());
438
439 xen_mc_flush();
440 leave_lazy(XEN_LAZY_CPU);
441 if (test_and_clear_ti_thread_flag(task_thread_info(next), TIF_LAZY_MMU_UPDATES))
442 arch_enter_lazy_mmu_mode();
443 }
444
xen_store_tr(void)445 static unsigned long xen_store_tr(void)
446 {
447 return 0;
448 }
449
450 /*
451 * Set the page permissions for a particular virtual address. If the
452 * address is a vmalloc mapping (or other non-linear mapping), then
453 * find the linear mapping of the page and also set its protections to
454 * match.
455 */
set_aliased_prot(void * v,pgprot_t prot)456 static void set_aliased_prot(void *v, pgprot_t prot)
457 {
458 int level;
459 pte_t *ptep;
460 pte_t pte;
461 unsigned long pfn;
462 unsigned char dummy;
463 void *va;
464
465 ptep = lookup_address((unsigned long)v, &level);
466 BUG_ON(ptep == NULL);
467
468 pfn = pte_pfn(*ptep);
469 pte = pfn_pte(pfn, prot);
470
471 /*
472 * Careful: update_va_mapping() will fail if the virtual address
473 * we're poking isn't populated in the page tables. We don't
474 * need to worry about the direct map (that's always in the page
475 * tables), but we need to be careful about vmap space. In
476 * particular, the top level page table can lazily propagate
477 * entries between processes, so if we've switched mms since we
478 * vmapped the target in the first place, we might not have the
479 * top-level page table entry populated.
480 *
481 * We disable preemption because we want the same mm active when
482 * we probe the target and when we issue the hypercall. We'll
483 * have the same nominal mm, but if we're a kernel thread, lazy
484 * mm dropping could change our pgd.
485 *
486 * Out of an abundance of caution, this uses __get_user() to fault
487 * in the target address just in case there's some obscure case
488 * in which the target address isn't readable.
489 */
490
491 preempt_disable();
492
493 copy_from_kernel_nofault(&dummy, v, 1);
494
495 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
496 BUG();
497
498 va = __va(PFN_PHYS(pfn));
499
500 if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
501 BUG();
502
503 preempt_enable();
504 }
505
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)506 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
507 {
508 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
509 int i;
510
511 /*
512 * We need to mark the all aliases of the LDT pages RO. We
513 * don't need to call vm_flush_aliases(), though, since that's
514 * only responsible for flushing aliases out the TLBs, not the
515 * page tables, and Xen will flush the TLB for us if needed.
516 *
517 * To avoid confusing future readers: none of this is necessary
518 * to load the LDT. The hypervisor only checks this when the
519 * LDT is faulted in due to subsequent descriptor access.
520 */
521
522 for (i = 0; i < entries; i += entries_per_page)
523 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
524 }
525
xen_free_ldt(struct desc_struct * ldt,unsigned entries)526 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
527 {
528 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
529 int i;
530
531 for (i = 0; i < entries; i += entries_per_page)
532 set_aliased_prot(ldt + i, PAGE_KERNEL);
533 }
534
xen_set_ldt(const void * addr,unsigned entries)535 static void xen_set_ldt(const void *addr, unsigned entries)
536 {
537 struct mmuext_op *op;
538 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
539
540 trace_xen_cpu_set_ldt(addr, entries);
541
542 op = mcs.args;
543 op->cmd = MMUEXT_SET_LDT;
544 op->arg1.linear_addr = (unsigned long)addr;
545 op->arg2.nr_ents = entries;
546
547 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
548
549 xen_mc_issue(XEN_LAZY_CPU);
550 }
551
xen_load_gdt(const struct desc_ptr * dtr)552 static void xen_load_gdt(const struct desc_ptr *dtr)
553 {
554 unsigned long va = dtr->address;
555 unsigned int size = dtr->size + 1;
556 unsigned long pfn, mfn;
557 int level;
558 pte_t *ptep;
559 void *virt;
560
561 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
562 BUG_ON(size > PAGE_SIZE);
563 BUG_ON(va & ~PAGE_MASK);
564
565 /*
566 * The GDT is per-cpu and is in the percpu data area.
567 * That can be virtually mapped, so we need to do a
568 * page-walk to get the underlying MFN for the
569 * hypercall. The page can also be in the kernel's
570 * linear range, so we need to RO that mapping too.
571 */
572 ptep = lookup_address(va, &level);
573 BUG_ON(ptep == NULL);
574
575 pfn = pte_pfn(*ptep);
576 mfn = pfn_to_mfn(pfn);
577 virt = __va(PFN_PHYS(pfn));
578
579 make_lowmem_page_readonly((void *)va);
580 make_lowmem_page_readonly(virt);
581
582 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
583 BUG();
584 }
585
586 /*
587 * load_gdt for early boot, when the gdt is only mapped once
588 */
xen_load_gdt_boot(const struct desc_ptr * dtr)589 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
590 {
591 unsigned long va = dtr->address;
592 unsigned int size = dtr->size + 1;
593 unsigned long pfn, mfn;
594 pte_t pte;
595
596 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
597 BUG_ON(size > PAGE_SIZE);
598 BUG_ON(va & ~PAGE_MASK);
599
600 pfn = virt_to_pfn((void *)va);
601 mfn = pfn_to_mfn(pfn);
602
603 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
604
605 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
606 BUG();
607
608 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
609 BUG();
610 }
611
desc_equal(const struct desc_struct * d1,const struct desc_struct * d2)612 static inline bool desc_equal(const struct desc_struct *d1,
613 const struct desc_struct *d2)
614 {
615 return !memcmp(d1, d2, sizeof(*d1));
616 }
617
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)618 static void load_TLS_descriptor(struct thread_struct *t,
619 unsigned int cpu, unsigned int i)
620 {
621 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
622 struct desc_struct *gdt;
623 xmaddr_t maddr;
624 struct multicall_space mc;
625
626 if (desc_equal(shadow, &t->tls_array[i]))
627 return;
628
629 *shadow = t->tls_array[i];
630
631 gdt = get_cpu_gdt_rw(cpu);
632 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
633 mc = __xen_mc_entry(0);
634
635 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
636 }
637
xen_load_tls(struct thread_struct * t,unsigned int cpu)638 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
639 {
640 /*
641 * In lazy mode we need to zero %fs, otherwise we may get an
642 * exception between the new %fs descriptor being loaded and
643 * %fs being effectively cleared at __switch_to().
644 */
645 if (xen_get_lazy_mode() == XEN_LAZY_CPU)
646 loadsegment(fs, 0);
647
648 xen_mc_batch();
649
650 load_TLS_descriptor(t, cpu, 0);
651 load_TLS_descriptor(t, cpu, 1);
652 load_TLS_descriptor(t, cpu, 2);
653
654 xen_mc_issue(XEN_LAZY_CPU);
655 }
656
xen_load_gs_index(unsigned int idx)657 static void xen_load_gs_index(unsigned int idx)
658 {
659 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
660 BUG();
661 }
662
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)663 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
664 const void *ptr)
665 {
666 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
667 u64 entry = *(u64 *)ptr;
668
669 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
670
671 preempt_disable();
672
673 xen_mc_flush();
674 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
675 BUG();
676
677 preempt_enable();
678 }
679
680 void noist_exc_debug(struct pt_regs *regs);
681
DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)682 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
683 {
684 /* On Xen PV, NMI doesn't use IST. The C part is the same as native. */
685 exc_nmi(regs);
686 }
687
DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)688 DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
689 {
690 /* On Xen PV, DF doesn't use IST. The C part is the same as native. */
691 exc_double_fault(regs, error_code);
692 }
693
DEFINE_IDTENTRY_RAW(xenpv_exc_debug)694 DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
695 {
696 /*
697 * There's no IST on Xen PV, but we still need to dispatch
698 * to the correct handler.
699 */
700 if (user_mode(regs))
701 noist_exc_debug(regs);
702 else
703 exc_debug(regs);
704 }
705
DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)706 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
707 {
708 /* This should never happen and there is no way to handle it. */
709 instrumentation_begin();
710 pr_err("Unknown trap in Xen PV mode.");
711 BUG();
712 instrumentation_end();
713 }
714
715 #ifdef CONFIG_X86_MCE
DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)716 DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
717 {
718 /*
719 * There's no IST on Xen PV, but we still need to dispatch
720 * to the correct handler.
721 */
722 if (user_mode(regs))
723 noist_exc_machine_check(regs);
724 else
725 exc_machine_check(regs);
726 }
727 #endif
728
__xen_pv_evtchn_do_upcall(struct pt_regs * regs)729 static void __xen_pv_evtchn_do_upcall(struct pt_regs *regs)
730 {
731 struct pt_regs *old_regs = set_irq_regs(regs);
732
733 inc_irq_stat(irq_hv_callback_count);
734
735 xen_evtchn_do_upcall();
736
737 set_irq_regs(old_regs);
738 }
739
xen_pv_evtchn_do_upcall(struct pt_regs * regs)740 __visible noinstr void xen_pv_evtchn_do_upcall(struct pt_regs *regs)
741 {
742 irqentry_state_t state = irqentry_enter(regs);
743 bool inhcall;
744
745 instrumentation_begin();
746 run_sysvec_on_irqstack_cond(__xen_pv_evtchn_do_upcall, regs);
747
748 inhcall = get_and_clear_inhcall();
749 if (inhcall && !WARN_ON_ONCE(state.exit_rcu)) {
750 irqentry_exit_cond_resched();
751 instrumentation_end();
752 restore_inhcall(inhcall);
753 } else {
754 instrumentation_end();
755 irqentry_exit(regs, state);
756 }
757 }
758
759 struct trap_array_entry {
760 void (*orig)(void);
761 void (*xen)(void);
762 bool ist_okay;
763 };
764
765 #define TRAP_ENTRY(func, ist_ok) { \
766 .orig = asm_##func, \
767 .xen = xen_asm_##func, \
768 .ist_okay = ist_ok }
769
770 #define TRAP_ENTRY_REDIR(func, ist_ok) { \
771 .orig = asm_##func, \
772 .xen = xen_asm_xenpv_##func, \
773 .ist_okay = ist_ok }
774
775 static struct trap_array_entry trap_array[] = {
776 TRAP_ENTRY_REDIR(exc_debug, true ),
777 TRAP_ENTRY_REDIR(exc_double_fault, true ),
778 #ifdef CONFIG_X86_MCE
779 TRAP_ENTRY_REDIR(exc_machine_check, true ),
780 #endif
781 TRAP_ENTRY_REDIR(exc_nmi, true ),
782 TRAP_ENTRY(exc_int3, false ),
783 TRAP_ENTRY(exc_overflow, false ),
784 #ifdef CONFIG_IA32_EMULATION
785 TRAP_ENTRY(int80_emulation, false ),
786 #endif
787 TRAP_ENTRY(exc_page_fault, false ),
788 TRAP_ENTRY(exc_divide_error, false ),
789 TRAP_ENTRY(exc_bounds, false ),
790 TRAP_ENTRY(exc_invalid_op, false ),
791 TRAP_ENTRY(exc_device_not_available, false ),
792 TRAP_ENTRY(exc_coproc_segment_overrun, false ),
793 TRAP_ENTRY(exc_invalid_tss, false ),
794 TRAP_ENTRY(exc_segment_not_present, false ),
795 TRAP_ENTRY(exc_stack_segment, false ),
796 TRAP_ENTRY(exc_general_protection, false ),
797 TRAP_ENTRY(exc_spurious_interrupt_bug, false ),
798 TRAP_ENTRY(exc_coprocessor_error, false ),
799 TRAP_ENTRY(exc_alignment_check, false ),
800 TRAP_ENTRY(exc_simd_coprocessor_error, false ),
801 #ifdef CONFIG_X86_CET
802 TRAP_ENTRY(exc_control_protection, false ),
803 #endif
804 };
805
get_trap_addr(void ** addr,unsigned int ist)806 static bool __ref get_trap_addr(void **addr, unsigned int ist)
807 {
808 unsigned int nr;
809 bool ist_okay = false;
810 bool found = false;
811
812 /*
813 * Replace trap handler addresses by Xen specific ones.
814 * Check for known traps using IST and whitelist them.
815 * The debugger ones are the only ones we care about.
816 * Xen will handle faults like double_fault, so we should never see
817 * them. Warn if there's an unexpected IST-using fault handler.
818 */
819 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
820 struct trap_array_entry *entry = trap_array + nr;
821
822 if (*addr == entry->orig) {
823 *addr = entry->xen;
824 ist_okay = entry->ist_okay;
825 found = true;
826 break;
827 }
828 }
829
830 if (nr == ARRAY_SIZE(trap_array) &&
831 *addr >= (void *)early_idt_handler_array[0] &&
832 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
833 nr = (*addr - (void *)early_idt_handler_array[0]) /
834 EARLY_IDT_HANDLER_SIZE;
835 *addr = (void *)xen_early_idt_handler_array[nr];
836 found = true;
837 }
838
839 if (!found)
840 *addr = (void *)xen_asm_exc_xen_unknown_trap;
841
842 if (WARN_ON(found && ist != 0 && !ist_okay))
843 return false;
844
845 return true;
846 }
847
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)848 static int cvt_gate_to_trap(int vector, const gate_desc *val,
849 struct trap_info *info)
850 {
851 unsigned long addr;
852
853 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
854 return 0;
855
856 info->vector = vector;
857
858 addr = gate_offset(val);
859 if (!get_trap_addr((void **)&addr, val->bits.ist))
860 return 0;
861 info->address = addr;
862
863 info->cs = gate_segment(val);
864 info->flags = val->bits.dpl;
865 /* interrupt gates clear IF */
866 if (val->bits.type == GATE_INTERRUPT)
867 info->flags |= 1 << 2;
868
869 return 1;
870 }
871
872 /* Locations of each CPU's IDT */
873 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
874
875 /* Set an IDT entry. If the entry is part of the current IDT, then
876 also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)877 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
878 {
879 unsigned long p = (unsigned long)&dt[entrynum];
880 unsigned long start, end;
881
882 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
883
884 preempt_disable();
885
886 start = __this_cpu_read(idt_desc.address);
887 end = start + __this_cpu_read(idt_desc.size) + 1;
888
889 xen_mc_flush();
890
891 native_write_idt_entry(dt, entrynum, g);
892
893 if (p >= start && (p + 8) <= end) {
894 struct trap_info info[2];
895
896 info[1].address = 0;
897
898 if (cvt_gate_to_trap(entrynum, g, &info[0]))
899 if (HYPERVISOR_set_trap_table(info))
900 BUG();
901 }
902
903 preempt_enable();
904 }
905
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps,bool full)906 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
907 struct trap_info *traps, bool full)
908 {
909 unsigned in, out, count;
910
911 count = (desc->size+1) / sizeof(gate_desc);
912 BUG_ON(count > 256);
913
914 for (in = out = 0; in < count; in++) {
915 gate_desc *entry = (gate_desc *)(desc->address) + in;
916
917 if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
918 out++;
919 }
920
921 return out;
922 }
923
xen_copy_trap_info(struct trap_info * traps)924 void xen_copy_trap_info(struct trap_info *traps)
925 {
926 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
927
928 xen_convert_trap_info(desc, traps, true);
929 }
930
931 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
932 hold a spinlock to protect the static traps[] array (static because
933 it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)934 static void xen_load_idt(const struct desc_ptr *desc)
935 {
936 static DEFINE_SPINLOCK(lock);
937 static struct trap_info traps[257];
938 static const struct trap_info zero = { };
939 unsigned out;
940
941 trace_xen_cpu_load_idt(desc);
942
943 spin_lock(&lock);
944
945 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
946
947 out = xen_convert_trap_info(desc, traps, false);
948 traps[out] = zero;
949
950 xen_mc_flush();
951 if (HYPERVISOR_set_trap_table(traps))
952 BUG();
953
954 spin_unlock(&lock);
955 }
956
957 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
958 they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)959 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
960 const void *desc, int type)
961 {
962 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
963
964 preempt_disable();
965
966 switch (type) {
967 case DESC_LDT:
968 case DESC_TSS:
969 /* ignore */
970 break;
971
972 default: {
973 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
974
975 xen_mc_flush();
976 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
977 BUG();
978 }
979
980 }
981
982 preempt_enable();
983 }
984
985 /*
986 * Version of write_gdt_entry for use at early boot-time needed to
987 * update an entry as simply as possible.
988 */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)989 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
990 const void *desc, int type)
991 {
992 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
993
994 switch (type) {
995 case DESC_LDT:
996 case DESC_TSS:
997 /* ignore */
998 break;
999
1000 default: {
1001 xmaddr_t maddr = virt_to_machine(&dt[entry]);
1002
1003 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
1004 dt[entry] = *(struct desc_struct *)desc;
1005 }
1006
1007 }
1008 }
1009
xen_load_sp0(unsigned long sp0)1010 static void xen_load_sp0(unsigned long sp0)
1011 {
1012 struct multicall_space mcs;
1013
1014 mcs = xen_mc_entry(0);
1015 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
1016 xen_mc_issue(XEN_LAZY_CPU);
1017 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
1018 }
1019
1020 #ifdef CONFIG_X86_IOPL_IOPERM
xen_invalidate_io_bitmap(void)1021 static void xen_invalidate_io_bitmap(void)
1022 {
1023 struct physdev_set_iobitmap iobitmap = {
1024 .bitmap = NULL,
1025 .nr_ports = 0,
1026 };
1027
1028 native_tss_invalidate_io_bitmap();
1029 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
1030 }
1031
xen_update_io_bitmap(void)1032 static void xen_update_io_bitmap(void)
1033 {
1034 struct physdev_set_iobitmap iobitmap;
1035 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1036
1037 native_tss_update_io_bitmap();
1038
1039 iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
1040 tss->x86_tss.io_bitmap_base;
1041 if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
1042 iobitmap.nr_ports = 0;
1043 else
1044 iobitmap.nr_ports = IO_BITMAP_BITS;
1045
1046 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
1047 }
1048 #endif
1049
xen_io_delay(void)1050 static void xen_io_delay(void)
1051 {
1052 }
1053
1054 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1055
xen_read_cr0(void)1056 static unsigned long xen_read_cr0(void)
1057 {
1058 unsigned long cr0 = this_cpu_read(xen_cr0_value);
1059
1060 if (unlikely(cr0 == 0)) {
1061 cr0 = native_read_cr0();
1062 this_cpu_write(xen_cr0_value, cr0);
1063 }
1064
1065 return cr0;
1066 }
1067
xen_write_cr0(unsigned long cr0)1068 static void xen_write_cr0(unsigned long cr0)
1069 {
1070 struct multicall_space mcs;
1071
1072 this_cpu_write(xen_cr0_value, cr0);
1073
1074 /* Only pay attention to cr0.TS; everything else is
1075 ignored. */
1076 mcs = xen_mc_entry(0);
1077
1078 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1079
1080 xen_mc_issue(XEN_LAZY_CPU);
1081 }
1082
xen_write_cr4(unsigned long cr4)1083 static void xen_write_cr4(unsigned long cr4)
1084 {
1085 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1086
1087 native_write_cr4(cr4);
1088 }
1089
xen_do_read_msr(u32 msr,int * err)1090 static u64 xen_do_read_msr(u32 msr, int *err)
1091 {
1092 u64 val = 0; /* Avoid uninitialized value for safe variant. */
1093
1094 if (pmu_msr_chk_emulated(msr, &val, true))
1095 return val;
1096
1097 if (err)
1098 *err = native_read_msr_safe(msr, &val);
1099 else
1100 val = native_read_msr(msr);
1101
1102 switch (msr) {
1103 case MSR_IA32_APICBASE:
1104 val &= ~X2APIC_ENABLE;
1105 if (smp_processor_id() == 0)
1106 val |= MSR_IA32_APICBASE_BSP;
1107 else
1108 val &= ~MSR_IA32_APICBASE_BSP;
1109 break;
1110 }
1111 return val;
1112 }
1113
set_seg(u32 which,u64 base)1114 static void set_seg(u32 which, u64 base)
1115 {
1116 if (HYPERVISOR_set_segment_base(which, base))
1117 WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
1118 }
1119
1120 /*
1121 * Support write_msr_safe() and write_msr() semantics.
1122 * With err == NULL write_msr() semantics are selected.
1123 * Supplying an err pointer requires err to be pre-initialized with 0.
1124 */
xen_do_write_msr(u32 msr,u64 val,int * err)1125 static void xen_do_write_msr(u32 msr, u64 val, int *err)
1126 {
1127 switch (msr) {
1128 case MSR_FS_BASE:
1129 set_seg(SEGBASE_FS, val);
1130 break;
1131
1132 case MSR_KERNEL_GS_BASE:
1133 set_seg(SEGBASE_GS_USER, val);
1134 break;
1135
1136 case MSR_GS_BASE:
1137 set_seg(SEGBASE_GS_KERNEL, val);
1138 break;
1139
1140 case MSR_STAR:
1141 case MSR_CSTAR:
1142 case MSR_LSTAR:
1143 case MSR_SYSCALL_MASK:
1144 case MSR_IA32_SYSENTER_CS:
1145 case MSR_IA32_SYSENTER_ESP:
1146 case MSR_IA32_SYSENTER_EIP:
1147 /* Fast syscall setup is all done in hypercalls, so
1148 these are all ignored. Stub them out here to stop
1149 Xen console noise. */
1150 break;
1151
1152 default:
1153 if (pmu_msr_chk_emulated(msr, &val, false))
1154 return;
1155
1156 if (err)
1157 *err = native_write_msr_safe(msr, val);
1158 else
1159 native_write_msr(msr, val);
1160 }
1161 }
1162
xen_read_msr_safe(u32 msr,u64 * val)1163 static int xen_read_msr_safe(u32 msr, u64 *val)
1164 {
1165 int err = 0;
1166
1167 *val = xen_do_read_msr(msr, &err);
1168 return err;
1169 }
1170
xen_write_msr_safe(u32 msr,u64 val)1171 static int xen_write_msr_safe(u32 msr, u64 val)
1172 {
1173 int err = 0;
1174
1175 xen_do_write_msr(msr, val, &err);
1176
1177 return err;
1178 }
1179
xen_read_msr(u32 msr)1180 static u64 xen_read_msr(u32 msr)
1181 {
1182 int err = 0;
1183
1184 return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1185 }
1186
xen_write_msr(u32 msr,u64 val)1187 static void xen_write_msr(u32 msr, u64 val)
1188 {
1189 int err;
1190
1191 xen_do_write_msr(msr, val, xen_msr_safe ? &err : NULL);
1192 }
1193
1194 /* This is called once we have the cpu_possible_mask */
xen_setup_vcpu_info_placement(void)1195 void __init xen_setup_vcpu_info_placement(void)
1196 {
1197 int cpu;
1198
1199 for_each_possible_cpu(cpu) {
1200 /* Set up direct vCPU id mapping for PV guests. */
1201 per_cpu(xen_vcpu_id, cpu) = cpu;
1202 xen_vcpu_setup(cpu);
1203 }
1204
1205 pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1206 pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1207 pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1208 pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1209 }
1210
1211 static const struct pv_info xen_info __initconst = {
1212 .extra_user_64bit_cs = FLAT_USER_CS64,
1213 .name = "Xen",
1214 };
1215
1216 static const typeof(pv_ops) xen_cpu_ops __initconst = {
1217 .cpu = {
1218 .cpuid = xen_cpuid,
1219
1220 .set_debugreg = xen_set_debugreg,
1221 .get_debugreg = xen_get_debugreg,
1222
1223 .read_cr0 = xen_read_cr0,
1224 .write_cr0 = xen_write_cr0,
1225
1226 .write_cr4 = xen_write_cr4,
1227
1228 .read_msr = xen_read_msr,
1229 .write_msr = xen_write_msr,
1230
1231 .read_msr_safe = xen_read_msr_safe,
1232 .write_msr_safe = xen_write_msr_safe,
1233
1234 .read_pmc = xen_read_pmc,
1235
1236 .load_tr_desc = paravirt_nop,
1237 .set_ldt = xen_set_ldt,
1238 .load_gdt = xen_load_gdt,
1239 .load_idt = xen_load_idt,
1240 .load_tls = xen_load_tls,
1241 .load_gs_index = xen_load_gs_index,
1242
1243 .alloc_ldt = xen_alloc_ldt,
1244 .free_ldt = xen_free_ldt,
1245
1246 .store_tr = xen_store_tr,
1247
1248 .write_ldt_entry = xen_write_ldt_entry,
1249 .write_gdt_entry = xen_write_gdt_entry,
1250 .write_idt_entry = xen_write_idt_entry,
1251 .load_sp0 = xen_load_sp0,
1252
1253 #ifdef CONFIG_X86_IOPL_IOPERM
1254 .invalidate_io_bitmap = xen_invalidate_io_bitmap,
1255 .update_io_bitmap = xen_update_io_bitmap,
1256 #endif
1257 .io_delay = xen_io_delay,
1258
1259 .start_context_switch = xen_start_context_switch,
1260 .end_context_switch = xen_end_context_switch,
1261 },
1262 };
1263
xen_restart(char * msg)1264 static void xen_restart(char *msg)
1265 {
1266 xen_reboot(SHUTDOWN_reboot);
1267 }
1268
xen_machine_halt(void)1269 static void xen_machine_halt(void)
1270 {
1271 xen_reboot(SHUTDOWN_poweroff);
1272 }
1273
xen_machine_power_off(void)1274 static void xen_machine_power_off(void)
1275 {
1276 do_kernel_power_off();
1277 xen_reboot(SHUTDOWN_poweroff);
1278 }
1279
xen_crash_shutdown(struct pt_regs * regs)1280 static void xen_crash_shutdown(struct pt_regs *regs)
1281 {
1282 xen_reboot(SHUTDOWN_crash);
1283 }
1284
1285 static const struct machine_ops xen_machine_ops __initconst = {
1286 .restart = xen_restart,
1287 .halt = xen_machine_halt,
1288 .power_off = xen_machine_power_off,
1289 .shutdown = xen_machine_halt,
1290 .crash_shutdown = xen_crash_shutdown,
1291 .emergency_restart = xen_emergency_restart,
1292 };
1293
xen_get_nmi_reason(void)1294 static unsigned char xen_get_nmi_reason(void)
1295 {
1296 unsigned char reason = 0;
1297
1298 /* Construct a value which looks like it came from port 0x61. */
1299 if (test_bit(_XEN_NMIREASON_io_error,
1300 &HYPERVISOR_shared_info->arch.nmi_reason))
1301 reason |= NMI_REASON_IOCHK;
1302 if (test_bit(_XEN_NMIREASON_pci_serr,
1303 &HYPERVISOR_shared_info->arch.nmi_reason))
1304 reason |= NMI_REASON_SERR;
1305
1306 return reason;
1307 }
1308
xen_boot_params_init_edd(void)1309 static void __init xen_boot_params_init_edd(void)
1310 {
1311 #if IS_ENABLED(CONFIG_EDD)
1312 struct xen_platform_op op;
1313 struct edd_info *edd_info;
1314 u32 *mbr_signature;
1315 unsigned nr;
1316 int ret;
1317
1318 edd_info = boot_params.eddbuf;
1319 mbr_signature = boot_params.edd_mbr_sig_buffer;
1320
1321 op.cmd = XENPF_firmware_info;
1322
1323 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1324 for (nr = 0; nr < EDDMAXNR; nr++) {
1325 struct edd_info *info = edd_info + nr;
1326
1327 op.u.firmware_info.index = nr;
1328 info->params.length = sizeof(info->params);
1329 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1330 &info->params);
1331 ret = HYPERVISOR_platform_op(&op);
1332 if (ret)
1333 break;
1334
1335 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1336 C(device);
1337 C(version);
1338 C(interface_support);
1339 C(legacy_max_cylinder);
1340 C(legacy_max_head);
1341 C(legacy_sectors_per_track);
1342 #undef C
1343 }
1344 boot_params.eddbuf_entries = nr;
1345
1346 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1347 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1348 op.u.firmware_info.index = nr;
1349 ret = HYPERVISOR_platform_op(&op);
1350 if (ret)
1351 break;
1352 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1353 }
1354 boot_params.edd_mbr_sig_buf_entries = nr;
1355 #endif
1356 }
1357
1358 /*
1359 * Set up the GDT and segment registers for -fstack-protector. Until
1360 * we do this, we have to be careful not to call any stack-protected
1361 * function, which is most of the kernel.
1362 */
xen_setup_gdt(int cpu)1363 static void __init xen_setup_gdt(int cpu)
1364 {
1365 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1366 pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1367
1368 switch_gdt_and_percpu_base(cpu);
1369
1370 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1371 pv_ops.cpu.load_gdt = xen_load_gdt;
1372 }
1373
xen_dom0_set_legacy_features(void)1374 static void __init xen_dom0_set_legacy_features(void)
1375 {
1376 x86_platform.legacy.rtc = 1;
1377 }
1378
xen_domu_set_legacy_features(void)1379 static void __init xen_domu_set_legacy_features(void)
1380 {
1381 x86_platform.legacy.rtc = 0;
1382 }
1383
1384 extern void early_xen_iret_patch(void);
1385
1386 /* First C function to be called on Xen boot */
xen_start_kernel(struct start_info * si)1387 asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1388 {
1389 struct physdev_set_iopl set_iopl;
1390 unsigned long initrd_start = 0;
1391 int rc;
1392
1393 if (!si)
1394 return;
1395
1396 clear_bss();
1397
1398 xen_start_info = si;
1399
1400 __text_gen_insn(&early_xen_iret_patch,
1401 JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1402 JMP32_INSN_SIZE);
1403
1404 xen_domain_type = XEN_PV_DOMAIN;
1405 xen_start_flags = xen_start_info->flags;
1406 /* Interrupts are guaranteed to be off initially. */
1407 early_boot_irqs_disabled = true;
1408 static_call_update_early(xen_hypercall, xen_hypercall_pv);
1409
1410 xen_setup_features();
1411
1412 /* Install Xen paravirt ops */
1413 pv_info = xen_info;
1414 pv_ops.cpu = xen_cpu_ops.cpu;
1415 xen_init_irq_ops();
1416
1417 /*
1418 * Setup xen_vcpu early because it is needed for
1419 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1420 *
1421 * Don't do the full vcpu_info placement stuff until we have
1422 * the cpu_possible_mask and a non-dummy shared_info.
1423 */
1424 xen_vcpu_info_reset(0);
1425
1426 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1427 x86_platform.realmode_reserve = x86_init_noop;
1428 x86_platform.realmode_init = x86_init_noop;
1429
1430 x86_init.resources.memory_setup = xen_memory_setup;
1431 x86_init.irqs.intr_mode_select = x86_init_noop;
1432 x86_init.irqs.intr_mode_init = x86_64_probe_apic;
1433 x86_init.oem.arch_setup = xen_arch_setup;
1434 x86_init.oem.banner = xen_banner;
1435 x86_init.hyper.init_platform = xen_pv_init_platform;
1436 x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1437
1438 /*
1439 * Set up some pagetable state before starting to set any ptes.
1440 */
1441
1442 xen_setup_machphys_mapping();
1443 xen_init_mmu_ops();
1444
1445 /* Prevent unwanted bits from being set in PTEs. */
1446 __supported_pte_mask &= ~_PAGE_GLOBAL;
1447 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1448
1449 /* Get mfn list */
1450 xen_build_dynamic_phys_to_machine();
1451
1452 /* Work out if we support NX */
1453 get_cpu_cap(&boot_cpu_data);
1454 x86_configure_nx();
1455
1456 /*
1457 * Set up kernel GDT and segment registers, mainly so that
1458 * -fstack-protector code can be executed.
1459 */
1460 xen_setup_gdt(0);
1461
1462 /* Determine virtual and physical address sizes */
1463 get_cpu_address_sizes(&boot_cpu_data);
1464
1465 /* Let's presume PV guests always boot on vCPU with id 0. */
1466 per_cpu(xen_vcpu_id, 0) = 0;
1467
1468 idt_setup_early_handler();
1469
1470 xen_init_capabilities();
1471
1472 /*
1473 * set up the basic apic ops.
1474 */
1475 xen_init_apic();
1476
1477 machine_ops = xen_machine_ops;
1478
1479 /*
1480 * The only reliable way to retain the initial address of the
1481 * percpu gdt_page is to remember it here, so we can go and
1482 * mark it RW later, when the initial percpu area is freed.
1483 */
1484 xen_initial_gdt = &per_cpu(gdt_page, 0);
1485
1486 xen_smp_init();
1487
1488 #ifdef CONFIG_ACPI_NUMA
1489 /*
1490 * The pages we from Xen are not related to machine pages, so
1491 * any NUMA information the kernel tries to get from ACPI will
1492 * be meaningless. Prevent it from trying.
1493 */
1494 disable_srat();
1495 #endif
1496 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1497
1498 local_irq_disable();
1499
1500 xen_raw_console_write("mapping kernel into physical memory\n");
1501 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1502 xen_start_info->nr_pages);
1503 xen_reserve_special_pages();
1504
1505 /*
1506 * We used to do this in xen_arch_setup, but that is too late
1507 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1508 * early_amd_init which pokes 0xcf8 port.
1509 */
1510 set_iopl.iopl = 1;
1511 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1512 if (rc != 0)
1513 xen_raw_printk("physdev_op failed %d\n", rc);
1514
1515
1516 if (xen_start_info->mod_start) {
1517 if (xen_start_info->flags & SIF_MOD_START_PFN)
1518 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1519 else
1520 initrd_start = __pa(xen_start_info->mod_start);
1521 }
1522
1523 /* Poke various useful things into boot_params */
1524 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1525 boot_params.hdr.ramdisk_image = initrd_start;
1526 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1527 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1528 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1529
1530 if (!xen_initial_domain()) {
1531 if (pci_xen)
1532 x86_init.pci.arch_init = pci_xen_init;
1533 x86_platform.set_legacy_features =
1534 xen_domu_set_legacy_features;
1535 } else {
1536 const struct dom0_vga_console_info *info =
1537 (void *)((char *)xen_start_info +
1538 xen_start_info->console.dom0.info_off);
1539 struct xen_platform_op op = {
1540 .cmd = XENPF_firmware_info,
1541 .interface_version = XENPF_INTERFACE_VERSION,
1542 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1543 };
1544
1545 x86_platform.set_legacy_features =
1546 xen_dom0_set_legacy_features;
1547 xen_init_vga(info, xen_start_info->console.dom0.info_size,
1548 &boot_params.screen_info);
1549 xen_start_info->console.domU.mfn = 0;
1550 xen_start_info->console.domU.evtchn = 0;
1551
1552 if (HYPERVISOR_platform_op(&op) == 0)
1553 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1554
1555 /* Make sure ACS will be enabled */
1556 pci_request_acs();
1557
1558 xen_acpi_sleep_register();
1559
1560 xen_boot_params_init_edd();
1561
1562 #ifdef CONFIG_ACPI
1563 /*
1564 * Disable selecting "Firmware First mode" for correctable
1565 * memory errors, as this is the duty of the hypervisor to
1566 * decide.
1567 */
1568 acpi_disable_cmcff = 1;
1569 #endif
1570 }
1571
1572 xen_add_preferred_consoles();
1573
1574 #ifdef CONFIG_PCI
1575 /* PCI BIOS service won't work from a PV guest. */
1576 pci_probe &= ~PCI_PROBE_BIOS;
1577 #endif
1578 xen_raw_console_write("about to get started...\n");
1579
1580 /* We need this for printk timestamps */
1581 xen_setup_runstate_info(0);
1582
1583 xen_efi_init(&boot_params);
1584
1585 /* Start the world */
1586 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1587 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1588 }
1589
xen_cpu_up_prepare_pv(unsigned int cpu)1590 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1591 {
1592 int rc;
1593
1594 if (per_cpu(xen_vcpu, cpu) == NULL)
1595 return -ENODEV;
1596
1597 xen_setup_timer(cpu);
1598
1599 rc = xen_smp_intr_init(cpu);
1600 if (rc) {
1601 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1602 cpu, rc);
1603 return rc;
1604 }
1605
1606 rc = xen_smp_intr_init_pv(cpu);
1607 if (rc) {
1608 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1609 cpu, rc);
1610 return rc;
1611 }
1612
1613 return 0;
1614 }
1615
xen_cpu_dead_pv(unsigned int cpu)1616 static int xen_cpu_dead_pv(unsigned int cpu)
1617 {
1618 xen_smp_intr_free(cpu);
1619 xen_smp_intr_free_pv(cpu);
1620
1621 xen_teardown_timer(cpu);
1622
1623 return 0;
1624 }
1625
xen_platform_pv(void)1626 static uint32_t __init xen_platform_pv(void)
1627 {
1628 if (xen_pv_domain())
1629 return xen_cpuid_base();
1630
1631 return 0;
1632 }
1633
1634 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1635 .name = "Xen PV",
1636 .detect = xen_platform_pv,
1637 .type = X86_HYPER_XEN_PV,
1638 .runtime.pin_vcpu = xen_pin_vcpu,
1639 .ignore_nopv = true,
1640 };
1641