xref: /linux/drivers/nvme/host/core.c (revision e715b8733df60aa3280ab3e0de0560c8a72c5c1d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33 
34 #define NVME_MINORS		(1U << MINORBITS)
35 
36 struct nvme_ns_info {
37 	struct nvme_ns_ids ids;
38 	u32 nsid;
39 	__le32 anagrpid;
40 	u8 pi_offset;
41 	u16 endgid;
42 	u64 runs;
43 	bool is_shared;
44 	bool is_readonly;
45 	bool is_ready;
46 	bool is_removed;
47 	bool is_rotational;
48 	bool no_vwc;
49 };
50 
51 unsigned int admin_timeout = 60;
52 module_param(admin_timeout, uint, 0644);
53 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
54 EXPORT_SYMBOL_GPL(admin_timeout);
55 
56 unsigned int nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59 EXPORT_SYMBOL_GPL(nvme_io_timeout);
60 
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64 
65 static u8 nvme_max_retries = 5;
66 module_param_named(max_retries, nvme_max_retries, byte, 0644);
67 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
68 
69 static unsigned long default_ps_max_latency_us = 100000;
70 module_param(default_ps_max_latency_us, ulong, 0644);
71 MODULE_PARM_DESC(default_ps_max_latency_us,
72 		 "max power saving latency for new devices; use PM QOS to change per device");
73 
74 static bool force_apst;
75 module_param(force_apst, bool, 0644);
76 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
77 
78 static unsigned long apst_primary_timeout_ms = 100;
79 module_param(apst_primary_timeout_ms, ulong, 0644);
80 MODULE_PARM_DESC(apst_primary_timeout_ms,
81 	"primary APST timeout in ms");
82 
83 static unsigned long apst_secondary_timeout_ms = 2000;
84 module_param(apst_secondary_timeout_ms, ulong, 0644);
85 MODULE_PARM_DESC(apst_secondary_timeout_ms,
86 	"secondary APST timeout in ms");
87 
88 static unsigned long apst_primary_latency_tol_us = 15000;
89 module_param(apst_primary_latency_tol_us, ulong, 0644);
90 MODULE_PARM_DESC(apst_primary_latency_tol_us,
91 	"primary APST latency tolerance in us");
92 
93 static unsigned long apst_secondary_latency_tol_us = 100000;
94 module_param(apst_secondary_latency_tol_us, ulong, 0644);
95 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
96 	"secondary APST latency tolerance in us");
97 
98 /*
99  * Older kernels didn't enable protection information if it was at an offset.
100  * Newer kernels do, so it breaks reads on the upgrade if such formats were
101  * used in prior kernels since the metadata written did not contain a valid
102  * checksum.
103  */
104 static bool disable_pi_offsets = false;
105 module_param(disable_pi_offsets, bool, 0444);
106 MODULE_PARM_DESC(disable_pi_offsets,
107 	"disable protection information if it has an offset");
108 
109 /*
110  * nvme_wq - hosts nvme related works that are not reset or delete
111  * nvme_reset_wq - hosts nvme reset works
112  * nvme_delete_wq - hosts nvme delete works
113  *
114  * nvme_wq will host works such as scan, aen handling, fw activation,
115  * keep-alive, periodic reconnects etc. nvme_reset_wq
116  * runs reset works which also flush works hosted on nvme_wq for
117  * serialization purposes. nvme_delete_wq host controller deletion
118  * works which flush reset works for serialization.
119  */
120 struct workqueue_struct *nvme_wq;
121 EXPORT_SYMBOL_GPL(nvme_wq);
122 
123 struct workqueue_struct *nvme_reset_wq;
124 EXPORT_SYMBOL_GPL(nvme_reset_wq);
125 
126 struct workqueue_struct *nvme_delete_wq;
127 EXPORT_SYMBOL_GPL(nvme_delete_wq);
128 
129 static LIST_HEAD(nvme_subsystems);
130 DEFINE_MUTEX(nvme_subsystems_lock);
131 
132 static DEFINE_IDA(nvme_instance_ida);
133 static dev_t nvme_ctrl_base_chr_devt;
134 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
135 static const struct class nvme_class = {
136 	.name = "nvme",
137 	.dev_uevent = nvme_class_uevent,
138 };
139 
140 static const struct class nvme_subsys_class = {
141 	.name = "nvme-subsystem",
142 };
143 
144 static DEFINE_IDA(nvme_ns_chr_minor_ida);
145 static dev_t nvme_ns_chr_devt;
146 static const struct class nvme_ns_chr_class = {
147 	.name = "nvme-generic",
148 };
149 
150 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
151 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
152 					   unsigned nsid);
153 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
154 				   struct nvme_command *cmd);
155 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
156 		u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi);
157 
nvme_queue_scan(struct nvme_ctrl * ctrl)158 void nvme_queue_scan(struct nvme_ctrl *ctrl)
159 {
160 	/*
161 	 * Only new queue scan work when admin and IO queues are both alive
162 	 */
163 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
164 		queue_work(nvme_wq, &ctrl->scan_work);
165 }
166 
167 /*
168  * Use this function to proceed with scheduling reset_work for a controller
169  * that had previously been set to the resetting state. This is intended for
170  * code paths that can't be interrupted by other reset attempts. A hot removal
171  * may prevent this from succeeding.
172  */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)173 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
174 {
175 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
176 		return -EBUSY;
177 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
178 		return -EBUSY;
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
182 
nvme_failfast_work(struct work_struct * work)183 static void nvme_failfast_work(struct work_struct *work)
184 {
185 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
186 			struct nvme_ctrl, failfast_work);
187 
188 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
189 		return;
190 
191 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
192 	dev_info(ctrl->device, "failfast expired\n");
193 	nvme_kick_requeue_lists(ctrl);
194 }
195 
nvme_start_failfast_work(struct nvme_ctrl * ctrl)196 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
197 {
198 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
199 		return;
200 
201 	schedule_delayed_work(&ctrl->failfast_work,
202 			      ctrl->opts->fast_io_fail_tmo * HZ);
203 }
204 
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)205 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
206 {
207 	if (!ctrl->opts)
208 		return;
209 
210 	cancel_delayed_work_sync(&ctrl->failfast_work);
211 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
212 }
213 
214 
nvme_reset_ctrl(struct nvme_ctrl * ctrl)215 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
216 {
217 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
218 		return -EBUSY;
219 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
220 		return -EBUSY;
221 	return 0;
222 }
223 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
224 
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)225 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
226 {
227 	int ret;
228 
229 	ret = nvme_reset_ctrl(ctrl);
230 	if (!ret) {
231 		flush_work(&ctrl->reset_work);
232 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
233 			ret = -ENETRESET;
234 	}
235 
236 	return ret;
237 }
238 
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)239 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
240 {
241 	dev_info(ctrl->device,
242 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
243 
244 	flush_work(&ctrl->reset_work);
245 	nvme_stop_ctrl(ctrl);
246 	nvme_remove_namespaces(ctrl);
247 	ctrl->ops->delete_ctrl(ctrl);
248 	nvme_uninit_ctrl(ctrl);
249 }
250 
nvme_delete_ctrl_work(struct work_struct * work)251 static void nvme_delete_ctrl_work(struct work_struct *work)
252 {
253 	struct nvme_ctrl *ctrl =
254 		container_of(work, struct nvme_ctrl, delete_work);
255 
256 	nvme_do_delete_ctrl(ctrl);
257 }
258 
nvme_delete_ctrl(struct nvme_ctrl * ctrl)259 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
260 {
261 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
262 		return -EBUSY;
263 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
264 		return -EBUSY;
265 	return 0;
266 }
267 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
268 
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)269 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
270 {
271 	/*
272 	 * Keep a reference until nvme_do_delete_ctrl() complete,
273 	 * since ->delete_ctrl can free the controller.
274 	 */
275 	nvme_get_ctrl(ctrl);
276 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
277 		nvme_do_delete_ctrl(ctrl);
278 	nvme_put_ctrl(ctrl);
279 }
280 
nvme_error_status(u16 status)281 static blk_status_t nvme_error_status(u16 status)
282 {
283 	switch (status & NVME_SCT_SC_MASK) {
284 	case NVME_SC_SUCCESS:
285 		return BLK_STS_OK;
286 	case NVME_SC_CAP_EXCEEDED:
287 		return BLK_STS_NOSPC;
288 	case NVME_SC_LBA_RANGE:
289 	case NVME_SC_CMD_INTERRUPTED:
290 	case NVME_SC_NS_NOT_READY:
291 		return BLK_STS_TARGET;
292 	case NVME_SC_BAD_ATTRIBUTES:
293 	case NVME_SC_INVALID_OPCODE:
294 	case NVME_SC_INVALID_FIELD:
295 	case NVME_SC_INVALID_NS:
296 		return BLK_STS_NOTSUPP;
297 	case NVME_SC_WRITE_FAULT:
298 	case NVME_SC_READ_ERROR:
299 	case NVME_SC_UNWRITTEN_BLOCK:
300 	case NVME_SC_ACCESS_DENIED:
301 	case NVME_SC_READ_ONLY:
302 	case NVME_SC_COMPARE_FAILED:
303 		return BLK_STS_MEDIUM;
304 	case NVME_SC_GUARD_CHECK:
305 	case NVME_SC_APPTAG_CHECK:
306 	case NVME_SC_REFTAG_CHECK:
307 	case NVME_SC_INVALID_PI:
308 		return BLK_STS_PROTECTION;
309 	case NVME_SC_RESERVATION_CONFLICT:
310 		return BLK_STS_RESV_CONFLICT;
311 	case NVME_SC_HOST_PATH_ERROR:
312 		return BLK_STS_TRANSPORT;
313 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
314 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
315 	case NVME_SC_ZONE_TOO_MANY_OPEN:
316 		return BLK_STS_ZONE_OPEN_RESOURCE;
317 	default:
318 		return BLK_STS_IOERR;
319 	}
320 }
321 
nvme_retry_req(struct request * req)322 static void nvme_retry_req(struct request *req)
323 {
324 	unsigned long delay = 0;
325 	u16 crd;
326 
327 	/* The mask and shift result must be <= 3 */
328 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
329 	if (crd)
330 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
331 
332 	nvme_req(req)->retries++;
333 	blk_mq_requeue_request(req, false);
334 	blk_mq_delay_kick_requeue_list(req->q, delay);
335 }
336 
nvme_log_error(struct request * req)337 static void nvme_log_error(struct request *req)
338 {
339 	struct nvme_ns *ns = req->q->queuedata;
340 	struct nvme_request *nr = nvme_req(req);
341 
342 	if (ns) {
343 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
344 		       ns->disk ? ns->disk->disk_name : "?",
345 		       nvme_get_opcode_str(nr->cmd->common.opcode),
346 		       nr->cmd->common.opcode,
347 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
348 		       blk_rq_bytes(req) >> ns->head->lba_shift,
349 		       nvme_get_error_status_str(nr->status),
350 		       NVME_SCT(nr->status),		/* Status Code Type */
351 		       nr->status & NVME_SC_MASK,	/* Status Code */
352 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
353 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
354 		return;
355 	}
356 
357 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
358 			   dev_name(nr->ctrl->device),
359 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 			   nr->cmd->common.opcode,
361 			   nvme_get_error_status_str(nr->status),
362 			   NVME_SCT(nr->status),	/* Status Code Type */
363 			   nr->status & NVME_SC_MASK,	/* Status Code */
364 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
365 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
366 }
367 
nvme_log_err_passthru(struct request * req)368 static void nvme_log_err_passthru(struct request *req)
369 {
370 	struct nvme_ns *ns = req->q->queuedata;
371 	struct nvme_request *nr = nvme_req(req);
372 
373 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
374 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
375 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
376 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
377 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
378 		nr->cmd->common.opcode,
379 		nvme_get_error_status_str(nr->status),
380 		NVME_SCT(nr->status),		/* Status Code Type */
381 		nr->status & NVME_SC_MASK,	/* Status Code */
382 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
383 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
384 		le32_to_cpu(nr->cmd->common.cdw10),
385 		le32_to_cpu(nr->cmd->common.cdw11),
386 		le32_to_cpu(nr->cmd->common.cdw12),
387 		le32_to_cpu(nr->cmd->common.cdw13),
388 		le32_to_cpu(nr->cmd->common.cdw14),
389 		le32_to_cpu(nr->cmd->common.cdw15));
390 }
391 
392 enum nvme_disposition {
393 	COMPLETE,
394 	RETRY,
395 	FAILOVER,
396 	AUTHENTICATE,
397 };
398 
nvme_decide_disposition(struct request * req)399 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
400 {
401 	if (likely(nvme_req(req)->status == 0))
402 		return COMPLETE;
403 
404 	if (blk_noretry_request(req) ||
405 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
406 	    nvme_req(req)->retries >= nvme_max_retries)
407 		return COMPLETE;
408 
409 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
410 		return AUTHENTICATE;
411 
412 	if (req->cmd_flags & REQ_NVME_MPATH) {
413 		if (nvme_is_path_error(nvme_req(req)->status) ||
414 		    blk_queue_dying(req->q))
415 			return FAILOVER;
416 	} else {
417 		if (blk_queue_dying(req->q))
418 			return COMPLETE;
419 	}
420 
421 	return RETRY;
422 }
423 
nvme_end_req_zoned(struct request * req)424 static inline void nvme_end_req_zoned(struct request *req)
425 {
426 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
427 	    req_op(req) == REQ_OP_ZONE_APPEND) {
428 		struct nvme_ns *ns = req->q->queuedata;
429 
430 		req->__sector = nvme_lba_to_sect(ns->head,
431 			le64_to_cpu(nvme_req(req)->result.u64));
432 	}
433 }
434 
__nvme_end_req(struct request * req)435 static inline void __nvme_end_req(struct request *req)
436 {
437 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
438 		if (blk_rq_is_passthrough(req))
439 			nvme_log_err_passthru(req);
440 		else
441 			nvme_log_error(req);
442 	}
443 	nvme_end_req_zoned(req);
444 	nvme_trace_bio_complete(req);
445 	if (req->cmd_flags & REQ_NVME_MPATH)
446 		nvme_mpath_end_request(req);
447 }
448 
nvme_end_req(struct request * req)449 void nvme_end_req(struct request *req)
450 {
451 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
452 
453 	__nvme_end_req(req);
454 	blk_mq_end_request(req, status);
455 }
456 
nvme_complete_rq(struct request * req)457 void nvme_complete_rq(struct request *req)
458 {
459 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
460 
461 	trace_nvme_complete_rq(req);
462 	nvme_cleanup_cmd(req);
463 
464 	/*
465 	 * Completions of long-running commands should not be able to
466 	 * defer sending of periodic keep alives, since the controller
467 	 * may have completed processing such commands a long time ago
468 	 * (arbitrarily close to command submission time).
469 	 * req->deadline - req->timeout is the command submission time
470 	 * in jiffies.
471 	 */
472 	if (ctrl->kas &&
473 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
474 		ctrl->comp_seen = true;
475 
476 	switch (nvme_decide_disposition(req)) {
477 	case COMPLETE:
478 		nvme_end_req(req);
479 		return;
480 	case RETRY:
481 		nvme_retry_req(req);
482 		return;
483 	case FAILOVER:
484 		nvme_failover_req(req);
485 		return;
486 	case AUTHENTICATE:
487 #ifdef CONFIG_NVME_HOST_AUTH
488 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
489 		nvme_retry_req(req);
490 #else
491 		nvme_end_req(req);
492 #endif
493 		return;
494 	}
495 }
496 EXPORT_SYMBOL_GPL(nvme_complete_rq);
497 
nvme_complete_batch_req(struct request * req)498 void nvme_complete_batch_req(struct request *req)
499 {
500 	trace_nvme_complete_rq(req);
501 	nvme_cleanup_cmd(req);
502 	__nvme_end_req(req);
503 }
504 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
505 
506 /*
507  * Called to unwind from ->queue_rq on a failed command submission so that the
508  * multipathing code gets called to potentially failover to another path.
509  * The caller needs to unwind all transport specific resource allocations and
510  * must return propagate the return value.
511  */
nvme_host_path_error(struct request * req)512 blk_status_t nvme_host_path_error(struct request *req)
513 {
514 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
515 	blk_mq_set_request_complete(req);
516 	nvme_complete_rq(req);
517 	return BLK_STS_OK;
518 }
519 EXPORT_SYMBOL_GPL(nvme_host_path_error);
520 
nvme_cancel_request(struct request * req,void * data)521 bool nvme_cancel_request(struct request *req, void *data)
522 {
523 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
524 				"Cancelling I/O %d", req->tag);
525 
526 	/* don't abort one completed or idle request */
527 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
528 		return true;
529 
530 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
531 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
532 	blk_mq_complete_request(req);
533 	return true;
534 }
535 EXPORT_SYMBOL_GPL(nvme_cancel_request);
536 
nvme_cancel_tagset(struct nvme_ctrl * ctrl)537 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
538 {
539 	if (ctrl->tagset) {
540 		blk_mq_tagset_busy_iter(ctrl->tagset,
541 				nvme_cancel_request, ctrl);
542 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
543 	}
544 }
545 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
546 
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)547 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
548 {
549 	if (ctrl->admin_tagset) {
550 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
551 				nvme_cancel_request, ctrl);
552 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
553 	}
554 }
555 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
556 
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)557 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
558 		enum nvme_ctrl_state new_state)
559 {
560 	enum nvme_ctrl_state old_state;
561 	unsigned long flags;
562 	bool changed = false;
563 
564 	spin_lock_irqsave(&ctrl->lock, flags);
565 
566 	old_state = nvme_ctrl_state(ctrl);
567 	switch (new_state) {
568 	case NVME_CTRL_LIVE:
569 		switch (old_state) {
570 		case NVME_CTRL_CONNECTING:
571 			changed = true;
572 			fallthrough;
573 		default:
574 			break;
575 		}
576 		break;
577 	case NVME_CTRL_RESETTING:
578 		switch (old_state) {
579 		case NVME_CTRL_NEW:
580 		case NVME_CTRL_LIVE:
581 			changed = true;
582 			fallthrough;
583 		default:
584 			break;
585 		}
586 		break;
587 	case NVME_CTRL_CONNECTING:
588 		switch (old_state) {
589 		case NVME_CTRL_NEW:
590 		case NVME_CTRL_RESETTING:
591 			changed = true;
592 			fallthrough;
593 		default:
594 			break;
595 		}
596 		break;
597 	case NVME_CTRL_DELETING:
598 		switch (old_state) {
599 		case NVME_CTRL_LIVE:
600 		case NVME_CTRL_RESETTING:
601 		case NVME_CTRL_CONNECTING:
602 			changed = true;
603 			fallthrough;
604 		default:
605 			break;
606 		}
607 		break;
608 	case NVME_CTRL_DELETING_NOIO:
609 		switch (old_state) {
610 		case NVME_CTRL_DELETING:
611 		case NVME_CTRL_DEAD:
612 			changed = true;
613 			fallthrough;
614 		default:
615 			break;
616 		}
617 		break;
618 	case NVME_CTRL_DEAD:
619 		switch (old_state) {
620 		case NVME_CTRL_DELETING:
621 			changed = true;
622 			fallthrough;
623 		default:
624 			break;
625 		}
626 		break;
627 	default:
628 		break;
629 	}
630 
631 	if (changed) {
632 		WRITE_ONCE(ctrl->state, new_state);
633 		wake_up_all(&ctrl->state_wq);
634 	}
635 
636 	spin_unlock_irqrestore(&ctrl->lock, flags);
637 	if (!changed)
638 		return false;
639 
640 	if (new_state == NVME_CTRL_LIVE) {
641 		if (old_state == NVME_CTRL_CONNECTING)
642 			nvme_stop_failfast_work(ctrl);
643 		nvme_kick_requeue_lists(ctrl);
644 	} else if (new_state == NVME_CTRL_CONNECTING &&
645 		old_state == NVME_CTRL_RESETTING) {
646 		nvme_start_failfast_work(ctrl);
647 	}
648 	return changed;
649 }
650 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
651 
652 /*
653  * Waits for the controller state to be resetting, or returns false if it is
654  * not possible to ever transition to that state.
655  */
nvme_wait_reset(struct nvme_ctrl * ctrl)656 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
657 {
658 	wait_event(ctrl->state_wq,
659 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
660 		   nvme_state_terminal(ctrl));
661 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
662 }
663 EXPORT_SYMBOL_GPL(nvme_wait_reset);
664 
nvme_free_ns_head(struct kref * ref)665 static void nvme_free_ns_head(struct kref *ref)
666 {
667 	struct nvme_ns_head *head =
668 		container_of(ref, struct nvme_ns_head, ref);
669 
670 	nvme_mpath_put_disk(head);
671 	ida_free(&head->subsys->ns_ida, head->instance);
672 	cleanup_srcu_struct(&head->srcu);
673 	nvme_put_subsystem(head->subsys);
674 	kfree(head->plids);
675 	kfree(head);
676 }
677 
nvme_tryget_ns_head(struct nvme_ns_head * head)678 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
679 {
680 	return kref_get_unless_zero(&head->ref);
681 }
682 
nvme_put_ns_head(struct nvme_ns_head * head)683 void nvme_put_ns_head(struct nvme_ns_head *head)
684 {
685 	kref_put(&head->ref, nvme_free_ns_head);
686 }
687 
nvme_free_ns(struct kref * kref)688 static void nvme_free_ns(struct kref *kref)
689 {
690 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
691 
692 	put_disk(ns->disk);
693 	nvme_put_ns_head(ns->head);
694 	nvme_put_ctrl(ns->ctrl);
695 	kfree(ns);
696 }
697 
nvme_get_ns(struct nvme_ns * ns)698 bool nvme_get_ns(struct nvme_ns *ns)
699 {
700 	return kref_get_unless_zero(&ns->kref);
701 }
702 
nvme_put_ns(struct nvme_ns * ns)703 void nvme_put_ns(struct nvme_ns *ns)
704 {
705 	kref_put(&ns->kref, nvme_free_ns);
706 }
707 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
708 
nvme_clear_nvme_request(struct request * req)709 static inline void nvme_clear_nvme_request(struct request *req)
710 {
711 	nvme_req(req)->status = 0;
712 	nvme_req(req)->retries = 0;
713 	nvme_req(req)->flags = 0;
714 	req->rq_flags |= RQF_DONTPREP;
715 }
716 
717 /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)718 void nvme_init_request(struct request *req, struct nvme_command *cmd)
719 {
720 	struct nvme_request *nr = nvme_req(req);
721 	bool logging_enabled;
722 
723 	if (req->q->queuedata) {
724 		struct nvme_ns *ns = req->q->disk->private_data;
725 
726 		logging_enabled = ns->head->passthru_err_log_enabled;
727 		req->timeout = NVME_IO_TIMEOUT;
728 	} else { /* no queuedata implies admin queue */
729 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
730 		req->timeout = NVME_ADMIN_TIMEOUT;
731 	}
732 
733 	if (!logging_enabled)
734 		req->rq_flags |= RQF_QUIET;
735 
736 	/* passthru commands should let the driver set the SGL flags */
737 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
738 
739 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
740 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
741 		req->cmd_flags |= REQ_POLLED;
742 	nvme_clear_nvme_request(req);
743 	memcpy(nr->cmd, cmd, sizeof(*cmd));
744 }
745 EXPORT_SYMBOL_GPL(nvme_init_request);
746 
747 /*
748  * For something we're not in a state to send to the device the default action
749  * is to busy it and retry it after the controller state is recovered.  However,
750  * if the controller is deleting or if anything is marked for failfast or
751  * nvme multipath it is immediately failed.
752  *
753  * Note: commands used to initialize the controller will be marked for failfast.
754  * Note: nvme cli/ioctl commands are marked for failfast.
755  */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)756 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
757 		struct request *rq)
758 {
759 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
760 
761 	if (state != NVME_CTRL_DELETING_NOIO &&
762 	    state != NVME_CTRL_DELETING &&
763 	    state != NVME_CTRL_DEAD &&
764 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
765 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
766 		return BLK_STS_RESOURCE;
767 
768 	if (!(rq->rq_flags & RQF_DONTPREP))
769 		nvme_clear_nvme_request(rq);
770 
771 	return nvme_host_path_error(rq);
772 }
773 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
774 
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live,enum nvme_ctrl_state state)775 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
776 		bool queue_live, enum nvme_ctrl_state state)
777 {
778 	struct nvme_request *req = nvme_req(rq);
779 
780 	/*
781 	 * currently we have a problem sending passthru commands
782 	 * on the admin_q if the controller is not LIVE because we can't
783 	 * make sure that they are going out after the admin connect,
784 	 * controller enable and/or other commands in the initialization
785 	 * sequence. until the controller will be LIVE, fail with
786 	 * BLK_STS_RESOURCE so that they will be rescheduled.
787 	 */
788 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
789 		return false;
790 
791 	if (ctrl->ops->flags & NVME_F_FABRICS) {
792 		/*
793 		 * Only allow commands on a live queue, except for the connect
794 		 * command, which is require to set the queue live in the
795 		 * appropinquate states.
796 		 */
797 		switch (state) {
798 		case NVME_CTRL_CONNECTING:
799 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
800 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
801 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
802 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
803 				return true;
804 			break;
805 		default:
806 			break;
807 		case NVME_CTRL_DEAD:
808 			return false;
809 		}
810 	}
811 
812 	return queue_live;
813 }
814 EXPORT_SYMBOL_GPL(__nvme_check_ready);
815 
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)816 static inline void nvme_setup_flush(struct nvme_ns *ns,
817 		struct nvme_command *cmnd)
818 {
819 	memset(cmnd, 0, sizeof(*cmnd));
820 	cmnd->common.opcode = nvme_cmd_flush;
821 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
822 }
823 
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)824 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
825 		struct nvme_command *cmnd)
826 {
827 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
828 	struct nvme_dsm_range *range;
829 	struct bio *bio;
830 
831 	/*
832 	 * Some devices do not consider the DSM 'Number of Ranges' field when
833 	 * determining how much data to DMA. Always allocate memory for maximum
834 	 * number of segments to prevent device reading beyond end of buffer.
835 	 */
836 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
837 
838 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
839 	if (!range) {
840 		/*
841 		 * If we fail allocation our range, fallback to the controller
842 		 * discard page. If that's also busy, it's safe to return
843 		 * busy, as we know we can make progress once that's freed.
844 		 */
845 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
846 			return BLK_STS_RESOURCE;
847 
848 		range = page_address(ns->ctrl->discard_page);
849 	}
850 
851 	if (queue_max_discard_segments(req->q) == 1) {
852 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
853 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
854 
855 		range[0].cattr = cpu_to_le32(0);
856 		range[0].nlb = cpu_to_le32(nlb);
857 		range[0].slba = cpu_to_le64(slba);
858 		n = 1;
859 	} else {
860 		__rq_for_each_bio(bio, req) {
861 			u64 slba = nvme_sect_to_lba(ns->head,
862 						    bio->bi_iter.bi_sector);
863 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
864 
865 			if (n < segments) {
866 				range[n].cattr = cpu_to_le32(0);
867 				range[n].nlb = cpu_to_le32(nlb);
868 				range[n].slba = cpu_to_le64(slba);
869 			}
870 			n++;
871 		}
872 	}
873 
874 	if (WARN_ON_ONCE(n != segments)) {
875 		if (virt_to_page(range) == ns->ctrl->discard_page)
876 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
877 		else
878 			kfree(range);
879 		return BLK_STS_IOERR;
880 	}
881 
882 	memset(cmnd, 0, sizeof(*cmnd));
883 	cmnd->dsm.opcode = nvme_cmd_dsm;
884 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
885 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
886 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
887 
888 	bvec_set_virt(&req->special_vec, range, alloc_size);
889 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
890 
891 	return BLK_STS_OK;
892 }
893 
nvme_set_app_tag(struct request * req,struct nvme_command * cmnd)894 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd)
895 {
896 	cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag);
897 	cmnd->rw.lbatm = cpu_to_le16(0xffff);
898 }
899 
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)900 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
901 			      struct request *req)
902 {
903 	u32 upper, lower;
904 	u64 ref48;
905 
906 	/* both rw and write zeroes share the same reftag format */
907 	switch (ns->head->guard_type) {
908 	case NVME_NVM_NS_16B_GUARD:
909 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
910 		break;
911 	case NVME_NVM_NS_64B_GUARD:
912 		ref48 = ext_pi_ref_tag(req);
913 		lower = lower_32_bits(ref48);
914 		upper = upper_32_bits(ref48);
915 
916 		cmnd->rw.reftag = cpu_to_le32(lower);
917 		cmnd->rw.cdw3 = cpu_to_le32(upper);
918 		break;
919 	default:
920 		break;
921 	}
922 }
923 
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)924 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
925 		struct request *req, struct nvme_command *cmnd)
926 {
927 	memset(cmnd, 0, sizeof(*cmnd));
928 
929 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
930 		return nvme_setup_discard(ns, req, cmnd);
931 
932 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
933 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
934 	cmnd->write_zeroes.slba =
935 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
936 	cmnd->write_zeroes.length =
937 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
938 
939 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
940 	    (ns->head->features & NVME_NS_DEAC))
941 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
942 
943 	if (nvme_ns_has_pi(ns->head)) {
944 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
945 
946 		switch (ns->head->pi_type) {
947 		case NVME_NS_DPS_PI_TYPE1:
948 		case NVME_NS_DPS_PI_TYPE2:
949 			nvme_set_ref_tag(ns, cmnd, req);
950 			break;
951 		}
952 	}
953 
954 	return BLK_STS_OK;
955 }
956 
957 /*
958  * NVMe does not support a dedicated command to issue an atomic write. A write
959  * which does adhere to the device atomic limits will silently be executed
960  * non-atomically. The request issuer should ensure that the write is within
961  * the queue atomic writes limits, but just validate this in case it is not.
962  */
nvme_valid_atomic_write(struct request * req)963 static bool nvme_valid_atomic_write(struct request *req)
964 {
965 	struct request_queue *q = req->q;
966 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
967 
968 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
969 		return false;
970 
971 	if (boundary_bytes) {
972 		u64 mask = boundary_bytes - 1, imask = ~mask;
973 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
974 		u64 end = start + blk_rq_bytes(req) - 1;
975 
976 		/* If greater then must be crossing a boundary */
977 		if (blk_rq_bytes(req) > boundary_bytes)
978 			return false;
979 
980 		if ((start & imask) != (end & imask))
981 			return false;
982 	}
983 
984 	return true;
985 }
986 
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)987 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
988 		struct request *req, struct nvme_command *cmnd,
989 		enum nvme_opcode op)
990 {
991 	u16 control = 0;
992 	u32 dsmgmt = 0;
993 
994 	if (req->cmd_flags & REQ_FUA)
995 		control |= NVME_RW_FUA;
996 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
997 		control |= NVME_RW_LR;
998 
999 	if (req->cmd_flags & REQ_RAHEAD)
1000 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
1001 
1002 	if (op == nvme_cmd_write && ns->head->nr_plids) {
1003 		u16 write_stream = req->bio->bi_write_stream;
1004 
1005 		if (WARN_ON_ONCE(write_stream > ns->head->nr_plids))
1006 			return BLK_STS_INVAL;
1007 
1008 		if (write_stream) {
1009 			dsmgmt |= ns->head->plids[write_stream - 1] << 16;
1010 			control |= NVME_RW_DTYPE_DPLCMT;
1011 		}
1012 	}
1013 
1014 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
1015 		return BLK_STS_INVAL;
1016 
1017 	cmnd->rw.opcode = op;
1018 	cmnd->rw.flags = 0;
1019 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
1020 	cmnd->rw.cdw2 = 0;
1021 	cmnd->rw.cdw3 = 0;
1022 	cmnd->rw.metadata = 0;
1023 	cmnd->rw.slba =
1024 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1025 	cmnd->rw.length =
1026 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1027 	cmnd->rw.reftag = 0;
1028 	cmnd->rw.lbat = 0;
1029 	cmnd->rw.lbatm = 0;
1030 
1031 	if (ns->head->ms) {
1032 		/*
1033 		 * If formatted with metadata, the block layer always provides a
1034 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
1035 		 * we enable the PRACT bit for protection information or set the
1036 		 * namespace capacity to zero to prevent any I/O.
1037 		 */
1038 		if (!blk_integrity_rq(req)) {
1039 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1040 				return BLK_STS_NOTSUPP;
1041 			control |= NVME_RW_PRINFO_PRACT;
1042 		}
1043 
1044 		if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD))
1045 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1046 		if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) {
1047 			control |= NVME_RW_PRINFO_PRCHK_REF;
1048 			if (op == nvme_cmd_zone_append)
1049 				control |= NVME_RW_APPEND_PIREMAP;
1050 			nvme_set_ref_tag(ns, cmnd, req);
1051 		}
1052 		if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) {
1053 			control |= NVME_RW_PRINFO_PRCHK_APP;
1054 			nvme_set_app_tag(req, cmnd);
1055 		}
1056 	}
1057 
1058 	cmnd->rw.control = cpu_to_le16(control);
1059 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1060 	return 0;
1061 }
1062 
nvme_cleanup_cmd(struct request * req)1063 void nvme_cleanup_cmd(struct request *req)
1064 {
1065 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1066 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1067 
1068 		if (req->special_vec.bv_page == ctrl->discard_page)
1069 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1070 		else
1071 			kfree(bvec_virt(&req->special_vec));
1072 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1073 	}
1074 }
1075 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1076 
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)1077 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1078 {
1079 	struct nvme_command *cmd = nvme_req(req)->cmd;
1080 	blk_status_t ret = BLK_STS_OK;
1081 
1082 	if (!(req->rq_flags & RQF_DONTPREP))
1083 		nvme_clear_nvme_request(req);
1084 
1085 	switch (req_op(req)) {
1086 	case REQ_OP_DRV_IN:
1087 	case REQ_OP_DRV_OUT:
1088 		/* these are setup prior to execution in nvme_init_request() */
1089 		break;
1090 	case REQ_OP_FLUSH:
1091 		nvme_setup_flush(ns, cmd);
1092 		break;
1093 	case REQ_OP_ZONE_RESET_ALL:
1094 	case REQ_OP_ZONE_RESET:
1095 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1096 		break;
1097 	case REQ_OP_ZONE_OPEN:
1098 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1099 		break;
1100 	case REQ_OP_ZONE_CLOSE:
1101 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1102 		break;
1103 	case REQ_OP_ZONE_FINISH:
1104 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1105 		break;
1106 	case REQ_OP_WRITE_ZEROES:
1107 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1108 		break;
1109 	case REQ_OP_DISCARD:
1110 		ret = nvme_setup_discard(ns, req, cmd);
1111 		break;
1112 	case REQ_OP_READ:
1113 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1114 		break;
1115 	case REQ_OP_WRITE:
1116 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1117 		break;
1118 	case REQ_OP_ZONE_APPEND:
1119 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1120 		break;
1121 	default:
1122 		WARN_ON_ONCE(1);
1123 		return BLK_STS_IOERR;
1124 	}
1125 
1126 	cmd->common.command_id = nvme_cid(req);
1127 	trace_nvme_setup_cmd(req, cmd);
1128 	return ret;
1129 }
1130 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1131 
1132 /*
1133  * Return values:
1134  * 0:  success
1135  * >0: nvme controller's cqe status response
1136  * <0: kernel error in lieu of controller response
1137  */
nvme_execute_rq(struct request * rq,bool at_head)1138 int nvme_execute_rq(struct request *rq, bool at_head)
1139 {
1140 	blk_status_t status;
1141 
1142 	status = blk_execute_rq(rq, at_head);
1143 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1144 		return -EINTR;
1145 	if (nvme_req(rq)->status)
1146 		return nvme_req(rq)->status;
1147 	return blk_status_to_errno(status);
1148 }
1149 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1150 
1151 /*
1152  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1153  * if the result is positive, it's an NVM Express status code
1154  */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,nvme_submit_flags_t flags)1155 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1156 		union nvme_result *result, void *buffer, unsigned bufflen,
1157 		int qid, nvme_submit_flags_t flags)
1158 {
1159 	struct request *req;
1160 	int ret;
1161 	blk_mq_req_flags_t blk_flags = 0;
1162 
1163 	if (flags & NVME_SUBMIT_NOWAIT)
1164 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1165 	if (flags & NVME_SUBMIT_RESERVED)
1166 		blk_flags |= BLK_MQ_REQ_RESERVED;
1167 	if (qid == NVME_QID_ANY)
1168 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1169 	else
1170 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1171 						qid - 1);
1172 
1173 	if (IS_ERR(req))
1174 		return PTR_ERR(req);
1175 	nvme_init_request(req, cmd);
1176 	if (flags & NVME_SUBMIT_RETRY)
1177 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1178 
1179 	if (buffer && bufflen) {
1180 		ret = blk_rq_map_kern(req, buffer, bufflen, GFP_KERNEL);
1181 		if (ret)
1182 			goto out;
1183 	}
1184 
1185 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1186 	if (result && ret >= 0)
1187 		*result = nvme_req(req)->result;
1188  out:
1189 	blk_mq_free_request(req);
1190 	return ret;
1191 }
1192 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1193 
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1194 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1195 		void *buffer, unsigned bufflen)
1196 {
1197 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1198 			NVME_QID_ANY, 0);
1199 }
1200 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1201 
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1202 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1203 {
1204 	u32 effects = 0;
1205 
1206 	if (ns) {
1207 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1208 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1209 			dev_warn_once(ctrl->device,
1210 				"IO command:%02x has unusual effects:%08x\n",
1211 				opcode, effects);
1212 
1213 		/*
1214 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1215 		 * which would deadlock when done on an I/O command.  Note that
1216 		 * We already warn about an unusual effect above.
1217 		 */
1218 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1219 	} else {
1220 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1221 
1222 		/* Ignore execution restrictions if any relaxation bits are set */
1223 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1224 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1225 	}
1226 
1227 	return effects;
1228 }
1229 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1230 
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1231 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1232 {
1233 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1234 
1235 	/*
1236 	 * For simplicity, IO to all namespaces is quiesced even if the command
1237 	 * effects say only one namespace is affected.
1238 	 */
1239 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1240 		mutex_lock(&ctrl->scan_lock);
1241 		mutex_lock(&ctrl->subsys->lock);
1242 		nvme_mpath_start_freeze(ctrl->subsys);
1243 		nvme_mpath_wait_freeze(ctrl->subsys);
1244 		nvme_start_freeze(ctrl);
1245 		nvme_wait_freeze(ctrl);
1246 	}
1247 	return effects;
1248 }
1249 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1250 
nvme_passthru_end(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 effects,struct nvme_command * cmd,int status)1251 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1252 		       struct nvme_command *cmd, int status)
1253 {
1254 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1255 		nvme_unfreeze(ctrl);
1256 		nvme_mpath_unfreeze(ctrl->subsys);
1257 		mutex_unlock(&ctrl->subsys->lock);
1258 		mutex_unlock(&ctrl->scan_lock);
1259 	}
1260 	if (effects & NVME_CMD_EFFECTS_CCC) {
1261 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1262 				      &ctrl->flags)) {
1263 			dev_info(ctrl->device,
1264 "controller capabilities changed, reset may be required to take effect.\n");
1265 		}
1266 	}
1267 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1268 		nvme_queue_scan(ctrl);
1269 		flush_work(&ctrl->scan_work);
1270 	}
1271 	if (ns)
1272 		return;
1273 
1274 	switch (cmd->common.opcode) {
1275 	case nvme_admin_set_features:
1276 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1277 		case NVME_FEAT_KATO:
1278 			/*
1279 			 * Keep alive commands interval on the host should be
1280 			 * updated when KATO is modified by Set Features
1281 			 * commands.
1282 			 */
1283 			if (!status)
1284 				nvme_update_keep_alive(ctrl, cmd);
1285 			break;
1286 		default:
1287 			break;
1288 		}
1289 		break;
1290 	default:
1291 		break;
1292 	}
1293 }
1294 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1295 
1296 /*
1297  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1298  *
1299  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1300  *   accounting for transport roundtrip times [..].
1301  */
nvme_keep_alive_work_period(struct nvme_ctrl * ctrl)1302 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1303 {
1304 	unsigned long delay = ctrl->kato * HZ / 2;
1305 
1306 	/*
1307 	 * When using Traffic Based Keep Alive, we need to run
1308 	 * nvme_keep_alive_work at twice the normal frequency, as one
1309 	 * command completion can postpone sending a keep alive command
1310 	 * by up to twice the delay between runs.
1311 	 */
1312 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1313 		delay /= 2;
1314 	return delay;
1315 }
1316 
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1317 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1318 {
1319 	unsigned long now = jiffies;
1320 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1321 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1322 
1323 	if (time_after(now, ka_next_check_tm))
1324 		delay = 0;
1325 	else
1326 		delay = ka_next_check_tm - now;
1327 
1328 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1329 }
1330 
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1331 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1332 						 blk_status_t status)
1333 {
1334 	struct nvme_ctrl *ctrl = rq->end_io_data;
1335 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1336 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1337 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1338 
1339 	/*
1340 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1341 	 * at the desired frequency.
1342 	 */
1343 	if (rtt <= delay) {
1344 		delay -= rtt;
1345 	} else {
1346 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1347 			 jiffies_to_msecs(rtt));
1348 		delay = 0;
1349 	}
1350 
1351 	blk_mq_free_request(rq);
1352 
1353 	if (status) {
1354 		dev_err(ctrl->device,
1355 			"failed nvme_keep_alive_end_io error=%d\n",
1356 				status);
1357 		return RQ_END_IO_NONE;
1358 	}
1359 
1360 	ctrl->ka_last_check_time = jiffies;
1361 	ctrl->comp_seen = false;
1362 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1363 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1364 	return RQ_END_IO_NONE;
1365 }
1366 
nvme_keep_alive_work(struct work_struct * work)1367 static void nvme_keep_alive_work(struct work_struct *work)
1368 {
1369 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1370 			struct nvme_ctrl, ka_work);
1371 	bool comp_seen = ctrl->comp_seen;
1372 	struct request *rq;
1373 
1374 	ctrl->ka_last_check_time = jiffies;
1375 
1376 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1377 		dev_dbg(ctrl->device,
1378 			"reschedule traffic based keep-alive timer\n");
1379 		ctrl->comp_seen = false;
1380 		nvme_queue_keep_alive_work(ctrl);
1381 		return;
1382 	}
1383 
1384 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1385 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1386 	if (IS_ERR(rq)) {
1387 		/* allocation failure, reset the controller */
1388 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1389 		nvme_reset_ctrl(ctrl);
1390 		return;
1391 	}
1392 	nvme_init_request(rq, &ctrl->ka_cmd);
1393 
1394 	rq->timeout = ctrl->kato * HZ;
1395 	rq->end_io = nvme_keep_alive_end_io;
1396 	rq->end_io_data = ctrl;
1397 	blk_execute_rq_nowait(rq, false);
1398 }
1399 
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1400 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1401 {
1402 	if (unlikely(ctrl->kato == 0))
1403 		return;
1404 
1405 	nvme_queue_keep_alive_work(ctrl);
1406 }
1407 
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1408 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1409 {
1410 	if (unlikely(ctrl->kato == 0))
1411 		return;
1412 
1413 	cancel_delayed_work_sync(&ctrl->ka_work);
1414 }
1415 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1416 
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1417 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1418 				   struct nvme_command *cmd)
1419 {
1420 	unsigned int new_kato =
1421 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1422 
1423 	dev_info(ctrl->device,
1424 		 "keep alive interval updated from %u ms to %u ms\n",
1425 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1426 
1427 	nvme_stop_keep_alive(ctrl);
1428 	ctrl->kato = new_kato;
1429 	nvme_start_keep_alive(ctrl);
1430 }
1431 
nvme_id_cns_ok(struct nvme_ctrl * ctrl,u8 cns)1432 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1433 {
1434 	/*
1435 	 * The CNS field occupies a full byte starting with NVMe 1.2
1436 	 */
1437 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1438 		return true;
1439 
1440 	/*
1441 	 * NVMe 1.1 expanded the CNS value to two bits, which means values
1442 	 * larger than that could get truncated and treated as an incorrect
1443 	 * value.
1444 	 *
1445 	 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1446 	 * compliance, so they need to be quirked here.
1447 	 */
1448 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1449 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1450 		return cns <= 3;
1451 
1452 	/*
1453 	 * NVMe 1.0 used a single bit for the CNS value.
1454 	 */
1455 	return cns <= 1;
1456 }
1457 
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1458 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1459 {
1460 	struct nvme_command c = { };
1461 	int error;
1462 
1463 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1464 	c.identify.opcode = nvme_admin_identify;
1465 	c.identify.cns = NVME_ID_CNS_CTRL;
1466 
1467 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1468 	if (!*id)
1469 		return -ENOMEM;
1470 
1471 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1472 			sizeof(struct nvme_id_ctrl));
1473 	if (error) {
1474 		kfree(*id);
1475 		*id = NULL;
1476 	}
1477 	return error;
1478 }
1479 
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1480 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1481 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1482 {
1483 	const char *warn_str = "ctrl returned bogus length:";
1484 	void *data = cur;
1485 
1486 	switch (cur->nidt) {
1487 	case NVME_NIDT_EUI64:
1488 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1489 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1490 				 warn_str, cur->nidl);
1491 			return -1;
1492 		}
1493 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1494 			return NVME_NIDT_EUI64_LEN;
1495 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1496 		return NVME_NIDT_EUI64_LEN;
1497 	case NVME_NIDT_NGUID:
1498 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1499 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1500 				 warn_str, cur->nidl);
1501 			return -1;
1502 		}
1503 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1504 			return NVME_NIDT_NGUID_LEN;
1505 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1506 		return NVME_NIDT_NGUID_LEN;
1507 	case NVME_NIDT_UUID:
1508 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1509 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1510 				 warn_str, cur->nidl);
1511 			return -1;
1512 		}
1513 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1514 			return NVME_NIDT_UUID_LEN;
1515 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1516 		return NVME_NIDT_UUID_LEN;
1517 	case NVME_NIDT_CSI:
1518 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1519 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1520 				 warn_str, cur->nidl);
1521 			return -1;
1522 		}
1523 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1524 		*csi_seen = true;
1525 		return NVME_NIDT_CSI_LEN;
1526 	default:
1527 		/* Skip unknown types */
1528 		return cur->nidl;
1529 	}
1530 }
1531 
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1532 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1533 		struct nvme_ns_info *info)
1534 {
1535 	struct nvme_command c = { };
1536 	bool csi_seen = false;
1537 	int status, pos, len;
1538 	void *data;
1539 
1540 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1541 		return 0;
1542 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1543 		return 0;
1544 
1545 	c.identify.opcode = nvme_admin_identify;
1546 	c.identify.nsid = cpu_to_le32(info->nsid);
1547 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1548 
1549 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1550 	if (!data)
1551 		return -ENOMEM;
1552 
1553 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1554 				      NVME_IDENTIFY_DATA_SIZE);
1555 	if (status) {
1556 		dev_warn(ctrl->device,
1557 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1558 			info->nsid, status);
1559 		goto free_data;
1560 	}
1561 
1562 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1563 		struct nvme_ns_id_desc *cur = data + pos;
1564 
1565 		if (cur->nidl == 0)
1566 			break;
1567 
1568 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1569 		if (len < 0)
1570 			break;
1571 
1572 		len += sizeof(*cur);
1573 	}
1574 
1575 	if (nvme_multi_css(ctrl) && !csi_seen) {
1576 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1577 			 info->nsid);
1578 		status = -EINVAL;
1579 	}
1580 
1581 free_data:
1582 	kfree(data);
1583 	return status;
1584 }
1585 
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1586 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1587 			struct nvme_id_ns **id)
1588 {
1589 	struct nvme_command c = { };
1590 	int error;
1591 
1592 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1593 	c.identify.opcode = nvme_admin_identify;
1594 	c.identify.nsid = cpu_to_le32(nsid);
1595 	c.identify.cns = NVME_ID_CNS_NS;
1596 
1597 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1598 	if (!*id)
1599 		return -ENOMEM;
1600 
1601 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1602 	if (error) {
1603 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1604 		kfree(*id);
1605 		*id = NULL;
1606 	}
1607 	return error;
1608 }
1609 
nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1610 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1611 		struct nvme_ns_info *info)
1612 {
1613 	struct nvme_ns_ids *ids = &info->ids;
1614 	struct nvme_id_ns *id;
1615 	int ret;
1616 
1617 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1618 	if (ret)
1619 		return ret;
1620 
1621 	if (id->ncap == 0) {
1622 		/* namespace not allocated or attached */
1623 		info->is_removed = true;
1624 		ret = -ENODEV;
1625 		goto error;
1626 	}
1627 
1628 	info->anagrpid = id->anagrpid;
1629 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1630 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1631 	info->is_ready = true;
1632 	info->endgid = le16_to_cpu(id->endgid);
1633 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1634 		dev_info(ctrl->device,
1635 			 "Ignoring bogus Namespace Identifiers\n");
1636 	} else {
1637 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1638 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1639 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1640 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1641 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1642 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1643 	}
1644 
1645 error:
1646 	kfree(id);
1647 	return ret;
1648 }
1649 
nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1650 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1651 		struct nvme_ns_info *info)
1652 {
1653 	struct nvme_id_ns_cs_indep *id;
1654 	struct nvme_command c = {
1655 		.identify.opcode	= nvme_admin_identify,
1656 		.identify.nsid		= cpu_to_le32(info->nsid),
1657 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1658 	};
1659 	int ret;
1660 
1661 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1662 	if (!id)
1663 		return -ENOMEM;
1664 
1665 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1666 	if (!ret) {
1667 		info->anagrpid = id->anagrpid;
1668 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1669 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1670 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1671 		info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1672 		info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1673 		info->endgid = le16_to_cpu(id->endgid);
1674 	}
1675 	kfree(id);
1676 	return ret;
1677 }
1678 
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1679 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1680 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1681 {
1682 	union nvme_result res = { 0 };
1683 	struct nvme_command c = { };
1684 	int ret;
1685 
1686 	c.features.opcode = op;
1687 	c.features.fid = cpu_to_le32(fid);
1688 	c.features.dword11 = cpu_to_le32(dword11);
1689 
1690 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1691 			buffer, buflen, NVME_QID_ANY, 0);
1692 	if (ret >= 0 && result)
1693 		*result = le32_to_cpu(res.u32);
1694 	return ret;
1695 }
1696 
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,void * result)1697 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1698 		      unsigned int dword11, void *buffer, size_t buflen,
1699 		      void *result)
1700 {
1701 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1702 			     buflen, result);
1703 }
1704 EXPORT_SYMBOL_GPL(nvme_set_features);
1705 
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,void * result)1706 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1707 		      unsigned int dword11, void *buffer, size_t buflen,
1708 		      void *result)
1709 {
1710 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1711 			     buflen, result);
1712 }
1713 EXPORT_SYMBOL_GPL(nvme_get_features);
1714 
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1715 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1716 {
1717 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1718 	u32 result;
1719 	int status, nr_io_queues;
1720 
1721 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1722 			&result);
1723 
1724 	/*
1725 	 * It's either a kernel error or the host observed a connection
1726 	 * lost. In either case it's not possible communicate with the
1727 	 * controller and thus enter the error code path.
1728 	 */
1729 	if (status < 0 || status == NVME_SC_HOST_PATH_ERROR)
1730 		return status;
1731 
1732 	/*
1733 	 * Degraded controllers might return an error when setting the queue
1734 	 * count.  We still want to be able to bring them online and offer
1735 	 * access to the admin queue, as that might be only way to fix them up.
1736 	 */
1737 	if (status > 0) {
1738 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1739 		*count = 0;
1740 	} else {
1741 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1742 		*count = min(*count, nr_io_queues);
1743 	}
1744 
1745 	return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1748 
1749 #define NVME_AEN_SUPPORTED \
1750 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1751 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1752 
nvme_enable_aen(struct nvme_ctrl * ctrl)1753 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1754 {
1755 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1756 	int status;
1757 
1758 	if (!supported_aens)
1759 		return;
1760 
1761 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1762 			NULL, 0, &result);
1763 	if (status)
1764 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1765 			 supported_aens);
1766 
1767 	queue_work(nvme_wq, &ctrl->async_event_work);
1768 }
1769 
nvme_ns_open(struct nvme_ns * ns)1770 static int nvme_ns_open(struct nvme_ns *ns)
1771 {
1772 
1773 	/* should never be called due to GENHD_FL_HIDDEN */
1774 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1775 		goto fail;
1776 	if (!nvme_get_ns(ns))
1777 		goto fail;
1778 	if (!try_module_get(ns->ctrl->ops->module))
1779 		goto fail_put_ns;
1780 
1781 	return 0;
1782 
1783 fail_put_ns:
1784 	nvme_put_ns(ns);
1785 fail:
1786 	return -ENXIO;
1787 }
1788 
nvme_ns_release(struct nvme_ns * ns)1789 static void nvme_ns_release(struct nvme_ns *ns)
1790 {
1791 
1792 	module_put(ns->ctrl->ops->module);
1793 	nvme_put_ns(ns);
1794 }
1795 
nvme_open(struct gendisk * disk,blk_mode_t mode)1796 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1797 {
1798 	return nvme_ns_open(disk->private_data);
1799 }
1800 
nvme_release(struct gendisk * disk)1801 static void nvme_release(struct gendisk *disk)
1802 {
1803 	nvme_ns_release(disk->private_data);
1804 }
1805 
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1806 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1807 {
1808 	/* some standard values */
1809 	geo->heads = 1 << 6;
1810 	geo->sectors = 1 << 5;
1811 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1812 	return 0;
1813 }
1814 
nvme_init_integrity(struct nvme_ns_head * head,struct queue_limits * lim,struct nvme_ns_info * info)1815 static bool nvme_init_integrity(struct nvme_ns_head *head,
1816 		struct queue_limits *lim, struct nvme_ns_info *info)
1817 {
1818 	struct blk_integrity *bi = &lim->integrity;
1819 
1820 	memset(bi, 0, sizeof(*bi));
1821 
1822 	if (!head->ms)
1823 		return true;
1824 
1825 	/*
1826 	 * PI can always be supported as we can ask the controller to simply
1827 	 * insert/strip it, which is not possible for other kinds of metadata.
1828 	 */
1829 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1830 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1831 		return nvme_ns_has_pi(head);
1832 
1833 	switch (head->pi_type) {
1834 	case NVME_NS_DPS_PI_TYPE3:
1835 		switch (head->guard_type) {
1836 		case NVME_NVM_NS_16B_GUARD:
1837 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1838 			bi->tag_size = sizeof(u16) + sizeof(u32);
1839 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1840 			break;
1841 		case NVME_NVM_NS_64B_GUARD:
1842 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1843 			bi->tag_size = sizeof(u16) + 6;
1844 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1845 			break;
1846 		default:
1847 			break;
1848 		}
1849 		break;
1850 	case NVME_NS_DPS_PI_TYPE1:
1851 	case NVME_NS_DPS_PI_TYPE2:
1852 		switch (head->guard_type) {
1853 		case NVME_NVM_NS_16B_GUARD:
1854 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1855 			bi->tag_size = sizeof(u16);
1856 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1857 				     BLK_INTEGRITY_REF_TAG;
1858 			break;
1859 		case NVME_NVM_NS_64B_GUARD:
1860 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1861 			bi->tag_size = sizeof(u16);
1862 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1863 				     BLK_INTEGRITY_REF_TAG;
1864 			break;
1865 		default:
1866 			break;
1867 		}
1868 		break;
1869 	default:
1870 		break;
1871 	}
1872 
1873 	bi->metadata_size = head->ms;
1874 	if (bi->csum_type) {
1875 		bi->pi_tuple_size = head->pi_size;
1876 		bi->pi_offset = info->pi_offset;
1877 	}
1878 	return true;
1879 }
1880 
nvme_config_discard(struct nvme_ns * ns,struct queue_limits * lim)1881 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1882 {
1883 	struct nvme_ctrl *ctrl = ns->ctrl;
1884 
1885 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1886 		lim->max_hw_discard_sectors =
1887 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1888 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1889 		lim->max_hw_discard_sectors = UINT_MAX;
1890 	else
1891 		lim->max_hw_discard_sectors = 0;
1892 
1893 	lim->discard_granularity = lim->logical_block_size;
1894 
1895 	if (ctrl->dmrl)
1896 		lim->max_discard_segments = ctrl->dmrl;
1897 	else
1898 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1899 }
1900 
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1901 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1902 {
1903 	return uuid_equal(&a->uuid, &b->uuid) &&
1904 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1905 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1906 		a->csi == b->csi;
1907 }
1908 
nvme_identify_ns_nvm(struct nvme_ctrl * ctrl,unsigned int nsid,struct nvme_id_ns_nvm ** nvmp)1909 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1910 		struct nvme_id_ns_nvm **nvmp)
1911 {
1912 	struct nvme_command c = {
1913 		.identify.opcode	= nvme_admin_identify,
1914 		.identify.nsid		= cpu_to_le32(nsid),
1915 		.identify.cns		= NVME_ID_CNS_CS_NS,
1916 		.identify.csi		= NVME_CSI_NVM,
1917 	};
1918 	struct nvme_id_ns_nvm *nvm;
1919 	int ret;
1920 
1921 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1922 	if (!nvm)
1923 		return -ENOMEM;
1924 
1925 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1926 	if (ret)
1927 		kfree(nvm);
1928 	else
1929 		*nvmp = nvm;
1930 	return ret;
1931 }
1932 
nvme_configure_pi_elbas(struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm)1933 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1934 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1935 {
1936 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1937 	u8 guard_type;
1938 
1939 	/* no support for storage tag formats right now */
1940 	if (nvme_elbaf_sts(elbaf))
1941 		return;
1942 
1943 	guard_type = nvme_elbaf_guard_type(elbaf);
1944 	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1945 	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1946 		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1947 
1948 	head->guard_type = guard_type;
1949 	switch (head->guard_type) {
1950 	case NVME_NVM_NS_64B_GUARD:
1951 		head->pi_size = sizeof(struct crc64_pi_tuple);
1952 		break;
1953 	case NVME_NVM_NS_16B_GUARD:
1954 		head->pi_size = sizeof(struct t10_pi_tuple);
1955 		break;
1956 	default:
1957 		break;
1958 	}
1959 }
1960 
nvme_configure_metadata(struct nvme_ctrl * ctrl,struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm,struct nvme_ns_info * info)1961 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1962 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1963 		struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1964 {
1965 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1966 	head->pi_type = 0;
1967 	head->pi_size = 0;
1968 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1969 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1970 		return;
1971 
1972 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1973 		nvme_configure_pi_elbas(head, id, nvm);
1974 	} else {
1975 		head->pi_size = sizeof(struct t10_pi_tuple);
1976 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1977 	}
1978 
1979 	if (head->pi_size && head->ms >= head->pi_size)
1980 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1981 	if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1982 		if (disable_pi_offsets)
1983 			head->pi_type = 0;
1984 		else
1985 			info->pi_offset = head->ms - head->pi_size;
1986 	}
1987 
1988 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1989 		/*
1990 		 * The NVMe over Fabrics specification only supports metadata as
1991 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1992 		 * remap the separate metadata buffer from the block layer.
1993 		 */
1994 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1995 			return;
1996 
1997 		head->features |= NVME_NS_EXT_LBAS;
1998 
1999 		/*
2000 		 * The current fabrics transport drivers support namespace
2001 		 * metadata formats only if nvme_ns_has_pi() returns true.
2002 		 * Suppress support for all other formats so the namespace will
2003 		 * have a 0 capacity and not be usable through the block stack.
2004 		 *
2005 		 * Note, this check will need to be modified if any drivers
2006 		 * gain the ability to use other metadata formats.
2007 		 */
2008 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
2009 			head->features |= NVME_NS_METADATA_SUPPORTED;
2010 	} else {
2011 		/*
2012 		 * For PCIe controllers, we can't easily remap the separate
2013 		 * metadata buffer from the block layer and thus require a
2014 		 * separate metadata buffer for block layer metadata/PI support.
2015 		 * We allow extended LBAs for the passthrough interface, though.
2016 		 */
2017 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
2018 			head->features |= NVME_NS_EXT_LBAS;
2019 		else
2020 			head->features |= NVME_NS_METADATA_SUPPORTED;
2021 	}
2022 }
2023 
2024 
nvme_configure_atomic_write(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim,u32 bs)2025 static u32 nvme_configure_atomic_write(struct nvme_ns *ns,
2026 		struct nvme_id_ns *id, struct queue_limits *lim, u32 bs)
2027 {
2028 	u32 atomic_bs, boundary = 0;
2029 
2030 	/*
2031 	 * We do not support an offset for the atomic boundaries.
2032 	 */
2033 	if (id->nabo)
2034 		return bs;
2035 
2036 	if ((id->nsfeat & NVME_NS_FEAT_ATOMICS) && id->nawupf) {
2037 		/*
2038 		 * Use the per-namespace atomic write unit when available.
2039 		 */
2040 		atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2041 		if (id->nabspf)
2042 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2043 	} else {
2044 		/*
2045 		 * Use the controller wide atomic write unit.  This sucks
2046 		 * because the limit is defined in terms of logical blocks while
2047 		 * namespaces can have different formats, and because there is
2048 		 * no clear language in the specification prohibiting different
2049 		 * values for different controllers in the subsystem.
2050 		 */
2051 		atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2052 	}
2053 
2054 	lim->atomic_write_hw_max = atomic_bs;
2055 	lim->atomic_write_hw_boundary = boundary;
2056 	lim->atomic_write_hw_unit_min = bs;
2057 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2058 	lim->features |= BLK_FEAT_ATOMIC_WRITES;
2059 	return atomic_bs;
2060 }
2061 
nvme_max_drv_segments(struct nvme_ctrl * ctrl)2062 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2063 {
2064 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2065 }
2066 
nvme_set_ctrl_limits(struct nvme_ctrl * ctrl,struct queue_limits * lim)2067 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2068 		struct queue_limits *lim)
2069 {
2070 	lim->max_hw_sectors = ctrl->max_hw_sectors;
2071 	lim->max_segments = min_t(u32, USHRT_MAX,
2072 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2073 	lim->max_integrity_segments = ctrl->max_integrity_segments;
2074 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2075 	lim->max_segment_size = UINT_MAX;
2076 	lim->dma_alignment = 3;
2077 }
2078 
nvme_update_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2079 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2080 		struct queue_limits *lim)
2081 {
2082 	struct nvme_ns_head *head = ns->head;
2083 	u32 bs = 1U << head->lba_shift;
2084 	u32 atomic_bs, phys_bs, io_opt = 0;
2085 	bool valid = true;
2086 
2087 	/*
2088 	 * The block layer can't support LBA sizes larger than the page size
2089 	 * or smaller than a sector size yet, so catch this early and don't
2090 	 * allow block I/O.
2091 	 */
2092 	if (blk_validate_block_size(bs)) {
2093 		bs = (1 << 9);
2094 		valid = false;
2095 	}
2096 
2097 	phys_bs = bs;
2098 	atomic_bs = nvme_configure_atomic_write(ns, id, lim, bs);
2099 
2100 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2101 		/* NPWG = Namespace Preferred Write Granularity */
2102 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2103 		/* NOWS = Namespace Optimal Write Size */
2104 		if (id->nows)
2105 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2106 	}
2107 
2108 	/*
2109 	 * Linux filesystems assume writing a single physical block is
2110 	 * an atomic operation. Hence limit the physical block size to the
2111 	 * value of the Atomic Write Unit Power Fail parameter.
2112 	 */
2113 	lim->logical_block_size = bs;
2114 	lim->physical_block_size = min(phys_bs, atomic_bs);
2115 	lim->io_min = phys_bs;
2116 	lim->io_opt = io_opt;
2117 	if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2118 	    (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2119 		lim->max_write_zeroes_sectors = UINT_MAX;
2120 	else
2121 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2122 	return valid;
2123 }
2124 
nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)2125 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2126 {
2127 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2128 }
2129 
nvme_first_scan(struct gendisk * disk)2130 static inline bool nvme_first_scan(struct gendisk *disk)
2131 {
2132 	/* nvme_alloc_ns() scans the disk prior to adding it */
2133 	return !disk_live(disk);
2134 }
2135 
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2136 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2137 		struct queue_limits *lim)
2138 {
2139 	struct nvme_ctrl *ctrl = ns->ctrl;
2140 	u32 iob;
2141 
2142 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2143 	    is_power_of_2(ctrl->max_hw_sectors))
2144 		iob = ctrl->max_hw_sectors;
2145 	else
2146 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2147 
2148 	if (!iob)
2149 		return;
2150 
2151 	if (!is_power_of_2(iob)) {
2152 		if (nvme_first_scan(ns->disk))
2153 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2154 				ns->disk->disk_name, iob);
2155 		return;
2156 	}
2157 
2158 	if (blk_queue_is_zoned(ns->disk->queue)) {
2159 		if (nvme_first_scan(ns->disk))
2160 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2161 				ns->disk->disk_name);
2162 		return;
2163 	}
2164 
2165 	lim->chunk_sectors = iob;
2166 }
2167 
nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)2168 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2169 		struct nvme_ns_info *info)
2170 {
2171 	struct queue_limits lim;
2172 	unsigned int memflags;
2173 	int ret;
2174 
2175 	lim = queue_limits_start_update(ns->disk->queue);
2176 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2177 
2178 	memflags = blk_mq_freeze_queue(ns->disk->queue);
2179 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2180 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2181 	blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2182 
2183 	/* Hide the block-interface for these devices */
2184 	if (!ret)
2185 		ret = -ENODEV;
2186 	return ret;
2187 }
2188 
nvme_query_fdp_granularity(struct nvme_ctrl * ctrl,struct nvme_ns_info * info,u8 fdp_idx)2189 static int nvme_query_fdp_granularity(struct nvme_ctrl *ctrl,
2190 				      struct nvme_ns_info *info, u8 fdp_idx)
2191 {
2192 	struct nvme_fdp_config_log hdr, *h;
2193 	struct nvme_fdp_config_desc *desc;
2194 	size_t size = sizeof(hdr);
2195 	void *log, *end;
2196 	int i, n, ret;
2197 
2198 	ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2199 			       NVME_CSI_NVM, &hdr, size, 0, info->endgid);
2200 	if (ret) {
2201 		dev_warn(ctrl->device,
2202 			 "FDP configs log header status:0x%x endgid:%d\n", ret,
2203 			 info->endgid);
2204 		return ret;
2205 	}
2206 
2207 	size = le32_to_cpu(hdr.sze);
2208 	if (size > PAGE_SIZE * MAX_ORDER_NR_PAGES) {
2209 		dev_warn(ctrl->device, "FDP config size too large:%zu\n",
2210 			 size);
2211 		return 0;
2212 	}
2213 
2214 	h = kvmalloc(size, GFP_KERNEL);
2215 	if (!h)
2216 		return -ENOMEM;
2217 
2218 	ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2219 			       NVME_CSI_NVM, h, size, 0, info->endgid);
2220 	if (ret) {
2221 		dev_warn(ctrl->device,
2222 			 "FDP configs log status:0x%x endgid:%d\n", ret,
2223 			 info->endgid);
2224 		goto out;
2225 	}
2226 
2227 	n = le16_to_cpu(h->numfdpc) + 1;
2228 	if (fdp_idx > n) {
2229 		dev_warn(ctrl->device, "FDP index:%d out of range:%d\n",
2230 			 fdp_idx, n);
2231 		/* Proceed without registering FDP streams */
2232 		ret = 0;
2233 		goto out;
2234 	}
2235 
2236 	log = h + 1;
2237 	desc = log;
2238 	end = log + size - sizeof(*h);
2239 	for (i = 0; i < fdp_idx; i++) {
2240 		log += le16_to_cpu(desc->dsze);
2241 		desc = log;
2242 		if (log >= end) {
2243 			dev_warn(ctrl->device,
2244 				 "FDP invalid config descriptor list\n");
2245 			ret = 0;
2246 			goto out;
2247 		}
2248 	}
2249 
2250 	if (le32_to_cpu(desc->nrg) > 1) {
2251 		dev_warn(ctrl->device, "FDP NRG > 1 not supported\n");
2252 		ret = 0;
2253 		goto out;
2254 	}
2255 
2256 	info->runs = le64_to_cpu(desc->runs);
2257 out:
2258 	kvfree(h);
2259 	return ret;
2260 }
2261 
nvme_query_fdp_info(struct nvme_ns * ns,struct nvme_ns_info * info)2262 static int nvme_query_fdp_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2263 {
2264 	struct nvme_ns_head *head = ns->head;
2265 	struct nvme_ctrl *ctrl = ns->ctrl;
2266 	struct nvme_fdp_ruh_status *ruhs;
2267 	struct nvme_fdp_config fdp;
2268 	struct nvme_command c = {};
2269 	size_t size;
2270 	int i, ret;
2271 
2272 	/*
2273 	 * The FDP configuration is static for the lifetime of the namespace,
2274 	 * so return immediately if we've already registered this namespace's
2275 	 * streams.
2276 	 */
2277 	if (head->nr_plids)
2278 		return 0;
2279 
2280 	ret = nvme_get_features(ctrl, NVME_FEAT_FDP, info->endgid, NULL, 0,
2281 				&fdp);
2282 	if (ret) {
2283 		dev_warn(ctrl->device, "FDP get feature status:0x%x\n", ret);
2284 		return ret;
2285 	}
2286 
2287 	if (!(fdp.flags & FDPCFG_FDPE))
2288 		return 0;
2289 
2290 	ret = nvme_query_fdp_granularity(ctrl, info, fdp.fdpcidx);
2291 	if (!info->runs)
2292 		return ret;
2293 
2294 	size = struct_size(ruhs, ruhsd, S8_MAX - 1);
2295 	ruhs = kzalloc(size, GFP_KERNEL);
2296 	if (!ruhs)
2297 		return -ENOMEM;
2298 
2299 	c.imr.opcode = nvme_cmd_io_mgmt_recv;
2300 	c.imr.nsid = cpu_to_le32(head->ns_id);
2301 	c.imr.mo = NVME_IO_MGMT_RECV_MO_RUHS;
2302 	c.imr.numd = cpu_to_le32(nvme_bytes_to_numd(size));
2303 	ret = nvme_submit_sync_cmd(ns->queue, &c, ruhs, size);
2304 	if (ret) {
2305 		dev_warn(ctrl->device, "FDP io-mgmt status:0x%x\n", ret);
2306 		goto free;
2307 	}
2308 
2309 	head->nr_plids = le16_to_cpu(ruhs->nruhsd);
2310 	if (!head->nr_plids)
2311 		goto free;
2312 
2313 	head->plids = kcalloc(head->nr_plids, sizeof(*head->plids),
2314 			      GFP_KERNEL);
2315 	if (!head->plids) {
2316 		dev_warn(ctrl->device,
2317 			 "failed to allocate %u FDP placement IDs\n",
2318 			 head->nr_plids);
2319 		head->nr_plids = 0;
2320 		ret = -ENOMEM;
2321 		goto free;
2322 	}
2323 
2324 	for (i = 0; i < head->nr_plids; i++)
2325 		head->plids[i] = le16_to_cpu(ruhs->ruhsd[i].pid);
2326 free:
2327 	kfree(ruhs);
2328 	return ret;
2329 }
2330 
nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)2331 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2332 		struct nvme_ns_info *info)
2333 {
2334 	struct queue_limits lim;
2335 	struct nvme_id_ns_nvm *nvm = NULL;
2336 	struct nvme_zone_info zi = {};
2337 	struct nvme_id_ns *id;
2338 	unsigned int memflags;
2339 	sector_t capacity;
2340 	unsigned lbaf;
2341 	int ret;
2342 
2343 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2344 	if (ret)
2345 		return ret;
2346 
2347 	if (id->ncap == 0) {
2348 		/* namespace not allocated or attached */
2349 		info->is_removed = true;
2350 		ret = -ENXIO;
2351 		goto out;
2352 	}
2353 	lbaf = nvme_lbaf_index(id->flbas);
2354 
2355 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2356 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2357 		if (ret < 0)
2358 			goto out;
2359 	}
2360 
2361 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2362 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2363 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2364 		if (ret < 0)
2365 			goto out;
2366 	}
2367 
2368 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_FDPS) {
2369 		ret = nvme_query_fdp_info(ns, info);
2370 		if (ret < 0)
2371 			goto out;
2372 	}
2373 
2374 	lim = queue_limits_start_update(ns->disk->queue);
2375 
2376 	memflags = blk_mq_freeze_queue(ns->disk->queue);
2377 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2378 	ns->head->nuse = le64_to_cpu(id->nuse);
2379 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2380 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2381 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2382 	nvme_set_chunk_sectors(ns, id, &lim);
2383 	if (!nvme_update_disk_info(ns, id, &lim))
2384 		capacity = 0;
2385 
2386 	nvme_config_discard(ns, &lim);
2387 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2388 	    ns->head->ids.csi == NVME_CSI_ZNS)
2389 		nvme_update_zone_info(ns, &lim, &zi);
2390 
2391 	if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2392 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2393 	else
2394 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2395 
2396 	if (info->is_rotational)
2397 		lim.features |= BLK_FEAT_ROTATIONAL;
2398 
2399 	/*
2400 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2401 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2402 	 * I/O to namespaces with metadata except when the namespace supports
2403 	 * PI, as it can strip/insert in that case.
2404 	 */
2405 	if (!nvme_init_integrity(ns->head, &lim, info))
2406 		capacity = 0;
2407 
2408 	lim.max_write_streams = ns->head->nr_plids;
2409 	if (lim.max_write_streams)
2410 		lim.write_stream_granularity = min(info->runs, U32_MAX);
2411 	else
2412 		lim.write_stream_granularity = 0;
2413 
2414 	/*
2415 	 * Only set the DEAC bit if the device guarantees that reads from
2416 	 * deallocated data return zeroes.  While the DEAC bit does not
2417 	 * require that, it must be a no-op if reads from deallocated data
2418 	 * do not return zeroes.
2419 	 */
2420 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) {
2421 		ns->head->features |= NVME_NS_DEAC;
2422 		lim.max_hw_wzeroes_unmap_sectors = lim.max_write_zeroes_sectors;
2423 	}
2424 
2425 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2426 	if (ret) {
2427 		blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2428 		goto out;
2429 	}
2430 
2431 	set_capacity_and_notify(ns->disk, capacity);
2432 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2433 	set_bit(NVME_NS_READY, &ns->flags);
2434 	blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2435 
2436 	if (blk_queue_is_zoned(ns->queue)) {
2437 		ret = blk_revalidate_disk_zones(ns->disk);
2438 		if (ret && !nvme_first_scan(ns->disk))
2439 			goto out;
2440 	}
2441 
2442 	ret = 0;
2443 out:
2444 	kfree(nvm);
2445 	kfree(id);
2446 	return ret;
2447 }
2448 
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2449 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2450 {
2451 	bool unsupported = false;
2452 	int ret;
2453 
2454 	switch (info->ids.csi) {
2455 	case NVME_CSI_ZNS:
2456 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2457 			dev_info(ns->ctrl->device,
2458 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2459 				info->nsid);
2460 			ret = nvme_update_ns_info_generic(ns, info);
2461 			break;
2462 		}
2463 		ret = nvme_update_ns_info_block(ns, info);
2464 		break;
2465 	case NVME_CSI_NVM:
2466 		ret = nvme_update_ns_info_block(ns, info);
2467 		break;
2468 	default:
2469 		dev_info(ns->ctrl->device,
2470 			"block device for nsid %u not supported (csi %u)\n",
2471 			info->nsid, info->ids.csi);
2472 		ret = nvme_update_ns_info_generic(ns, info);
2473 		break;
2474 	}
2475 
2476 	/*
2477 	 * If probing fails due an unsupported feature, hide the block device,
2478 	 * but still allow other access.
2479 	 */
2480 	if (ret == -ENODEV) {
2481 		ns->disk->flags |= GENHD_FL_HIDDEN;
2482 		set_bit(NVME_NS_READY, &ns->flags);
2483 		unsupported = true;
2484 		ret = 0;
2485 	}
2486 
2487 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2488 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2489 		struct queue_limits lim;
2490 		unsigned int memflags;
2491 
2492 		lim = queue_limits_start_update(ns->head->disk->queue);
2493 		memflags = blk_mq_freeze_queue(ns->head->disk->queue);
2494 		/*
2495 		 * queue_limits mixes values that are the hardware limitations
2496 		 * for bio splitting with what is the device configuration.
2497 		 *
2498 		 * For NVMe the device configuration can change after e.g. a
2499 		 * Format command, and we really want to pick up the new format
2500 		 * value here.  But we must still stack the queue limits to the
2501 		 * least common denominator for multipathing to split the bios
2502 		 * properly.
2503 		 *
2504 		 * To work around this, we explicitly set the device
2505 		 * configuration to those that we just queried, but only stack
2506 		 * the splitting limits in to make sure we still obey possibly
2507 		 * lower limitations of other controllers.
2508 		 */
2509 		lim.logical_block_size = ns_lim->logical_block_size;
2510 		lim.physical_block_size = ns_lim->physical_block_size;
2511 		lim.io_min = ns_lim->io_min;
2512 		lim.io_opt = ns_lim->io_opt;
2513 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2514 					ns->head->disk->disk_name);
2515 		if (unsupported)
2516 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2517 		else
2518 			nvme_init_integrity(ns->head, &lim, info);
2519 		lim.max_write_streams = ns_lim->max_write_streams;
2520 		lim.write_stream_granularity = ns_lim->write_stream_granularity;
2521 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2522 
2523 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2524 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2525 		nvme_mpath_revalidate_paths(ns);
2526 
2527 		blk_mq_unfreeze_queue(ns->head->disk->queue, memflags);
2528 	}
2529 
2530 	return ret;
2531 }
2532 
nvme_ns_get_unique_id(struct nvme_ns * ns,u8 id[16],enum blk_unique_id type)2533 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2534 		enum blk_unique_id type)
2535 {
2536 	struct nvme_ns_ids *ids = &ns->head->ids;
2537 
2538 	if (type != BLK_UID_EUI64)
2539 		return -EINVAL;
2540 
2541 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2542 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2543 		return sizeof(ids->nguid);
2544 	}
2545 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2546 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2547 		return sizeof(ids->eui64);
2548 	}
2549 
2550 	return -EINVAL;
2551 }
2552 
nvme_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)2553 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2554 		enum blk_unique_id type)
2555 {
2556 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2557 }
2558 
2559 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2560 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2561 		bool send)
2562 {
2563 	struct nvme_ctrl *ctrl = data;
2564 	struct nvme_command cmd = { };
2565 
2566 	if (send)
2567 		cmd.common.opcode = nvme_admin_security_send;
2568 	else
2569 		cmd.common.opcode = nvme_admin_security_recv;
2570 	cmd.common.nsid = 0;
2571 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2572 	cmd.common.cdw11 = cpu_to_le32(len);
2573 
2574 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2575 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2576 }
2577 
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2578 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2579 {
2580 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2581 		if (!ctrl->opal_dev)
2582 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2583 		else if (was_suspended)
2584 			opal_unlock_from_suspend(ctrl->opal_dev);
2585 	} else {
2586 		free_opal_dev(ctrl->opal_dev);
2587 		ctrl->opal_dev = NULL;
2588 	}
2589 }
2590 #else
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2591 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2592 {
2593 }
2594 #endif /* CONFIG_BLK_SED_OPAL */
2595 
2596 #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2597 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2598 		unsigned int nr_zones, report_zones_cb cb, void *data)
2599 {
2600 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2601 			data);
2602 }
2603 #else
2604 #define nvme_report_zones	NULL
2605 #endif /* CONFIG_BLK_DEV_ZONED */
2606 
2607 const struct block_device_operations nvme_bdev_ops = {
2608 	.owner		= THIS_MODULE,
2609 	.ioctl		= nvme_ioctl,
2610 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2611 	.open		= nvme_open,
2612 	.release	= nvme_release,
2613 	.getgeo		= nvme_getgeo,
2614 	.get_unique_id	= nvme_get_unique_id,
2615 	.report_zones	= nvme_report_zones,
2616 	.pr_ops		= &nvme_pr_ops,
2617 };
2618 
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 mask,u32 val,u32 timeout,const char * op)2619 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2620 		u32 timeout, const char *op)
2621 {
2622 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2623 	u32 csts;
2624 	int ret;
2625 
2626 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2627 		if (csts == ~0)
2628 			return -ENODEV;
2629 		if ((csts & mask) == val)
2630 			break;
2631 
2632 		usleep_range(1000, 2000);
2633 		if (fatal_signal_pending(current))
2634 			return -EINTR;
2635 		if (time_after(jiffies, timeout_jiffies)) {
2636 			dev_err(ctrl->device,
2637 				"Device not ready; aborting %s, CSTS=0x%x\n",
2638 				op, csts);
2639 			return -ENODEV;
2640 		}
2641 	}
2642 
2643 	return ret;
2644 }
2645 
nvme_disable_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2646 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2647 {
2648 	int ret;
2649 
2650 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2651 	if (shutdown)
2652 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2653 	else
2654 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2655 
2656 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2657 	if (ret)
2658 		return ret;
2659 
2660 	if (shutdown) {
2661 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2662 				       NVME_CSTS_SHST_CMPLT,
2663 				       ctrl->shutdown_timeout, "shutdown");
2664 	}
2665 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2666 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2667 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2668 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2669 }
2670 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2671 
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2672 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2673 {
2674 	unsigned dev_page_min;
2675 	u32 timeout;
2676 	int ret;
2677 
2678 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2679 	if (ret) {
2680 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2681 		return ret;
2682 	}
2683 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2684 
2685 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2686 		dev_err(ctrl->device,
2687 			"Minimum device page size %u too large for host (%u)\n",
2688 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2689 		return -ENODEV;
2690 	}
2691 
2692 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2693 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2694 	else
2695 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2696 
2697 	/*
2698 	 * Setting CRIME results in CSTS.RDY before the media is ready. This
2699 	 * makes it possible for media related commands to return the error
2700 	 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2701 	 * restructured to handle retries, disable CC.CRIME.
2702 	 */
2703 	ctrl->ctrl_config &= ~NVME_CC_CRIME;
2704 
2705 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2706 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2707 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2708 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2709 	if (ret)
2710 		return ret;
2711 
2712 	/* CAP value may change after initial CC write */
2713 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2714 	if (ret)
2715 		return ret;
2716 
2717 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2718 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2719 		u32 crto, ready_timeout;
2720 
2721 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2722 		if (ret) {
2723 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2724 				ret);
2725 			return ret;
2726 		}
2727 
2728 		/*
2729 		 * CRTO should always be greater or equal to CAP.TO, but some
2730 		 * devices are known to get this wrong. Use the larger of the
2731 		 * two values.
2732 		 */
2733 		ready_timeout = NVME_CRTO_CRWMT(crto);
2734 
2735 		if (ready_timeout < timeout)
2736 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2737 				      crto, ctrl->cap);
2738 		else
2739 			timeout = ready_timeout;
2740 	}
2741 
2742 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2743 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2744 	if (ret)
2745 		return ret;
2746 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2747 			       (timeout + 1) / 2, "initialisation");
2748 }
2749 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2750 
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2751 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2752 {
2753 	__le64 ts;
2754 	int ret;
2755 
2756 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2757 		return 0;
2758 
2759 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2760 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2761 			NULL);
2762 	if (ret)
2763 		dev_warn_once(ctrl->device,
2764 			"could not set timestamp (%d)\n", ret);
2765 	return ret;
2766 }
2767 
nvme_configure_host_options(struct nvme_ctrl * ctrl)2768 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2769 {
2770 	struct nvme_feat_host_behavior *host;
2771 	u8 acre = 0, lbafee = 0;
2772 	int ret;
2773 
2774 	/* Don't bother enabling the feature if retry delay is not reported */
2775 	if (ctrl->crdt[0])
2776 		acre = NVME_ENABLE_ACRE;
2777 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2778 		lbafee = NVME_ENABLE_LBAFEE;
2779 
2780 	if (!acre && !lbafee)
2781 		return 0;
2782 
2783 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2784 	if (!host)
2785 		return 0;
2786 
2787 	host->acre = acre;
2788 	host->lbafee = lbafee;
2789 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2790 				host, sizeof(*host), NULL);
2791 	kfree(host);
2792 	return ret;
2793 }
2794 
2795 /*
2796  * The function checks whether the given total (exlat + enlat) latency of
2797  * a power state allows the latter to be used as an APST transition target.
2798  * It does so by comparing the latency to the primary and secondary latency
2799  * tolerances defined by module params. If there's a match, the corresponding
2800  * timeout value is returned and the matching tolerance index (1 or 2) is
2801  * reported.
2802  */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2803 static bool nvme_apst_get_transition_time(u64 total_latency,
2804 		u64 *transition_time, unsigned *last_index)
2805 {
2806 	if (total_latency <= apst_primary_latency_tol_us) {
2807 		if (*last_index == 1)
2808 			return false;
2809 		*last_index = 1;
2810 		*transition_time = apst_primary_timeout_ms;
2811 		return true;
2812 	}
2813 	if (apst_secondary_timeout_ms &&
2814 		total_latency <= apst_secondary_latency_tol_us) {
2815 		if (*last_index <= 2)
2816 			return false;
2817 		*last_index = 2;
2818 		*transition_time = apst_secondary_timeout_ms;
2819 		return true;
2820 	}
2821 	return false;
2822 }
2823 
2824 /*
2825  * APST (Autonomous Power State Transition) lets us program a table of power
2826  * state transitions that the controller will perform automatically.
2827  *
2828  * Depending on module params, one of the two supported techniques will be used:
2829  *
2830  * - If the parameters provide explicit timeouts and tolerances, they will be
2831  *   used to build a table with up to 2 non-operational states to transition to.
2832  *   The default parameter values were selected based on the values used by
2833  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2834  *   regeneration of the APST table in the event of switching between external
2835  *   and battery power, the timeouts and tolerances reflect a compromise
2836  *   between values used by Microsoft for AC and battery scenarios.
2837  * - If not, we'll configure the table with a simple heuristic: we are willing
2838  *   to spend at most 2% of the time transitioning between power states.
2839  *   Therefore, when running in any given state, we will enter the next
2840  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2841  *   microseconds, as long as that state's exit latency is under the requested
2842  *   maximum latency.
2843  *
2844  * We will not autonomously enter any non-operational state for which the total
2845  * latency exceeds ps_max_latency_us.
2846  *
2847  * Users can set ps_max_latency_us to zero to turn off APST.
2848  */
nvme_configure_apst(struct nvme_ctrl * ctrl)2849 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2850 {
2851 	struct nvme_feat_auto_pst *table;
2852 	unsigned apste = 0;
2853 	u64 max_lat_us = 0;
2854 	__le64 target = 0;
2855 	int max_ps = -1;
2856 	int state;
2857 	int ret;
2858 	unsigned last_lt_index = UINT_MAX;
2859 
2860 	/*
2861 	 * If APST isn't supported or if we haven't been initialized yet,
2862 	 * then don't do anything.
2863 	 */
2864 	if (!ctrl->apsta)
2865 		return 0;
2866 
2867 	if (ctrl->npss > 31) {
2868 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2869 		return 0;
2870 	}
2871 
2872 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2873 	if (!table)
2874 		return 0;
2875 
2876 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2877 		/* Turn off APST. */
2878 		dev_dbg(ctrl->device, "APST disabled\n");
2879 		goto done;
2880 	}
2881 
2882 	/*
2883 	 * Walk through all states from lowest- to highest-power.
2884 	 * According to the spec, lower-numbered states use more power.  NPSS,
2885 	 * despite the name, is the index of the lowest-power state, not the
2886 	 * number of states.
2887 	 */
2888 	for (state = (int)ctrl->npss; state >= 0; state--) {
2889 		u64 total_latency_us, exit_latency_us, transition_ms;
2890 
2891 		if (target)
2892 			table->entries[state] = target;
2893 
2894 		/*
2895 		 * Don't allow transitions to the deepest state if it's quirked
2896 		 * off.
2897 		 */
2898 		if (state == ctrl->npss &&
2899 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2900 			continue;
2901 
2902 		/*
2903 		 * Is this state a useful non-operational state for higher-power
2904 		 * states to autonomously transition to?
2905 		 */
2906 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2907 			continue;
2908 
2909 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2910 		if (exit_latency_us > ctrl->ps_max_latency_us)
2911 			continue;
2912 
2913 		total_latency_us = exit_latency_us +
2914 			le32_to_cpu(ctrl->psd[state].entry_lat);
2915 
2916 		/*
2917 		 * This state is good. It can be used as the APST idle target
2918 		 * for higher power states.
2919 		 */
2920 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2921 			if (!nvme_apst_get_transition_time(total_latency_us,
2922 					&transition_ms, &last_lt_index))
2923 				continue;
2924 		} else {
2925 			transition_ms = total_latency_us + 19;
2926 			do_div(transition_ms, 20);
2927 			if (transition_ms > (1 << 24) - 1)
2928 				transition_ms = (1 << 24) - 1;
2929 		}
2930 
2931 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2932 		if (max_ps == -1)
2933 			max_ps = state;
2934 		if (total_latency_us > max_lat_us)
2935 			max_lat_us = total_latency_us;
2936 	}
2937 
2938 	if (max_ps == -1)
2939 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2940 	else
2941 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2942 			max_ps, max_lat_us, (int)sizeof(*table), table);
2943 	apste = 1;
2944 
2945 done:
2946 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2947 				table, sizeof(*table), NULL);
2948 	if (ret)
2949 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2950 	kfree(table);
2951 	return ret;
2952 }
2953 
nvme_set_latency_tolerance(struct device * dev,s32 val)2954 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2955 {
2956 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2957 	u64 latency;
2958 
2959 	switch (val) {
2960 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2961 	case PM_QOS_LATENCY_ANY:
2962 		latency = U64_MAX;
2963 		break;
2964 
2965 	default:
2966 		latency = val;
2967 	}
2968 
2969 	if (ctrl->ps_max_latency_us != latency) {
2970 		ctrl->ps_max_latency_us = latency;
2971 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2972 			nvme_configure_apst(ctrl);
2973 	}
2974 }
2975 
2976 struct nvme_core_quirk_entry {
2977 	/*
2978 	 * NVMe model and firmware strings are padded with spaces.  For
2979 	 * simplicity, strings in the quirk table are padded with NULLs
2980 	 * instead.
2981 	 */
2982 	u16 vid;
2983 	const char *mn;
2984 	const char *fr;
2985 	unsigned long quirks;
2986 };
2987 
2988 static const struct nvme_core_quirk_entry core_quirks[] = {
2989 	{
2990 		/*
2991 		 * This Toshiba device seems to die using any APST states.  See:
2992 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2993 		 */
2994 		.vid = 0x1179,
2995 		.mn = "THNSF5256GPUK TOSHIBA",
2996 		.quirks = NVME_QUIRK_NO_APST,
2997 	},
2998 	{
2999 		/*
3000 		 * This LiteON CL1-3D*-Q11 firmware version has a race
3001 		 * condition associated with actions related to suspend to idle
3002 		 * LiteON has resolved the problem in future firmware
3003 		 */
3004 		.vid = 0x14a4,
3005 		.fr = "22301111",
3006 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
3007 	},
3008 	{
3009 		/*
3010 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
3011 		 * aborts I/O during any load, but more easily reproducible
3012 		 * with discards (fstrim).
3013 		 *
3014 		 * The device is left in a state where it is also not possible
3015 		 * to use "nvme set-feature" to disable APST, but booting with
3016 		 * nvme_core.default_ps_max_latency=0 works.
3017 		 */
3018 		.vid = 0x1e0f,
3019 		.mn = "KCD6XVUL6T40",
3020 		.quirks = NVME_QUIRK_NO_APST,
3021 	},
3022 	{
3023 		/*
3024 		 * The external Samsung X5 SSD fails initialization without a
3025 		 * delay before checking if it is ready and has a whole set of
3026 		 * other problems.  To make this even more interesting, it
3027 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
3028 		 * does not need or want these quirks.
3029 		 */
3030 		.vid = 0x144d,
3031 		.mn = "Samsung Portable SSD X5",
3032 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3033 			  NVME_QUIRK_NO_DEEPEST_PS |
3034 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
3035 	}
3036 };
3037 
3038 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)3039 static bool string_matches(const char *idstr, const char *match, size_t len)
3040 {
3041 	size_t matchlen;
3042 
3043 	if (!match)
3044 		return true;
3045 
3046 	matchlen = strlen(match);
3047 	WARN_ON_ONCE(matchlen > len);
3048 
3049 	if (memcmp(idstr, match, matchlen))
3050 		return false;
3051 
3052 	for (; matchlen < len; matchlen++)
3053 		if (idstr[matchlen] != ' ')
3054 			return false;
3055 
3056 	return true;
3057 }
3058 
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)3059 static bool quirk_matches(const struct nvme_id_ctrl *id,
3060 			  const struct nvme_core_quirk_entry *q)
3061 {
3062 	return q->vid == le16_to_cpu(id->vid) &&
3063 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
3064 		string_matches(id->fr, q->fr, sizeof(id->fr));
3065 }
3066 
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3067 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
3068 		struct nvme_id_ctrl *id)
3069 {
3070 	size_t nqnlen;
3071 	int off;
3072 
3073 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
3074 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
3075 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
3076 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
3077 			return;
3078 		}
3079 
3080 		if (ctrl->vs >= NVME_VS(1, 2, 1))
3081 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
3082 	}
3083 
3084 	/*
3085 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
3086 	 * Base Specification 2.0.  It is slightly different from the format
3087 	 * specified there due to historic reasons, and we can't change it now.
3088 	 */
3089 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
3090 			"nqn.2014.08.org.nvmexpress:%04x%04x",
3091 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
3092 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
3093 	off += sizeof(id->sn);
3094 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
3095 	off += sizeof(id->mn);
3096 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
3097 }
3098 
nvme_release_subsystem(struct device * dev)3099 static void nvme_release_subsystem(struct device *dev)
3100 {
3101 	struct nvme_subsystem *subsys =
3102 		container_of(dev, struct nvme_subsystem, dev);
3103 
3104 	if (subsys->instance >= 0)
3105 		ida_free(&nvme_instance_ida, subsys->instance);
3106 	kfree(subsys);
3107 }
3108 
nvme_destroy_subsystem(struct kref * ref)3109 static void nvme_destroy_subsystem(struct kref *ref)
3110 {
3111 	struct nvme_subsystem *subsys =
3112 			container_of(ref, struct nvme_subsystem, ref);
3113 
3114 	mutex_lock(&nvme_subsystems_lock);
3115 	list_del(&subsys->entry);
3116 	mutex_unlock(&nvme_subsystems_lock);
3117 
3118 	ida_destroy(&subsys->ns_ida);
3119 	device_del(&subsys->dev);
3120 	put_device(&subsys->dev);
3121 }
3122 
nvme_put_subsystem(struct nvme_subsystem * subsys)3123 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
3124 {
3125 	kref_put(&subsys->ref, nvme_destroy_subsystem);
3126 }
3127 
__nvme_find_get_subsystem(const char * subsysnqn)3128 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
3129 {
3130 	struct nvme_subsystem *subsys;
3131 
3132 	lockdep_assert_held(&nvme_subsystems_lock);
3133 
3134 	/*
3135 	 * Fail matches for discovery subsystems. This results
3136 	 * in each discovery controller bound to a unique subsystem.
3137 	 * This avoids issues with validating controller values
3138 	 * that can only be true when there is a single unique subsystem.
3139 	 * There may be multiple and completely independent entities
3140 	 * that provide discovery controllers.
3141 	 */
3142 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
3143 		return NULL;
3144 
3145 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
3146 		if (strcmp(subsys->subnqn, subsysnqn))
3147 			continue;
3148 		if (!kref_get_unless_zero(&subsys->ref))
3149 			continue;
3150 		return subsys;
3151 	}
3152 
3153 	return NULL;
3154 }
3155 
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)3156 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
3157 {
3158 	return ctrl->opts && ctrl->opts->discovery_nqn;
3159 }
3160 
nvme_admin_ctrl(struct nvme_ctrl * ctrl)3161 static inline bool nvme_admin_ctrl(struct nvme_ctrl *ctrl)
3162 {
3163 	return ctrl->cntrltype == NVME_CTRL_ADMIN;
3164 }
3165 
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3166 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
3167 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3168 {
3169 	struct nvme_ctrl *tmp;
3170 
3171 	lockdep_assert_held(&nvme_subsystems_lock);
3172 
3173 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
3174 		if (nvme_state_terminal(tmp))
3175 			continue;
3176 
3177 		if (tmp->cntlid == ctrl->cntlid) {
3178 			dev_err(ctrl->device,
3179 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
3180 				ctrl->cntlid, dev_name(tmp->device),
3181 				subsys->subnqn);
3182 			return false;
3183 		}
3184 
3185 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
3186 		    nvme_discovery_ctrl(ctrl))
3187 			continue;
3188 
3189 		dev_err(ctrl->device,
3190 			"Subsystem does not support multiple controllers\n");
3191 		return false;
3192 	}
3193 
3194 	return true;
3195 }
3196 
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3197 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3198 {
3199 	struct nvme_subsystem *subsys, *found;
3200 	int ret;
3201 
3202 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
3203 	if (!subsys)
3204 		return -ENOMEM;
3205 
3206 	subsys->instance = -1;
3207 	mutex_init(&subsys->lock);
3208 	kref_init(&subsys->ref);
3209 	INIT_LIST_HEAD(&subsys->ctrls);
3210 	INIT_LIST_HEAD(&subsys->nsheads);
3211 	nvme_init_subnqn(subsys, ctrl, id);
3212 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3213 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
3214 	subsys->vendor_id = le16_to_cpu(id->vid);
3215 	subsys->cmic = id->cmic;
3216 	subsys->awupf = le16_to_cpu(id->awupf);
3217 
3218 	/* Versions prior to 1.4 don't necessarily report a valid type */
3219 	if (id->cntrltype == NVME_CTRL_DISC ||
3220 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3221 		subsys->subtype = NVME_NQN_DISC;
3222 	else
3223 		subsys->subtype = NVME_NQN_NVME;
3224 
3225 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3226 		dev_err(ctrl->device,
3227 			"Subsystem %s is not a discovery controller",
3228 			subsys->subnqn);
3229 		kfree(subsys);
3230 		return -EINVAL;
3231 	}
3232 	nvme_mpath_default_iopolicy(subsys);
3233 
3234 	subsys->dev.class = &nvme_subsys_class;
3235 	subsys->dev.release = nvme_release_subsystem;
3236 	subsys->dev.groups = nvme_subsys_attrs_groups;
3237 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3238 	device_initialize(&subsys->dev);
3239 
3240 	mutex_lock(&nvme_subsystems_lock);
3241 	found = __nvme_find_get_subsystem(subsys->subnqn);
3242 	if (found) {
3243 		put_device(&subsys->dev);
3244 		subsys = found;
3245 
3246 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3247 			ret = -EINVAL;
3248 			goto out_put_subsystem;
3249 		}
3250 	} else {
3251 		ret = device_add(&subsys->dev);
3252 		if (ret) {
3253 			dev_err(ctrl->device,
3254 				"failed to register subsystem device.\n");
3255 			put_device(&subsys->dev);
3256 			goto out_unlock;
3257 		}
3258 		ida_init(&subsys->ns_ida);
3259 		list_add_tail(&subsys->entry, &nvme_subsystems);
3260 	}
3261 
3262 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3263 				dev_name(ctrl->device));
3264 	if (ret) {
3265 		dev_err(ctrl->device,
3266 			"failed to create sysfs link from subsystem.\n");
3267 		goto out_put_subsystem;
3268 	}
3269 
3270 	if (!found)
3271 		subsys->instance = ctrl->instance;
3272 	ctrl->subsys = subsys;
3273 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3274 	mutex_unlock(&nvme_subsystems_lock);
3275 	return 0;
3276 
3277 out_put_subsystem:
3278 	nvme_put_subsystem(subsys);
3279 out_unlock:
3280 	mutex_unlock(&nvme_subsystems_lock);
3281 	return ret;
3282 }
3283 
nvme_get_log_lsi(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset,u16 lsi)3284 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
3285 		u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi)
3286 {
3287 	struct nvme_command c = { };
3288 	u32 dwlen = nvme_bytes_to_numd(size);
3289 
3290 	c.get_log_page.opcode = nvme_admin_get_log_page;
3291 	c.get_log_page.nsid = cpu_to_le32(nsid);
3292 	c.get_log_page.lid = log_page;
3293 	c.get_log_page.lsp = lsp;
3294 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3295 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3296 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3297 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3298 	c.get_log_page.csi = csi;
3299 	c.get_log_page.lsi = cpu_to_le16(lsi);
3300 
3301 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3302 }
3303 
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)3304 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3305 		void *log, size_t size, u64 offset)
3306 {
3307 	return nvme_get_log_lsi(ctrl, nsid, log_page, lsp, csi, log, size,
3308 			offset, 0);
3309 }
3310 
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3311 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3312 				struct nvme_effects_log **log)
3313 {
3314 	struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi);
3315 	int ret;
3316 
3317 	if (cel)
3318 		goto out;
3319 
3320 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3321 	if (!cel)
3322 		return -ENOMEM;
3323 
3324 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3325 			cel, sizeof(*cel), 0);
3326 	if (ret) {
3327 		kfree(cel);
3328 		return ret;
3329 	}
3330 
3331 	old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3332 	if (xa_is_err(old)) {
3333 		kfree(cel);
3334 		return xa_err(old);
3335 	}
3336 out:
3337 	*log = cel;
3338 	return 0;
3339 }
3340 
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)3341 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3342 {
3343 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3344 
3345 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3346 		return UINT_MAX;
3347 	return val;
3348 }
3349 
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)3350 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3351 {
3352 	struct nvme_command c = { };
3353 	struct nvme_id_ctrl_nvm *id;
3354 	int ret;
3355 
3356 	/*
3357 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3358 	 * to the write-zeroes, we are cautious and limit the size to the
3359 	 * controllers max_hw_sectors value, which is based on the MDTS field
3360 	 * and possibly other limiting factors.
3361 	 */
3362 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3363 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3364 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3365 	else
3366 		ctrl->max_zeroes_sectors = 0;
3367 
3368 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3369 	    !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3370 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3371 		return 0;
3372 
3373 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3374 	if (!id)
3375 		return -ENOMEM;
3376 
3377 	c.identify.opcode = nvme_admin_identify;
3378 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3379 	c.identify.csi = NVME_CSI_NVM;
3380 
3381 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3382 	if (ret)
3383 		goto free_data;
3384 
3385 	ctrl->dmrl = id->dmrl;
3386 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3387 	if (id->wzsl)
3388 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3389 
3390 free_data:
3391 	if (ret > 0)
3392 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3393 	kfree(id);
3394 	return ret;
3395 }
3396 
nvme_init_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3397 static int nvme_init_effects_log(struct nvme_ctrl *ctrl,
3398 		u8 csi, struct nvme_effects_log **log)
3399 {
3400 	struct nvme_effects_log *effects, *old;
3401 
3402 	effects = kzalloc(sizeof(*effects), GFP_KERNEL);
3403 	if (!effects)
3404 		return -ENOMEM;
3405 
3406 	old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL);
3407 	if (xa_is_err(old)) {
3408 		kfree(effects);
3409 		return xa_err(old);
3410 	}
3411 
3412 	*log = effects;
3413 	return 0;
3414 }
3415 
nvme_init_known_nvm_effects(struct nvme_ctrl * ctrl)3416 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3417 {
3418 	struct nvme_effects_log	*log = ctrl->effects;
3419 
3420 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3421 						NVME_CMD_EFFECTS_NCC |
3422 						NVME_CMD_EFFECTS_CSE_MASK);
3423 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3424 						NVME_CMD_EFFECTS_CSE_MASK);
3425 
3426 	/*
3427 	 * The spec says the result of a security receive command depends on
3428 	 * the previous security send command. As such, many vendors log this
3429 	 * command as one to submitted only when no other commands to the same
3430 	 * namespace are outstanding. The intention is to tell the host to
3431 	 * prevent mixing security send and receive.
3432 	 *
3433 	 * This driver can only enforce such exclusive access against IO
3434 	 * queues, though. We are not readily able to enforce such a rule for
3435 	 * two commands to the admin queue, which is the only queue that
3436 	 * matters for this command.
3437 	 *
3438 	 * Rather than blindly freezing the IO queues for this effect that
3439 	 * doesn't even apply to IO, mask it off.
3440 	 */
3441 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3442 
3443 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3444 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3445 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3446 }
3447 
nvme_init_effects(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3448 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3449 {
3450 	int ret = 0;
3451 
3452 	if (ctrl->effects)
3453 		return 0;
3454 
3455 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3456 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3457 		if (ret < 0)
3458 			return ret;
3459 	}
3460 
3461 	if (!ctrl->effects) {
3462 		ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3463 		if (ret < 0)
3464 			return ret;
3465 	}
3466 
3467 	nvme_init_known_nvm_effects(ctrl);
3468 	return 0;
3469 }
3470 
nvme_check_ctrl_fabric_info(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3471 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3472 {
3473 	/*
3474 	 * In fabrics we need to verify the cntlid matches the
3475 	 * admin connect
3476 	 */
3477 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3478 		dev_err(ctrl->device,
3479 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3480 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3481 		return -EINVAL;
3482 	}
3483 
3484 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3485 		dev_err(ctrl->device,
3486 			"keep-alive support is mandatory for fabrics\n");
3487 		return -EINVAL;
3488 	}
3489 
3490 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3491 		dev_err(ctrl->device,
3492 			"I/O queue command capsule supported size %d < 4\n",
3493 			ctrl->ioccsz);
3494 		return -EINVAL;
3495 	}
3496 
3497 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3498 		dev_err(ctrl->device,
3499 			"I/O queue response capsule supported size %d < 1\n",
3500 			ctrl->iorcsz);
3501 		return -EINVAL;
3502 	}
3503 
3504 	if (!ctrl->maxcmd) {
3505 		dev_warn(ctrl->device,
3506 			"Firmware bug: maximum outstanding commands is 0\n");
3507 		ctrl->maxcmd = ctrl->sqsize + 1;
3508 	}
3509 
3510 	return 0;
3511 }
3512 
nvme_init_identify(struct nvme_ctrl * ctrl)3513 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3514 {
3515 	struct queue_limits lim;
3516 	struct nvme_id_ctrl *id;
3517 	u32 max_hw_sectors;
3518 	bool prev_apst_enabled;
3519 	int ret;
3520 
3521 	ret = nvme_identify_ctrl(ctrl, &id);
3522 	if (ret) {
3523 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3524 		return -EIO;
3525 	}
3526 
3527 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3528 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3529 
3530 	if (!ctrl->identified) {
3531 		unsigned int i;
3532 
3533 		/*
3534 		 * Check for quirks.  Quirk can depend on firmware version,
3535 		 * so, in principle, the set of quirks present can change
3536 		 * across a reset.  As a possible future enhancement, we
3537 		 * could re-scan for quirks every time we reinitialize
3538 		 * the device, but we'd have to make sure that the driver
3539 		 * behaves intelligently if the quirks change.
3540 		 */
3541 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3542 			if (quirk_matches(id, &core_quirks[i]))
3543 				ctrl->quirks |= core_quirks[i].quirks;
3544 		}
3545 
3546 		ret = nvme_init_subsystem(ctrl, id);
3547 		if (ret)
3548 			goto out_free;
3549 
3550 		ret = nvme_init_effects(ctrl, id);
3551 		if (ret)
3552 			goto out_free;
3553 	}
3554 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3555 	       sizeof(ctrl->subsys->firmware_rev));
3556 
3557 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3558 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3559 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3560 	}
3561 
3562 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3563 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3564 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3565 
3566 	ctrl->oacs = le16_to_cpu(id->oacs);
3567 	ctrl->oncs = le16_to_cpu(id->oncs);
3568 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3569 	ctrl->oaes = le32_to_cpu(id->oaes);
3570 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3571 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3572 
3573 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3574 	ctrl->vwc = id->vwc;
3575 	if (id->mdts)
3576 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3577 	else
3578 		max_hw_sectors = UINT_MAX;
3579 	ctrl->max_hw_sectors =
3580 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3581 
3582 	lim = queue_limits_start_update(ctrl->admin_q);
3583 	nvme_set_ctrl_limits(ctrl, &lim);
3584 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3585 	if (ret)
3586 		goto out_free;
3587 
3588 	ctrl->sgls = le32_to_cpu(id->sgls);
3589 	ctrl->kas = le16_to_cpu(id->kas);
3590 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3591 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3592 
3593 	ctrl->cntrltype = id->cntrltype;
3594 	ctrl->dctype = id->dctype;
3595 
3596 	if (id->rtd3e) {
3597 		/* us -> s */
3598 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3599 
3600 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3601 						 shutdown_timeout, 60);
3602 
3603 		if (ctrl->shutdown_timeout != shutdown_timeout)
3604 			dev_info(ctrl->device,
3605 				 "D3 entry latency set to %u seconds\n",
3606 				 ctrl->shutdown_timeout);
3607 	} else
3608 		ctrl->shutdown_timeout = shutdown_timeout;
3609 
3610 	ctrl->npss = id->npss;
3611 	ctrl->apsta = id->apsta;
3612 	prev_apst_enabled = ctrl->apst_enabled;
3613 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3614 		if (force_apst && id->apsta) {
3615 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3616 			ctrl->apst_enabled = true;
3617 		} else {
3618 			ctrl->apst_enabled = false;
3619 		}
3620 	} else {
3621 		ctrl->apst_enabled = id->apsta;
3622 	}
3623 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3624 
3625 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3626 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3627 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3628 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3629 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3630 
3631 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3632 		if (ret)
3633 			goto out_free;
3634 	} else {
3635 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3636 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3637 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3638 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3639 	}
3640 
3641 	ret = nvme_mpath_init_identify(ctrl, id);
3642 	if (ret < 0)
3643 		goto out_free;
3644 
3645 	if (ctrl->apst_enabled && !prev_apst_enabled)
3646 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3647 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3648 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3649 out_free:
3650 	kfree(id);
3651 	return ret;
3652 }
3653 
3654 /*
3655  * Initialize the cached copies of the Identify data and various controller
3656  * register in our nvme_ctrl structure.  This should be called as soon as
3657  * the admin queue is fully up and running.
3658  */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl,bool was_suspended)3659 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3660 {
3661 	int ret;
3662 
3663 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3664 	if (ret) {
3665 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3666 		return ret;
3667 	}
3668 
3669 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3670 
3671 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3672 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3673 
3674 	ret = nvme_init_identify(ctrl);
3675 	if (ret)
3676 		return ret;
3677 
3678 	if (nvme_admin_ctrl(ctrl)) {
3679 		/*
3680 		 * An admin controller has one admin queue, but no I/O queues.
3681 		 * Override queue_count so it only creates an admin queue.
3682 		 */
3683 		dev_dbg(ctrl->device,
3684 			"Subsystem %s is an administrative controller",
3685 			ctrl->subsys->subnqn);
3686 		ctrl->queue_count = 1;
3687 	}
3688 
3689 	ret = nvme_configure_apst(ctrl);
3690 	if (ret < 0)
3691 		return ret;
3692 
3693 	ret = nvme_configure_timestamp(ctrl);
3694 	if (ret < 0)
3695 		return ret;
3696 
3697 	ret = nvme_configure_host_options(ctrl);
3698 	if (ret < 0)
3699 		return ret;
3700 
3701 	nvme_configure_opal(ctrl, was_suspended);
3702 
3703 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3704 		/*
3705 		 * Do not return errors unless we are in a controller reset,
3706 		 * the controller works perfectly fine without hwmon.
3707 		 */
3708 		ret = nvme_hwmon_init(ctrl);
3709 		if (ret == -EINTR)
3710 			return ret;
3711 	}
3712 
3713 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3714 	ctrl->identified = true;
3715 
3716 	nvme_start_keep_alive(ctrl);
3717 
3718 	return 0;
3719 }
3720 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3721 
nvme_dev_open(struct inode * inode,struct file * file)3722 static int nvme_dev_open(struct inode *inode, struct file *file)
3723 {
3724 	struct nvme_ctrl *ctrl =
3725 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3726 
3727 	switch (nvme_ctrl_state(ctrl)) {
3728 	case NVME_CTRL_LIVE:
3729 		break;
3730 	default:
3731 		return -EWOULDBLOCK;
3732 	}
3733 
3734 	nvme_get_ctrl(ctrl);
3735 	if (!try_module_get(ctrl->ops->module)) {
3736 		nvme_put_ctrl(ctrl);
3737 		return -EINVAL;
3738 	}
3739 
3740 	file->private_data = ctrl;
3741 	return 0;
3742 }
3743 
nvme_dev_release(struct inode * inode,struct file * file)3744 static int nvme_dev_release(struct inode *inode, struct file *file)
3745 {
3746 	struct nvme_ctrl *ctrl =
3747 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3748 
3749 	module_put(ctrl->ops->module);
3750 	nvme_put_ctrl(ctrl);
3751 	return 0;
3752 }
3753 
3754 static const struct file_operations nvme_dev_fops = {
3755 	.owner		= THIS_MODULE,
3756 	.open		= nvme_dev_open,
3757 	.release	= nvme_dev_release,
3758 	.unlocked_ioctl	= nvme_dev_ioctl,
3759 	.compat_ioctl	= compat_ptr_ioctl,
3760 	.uring_cmd	= nvme_dev_uring_cmd,
3761 };
3762 
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3763 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3764 		unsigned nsid)
3765 {
3766 	struct nvme_ns_head *h;
3767 
3768 	lockdep_assert_held(&ctrl->subsys->lock);
3769 
3770 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3771 		/*
3772 		 * Private namespaces can share NSIDs under some conditions.
3773 		 * In that case we can't use the same ns_head for namespaces
3774 		 * with the same NSID.
3775 		 */
3776 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3777 			continue;
3778 		if (nvme_tryget_ns_head(h))
3779 			return h;
3780 	}
3781 
3782 	return NULL;
3783 }
3784 
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3785 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3786 		struct nvme_ns_ids *ids)
3787 {
3788 	bool has_uuid = !uuid_is_null(&ids->uuid);
3789 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3790 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3791 	struct nvme_ns_head *h;
3792 
3793 	lockdep_assert_held(&subsys->lock);
3794 
3795 	list_for_each_entry(h, &subsys->nsheads, entry) {
3796 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3797 			return -EINVAL;
3798 		if (has_nguid &&
3799 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3800 			return -EINVAL;
3801 		if (has_eui64 &&
3802 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3803 			return -EINVAL;
3804 	}
3805 
3806 	return 0;
3807 }
3808 
nvme_cdev_rel(struct device * dev)3809 static void nvme_cdev_rel(struct device *dev)
3810 {
3811 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3812 }
3813 
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3814 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3815 {
3816 	cdev_device_del(cdev, cdev_device);
3817 	put_device(cdev_device);
3818 }
3819 
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3820 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3821 		const struct file_operations *fops, struct module *owner)
3822 {
3823 	int minor, ret;
3824 
3825 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3826 	if (minor < 0)
3827 		return minor;
3828 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3829 	cdev_device->class = &nvme_ns_chr_class;
3830 	cdev_device->release = nvme_cdev_rel;
3831 	device_initialize(cdev_device);
3832 	cdev_init(cdev, fops);
3833 	cdev->owner = owner;
3834 	ret = cdev_device_add(cdev, cdev_device);
3835 	if (ret)
3836 		put_device(cdev_device);
3837 
3838 	return ret;
3839 }
3840 
nvme_ns_chr_open(struct inode * inode,struct file * file)3841 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3842 {
3843 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3844 }
3845 
nvme_ns_chr_release(struct inode * inode,struct file * file)3846 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3847 {
3848 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3849 	return 0;
3850 }
3851 
3852 static const struct file_operations nvme_ns_chr_fops = {
3853 	.owner		= THIS_MODULE,
3854 	.open		= nvme_ns_chr_open,
3855 	.release	= nvme_ns_chr_release,
3856 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3857 	.compat_ioctl	= compat_ptr_ioctl,
3858 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3859 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3860 };
3861 
nvme_add_ns_cdev(struct nvme_ns * ns)3862 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3863 {
3864 	int ret;
3865 
3866 	ns->cdev_device.parent = ns->ctrl->device;
3867 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3868 			   ns->ctrl->instance, ns->head->instance);
3869 	if (ret)
3870 		return ret;
3871 
3872 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3873 			     ns->ctrl->ops->module);
3874 }
3875 
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3876 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3877 		struct nvme_ns_info *info)
3878 {
3879 	struct nvme_ns_head *head;
3880 	size_t size = sizeof(*head);
3881 	int ret = -ENOMEM;
3882 
3883 #ifdef CONFIG_NVME_MULTIPATH
3884 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3885 #endif
3886 
3887 	head = kzalloc(size, GFP_KERNEL);
3888 	if (!head)
3889 		goto out;
3890 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3891 	if (ret < 0)
3892 		goto out_free_head;
3893 	head->instance = ret;
3894 	INIT_LIST_HEAD(&head->list);
3895 	ret = init_srcu_struct(&head->srcu);
3896 	if (ret)
3897 		goto out_ida_remove;
3898 	head->subsys = ctrl->subsys;
3899 	head->ns_id = info->nsid;
3900 	head->ids = info->ids;
3901 	head->shared = info->is_shared;
3902 	head->rotational = info->is_rotational;
3903 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3904 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3905 	kref_init(&head->ref);
3906 
3907 	if (head->ids.csi) {
3908 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3909 		if (ret)
3910 			goto out_cleanup_srcu;
3911 	} else
3912 		head->effects = ctrl->effects;
3913 
3914 	ret = nvme_mpath_alloc_disk(ctrl, head);
3915 	if (ret)
3916 		goto out_cleanup_srcu;
3917 
3918 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3919 
3920 	kref_get(&ctrl->subsys->ref);
3921 
3922 	return head;
3923 out_cleanup_srcu:
3924 	cleanup_srcu_struct(&head->srcu);
3925 out_ida_remove:
3926 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3927 out_free_head:
3928 	kfree(head);
3929 out:
3930 	if (ret > 0)
3931 		ret = blk_status_to_errno(nvme_error_status(ret));
3932 	return ERR_PTR(ret);
3933 }
3934 
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3935 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3936 		struct nvme_ns_ids *ids)
3937 {
3938 	struct nvme_subsystem *s;
3939 	int ret = 0;
3940 
3941 	/*
3942 	 * Note that this check is racy as we try to avoid holding the global
3943 	 * lock over the whole ns_head creation.  But it is only intended as
3944 	 * a sanity check anyway.
3945 	 */
3946 	mutex_lock(&nvme_subsystems_lock);
3947 	list_for_each_entry(s, &nvme_subsystems, entry) {
3948 		if (s == this)
3949 			continue;
3950 		mutex_lock(&s->lock);
3951 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3952 		mutex_unlock(&s->lock);
3953 		if (ret)
3954 			break;
3955 	}
3956 	mutex_unlock(&nvme_subsystems_lock);
3957 
3958 	return ret;
3959 }
3960 
nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)3961 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3962 {
3963 	struct nvme_ctrl *ctrl = ns->ctrl;
3964 	struct nvme_ns_head *head = NULL;
3965 	int ret;
3966 
3967 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3968 	if (ret) {
3969 		/*
3970 		 * We've found two different namespaces on two different
3971 		 * subsystems that report the same ID.  This is pretty nasty
3972 		 * for anything that actually requires unique device
3973 		 * identification.  In the kernel we need this for multipathing,
3974 		 * and in user space the /dev/disk/by-id/ links rely on it.
3975 		 *
3976 		 * If the device also claims to be multi-path capable back off
3977 		 * here now and refuse the probe the second device as this is a
3978 		 * recipe for data corruption.  If not this is probably a
3979 		 * cheap consumer device if on the PCIe bus, so let the user
3980 		 * proceed and use the shiny toy, but warn that with changing
3981 		 * probing order (which due to our async probing could just be
3982 		 * device taking longer to startup) the other device could show
3983 		 * up at any time.
3984 		 */
3985 		nvme_print_device_info(ctrl);
3986 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3987 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3988 		     info->is_shared)) {
3989 			dev_err(ctrl->device,
3990 				"ignoring nsid %d because of duplicate IDs\n",
3991 				info->nsid);
3992 			return ret;
3993 		}
3994 
3995 		dev_err(ctrl->device,
3996 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3997 		dev_err(ctrl->device,
3998 			"use of /dev/disk/by-id/ may cause data corruption\n");
3999 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
4000 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
4001 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
4002 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
4003 	}
4004 
4005 	mutex_lock(&ctrl->subsys->lock);
4006 	head = nvme_find_ns_head(ctrl, info->nsid);
4007 	if (!head) {
4008 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
4009 		if (ret) {
4010 			dev_err(ctrl->device,
4011 				"duplicate IDs in subsystem for nsid %d\n",
4012 				info->nsid);
4013 			goto out_unlock;
4014 		}
4015 		head = nvme_alloc_ns_head(ctrl, info);
4016 		if (IS_ERR(head)) {
4017 			ret = PTR_ERR(head);
4018 			goto out_unlock;
4019 		}
4020 	} else {
4021 		ret = -EINVAL;
4022 		if ((!info->is_shared || !head->shared) &&
4023 		    !list_empty(&head->list)) {
4024 			dev_err(ctrl->device,
4025 				"Duplicate unshared namespace %d\n",
4026 				info->nsid);
4027 			goto out_put_ns_head;
4028 		}
4029 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4030 			dev_err(ctrl->device,
4031 				"IDs don't match for shared namespace %d\n",
4032 					info->nsid);
4033 			goto out_put_ns_head;
4034 		}
4035 
4036 		if (!multipath) {
4037 			dev_warn(ctrl->device,
4038 				"Found shared namespace %d, but multipathing not supported.\n",
4039 				info->nsid);
4040 			dev_warn_once(ctrl->device,
4041 				"Shared namespace support requires core_nvme.multipath=Y.\n");
4042 		}
4043 	}
4044 
4045 	list_add_tail_rcu(&ns->siblings, &head->list);
4046 	ns->head = head;
4047 	mutex_unlock(&ctrl->subsys->lock);
4048 
4049 #ifdef CONFIG_NVME_MULTIPATH
4050 	cancel_delayed_work(&head->remove_work);
4051 #endif
4052 	return 0;
4053 
4054 out_put_ns_head:
4055 	nvme_put_ns_head(head);
4056 out_unlock:
4057 	mutex_unlock(&ctrl->subsys->lock);
4058 	return ret;
4059 }
4060 
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)4061 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4062 {
4063 	struct nvme_ns *ns, *ret = NULL;
4064 	int srcu_idx;
4065 
4066 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4067 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4068 				 srcu_read_lock_held(&ctrl->srcu)) {
4069 		if (ns->head->ns_id == nsid) {
4070 			if (!nvme_get_ns(ns))
4071 				continue;
4072 			ret = ns;
4073 			break;
4074 		}
4075 		if (ns->head->ns_id > nsid)
4076 			break;
4077 	}
4078 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4079 	return ret;
4080 }
4081 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
4082 
4083 /*
4084  * Add the namespace to the controller list while keeping the list ordered.
4085  */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)4086 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4087 {
4088 	struct nvme_ns *tmp;
4089 
4090 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4091 		if (tmp->head->ns_id < ns->head->ns_id) {
4092 			list_add_rcu(&ns->list, &tmp->list);
4093 			return;
4094 		}
4095 	}
4096 	list_add_rcu(&ns->list, &ns->ctrl->namespaces);
4097 }
4098 
nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)4099 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4100 {
4101 	struct queue_limits lim = { };
4102 	struct nvme_ns *ns;
4103 	struct gendisk *disk;
4104 	int node = ctrl->numa_node;
4105 	bool last_path = false;
4106 
4107 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4108 	if (!ns)
4109 		return;
4110 
4111 	if (ctrl->opts && ctrl->opts->data_digest)
4112 		lim.features |= BLK_FEAT_STABLE_WRITES;
4113 	if (ctrl->ops->supports_pci_p2pdma &&
4114 	    ctrl->ops->supports_pci_p2pdma(ctrl))
4115 		lim.features |= BLK_FEAT_PCI_P2PDMA;
4116 
4117 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
4118 	if (IS_ERR(disk))
4119 		goto out_free_ns;
4120 	disk->fops = &nvme_bdev_ops;
4121 	disk->private_data = ns;
4122 
4123 	ns->disk = disk;
4124 	ns->queue = disk->queue;
4125 	ns->ctrl = ctrl;
4126 	kref_init(&ns->kref);
4127 
4128 	if (nvme_init_ns_head(ns, info))
4129 		goto out_cleanup_disk;
4130 
4131 	/*
4132 	 * If multipathing is enabled, the device name for all disks and not
4133 	 * just those that represent shared namespaces needs to be based on the
4134 	 * subsystem instance.  Using the controller instance for private
4135 	 * namespaces could lead to naming collisions between shared and private
4136 	 * namespaces if they don't use a common numbering scheme.
4137 	 *
4138 	 * If multipathing is not enabled, disk names must use the controller
4139 	 * instance as shared namespaces will show up as multiple block
4140 	 * devices.
4141 	 */
4142 	if (nvme_ns_head_multipath(ns->head)) {
4143 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4144 			ctrl->instance, ns->head->instance);
4145 		disk->flags |= GENHD_FL_HIDDEN;
4146 	} else if (multipath) {
4147 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4148 			ns->head->instance);
4149 	} else {
4150 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4151 			ns->head->instance);
4152 	}
4153 
4154 	if (nvme_update_ns_info(ns, info))
4155 		goto out_unlink_ns;
4156 
4157 	mutex_lock(&ctrl->namespaces_lock);
4158 	/*
4159 	 * Ensure that no namespaces are added to the ctrl list after the queues
4160 	 * are frozen, thereby avoiding a deadlock between scan and reset.
4161 	 */
4162 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
4163 		mutex_unlock(&ctrl->namespaces_lock);
4164 		goto out_unlink_ns;
4165 	}
4166 	nvme_ns_add_to_ctrl_list(ns);
4167 	mutex_unlock(&ctrl->namespaces_lock);
4168 	synchronize_srcu(&ctrl->srcu);
4169 	nvme_get_ctrl(ctrl);
4170 
4171 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
4172 		goto out_cleanup_ns_from_list;
4173 
4174 	if (!nvme_ns_head_multipath(ns->head))
4175 		nvme_add_ns_cdev(ns);
4176 
4177 	nvme_mpath_add_disk(ns, info->anagrpid);
4178 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4179 
4180 	/*
4181 	 * Set ns->disk->device->driver_data to ns so we can access
4182 	 * ns->head->passthru_err_log_enabled in
4183 	 * nvme_io_passthru_err_log_enabled_[store | show]().
4184 	 */
4185 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
4186 
4187 	return;
4188 
4189  out_cleanup_ns_from_list:
4190 	nvme_put_ctrl(ctrl);
4191 	mutex_lock(&ctrl->namespaces_lock);
4192 	list_del_rcu(&ns->list);
4193 	mutex_unlock(&ctrl->namespaces_lock);
4194 	synchronize_srcu(&ctrl->srcu);
4195  out_unlink_ns:
4196 	mutex_lock(&ctrl->subsys->lock);
4197 	list_del_rcu(&ns->siblings);
4198 	if (list_empty(&ns->head->list)) {
4199 		list_del_init(&ns->head->entry);
4200 		/*
4201 		 * If multipath is not configured, we still create a namespace
4202 		 * head (nshead), but head->disk is not initialized in that
4203 		 * case.  As a result, only a single reference to nshead is held
4204 		 * (via kref_init()) when it is created. Therefore, ensure that
4205 		 * we do not release the reference to nshead twice if head->disk
4206 		 * is not present.
4207 		 */
4208 		if (ns->head->disk)
4209 			last_path = true;
4210 	}
4211 	mutex_unlock(&ctrl->subsys->lock);
4212 	if (last_path)
4213 		nvme_put_ns_head(ns->head);
4214 	nvme_put_ns_head(ns->head);
4215  out_cleanup_disk:
4216 	put_disk(disk);
4217  out_free_ns:
4218 	kfree(ns);
4219 }
4220 
nvme_ns_remove(struct nvme_ns * ns)4221 static void nvme_ns_remove(struct nvme_ns *ns)
4222 {
4223 	bool last_path = false;
4224 
4225 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4226 		return;
4227 
4228 	clear_bit(NVME_NS_READY, &ns->flags);
4229 	set_capacity(ns->disk, 0);
4230 	nvme_fault_inject_fini(&ns->fault_inject);
4231 
4232 	/*
4233 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4234 	 * this ns going back into current_path.
4235 	 */
4236 	synchronize_srcu(&ns->head->srcu);
4237 
4238 	/* wait for concurrent submissions */
4239 	if (nvme_mpath_clear_current_path(ns))
4240 		synchronize_srcu(&ns->head->srcu);
4241 
4242 	mutex_lock(&ns->ctrl->subsys->lock);
4243 	list_del_rcu(&ns->siblings);
4244 	if (list_empty(&ns->head->list)) {
4245 		if (!nvme_mpath_queue_if_no_path(ns->head))
4246 			list_del_init(&ns->head->entry);
4247 		last_path = true;
4248 	}
4249 	mutex_unlock(&ns->ctrl->subsys->lock);
4250 
4251 	/* guarantee not available in head->list */
4252 	synchronize_srcu(&ns->head->srcu);
4253 
4254 	if (!nvme_ns_head_multipath(ns->head))
4255 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4256 
4257 	nvme_mpath_remove_sysfs_link(ns);
4258 
4259 	del_gendisk(ns->disk);
4260 
4261 	mutex_lock(&ns->ctrl->namespaces_lock);
4262 	list_del_rcu(&ns->list);
4263 	mutex_unlock(&ns->ctrl->namespaces_lock);
4264 	synchronize_srcu(&ns->ctrl->srcu);
4265 
4266 	if (last_path)
4267 		nvme_mpath_remove_disk(ns->head);
4268 	nvme_put_ns(ns);
4269 }
4270 
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)4271 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4272 {
4273 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4274 
4275 	if (ns) {
4276 		nvme_ns_remove(ns);
4277 		nvme_put_ns(ns);
4278 	}
4279 }
4280 
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)4281 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4282 {
4283 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4284 
4285 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4286 		dev_err(ns->ctrl->device,
4287 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4288 		goto out;
4289 	}
4290 
4291 	ret = nvme_update_ns_info(ns, info);
4292 out:
4293 	/*
4294 	 * Only remove the namespace if we got a fatal error back from the
4295 	 * device, otherwise ignore the error and just move on.
4296 	 *
4297 	 * TODO: we should probably schedule a delayed retry here.
4298 	 */
4299 	if (ret > 0 && (ret & NVME_STATUS_DNR))
4300 		nvme_ns_remove(ns);
4301 }
4302 
nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)4303 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4304 {
4305 	struct nvme_ns_info info = { .nsid = nsid };
4306 	struct nvme_ns *ns;
4307 	int ret = 1;
4308 
4309 	if (nvme_identify_ns_descs(ctrl, &info))
4310 		return;
4311 
4312 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4313 		dev_warn(ctrl->device,
4314 			"command set not reported for nsid: %d\n", nsid);
4315 		return;
4316 	}
4317 
4318 	/*
4319 	 * If available try to use the Command Set Independent Identify Namespace
4320 	 * data structure to find all the generic information that is needed to
4321 	 * set up a namespace.  If not fall back to the legacy version.
4322 	 */
4323 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4324 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4325 	    ctrl->vs >= NVME_VS(2, 0, 0))
4326 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4327 	if (ret > 0)
4328 		ret = nvme_ns_info_from_identify(ctrl, &info);
4329 
4330 	if (info.is_removed)
4331 		nvme_ns_remove_by_nsid(ctrl, nsid);
4332 
4333 	/*
4334 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4335 	 * becomes ready and restart the scan.
4336 	 */
4337 	if (ret || !info.is_ready)
4338 		return;
4339 
4340 	ns = nvme_find_get_ns(ctrl, nsid);
4341 	if (ns) {
4342 		nvme_validate_ns(ns, &info);
4343 		nvme_put_ns(ns);
4344 	} else {
4345 		nvme_alloc_ns(ctrl, &info);
4346 	}
4347 }
4348 
4349 /**
4350  * struct async_scan_info - keeps track of controller & NSIDs to scan
4351  * @ctrl:	Controller on which namespaces are being scanned
4352  * @next_nsid:	Index of next NSID to scan in ns_list
4353  * @ns_list:	Pointer to list of NSIDs to scan
4354  *
4355  * Note: There is a single async_scan_info structure shared by all instances
4356  * of nvme_scan_ns_async() scanning a given controller, so the atomic
4357  * operations on next_nsid are critical to ensure each instance scans a unique
4358  * NSID.
4359  */
4360 struct async_scan_info {
4361 	struct nvme_ctrl *ctrl;
4362 	atomic_t next_nsid;
4363 	__le32 *ns_list;
4364 };
4365 
nvme_scan_ns_async(void * data,async_cookie_t cookie)4366 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4367 {
4368 	struct async_scan_info *scan_info = data;
4369 	int idx;
4370 	u32 nsid;
4371 
4372 	idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4373 	nsid = le32_to_cpu(scan_info->ns_list[idx]);
4374 
4375 	nvme_scan_ns(scan_info->ctrl, nsid);
4376 }
4377 
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4378 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4379 					unsigned nsid)
4380 {
4381 	struct nvme_ns *ns, *next;
4382 	LIST_HEAD(rm_list);
4383 
4384 	mutex_lock(&ctrl->namespaces_lock);
4385 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4386 		if (ns->head->ns_id > nsid) {
4387 			list_del_rcu(&ns->list);
4388 			synchronize_srcu(&ctrl->srcu);
4389 			list_add_tail_rcu(&ns->list, &rm_list);
4390 		}
4391 	}
4392 	mutex_unlock(&ctrl->namespaces_lock);
4393 
4394 	list_for_each_entry_safe(ns, next, &rm_list, list)
4395 		nvme_ns_remove(ns);
4396 }
4397 
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4398 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4399 {
4400 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4401 	__le32 *ns_list;
4402 	u32 prev = 0;
4403 	int ret = 0, i;
4404 	ASYNC_DOMAIN(domain);
4405 	struct async_scan_info scan_info;
4406 
4407 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4408 	if (!ns_list)
4409 		return -ENOMEM;
4410 
4411 	scan_info.ctrl = ctrl;
4412 	scan_info.ns_list = ns_list;
4413 	for (;;) {
4414 		struct nvme_command cmd = {
4415 			.identify.opcode	= nvme_admin_identify,
4416 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4417 			.identify.nsid		= cpu_to_le32(prev),
4418 		};
4419 
4420 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4421 					    NVME_IDENTIFY_DATA_SIZE);
4422 		if (ret) {
4423 			dev_warn(ctrl->device,
4424 				"Identify NS List failed (status=0x%x)\n", ret);
4425 			goto free;
4426 		}
4427 
4428 		atomic_set(&scan_info.next_nsid, 0);
4429 		for (i = 0; i < nr_entries; i++) {
4430 			u32 nsid = le32_to_cpu(ns_list[i]);
4431 
4432 			if (!nsid)	/* end of the list? */
4433 				goto out;
4434 			async_schedule_domain(nvme_scan_ns_async, &scan_info,
4435 						&domain);
4436 			while (++prev < nsid)
4437 				nvme_ns_remove_by_nsid(ctrl, prev);
4438 		}
4439 		async_synchronize_full_domain(&domain);
4440 	}
4441  out:
4442 	nvme_remove_invalid_namespaces(ctrl, prev);
4443  free:
4444 	async_synchronize_full_domain(&domain);
4445 	kfree(ns_list);
4446 	return ret;
4447 }
4448 
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4449 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4450 {
4451 	struct nvme_id_ctrl *id;
4452 	u32 nn, i;
4453 
4454 	if (nvme_identify_ctrl(ctrl, &id))
4455 		return;
4456 	nn = le32_to_cpu(id->nn);
4457 	kfree(id);
4458 
4459 	for (i = 1; i <= nn; i++)
4460 		nvme_scan_ns(ctrl, i);
4461 
4462 	nvme_remove_invalid_namespaces(ctrl, nn);
4463 }
4464 
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4465 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4466 {
4467 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4468 	__le32 *log;
4469 	int error;
4470 
4471 	log = kzalloc(log_size, GFP_KERNEL);
4472 	if (!log)
4473 		return;
4474 
4475 	/*
4476 	 * We need to read the log to clear the AEN, but we don't want to rely
4477 	 * on it for the changed namespace information as userspace could have
4478 	 * raced with us in reading the log page, which could cause us to miss
4479 	 * updates.
4480 	 */
4481 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4482 			NVME_CSI_NVM, log, log_size, 0);
4483 	if (error)
4484 		dev_warn(ctrl->device,
4485 			"reading changed ns log failed: %d\n", error);
4486 
4487 	kfree(log);
4488 }
4489 
nvme_scan_work(struct work_struct * work)4490 static void nvme_scan_work(struct work_struct *work)
4491 {
4492 	struct nvme_ctrl *ctrl =
4493 		container_of(work, struct nvme_ctrl, scan_work);
4494 	int ret;
4495 
4496 	/* No tagset on a live ctrl means IO queues could not created */
4497 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4498 		return;
4499 
4500 	/*
4501 	 * Identify controller limits can change at controller reset due to
4502 	 * new firmware download, even though it is not common we cannot ignore
4503 	 * such scenario. Controller's non-mdts limits are reported in the unit
4504 	 * of logical blocks that is dependent on the format of attached
4505 	 * namespace. Hence re-read the limits at the time of ns allocation.
4506 	 */
4507 	ret = nvme_init_non_mdts_limits(ctrl);
4508 	if (ret < 0) {
4509 		dev_warn(ctrl->device,
4510 			"reading non-mdts-limits failed: %d\n", ret);
4511 		return;
4512 	}
4513 
4514 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4515 		dev_info(ctrl->device, "rescanning namespaces.\n");
4516 		nvme_clear_changed_ns_log(ctrl);
4517 	}
4518 
4519 	mutex_lock(&ctrl->scan_lock);
4520 	if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4521 		nvme_scan_ns_sequential(ctrl);
4522 	} else {
4523 		/*
4524 		 * Fall back to sequential scan if DNR is set to handle broken
4525 		 * devices which should support Identify NS List (as per the VS
4526 		 * they report) but don't actually support it.
4527 		 */
4528 		ret = nvme_scan_ns_list(ctrl);
4529 		if (ret > 0 && ret & NVME_STATUS_DNR)
4530 			nvme_scan_ns_sequential(ctrl);
4531 	}
4532 	mutex_unlock(&ctrl->scan_lock);
4533 
4534 	/* Requeue if we have missed AENs */
4535 	if (test_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events))
4536 		nvme_queue_scan(ctrl);
4537 #ifdef CONFIG_NVME_MULTIPATH
4538 	else if (ctrl->ana_log_buf)
4539 		/* Re-read the ANA log page to not miss updates */
4540 		queue_work(nvme_wq, &ctrl->ana_work);
4541 #endif
4542 }
4543 
4544 /*
4545  * This function iterates the namespace list unlocked to allow recovery from
4546  * controller failure. It is up to the caller to ensure the namespace list is
4547  * not modified by scan work while this function is executing.
4548  */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4549 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4550 {
4551 	struct nvme_ns *ns, *next;
4552 	LIST_HEAD(ns_list);
4553 
4554 	/*
4555 	 * make sure to requeue I/O to all namespaces as these
4556 	 * might result from the scan itself and must complete
4557 	 * for the scan_work to make progress
4558 	 */
4559 	nvme_mpath_clear_ctrl_paths(ctrl);
4560 
4561 	/*
4562 	 * Unquiesce io queues so any pending IO won't hang, especially
4563 	 * those submitted from scan work
4564 	 */
4565 	nvme_unquiesce_io_queues(ctrl);
4566 
4567 	/* prevent racing with ns scanning */
4568 	flush_work(&ctrl->scan_work);
4569 
4570 	/*
4571 	 * The dead states indicates the controller was not gracefully
4572 	 * disconnected. In that case, we won't be able to flush any data while
4573 	 * removing the namespaces' disks; fail all the queues now to avoid
4574 	 * potentially having to clean up the failed sync later.
4575 	 */
4576 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4577 		nvme_mark_namespaces_dead(ctrl);
4578 
4579 	/* this is a no-op when called from the controller reset handler */
4580 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4581 
4582 	mutex_lock(&ctrl->namespaces_lock);
4583 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4584 	mutex_unlock(&ctrl->namespaces_lock);
4585 	synchronize_srcu(&ctrl->srcu);
4586 
4587 	list_for_each_entry_safe(ns, next, &ns_list, list)
4588 		nvme_ns_remove(ns);
4589 }
4590 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4591 
nvme_class_uevent(const struct device * dev,struct kobj_uevent_env * env)4592 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4593 {
4594 	const struct nvme_ctrl *ctrl =
4595 		container_of(dev, struct nvme_ctrl, ctrl_device);
4596 	struct nvmf_ctrl_options *opts = ctrl->opts;
4597 	int ret;
4598 
4599 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4600 	if (ret)
4601 		return ret;
4602 
4603 	if (opts) {
4604 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4605 		if (ret)
4606 			return ret;
4607 
4608 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4609 				opts->trsvcid ?: "none");
4610 		if (ret)
4611 			return ret;
4612 
4613 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4614 				opts->host_traddr ?: "none");
4615 		if (ret)
4616 			return ret;
4617 
4618 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4619 				opts->host_iface ?: "none");
4620 	}
4621 	return ret;
4622 }
4623 
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4624 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4625 {
4626 	char *envp[2] = { envdata, NULL };
4627 
4628 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4629 }
4630 
nvme_aen_uevent(struct nvme_ctrl * ctrl)4631 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4632 {
4633 	char *envp[2] = { NULL, NULL };
4634 	u32 aen_result = ctrl->aen_result;
4635 
4636 	ctrl->aen_result = 0;
4637 	if (!aen_result)
4638 		return;
4639 
4640 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4641 	if (!envp[0])
4642 		return;
4643 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4644 	kfree(envp[0]);
4645 }
4646 
nvme_async_event_work(struct work_struct * work)4647 static void nvme_async_event_work(struct work_struct *work)
4648 {
4649 	struct nvme_ctrl *ctrl =
4650 		container_of(work, struct nvme_ctrl, async_event_work);
4651 
4652 	nvme_aen_uevent(ctrl);
4653 
4654 	/*
4655 	 * The transport drivers must guarantee AER submission here is safe by
4656 	 * flushing ctrl async_event_work after changing the controller state
4657 	 * from LIVE and before freeing the admin queue.
4658 	*/
4659 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4660 		ctrl->ops->submit_async_event(ctrl);
4661 }
4662 
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4663 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4664 {
4665 
4666 	u32 csts;
4667 
4668 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4669 		return false;
4670 
4671 	if (csts == ~0)
4672 		return false;
4673 
4674 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4675 }
4676 
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4677 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4678 {
4679 	struct nvme_fw_slot_info_log *log;
4680 	u8 next_fw_slot, cur_fw_slot;
4681 
4682 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4683 	if (!log)
4684 		return;
4685 
4686 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4687 			 log, sizeof(*log), 0)) {
4688 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4689 		goto out_free_log;
4690 	}
4691 
4692 	cur_fw_slot = log->afi & 0x7;
4693 	next_fw_slot = (log->afi & 0x70) >> 4;
4694 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4695 		dev_info(ctrl->device,
4696 			 "Firmware is activated after next Controller Level Reset\n");
4697 		goto out_free_log;
4698 	}
4699 
4700 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4701 		sizeof(ctrl->subsys->firmware_rev));
4702 
4703 out_free_log:
4704 	kfree(log);
4705 }
4706 
nvme_fw_act_work(struct work_struct * work)4707 static void nvme_fw_act_work(struct work_struct *work)
4708 {
4709 	struct nvme_ctrl *ctrl = container_of(work,
4710 				struct nvme_ctrl, fw_act_work);
4711 	unsigned long fw_act_timeout;
4712 
4713 	nvme_auth_stop(ctrl);
4714 
4715 	if (ctrl->mtfa)
4716 		fw_act_timeout = jiffies + msecs_to_jiffies(ctrl->mtfa * 100);
4717 	else
4718 		fw_act_timeout = jiffies + secs_to_jiffies(admin_timeout);
4719 
4720 	nvme_quiesce_io_queues(ctrl);
4721 	while (nvme_ctrl_pp_status(ctrl)) {
4722 		if (time_after(jiffies, fw_act_timeout)) {
4723 			dev_warn(ctrl->device,
4724 				"Fw activation timeout, reset controller\n");
4725 			nvme_try_sched_reset(ctrl);
4726 			return;
4727 		}
4728 		msleep(100);
4729 	}
4730 
4731 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) ||
4732 	    !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4733 		return;
4734 
4735 	nvme_unquiesce_io_queues(ctrl);
4736 	/* read FW slot information to clear the AER */
4737 	nvme_get_fw_slot_info(ctrl);
4738 
4739 	queue_work(nvme_wq, &ctrl->async_event_work);
4740 }
4741 
nvme_aer_type(u32 result)4742 static u32 nvme_aer_type(u32 result)
4743 {
4744 	return result & 0x7;
4745 }
4746 
nvme_aer_subtype(u32 result)4747 static u32 nvme_aer_subtype(u32 result)
4748 {
4749 	return (result & 0xff00) >> 8;
4750 }
4751 
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4752 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4753 {
4754 	u32 aer_notice_type = nvme_aer_subtype(result);
4755 	bool requeue = true;
4756 
4757 	switch (aer_notice_type) {
4758 	case NVME_AER_NOTICE_NS_CHANGED:
4759 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4760 		nvme_queue_scan(ctrl);
4761 		break;
4762 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4763 		/*
4764 		 * We are (ab)using the RESETTING state to prevent subsequent
4765 		 * recovery actions from interfering with the controller's
4766 		 * firmware activation.
4767 		 */
4768 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4769 			requeue = false;
4770 			queue_work(nvme_wq, &ctrl->fw_act_work);
4771 		}
4772 		break;
4773 #ifdef CONFIG_NVME_MULTIPATH
4774 	case NVME_AER_NOTICE_ANA:
4775 		if (!ctrl->ana_log_buf)
4776 			break;
4777 		queue_work(nvme_wq, &ctrl->ana_work);
4778 		break;
4779 #endif
4780 	case NVME_AER_NOTICE_DISC_CHANGED:
4781 		ctrl->aen_result = result;
4782 		break;
4783 	default:
4784 		dev_warn(ctrl->device, "async event result %08x\n", result);
4785 	}
4786 	return requeue;
4787 }
4788 
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4789 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4790 {
4791 	dev_warn(ctrl->device,
4792 		"resetting controller due to persistent internal error\n");
4793 	nvme_reset_ctrl(ctrl);
4794 }
4795 
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4796 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4797 		volatile union nvme_result *res)
4798 {
4799 	u32 result = le32_to_cpu(res->u32);
4800 	u32 aer_type = nvme_aer_type(result);
4801 	u32 aer_subtype = nvme_aer_subtype(result);
4802 	bool requeue = true;
4803 
4804 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4805 		return;
4806 
4807 	trace_nvme_async_event(ctrl, result);
4808 	switch (aer_type) {
4809 	case NVME_AER_NOTICE:
4810 		requeue = nvme_handle_aen_notice(ctrl, result);
4811 		break;
4812 	case NVME_AER_ERROR:
4813 		/*
4814 		 * For a persistent internal error, don't run async_event_work
4815 		 * to submit a new AER. The controller reset will do it.
4816 		 */
4817 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4818 			nvme_handle_aer_persistent_error(ctrl);
4819 			return;
4820 		}
4821 		fallthrough;
4822 	case NVME_AER_SMART:
4823 	case NVME_AER_CSS:
4824 	case NVME_AER_VS:
4825 		ctrl->aen_result = result;
4826 		break;
4827 	default:
4828 		break;
4829 	}
4830 
4831 	if (requeue)
4832 		queue_work(nvme_wq, &ctrl->async_event_work);
4833 }
4834 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4835 
nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4836 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4837 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4838 {
4839 	struct queue_limits lim = {};
4840 	int ret;
4841 
4842 	memset(set, 0, sizeof(*set));
4843 	set->ops = ops;
4844 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4845 	if (ctrl->ops->flags & NVME_F_FABRICS)
4846 		/* Reserved for fabric connect and keep alive */
4847 		set->reserved_tags = 2;
4848 	set->numa_node = ctrl->numa_node;
4849 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4850 		set->flags |= BLK_MQ_F_BLOCKING;
4851 	set->cmd_size = cmd_size;
4852 	set->driver_data = ctrl;
4853 	set->nr_hw_queues = 1;
4854 	set->timeout = NVME_ADMIN_TIMEOUT;
4855 	ret = blk_mq_alloc_tag_set(set);
4856 	if (ret)
4857 		return ret;
4858 
4859 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4860 	if (IS_ERR(ctrl->admin_q)) {
4861 		ret = PTR_ERR(ctrl->admin_q);
4862 		goto out_free_tagset;
4863 	}
4864 
4865 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4866 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4867 		if (IS_ERR(ctrl->fabrics_q)) {
4868 			ret = PTR_ERR(ctrl->fabrics_q);
4869 			goto out_cleanup_admin_q;
4870 		}
4871 	}
4872 
4873 	ctrl->admin_tagset = set;
4874 	return 0;
4875 
4876 out_cleanup_admin_q:
4877 	blk_mq_destroy_queue(ctrl->admin_q);
4878 	blk_put_queue(ctrl->admin_q);
4879 out_free_tagset:
4880 	blk_mq_free_tag_set(set);
4881 	ctrl->admin_q = NULL;
4882 	ctrl->fabrics_q = NULL;
4883 	return ret;
4884 }
4885 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4886 
nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4887 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4888 {
4889 	/*
4890 	 * As we're about to destroy the queue and free tagset
4891 	 * we can not have keep-alive work running.
4892 	 */
4893 	nvme_stop_keep_alive(ctrl);
4894 	blk_mq_destroy_queue(ctrl->admin_q);
4895 	blk_put_queue(ctrl->admin_q);
4896 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4897 		blk_mq_destroy_queue(ctrl->fabrics_q);
4898 		blk_put_queue(ctrl->fabrics_q);
4899 	}
4900 	blk_mq_free_tag_set(ctrl->admin_tagset);
4901 }
4902 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4903 
nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4904 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4905 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4906 		unsigned int cmd_size)
4907 {
4908 	int ret;
4909 
4910 	memset(set, 0, sizeof(*set));
4911 	set->ops = ops;
4912 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4913 	/*
4914 	 * Some Apple controllers requires tags to be unique across admin and
4915 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4916 	 */
4917 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4918 		set->reserved_tags = NVME_AQ_DEPTH;
4919 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4920 		/* Reserved for fabric connect */
4921 		set->reserved_tags = 1;
4922 	set->numa_node = ctrl->numa_node;
4923 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4924 		set->flags |= BLK_MQ_F_BLOCKING;
4925 	set->cmd_size = cmd_size;
4926 	set->driver_data = ctrl;
4927 	set->nr_hw_queues = ctrl->queue_count - 1;
4928 	set->timeout = NVME_IO_TIMEOUT;
4929 	set->nr_maps = nr_maps;
4930 	ret = blk_mq_alloc_tag_set(set);
4931 	if (ret)
4932 		return ret;
4933 
4934 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4935 		struct queue_limits lim = {
4936 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4937 		};
4938 
4939 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4940         	if (IS_ERR(ctrl->connect_q)) {
4941 			ret = PTR_ERR(ctrl->connect_q);
4942 			goto out_free_tag_set;
4943 		}
4944 	}
4945 
4946 	ctrl->tagset = set;
4947 	return 0;
4948 
4949 out_free_tag_set:
4950 	blk_mq_free_tag_set(set);
4951 	ctrl->connect_q = NULL;
4952 	return ret;
4953 }
4954 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4955 
nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4956 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4957 {
4958 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4959 		blk_mq_destroy_queue(ctrl->connect_q);
4960 		blk_put_queue(ctrl->connect_q);
4961 	}
4962 	blk_mq_free_tag_set(ctrl->tagset);
4963 }
4964 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4965 
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4966 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4967 {
4968 	nvme_mpath_stop(ctrl);
4969 	nvme_auth_stop(ctrl);
4970 	nvme_stop_failfast_work(ctrl);
4971 	flush_work(&ctrl->async_event_work);
4972 	cancel_work_sync(&ctrl->fw_act_work);
4973 	if (ctrl->ops->stop_ctrl)
4974 		ctrl->ops->stop_ctrl(ctrl);
4975 }
4976 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4977 
nvme_start_ctrl(struct nvme_ctrl * ctrl)4978 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4979 {
4980 	nvme_enable_aen(ctrl);
4981 
4982 	/*
4983 	 * persistent discovery controllers need to send indication to userspace
4984 	 * to re-read the discovery log page to learn about possible changes
4985 	 * that were missed. We identify persistent discovery controllers by
4986 	 * checking that they started once before, hence are reconnecting back.
4987 	 */
4988 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4989 	    nvme_discovery_ctrl(ctrl))
4990 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4991 
4992 	if (ctrl->queue_count > 1) {
4993 		nvme_queue_scan(ctrl);
4994 		nvme_unquiesce_io_queues(ctrl);
4995 		nvme_mpath_update(ctrl);
4996 	}
4997 
4998 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4999 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
5000 }
5001 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
5002 
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)5003 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
5004 {
5005 	nvme_stop_keep_alive(ctrl);
5006 	nvme_hwmon_exit(ctrl);
5007 	nvme_fault_inject_fini(&ctrl->fault_inject);
5008 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
5009 	cdev_device_del(&ctrl->cdev, ctrl->device);
5010 	nvme_put_ctrl(ctrl);
5011 }
5012 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
5013 
nvme_free_cels(struct nvme_ctrl * ctrl)5014 static void nvme_free_cels(struct nvme_ctrl *ctrl)
5015 {
5016 	struct nvme_effects_log	*cel;
5017 	unsigned long i;
5018 
5019 	xa_for_each(&ctrl->cels, i, cel) {
5020 		xa_erase(&ctrl->cels, i);
5021 		kfree(cel);
5022 	}
5023 
5024 	xa_destroy(&ctrl->cels);
5025 }
5026 
nvme_free_ctrl(struct device * dev)5027 static void nvme_free_ctrl(struct device *dev)
5028 {
5029 	struct nvme_ctrl *ctrl =
5030 		container_of(dev, struct nvme_ctrl, ctrl_device);
5031 	struct nvme_subsystem *subsys = ctrl->subsys;
5032 
5033 	if (!subsys || ctrl->instance != subsys->instance)
5034 		ida_free(&nvme_instance_ida, ctrl->instance);
5035 	nvme_free_cels(ctrl);
5036 	nvme_mpath_uninit(ctrl);
5037 	cleanup_srcu_struct(&ctrl->srcu);
5038 	nvme_auth_stop(ctrl);
5039 	nvme_auth_free(ctrl);
5040 	__free_page(ctrl->discard_page);
5041 	free_opal_dev(ctrl->opal_dev);
5042 
5043 	if (subsys) {
5044 		mutex_lock(&nvme_subsystems_lock);
5045 		list_del(&ctrl->subsys_entry);
5046 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
5047 		mutex_unlock(&nvme_subsystems_lock);
5048 	}
5049 
5050 	ctrl->ops->free_ctrl(ctrl);
5051 
5052 	if (subsys)
5053 		nvme_put_subsystem(subsys);
5054 }
5055 
5056 /*
5057  * Initialize a NVMe controller structures.  This needs to be called during
5058  * earliest initialization so that we have the initialized structured around
5059  * during probing.
5060  *
5061  * On success, the caller must use the nvme_put_ctrl() to release this when
5062  * needed, which also invokes the ops->free_ctrl() callback.
5063  */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)5064 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
5065 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
5066 {
5067 	int ret;
5068 
5069 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
5070 	ctrl->passthru_err_log_enabled = false;
5071 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
5072 	spin_lock_init(&ctrl->lock);
5073 	mutex_init(&ctrl->namespaces_lock);
5074 
5075 	ret = init_srcu_struct(&ctrl->srcu);
5076 	if (ret)
5077 		return ret;
5078 
5079 	mutex_init(&ctrl->scan_lock);
5080 	INIT_LIST_HEAD(&ctrl->namespaces);
5081 	xa_init(&ctrl->cels);
5082 	ctrl->dev = dev;
5083 	ctrl->ops = ops;
5084 	ctrl->quirks = quirks;
5085 	ctrl->numa_node = NUMA_NO_NODE;
5086 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
5087 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
5088 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
5089 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
5090 	init_waitqueue_head(&ctrl->state_wq);
5091 
5092 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
5093 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
5094 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
5095 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
5096 	ctrl->ka_last_check_time = jiffies;
5097 
5098 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
5099 			PAGE_SIZE);
5100 	ctrl->discard_page = alloc_page(GFP_KERNEL);
5101 	if (!ctrl->discard_page) {
5102 		ret = -ENOMEM;
5103 		goto out;
5104 	}
5105 
5106 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
5107 	if (ret < 0)
5108 		goto out;
5109 	ctrl->instance = ret;
5110 
5111 	ret = nvme_auth_init_ctrl(ctrl);
5112 	if (ret)
5113 		goto out_release_instance;
5114 
5115 	nvme_mpath_init_ctrl(ctrl);
5116 
5117 	device_initialize(&ctrl->ctrl_device);
5118 	ctrl->device = &ctrl->ctrl_device;
5119 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
5120 			ctrl->instance);
5121 	ctrl->device->class = &nvme_class;
5122 	ctrl->device->parent = ctrl->dev;
5123 	if (ops->dev_attr_groups)
5124 		ctrl->device->groups = ops->dev_attr_groups;
5125 	else
5126 		ctrl->device->groups = nvme_dev_attr_groups;
5127 	ctrl->device->release = nvme_free_ctrl;
5128 	dev_set_drvdata(ctrl->device, ctrl);
5129 
5130 	return ret;
5131 
5132 out_release_instance:
5133 	ida_free(&nvme_instance_ida, ctrl->instance);
5134 out:
5135 	if (ctrl->discard_page)
5136 		__free_page(ctrl->discard_page);
5137 	cleanup_srcu_struct(&ctrl->srcu);
5138 	return ret;
5139 }
5140 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
5141 
5142 /*
5143  * On success, returns with an elevated controller reference and caller must
5144  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
5145  */
nvme_add_ctrl(struct nvme_ctrl * ctrl)5146 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
5147 {
5148 	int ret;
5149 
5150 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
5151 	if (ret)
5152 		return ret;
5153 
5154 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
5155 	ctrl->cdev.owner = ctrl->ops->module;
5156 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
5157 	if (ret)
5158 		return ret;
5159 
5160 	/*
5161 	 * Initialize latency tolerance controls.  The sysfs files won't
5162 	 * be visible to userspace unless the device actually supports APST.
5163 	 */
5164 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
5165 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
5166 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
5167 
5168 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5169 	nvme_get_ctrl(ctrl);
5170 
5171 	return 0;
5172 }
5173 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
5174 
5175 /* let I/O to all namespaces fail in preparation for surprise removal */
nvme_mark_namespaces_dead(struct nvme_ctrl * ctrl)5176 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
5177 {
5178 	struct nvme_ns *ns;
5179 	int srcu_idx;
5180 
5181 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5182 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5183 				 srcu_read_lock_held(&ctrl->srcu))
5184 		blk_mark_disk_dead(ns->disk);
5185 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5186 }
5187 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
5188 
nvme_unfreeze(struct nvme_ctrl * ctrl)5189 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5190 {
5191 	struct nvme_ns *ns;
5192 	int srcu_idx;
5193 
5194 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5195 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5196 				 srcu_read_lock_held(&ctrl->srcu))
5197 		blk_mq_unfreeze_queue_non_owner(ns->queue);
5198 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5199 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5200 }
5201 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5202 
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)5203 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5204 {
5205 	struct nvme_ns *ns;
5206 	int srcu_idx;
5207 
5208 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5209 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5210 				 srcu_read_lock_held(&ctrl->srcu)) {
5211 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5212 		if (timeout <= 0)
5213 			break;
5214 	}
5215 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5216 	return timeout;
5217 }
5218 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5219 
nvme_wait_freeze(struct nvme_ctrl * ctrl)5220 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5221 {
5222 	struct nvme_ns *ns;
5223 	int srcu_idx;
5224 
5225 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5226 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5227 				 srcu_read_lock_held(&ctrl->srcu))
5228 		blk_mq_freeze_queue_wait(ns->queue);
5229 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5230 }
5231 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5232 
nvme_start_freeze(struct nvme_ctrl * ctrl)5233 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5234 {
5235 	struct nvme_ns *ns;
5236 	int srcu_idx;
5237 
5238 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5239 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5240 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5241 				 srcu_read_lock_held(&ctrl->srcu))
5242 		/*
5243 		 * Typical non_owner use case is from pci driver, in which
5244 		 * start_freeze is called from timeout work function, but
5245 		 * unfreeze is done in reset work context
5246 		 */
5247 		blk_freeze_queue_start_non_owner(ns->queue);
5248 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5249 }
5250 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5251 
nvme_quiesce_io_queues(struct nvme_ctrl * ctrl)5252 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5253 {
5254 	if (!ctrl->tagset)
5255 		return;
5256 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5257 		blk_mq_quiesce_tagset(ctrl->tagset);
5258 	else
5259 		blk_mq_wait_quiesce_done(ctrl->tagset);
5260 }
5261 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5262 
nvme_unquiesce_io_queues(struct nvme_ctrl * ctrl)5263 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5264 {
5265 	if (!ctrl->tagset)
5266 		return;
5267 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5268 		blk_mq_unquiesce_tagset(ctrl->tagset);
5269 }
5270 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5271 
nvme_quiesce_admin_queue(struct nvme_ctrl * ctrl)5272 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5273 {
5274 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5275 		blk_mq_quiesce_queue(ctrl->admin_q);
5276 	else
5277 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5278 }
5279 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5280 
nvme_unquiesce_admin_queue(struct nvme_ctrl * ctrl)5281 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5282 {
5283 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5284 		blk_mq_unquiesce_queue(ctrl->admin_q);
5285 }
5286 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5287 
nvme_sync_io_queues(struct nvme_ctrl * ctrl)5288 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5289 {
5290 	struct nvme_ns *ns;
5291 	int srcu_idx;
5292 
5293 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5294 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5295 				 srcu_read_lock_held(&ctrl->srcu))
5296 		blk_sync_queue(ns->queue);
5297 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5298 }
5299 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5300 
nvme_sync_queues(struct nvme_ctrl * ctrl)5301 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5302 {
5303 	nvme_sync_io_queues(ctrl);
5304 	if (ctrl->admin_q)
5305 		blk_sync_queue(ctrl->admin_q);
5306 }
5307 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5308 
nvme_ctrl_from_file(struct file * file)5309 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5310 {
5311 	if (file->f_op != &nvme_dev_fops)
5312 		return NULL;
5313 	return file->private_data;
5314 }
5315 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5316 
5317 /*
5318  * Check we didn't inadvertently grow the command structure sizes:
5319  */
_nvme_check_size(void)5320 static inline void _nvme_check_size(void)
5321 {
5322 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5323 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5324 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5325 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5326 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5327 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5328 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5329 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5330 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5331 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5332 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5333 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5334 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5335 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5336 			NVME_IDENTIFY_DATA_SIZE);
5337 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5338 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5339 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5340 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5341 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5342 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5343 	BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5344 	BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5345 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5346 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5347 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5348 }
5349 
5350 
nvme_core_init(void)5351 static int __init nvme_core_init(void)
5352 {
5353 	unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5354 	int result = -ENOMEM;
5355 
5356 	_nvme_check_size();
5357 
5358 	nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5359 	if (!nvme_wq)
5360 		goto out;
5361 
5362 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5363 	if (!nvme_reset_wq)
5364 		goto destroy_wq;
5365 
5366 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5367 	if (!nvme_delete_wq)
5368 		goto destroy_reset_wq;
5369 
5370 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5371 			NVME_MINORS, "nvme");
5372 	if (result < 0)
5373 		goto destroy_delete_wq;
5374 
5375 	result = class_register(&nvme_class);
5376 	if (result)
5377 		goto unregister_chrdev;
5378 
5379 	result = class_register(&nvme_subsys_class);
5380 	if (result)
5381 		goto destroy_class;
5382 
5383 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5384 				     "nvme-generic");
5385 	if (result < 0)
5386 		goto destroy_subsys_class;
5387 
5388 	result = class_register(&nvme_ns_chr_class);
5389 	if (result)
5390 		goto unregister_generic_ns;
5391 
5392 	result = nvme_init_auth();
5393 	if (result)
5394 		goto destroy_ns_chr;
5395 	return 0;
5396 
5397 destroy_ns_chr:
5398 	class_unregister(&nvme_ns_chr_class);
5399 unregister_generic_ns:
5400 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5401 destroy_subsys_class:
5402 	class_unregister(&nvme_subsys_class);
5403 destroy_class:
5404 	class_unregister(&nvme_class);
5405 unregister_chrdev:
5406 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5407 destroy_delete_wq:
5408 	destroy_workqueue(nvme_delete_wq);
5409 destroy_reset_wq:
5410 	destroy_workqueue(nvme_reset_wq);
5411 destroy_wq:
5412 	destroy_workqueue(nvme_wq);
5413 out:
5414 	return result;
5415 }
5416 
nvme_core_exit(void)5417 static void __exit nvme_core_exit(void)
5418 {
5419 	nvme_exit_auth();
5420 	class_unregister(&nvme_ns_chr_class);
5421 	class_unregister(&nvme_subsys_class);
5422 	class_unregister(&nvme_class);
5423 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5424 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5425 	destroy_workqueue(nvme_delete_wq);
5426 	destroy_workqueue(nvme_reset_wq);
5427 	destroy_workqueue(nvme_wq);
5428 	ida_destroy(&nvme_ns_chr_minor_ida);
5429 	ida_destroy(&nvme_instance_ida);
5430 }
5431 
5432 MODULE_LICENSE("GPL");
5433 MODULE_VERSION("1.0");
5434 MODULE_DESCRIPTION("NVMe host core framework");
5435 module_init(nvme_core_init);
5436 module_exit(nvme_core_exit);
5437