1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Mediatek MT7530 DSA Switch driver
4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5 */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 #include <net/pkt_cls.h>
25
26 #include "mt7530.h"
27
pcs_to_mt753x_pcs(struct phylink_pcs * pcs)28 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
29 {
30 return container_of(pcs, struct mt753x_pcs, pcs);
31 }
32
33 /* String, offset, and register size in bytes if different from 4 bytes */
34 static const struct mt7530_mib_desc mt7530_mib[] = {
35 MIB_DESC(1, MT7530_PORT_MIB_TX_DROP, "TxDrop"),
36 MIB_DESC(1, MT7530_PORT_MIB_TX_CRC_ERR, "TxCrcErr"),
37 MIB_DESC(1, MT7530_PORT_MIB_TX_COLLISION, "TxCollision"),
38 MIB_DESC(1, MT7530_PORT_MIB_RX_DROP, "RxDrop"),
39 MIB_DESC(1, MT7530_PORT_MIB_RX_FILTERING, "RxFiltering"),
40 MIB_DESC(1, MT7530_PORT_MIB_RX_CRC_ERR, "RxCrcErr"),
41 MIB_DESC(1, MT7530_PORT_MIB_RX_CTRL_DROP, "RxCtrlDrop"),
42 MIB_DESC(1, MT7530_PORT_MIB_RX_INGRESS_DROP, "RxIngressDrop"),
43 MIB_DESC(1, MT7530_PORT_MIB_RX_ARL_DROP, "RxArlDrop"),
44 };
45
46 static void
mt7530_mutex_lock(struct mt7530_priv * priv)47 mt7530_mutex_lock(struct mt7530_priv *priv)
48 {
49 if (priv->bus)
50 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
51 }
52
53 static void
mt7530_mutex_unlock(struct mt7530_priv * priv)54 mt7530_mutex_unlock(struct mt7530_priv *priv)
55 {
56 if (priv->bus)
57 mutex_unlock(&priv->bus->mdio_lock);
58 }
59
60 static void
core_write(struct mt7530_priv * priv,u32 reg,u32 val)61 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
62 {
63 struct mii_bus *bus = priv->bus;
64 int ret;
65
66 mt7530_mutex_lock(priv);
67
68 /* Write the desired MMD Devad */
69 ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
70 MII_MMD_CTRL, MDIO_MMD_VEND2);
71 if (ret < 0)
72 goto err;
73
74 /* Write the desired MMD register address */
75 ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
76 MII_MMD_DATA, reg);
77 if (ret < 0)
78 goto err;
79
80 /* Select the Function : DATA with no post increment */
81 ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
82 MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR);
83 if (ret < 0)
84 goto err;
85
86 /* Write the data into MMD's selected register */
87 ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
88 MII_MMD_DATA, val);
89 err:
90 if (ret < 0)
91 dev_err(&bus->dev, "failed to write mmd register\n");
92
93 mt7530_mutex_unlock(priv);
94 }
95
96 static void
core_rmw(struct mt7530_priv * priv,u32 reg,u32 mask,u32 set)97 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
98 {
99 struct mii_bus *bus = priv->bus;
100 u32 val;
101 int ret;
102
103 mt7530_mutex_lock(priv);
104
105 /* Write the desired MMD Devad */
106 ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
107 MII_MMD_CTRL, MDIO_MMD_VEND2);
108 if (ret < 0)
109 goto err;
110
111 /* Write the desired MMD register address */
112 ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
113 MII_MMD_DATA, reg);
114 if (ret < 0)
115 goto err;
116
117 /* Select the Function : DATA with no post increment */
118 ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
119 MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR);
120 if (ret < 0)
121 goto err;
122
123 /* Read the content of the MMD's selected register */
124 val = bus->read(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
125 MII_MMD_DATA);
126 val &= ~mask;
127 val |= set;
128 /* Write the data into MMD's selected register */
129 ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
130 MII_MMD_DATA, val);
131 err:
132 if (ret < 0)
133 dev_err(&bus->dev, "failed to write mmd register\n");
134
135 mt7530_mutex_unlock(priv);
136 }
137
138 static void
core_set(struct mt7530_priv * priv,u32 reg,u32 val)139 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
140 {
141 core_rmw(priv, reg, 0, val);
142 }
143
144 static void
core_clear(struct mt7530_priv * priv,u32 reg,u32 val)145 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
146 {
147 core_rmw(priv, reg, val, 0);
148 }
149
150 static int
mt7530_mii_write(struct mt7530_priv * priv,u32 reg,u32 val)151 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
152 {
153 int ret;
154
155 ret = regmap_write(priv->regmap, reg, val);
156
157 if (ret < 0)
158 dev_err(priv->dev,
159 "failed to write mt7530 register\n");
160
161 return ret;
162 }
163
164 static u32
mt7530_mii_read(struct mt7530_priv * priv,u32 reg)165 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
166 {
167 int ret;
168 u32 val;
169
170 ret = regmap_read(priv->regmap, reg, &val);
171 if (ret) {
172 WARN_ON_ONCE(1);
173 dev_err(priv->dev,
174 "failed to read mt7530 register\n");
175 return 0;
176 }
177
178 return val;
179 }
180
181 static void
mt7530_write(struct mt7530_priv * priv,u32 reg,u32 val)182 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
183 {
184 mt7530_mutex_lock(priv);
185
186 mt7530_mii_write(priv, reg, val);
187
188 mt7530_mutex_unlock(priv);
189 }
190
191 static u32
_mt7530_unlocked_read(struct mt7530_dummy_poll * p)192 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
193 {
194 return mt7530_mii_read(p->priv, p->reg);
195 }
196
197 static u32
_mt7530_read(struct mt7530_dummy_poll * p)198 _mt7530_read(struct mt7530_dummy_poll *p)
199 {
200 u32 val;
201
202 mt7530_mutex_lock(p->priv);
203
204 val = mt7530_mii_read(p->priv, p->reg);
205
206 mt7530_mutex_unlock(p->priv);
207
208 return val;
209 }
210
211 static u32
mt7530_read(struct mt7530_priv * priv,u32 reg)212 mt7530_read(struct mt7530_priv *priv, u32 reg)
213 {
214 struct mt7530_dummy_poll p;
215
216 INIT_MT7530_DUMMY_POLL(&p, priv, reg);
217 return _mt7530_read(&p);
218 }
219
220 static void
mt7530_rmw(struct mt7530_priv * priv,u32 reg,u32 mask,u32 set)221 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
222 u32 mask, u32 set)
223 {
224 mt7530_mutex_lock(priv);
225
226 regmap_update_bits(priv->regmap, reg, mask, set);
227
228 mt7530_mutex_unlock(priv);
229 }
230
231 static void
mt7530_set(struct mt7530_priv * priv,u32 reg,u32 val)232 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
233 {
234 mt7530_rmw(priv, reg, val, val);
235 }
236
237 static void
mt7530_clear(struct mt7530_priv * priv,u32 reg,u32 val)238 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
239 {
240 mt7530_rmw(priv, reg, val, 0);
241 }
242
243 static int
mt7530_fdb_cmd(struct mt7530_priv * priv,enum mt7530_fdb_cmd cmd,u32 * rsp)244 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
245 {
246 u32 val;
247 int ret;
248 struct mt7530_dummy_poll p;
249
250 /* Set the command operating upon the MAC address entries */
251 val = ATC_BUSY | ATC_MAT(0) | cmd;
252 mt7530_write(priv, MT7530_ATC, val);
253
254 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
255 ret = readx_poll_timeout(_mt7530_read, &p, val,
256 !(val & ATC_BUSY), 20, 20000);
257 if (ret < 0) {
258 dev_err(priv->dev, "reset timeout\n");
259 return ret;
260 }
261
262 /* Additional sanity for read command if the specified
263 * entry is invalid
264 */
265 val = mt7530_read(priv, MT7530_ATC);
266 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
267 return -EINVAL;
268
269 if (rsp)
270 *rsp = val;
271
272 return 0;
273 }
274
275 static void
mt7530_fdb_read(struct mt7530_priv * priv,struct mt7530_fdb * fdb)276 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
277 {
278 u32 reg[3];
279 int i;
280
281 /* Read from ARL table into an array */
282 for (i = 0; i < 3; i++) {
283 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
284
285 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
286 __func__, __LINE__, i, reg[i]);
287 }
288
289 fdb->vid = (reg[1] >> CVID) & CVID_MASK;
290 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
291 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
292 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
293 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
294 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
295 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
296 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
297 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
298 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
299 }
300
301 static void
mt7530_fdb_write(struct mt7530_priv * priv,u16 vid,u8 port_mask,const u8 * mac,u8 aging,u8 type)302 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
303 u8 port_mask, const u8 *mac,
304 u8 aging, u8 type)
305 {
306 u32 reg[3] = { 0 };
307 int i;
308
309 reg[1] |= vid & CVID_MASK;
310 reg[1] |= ATA2_IVL;
311 reg[1] |= ATA2_FID(FID_BRIDGED);
312 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
313 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
314 /* STATIC_ENT indicate that entry is static wouldn't
315 * be aged out and STATIC_EMP specified as erasing an
316 * entry
317 */
318 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
319 reg[1] |= mac[5] << MAC_BYTE_5;
320 reg[1] |= mac[4] << MAC_BYTE_4;
321 reg[0] |= mac[3] << MAC_BYTE_3;
322 reg[0] |= mac[2] << MAC_BYTE_2;
323 reg[0] |= mac[1] << MAC_BYTE_1;
324 reg[0] |= mac[0] << MAC_BYTE_0;
325
326 /* Write array into the ARL table */
327 for (i = 0; i < 3; i++)
328 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
329 }
330
331 /* Set up switch core clock for MT7530 */
mt7530_pll_setup(struct mt7530_priv * priv)332 static void mt7530_pll_setup(struct mt7530_priv *priv)
333 {
334 /* Disable core clock */
335 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
336
337 /* Disable PLL */
338 core_write(priv, CORE_GSWPLL_GRP1, 0);
339
340 /* Set core clock into 500Mhz */
341 core_write(priv, CORE_GSWPLL_GRP2,
342 RG_GSWPLL_POSDIV_500M(1) |
343 RG_GSWPLL_FBKDIV_500M(25));
344
345 /* Enable PLL */
346 core_write(priv, CORE_GSWPLL_GRP1,
347 RG_GSWPLL_EN_PRE |
348 RG_GSWPLL_POSDIV_200M(2) |
349 RG_GSWPLL_FBKDIV_200M(32));
350
351 udelay(20);
352
353 /* Enable core clock */
354 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
355 }
356
357 /* If port 6 is available as a CPU port, always prefer that as the default,
358 * otherwise don't care.
359 */
360 static struct dsa_port *
mt753x_preferred_default_local_cpu_port(struct dsa_switch * ds)361 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
362 {
363 struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
364
365 if (dsa_port_is_cpu(cpu_dp))
366 return cpu_dp;
367
368 return NULL;
369 }
370
371 /* Setup port 6 interface mode and TRGMII TX circuit */
372 static void
mt7530_setup_port6(struct dsa_switch * ds,phy_interface_t interface)373 mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
374 {
375 struct mt7530_priv *priv = ds->priv;
376 u32 ncpo1, ssc_delta, xtal;
377
378 /* Disable the MT7530 TRGMII clocks */
379 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
380
381 if (interface == PHY_INTERFACE_MODE_RGMII) {
382 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
383 P6_INTF_MODE(0));
384 return;
385 }
386
387 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
388
389 xtal = mt7530_read(priv, MT753X_MTRAP) & MT7530_XTAL_MASK;
390
391 if (xtal == MT7530_XTAL_25MHZ)
392 ssc_delta = 0x57;
393 else
394 ssc_delta = 0x87;
395
396 if (priv->id == ID_MT7621) {
397 /* PLL frequency: 125MHz: 1.0GBit */
398 if (xtal == MT7530_XTAL_40MHZ)
399 ncpo1 = 0x0640;
400 if (xtal == MT7530_XTAL_25MHZ)
401 ncpo1 = 0x0a00;
402 } else { /* PLL frequency: 250MHz: 2.0Gbit */
403 if (xtal == MT7530_XTAL_40MHZ)
404 ncpo1 = 0x0c80;
405 if (xtal == MT7530_XTAL_25MHZ)
406 ncpo1 = 0x1400;
407 }
408
409 /* Setup the MT7530 TRGMII Tx Clock */
410 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
411 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
412 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
413 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
414 core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
415 RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
416 core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
417 RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
418 core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
419 RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
420
421 /* Enable the MT7530 TRGMII clocks */
422 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
423 }
424
425 static void
mt7531_pll_setup(struct mt7530_priv * priv)426 mt7531_pll_setup(struct mt7530_priv *priv)
427 {
428 enum mt7531_xtal_fsel xtal;
429 u32 top_sig;
430 u32 hwstrap;
431 u32 val;
432
433 val = mt7530_read(priv, MT7531_CREV);
434 top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
435 hwstrap = mt7530_read(priv, MT753X_TRAP);
436 if ((val & CHIP_REV_M) > 0)
437 xtal = (top_sig & PAD_MCM_SMI_EN) ? MT7531_XTAL_FSEL_40MHZ :
438 MT7531_XTAL_FSEL_25MHZ;
439 else
440 xtal = (hwstrap & MT7531_XTAL25) ? MT7531_XTAL_FSEL_25MHZ :
441 MT7531_XTAL_FSEL_40MHZ;
442
443 /* Step 1 : Disable MT7531 COREPLL */
444 val = mt7530_read(priv, MT7531_PLLGP_EN);
445 val &= ~EN_COREPLL;
446 mt7530_write(priv, MT7531_PLLGP_EN, val);
447
448 /* Step 2: switch to XTAL output */
449 val = mt7530_read(priv, MT7531_PLLGP_EN);
450 val |= SW_CLKSW;
451 mt7530_write(priv, MT7531_PLLGP_EN, val);
452
453 val = mt7530_read(priv, MT7531_PLLGP_CR0);
454 val &= ~RG_COREPLL_EN;
455 mt7530_write(priv, MT7531_PLLGP_CR0, val);
456
457 /* Step 3: disable PLLGP and enable program PLLGP */
458 val = mt7530_read(priv, MT7531_PLLGP_EN);
459 val |= SW_PLLGP;
460 mt7530_write(priv, MT7531_PLLGP_EN, val);
461
462 /* Step 4: program COREPLL output frequency to 500MHz */
463 val = mt7530_read(priv, MT7531_PLLGP_CR0);
464 val &= ~RG_COREPLL_POSDIV_M;
465 val |= 2 << RG_COREPLL_POSDIV_S;
466 mt7530_write(priv, MT7531_PLLGP_CR0, val);
467 usleep_range(25, 35);
468
469 switch (xtal) {
470 case MT7531_XTAL_FSEL_25MHZ:
471 val = mt7530_read(priv, MT7531_PLLGP_CR0);
472 val &= ~RG_COREPLL_SDM_PCW_M;
473 val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
474 mt7530_write(priv, MT7531_PLLGP_CR0, val);
475 break;
476 case MT7531_XTAL_FSEL_40MHZ:
477 val = mt7530_read(priv, MT7531_PLLGP_CR0);
478 val &= ~RG_COREPLL_SDM_PCW_M;
479 val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
480 mt7530_write(priv, MT7531_PLLGP_CR0, val);
481 break;
482 }
483
484 /* Set feedback divide ratio update signal to high */
485 val = mt7530_read(priv, MT7531_PLLGP_CR0);
486 val |= RG_COREPLL_SDM_PCW_CHG;
487 mt7530_write(priv, MT7531_PLLGP_CR0, val);
488 /* Wait for at least 16 XTAL clocks */
489 usleep_range(10, 20);
490
491 /* Step 5: set feedback divide ratio update signal to low */
492 val = mt7530_read(priv, MT7531_PLLGP_CR0);
493 val &= ~RG_COREPLL_SDM_PCW_CHG;
494 mt7530_write(priv, MT7531_PLLGP_CR0, val);
495
496 /* Enable 325M clock for SGMII */
497 mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
498
499 /* Enable 250SSC clock for RGMII */
500 mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
501
502 /* Step 6: Enable MT7531 PLL */
503 val = mt7530_read(priv, MT7531_PLLGP_CR0);
504 val |= RG_COREPLL_EN;
505 mt7530_write(priv, MT7531_PLLGP_CR0, val);
506
507 val = mt7530_read(priv, MT7531_PLLGP_EN);
508 val |= EN_COREPLL;
509 mt7530_write(priv, MT7531_PLLGP_EN, val);
510 usleep_range(25, 35);
511 }
512
513 static void
mt7530_mib_reset(struct dsa_switch * ds)514 mt7530_mib_reset(struct dsa_switch *ds)
515 {
516 struct mt7530_priv *priv = ds->priv;
517
518 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
519 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
520 }
521
mt7530_phy_read_c22(struct mt7530_priv * priv,int port,int regnum)522 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
523 {
524 return mdiobus_read_nested(priv->bus, port, regnum);
525 }
526
mt7530_phy_write_c22(struct mt7530_priv * priv,int port,int regnum,u16 val)527 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
528 u16 val)
529 {
530 return mdiobus_write_nested(priv->bus, port, regnum, val);
531 }
532
mt7530_phy_read_c45(struct mt7530_priv * priv,int port,int devad,int regnum)533 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
534 int devad, int regnum)
535 {
536 return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
537 }
538
mt7530_phy_write_c45(struct mt7530_priv * priv,int port,int devad,int regnum,u16 val)539 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
540 int regnum, u16 val)
541 {
542 return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
543 }
544
545 static int
mt7531_ind_c45_phy_read(struct mt7530_priv * priv,int port,int devad,int regnum)546 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
547 int regnum)
548 {
549 struct mt7530_dummy_poll p;
550 u32 reg, val;
551 int ret;
552
553 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
554
555 mt7530_mutex_lock(priv);
556
557 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
558 !(val & MT7531_PHY_ACS_ST), 20, 100000);
559 if (ret < 0) {
560 dev_err(priv->dev, "poll timeout\n");
561 goto out;
562 }
563
564 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
565 MT7531_MDIO_DEV_ADDR(devad) | regnum;
566 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
567
568 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
569 !(val & MT7531_PHY_ACS_ST), 20, 100000);
570 if (ret < 0) {
571 dev_err(priv->dev, "poll timeout\n");
572 goto out;
573 }
574
575 reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
576 MT7531_MDIO_DEV_ADDR(devad);
577 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
578
579 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
580 !(val & MT7531_PHY_ACS_ST), 20, 100000);
581 if (ret < 0) {
582 dev_err(priv->dev, "poll timeout\n");
583 goto out;
584 }
585
586 ret = val & MT7531_MDIO_RW_DATA_MASK;
587 out:
588 mt7530_mutex_unlock(priv);
589
590 return ret;
591 }
592
593 static int
mt7531_ind_c45_phy_write(struct mt7530_priv * priv,int port,int devad,int regnum,u16 data)594 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
595 int regnum, u16 data)
596 {
597 struct mt7530_dummy_poll p;
598 u32 val, reg;
599 int ret;
600
601 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
602
603 mt7530_mutex_lock(priv);
604
605 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
606 !(val & MT7531_PHY_ACS_ST), 20, 100000);
607 if (ret < 0) {
608 dev_err(priv->dev, "poll timeout\n");
609 goto out;
610 }
611
612 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
613 MT7531_MDIO_DEV_ADDR(devad) | regnum;
614 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
615
616 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
617 !(val & MT7531_PHY_ACS_ST), 20, 100000);
618 if (ret < 0) {
619 dev_err(priv->dev, "poll timeout\n");
620 goto out;
621 }
622
623 reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
624 MT7531_MDIO_DEV_ADDR(devad) | data;
625 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
626
627 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
628 !(val & MT7531_PHY_ACS_ST), 20, 100000);
629 if (ret < 0) {
630 dev_err(priv->dev, "poll timeout\n");
631 goto out;
632 }
633
634 out:
635 mt7530_mutex_unlock(priv);
636
637 return ret;
638 }
639
640 static int
mt7531_ind_c22_phy_read(struct mt7530_priv * priv,int port,int regnum)641 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
642 {
643 struct mt7530_dummy_poll p;
644 int ret;
645 u32 val;
646
647 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
648
649 mt7530_mutex_lock(priv);
650
651 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
652 !(val & MT7531_PHY_ACS_ST), 20, 100000);
653 if (ret < 0) {
654 dev_err(priv->dev, "poll timeout\n");
655 goto out;
656 }
657
658 val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
659 MT7531_MDIO_REG_ADDR(regnum);
660
661 mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
662
663 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
664 !(val & MT7531_PHY_ACS_ST), 20, 100000);
665 if (ret < 0) {
666 dev_err(priv->dev, "poll timeout\n");
667 goto out;
668 }
669
670 ret = val & MT7531_MDIO_RW_DATA_MASK;
671 out:
672 mt7530_mutex_unlock(priv);
673
674 return ret;
675 }
676
677 static int
mt7531_ind_c22_phy_write(struct mt7530_priv * priv,int port,int regnum,u16 data)678 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
679 u16 data)
680 {
681 struct mt7530_dummy_poll p;
682 int ret;
683 u32 reg;
684
685 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
686
687 mt7530_mutex_lock(priv);
688
689 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
690 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
691 if (ret < 0) {
692 dev_err(priv->dev, "poll timeout\n");
693 goto out;
694 }
695
696 reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
697 MT7531_MDIO_REG_ADDR(regnum) | data;
698
699 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
700
701 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
702 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
703 if (ret < 0) {
704 dev_err(priv->dev, "poll timeout\n");
705 goto out;
706 }
707
708 out:
709 mt7530_mutex_unlock(priv);
710
711 return ret;
712 }
713
714 static int
mt753x_phy_read_c22(struct mii_bus * bus,int port,int regnum)715 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
716 {
717 struct mt7530_priv *priv = bus->priv;
718
719 return priv->info->phy_read_c22(priv, port, regnum);
720 }
721
722 static int
mt753x_phy_read_c45(struct mii_bus * bus,int port,int devad,int regnum)723 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
724 {
725 struct mt7530_priv *priv = bus->priv;
726
727 return priv->info->phy_read_c45(priv, port, devad, regnum);
728 }
729
730 static int
mt753x_phy_write_c22(struct mii_bus * bus,int port,int regnum,u16 val)731 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
732 {
733 struct mt7530_priv *priv = bus->priv;
734
735 return priv->info->phy_write_c22(priv, port, regnum, val);
736 }
737
738 static int
mt753x_phy_write_c45(struct mii_bus * bus,int port,int devad,int regnum,u16 val)739 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
740 u16 val)
741 {
742 struct mt7530_priv *priv = bus->priv;
743
744 return priv->info->phy_write_c45(priv, port, devad, regnum, val);
745 }
746
747 static void
mt7530_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * data)748 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
749 uint8_t *data)
750 {
751 int i;
752
753 if (stringset != ETH_SS_STATS)
754 return;
755
756 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
757 ethtool_puts(&data, mt7530_mib[i].name);
758 }
759
760 static void
mt7530_read_port_stats(struct mt7530_priv * priv,int port,u32 offset,u8 size,uint64_t * data)761 mt7530_read_port_stats(struct mt7530_priv *priv, int port,
762 u32 offset, u8 size, uint64_t *data)
763 {
764 u32 val, reg = MT7530_PORT_MIB_COUNTER(port) + offset;
765
766 val = mt7530_read(priv, reg);
767 *data = val;
768
769 if (size == 2) {
770 val = mt7530_read(priv, reg + 4);
771 *data |= (u64)val << 32;
772 }
773 }
774
775 static void
mt7530_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * data)776 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
777 uint64_t *data)
778 {
779 struct mt7530_priv *priv = ds->priv;
780 const struct mt7530_mib_desc *mib;
781 int i;
782
783 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
784 mib = &mt7530_mib[i];
785
786 mt7530_read_port_stats(priv, port, mib->offset, mib->size,
787 data + i);
788 }
789 }
790
791 static int
mt7530_get_sset_count(struct dsa_switch * ds,int port,int sset)792 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
793 {
794 if (sset != ETH_SS_STATS)
795 return 0;
796
797 return ARRAY_SIZE(mt7530_mib);
798 }
799
mt7530_get_eth_mac_stats(struct dsa_switch * ds,int port,struct ethtool_eth_mac_stats * mac_stats)800 static void mt7530_get_eth_mac_stats(struct dsa_switch *ds, int port,
801 struct ethtool_eth_mac_stats *mac_stats)
802 {
803 struct mt7530_priv *priv = ds->priv;
804
805 /* MIB counter doesn't provide a FramesTransmittedOK but instead
806 * provide stats for Unicast, Broadcast and Multicast frames separately.
807 * To simulate a global frame counter, read Unicast and addition Multicast
808 * and Broadcast later
809 */
810 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_UNICAST, 1,
811 &mac_stats->FramesTransmittedOK);
812
813 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_SINGLE_COLLISION, 1,
814 &mac_stats->SingleCollisionFrames);
815
816 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_MULTIPLE_COLLISION, 1,
817 &mac_stats->MultipleCollisionFrames);
818
819 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_UNICAST, 1,
820 &mac_stats->FramesReceivedOK);
821
822 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_BYTES, 2,
823 &mac_stats->OctetsTransmittedOK);
824
825 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_ALIGN_ERR, 1,
826 &mac_stats->AlignmentErrors);
827
828 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_DEFERRED, 1,
829 &mac_stats->FramesWithDeferredXmissions);
830
831 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_LATE_COLLISION, 1,
832 &mac_stats->LateCollisions);
833
834 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_EXCESSIVE_COLLISION, 1,
835 &mac_stats->FramesAbortedDueToXSColls);
836
837 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_BYTES, 2,
838 &mac_stats->OctetsReceivedOK);
839
840 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_MULTICAST, 1,
841 &mac_stats->MulticastFramesXmittedOK);
842 mac_stats->FramesTransmittedOK += mac_stats->MulticastFramesXmittedOK;
843 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_BROADCAST, 1,
844 &mac_stats->BroadcastFramesXmittedOK);
845 mac_stats->FramesTransmittedOK += mac_stats->BroadcastFramesXmittedOK;
846
847 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_MULTICAST, 1,
848 &mac_stats->MulticastFramesReceivedOK);
849 mac_stats->FramesReceivedOK += mac_stats->MulticastFramesReceivedOK;
850 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_BROADCAST, 1,
851 &mac_stats->BroadcastFramesReceivedOK);
852 mac_stats->FramesReceivedOK += mac_stats->BroadcastFramesReceivedOK;
853 }
854
855 static const struct ethtool_rmon_hist_range mt7530_rmon_ranges[] = {
856 { 0, 64 },
857 { 65, 127 },
858 { 128, 255 },
859 { 256, 511 },
860 { 512, 1023 },
861 { 1024, MT7530_MAX_MTU },
862 {}
863 };
864
mt7530_get_rmon_stats(struct dsa_switch * ds,int port,struct ethtool_rmon_stats * rmon_stats,const struct ethtool_rmon_hist_range ** ranges)865 static void mt7530_get_rmon_stats(struct dsa_switch *ds, int port,
866 struct ethtool_rmon_stats *rmon_stats,
867 const struct ethtool_rmon_hist_range **ranges)
868 {
869 struct mt7530_priv *priv = ds->priv;
870
871 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_UNDER_SIZE_ERR, 1,
872 &rmon_stats->undersize_pkts);
873 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_OVER_SZ_ERR, 1,
874 &rmon_stats->oversize_pkts);
875 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_FRAG_ERR, 1,
876 &rmon_stats->fragments);
877 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_JABBER_ERR, 1,
878 &rmon_stats->jabbers);
879
880 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_PKT_SZ_64, 1,
881 &rmon_stats->hist[0]);
882 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_PKT_SZ_65_TO_127, 1,
883 &rmon_stats->hist[1]);
884 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_PKT_SZ_128_TO_255, 1,
885 &rmon_stats->hist[2]);
886 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_PKT_SZ_256_TO_511, 1,
887 &rmon_stats->hist[3]);
888 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_PKT_SZ_512_TO_1023, 1,
889 &rmon_stats->hist[4]);
890 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_PKT_SZ_1024_TO_MAX, 1,
891 &rmon_stats->hist[5]);
892
893 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_PKT_SZ_64, 1,
894 &rmon_stats->hist_tx[0]);
895 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_PKT_SZ_65_TO_127, 1,
896 &rmon_stats->hist_tx[1]);
897 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_PKT_SZ_128_TO_255, 1,
898 &rmon_stats->hist_tx[2]);
899 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_PKT_SZ_256_TO_511, 1,
900 &rmon_stats->hist_tx[3]);
901 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_PKT_SZ_512_TO_1023, 1,
902 &rmon_stats->hist_tx[4]);
903 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_PKT_SZ_1024_TO_MAX, 1,
904 &rmon_stats->hist_tx[5]);
905
906 *ranges = mt7530_rmon_ranges;
907 }
908
mt7530_get_stats64(struct dsa_switch * ds,int port,struct rtnl_link_stats64 * storage)909 static void mt7530_get_stats64(struct dsa_switch *ds, int port,
910 struct rtnl_link_stats64 *storage)
911 {
912 struct mt7530_priv *priv = ds->priv;
913 uint64_t data;
914
915 /* MIB counter doesn't provide a FramesTransmittedOK but instead
916 * provide stats for Unicast, Broadcast and Multicast frames separately.
917 * To simulate a global frame counter, read Unicast and addition Multicast
918 * and Broadcast later
919 */
920 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_UNICAST, 1,
921 &storage->rx_packets);
922 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_MULTICAST, 1,
923 &storage->multicast);
924 storage->rx_packets += storage->multicast;
925 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_BROADCAST, 1,
926 &data);
927 storage->rx_packets += data;
928
929 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_UNICAST, 1,
930 &storage->tx_packets);
931 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_MULTICAST, 1,
932 &data);
933 storage->tx_packets += data;
934 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_BROADCAST, 1,
935 &data);
936 storage->tx_packets += data;
937
938 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_BYTES, 2,
939 &storage->rx_bytes);
940
941 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_BYTES, 2,
942 &storage->tx_bytes);
943
944 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_DROP, 1,
945 &storage->rx_dropped);
946
947 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_DROP, 1,
948 &storage->tx_dropped);
949
950 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_CRC_ERR, 1,
951 &storage->rx_crc_errors);
952 }
953
mt7530_get_eth_ctrl_stats(struct dsa_switch * ds,int port,struct ethtool_eth_ctrl_stats * ctrl_stats)954 static void mt7530_get_eth_ctrl_stats(struct dsa_switch *ds, int port,
955 struct ethtool_eth_ctrl_stats *ctrl_stats)
956 {
957 struct mt7530_priv *priv = ds->priv;
958
959 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_TX_PAUSE, 1,
960 &ctrl_stats->MACControlFramesTransmitted);
961
962 mt7530_read_port_stats(priv, port, MT7530_PORT_MIB_RX_PAUSE, 1,
963 &ctrl_stats->MACControlFramesReceived);
964 }
965
966 static int
mt7530_set_ageing_time(struct dsa_switch * ds,unsigned int msecs)967 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
968 {
969 struct mt7530_priv *priv = ds->priv;
970 unsigned int secs = msecs / 1000;
971 unsigned int tmp_age_count;
972 unsigned int error = -1;
973 unsigned int age_count;
974 unsigned int age_unit;
975
976 /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
977 if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
978 return -ERANGE;
979
980 /* iterate through all possible age_count to find the closest pair */
981 for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
982 unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
983
984 if (tmp_age_unit <= AGE_UNIT_MAX) {
985 unsigned int tmp_error = secs -
986 (tmp_age_count + 1) * (tmp_age_unit + 1);
987
988 /* found a closer pair */
989 if (error > tmp_error) {
990 error = tmp_error;
991 age_count = tmp_age_count;
992 age_unit = tmp_age_unit;
993 }
994
995 /* found the exact match, so break the loop */
996 if (!error)
997 break;
998 }
999 }
1000
1001 mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
1002
1003 return 0;
1004 }
1005
mt7530_p5_mode_str(unsigned int mode)1006 static const char *mt7530_p5_mode_str(unsigned int mode)
1007 {
1008 switch (mode) {
1009 case MUX_PHY_P0:
1010 return "MUX PHY P0";
1011 case MUX_PHY_P4:
1012 return "MUX PHY P4";
1013 default:
1014 return "GMAC5";
1015 }
1016 }
1017
mt7530_setup_port5(struct dsa_switch * ds,phy_interface_t interface)1018 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
1019 {
1020 struct mt7530_priv *priv = ds->priv;
1021 u8 tx_delay = 0;
1022 int val;
1023
1024 mutex_lock(&priv->reg_mutex);
1025
1026 val = mt7530_read(priv, MT753X_MTRAP);
1027
1028 val &= ~MT7530_P5_PHY0_SEL & ~MT7530_P5_MAC_SEL & ~MT7530_P5_RGMII_MODE;
1029
1030 switch (priv->p5_mode) {
1031 /* MUX_PHY_P0: P0 -> P5 -> SoC MAC */
1032 case MUX_PHY_P0:
1033 val |= MT7530_P5_PHY0_SEL;
1034 fallthrough;
1035
1036 /* MUX_PHY_P4: P4 -> P5 -> SoC MAC */
1037 case MUX_PHY_P4:
1038 /* Setup the MAC by default for the cpu port */
1039 mt7530_write(priv, MT753X_PMCR_P(5), 0x56300);
1040 break;
1041
1042 /* GMAC5: P5 -> SoC MAC or external PHY */
1043 default:
1044 val |= MT7530_P5_MAC_SEL;
1045 break;
1046 }
1047
1048 /* Setup RGMII settings */
1049 if (phy_interface_mode_is_rgmii(interface)) {
1050 val |= MT7530_P5_RGMII_MODE;
1051
1052 /* P5 RGMII RX Clock Control: delay setting for 1000M */
1053 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
1054
1055 /* Don't set delay in DSA mode */
1056 if (!dsa_is_dsa_port(priv->ds, 5) &&
1057 (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
1058 interface == PHY_INTERFACE_MODE_RGMII_ID))
1059 tx_delay = 4; /* n * 0.5 ns */
1060
1061 /* P5 RGMII TX Clock Control: delay x */
1062 mt7530_write(priv, MT7530_P5RGMIITXCR,
1063 CSR_RGMII_TXC_CFG(0x10 + tx_delay));
1064
1065 /* reduce P5 RGMII Tx driving, 8mA */
1066 mt7530_write(priv, MT7530_IO_DRV_CR,
1067 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
1068 }
1069
1070 mt7530_write(priv, MT753X_MTRAP, val);
1071
1072 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, mode=%s, phy-mode=%s\n", val,
1073 mt7530_p5_mode_str(priv->p5_mode), phy_modes(interface));
1074
1075 mutex_unlock(&priv->reg_mutex);
1076 }
1077
1078 /* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL)
1079 * of the Open Systems Interconnection basic reference model (OSI/RM) are
1080 * described; the medium access control (MAC) and logical link control (LLC)
1081 * sublayers. The MAC sublayer is the one facing the physical layer.
1082 *
1083 * In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A
1084 * Bridge component comprises a MAC Relay Entity for interconnecting the Ports
1085 * of the Bridge, at least two Ports, and higher layer entities with at least a
1086 * Spanning Tree Protocol Entity included.
1087 *
1088 * Each Bridge Port also functions as an end station and shall provide the MAC
1089 * Service to an LLC Entity. Each instance of the MAC Service is provided to a
1090 * distinct LLC Entity that supports protocol identification, multiplexing, and
1091 * demultiplexing, for protocol data unit (PDU) transmission and reception by
1092 * one or more higher layer entities.
1093 *
1094 * It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC
1095 * Entity associated with each Bridge Port is modeled as being directly
1096 * connected to the attached Local Area Network (LAN).
1097 *
1098 * On the switch with CPU port architecture, CPU port functions as Management
1099 * Port, and the Management Port functionality is provided by software which
1100 * functions as an end station. Software is connected to an IEEE 802 LAN that is
1101 * wholly contained within the system that incorporates the Bridge. Software
1102 * provides access to the LLC Entity associated with each Bridge Port by the
1103 * value of the source port field on the special tag on the frame received by
1104 * software.
1105 *
1106 * We call frames that carry control information to determine the active
1107 * topology and current extent of each Virtual Local Area Network (VLAN), i.e.,
1108 * spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration
1109 * Protocol Data Units (MVRPDUs), and frames from other link constrained
1110 * protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and
1111 * Link Layer Discovery Protocol (LLDP), link-local frames. They are not
1112 * forwarded by a Bridge. Permanently configured entries in the filtering
1113 * database (FDB) ensure that such frames are discarded by the Forwarding
1114 * Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail:
1115 *
1116 * Each of the reserved MAC addresses specified in Table 8-1
1117 * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be
1118 * permanently configured in the FDB in C-VLAN components and ERs.
1119 *
1120 * Each of the reserved MAC addresses specified in Table 8-2
1121 * (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently
1122 * configured in the FDB in S-VLAN components.
1123 *
1124 * Each of the reserved MAC addresses specified in Table 8-3
1125 * (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in
1126 * TPMR components.
1127 *
1128 * The FDB entries for reserved MAC addresses shall specify filtering for all
1129 * Bridge Ports and all VIDs. Management shall not provide the capability to
1130 * modify or remove entries for reserved MAC addresses.
1131 *
1132 * The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of
1133 * propagation of PDUs within a Bridged Network, as follows:
1134 *
1135 * The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no
1136 * conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN)
1137 * component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward.
1138 * PDUs transmitted using this destination address, or any other addresses
1139 * that appear in Table 8-1, Table 8-2, and Table 8-3
1140 * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can
1141 * therefore travel no further than those stations that can be reached via a
1142 * single individual LAN from the originating station.
1143 *
1144 * The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an
1145 * address that no conformant S-VLAN component, C-VLAN component, or MAC
1146 * Bridge can forward; however, this address is relayed by a TPMR component.
1147 * PDUs using this destination address, or any of the other addresses that
1148 * appear in both Table 8-1 and Table 8-2 but not in Table 8-3
1149 * (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by
1150 * any TPMRs but will propagate no further than the nearest S-VLAN component,
1151 * C-VLAN component, or MAC Bridge.
1152 *
1153 * The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address
1154 * that no conformant C-VLAN component, MAC Bridge can forward; however, it is
1155 * relayed by TPMR components and S-VLAN components. PDUs using this
1156 * destination address, or any of the other addresses that appear in Table 8-1
1157 * but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]),
1158 * will be relayed by TPMR components and S-VLAN components but will propagate
1159 * no further than the nearest C-VLAN component or MAC Bridge.
1160 *
1161 * Because the LLC Entity associated with each Bridge Port is provided via CPU
1162 * port, we must not filter these frames but forward them to CPU port.
1163 *
1164 * In a Bridge, the transmission Port is majorly decided by ingress and egress
1165 * rules, FDB, and spanning tree Port State functions of the Forwarding Process.
1166 * For link-local frames, only CPU port should be designated as destination port
1167 * in the FDB, and the other functions of the Forwarding Process must not
1168 * interfere with the decision of the transmission Port. We call this process
1169 * trapping frames to CPU port.
1170 *
1171 * Therefore, on the switch with CPU port architecture, link-local frames must
1172 * be trapped to CPU port, and certain link-local frames received by a Port of a
1173 * Bridge comprising a TPMR component or an S-VLAN component must be excluded
1174 * from it.
1175 *
1176 * A Bridge of the switch with CPU port architecture cannot comprise a Two-Port
1177 * MAC Relay (TPMR) component as a TPMR component supports only a subset of the
1178 * functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port
1179 * doesn't count) of this architecture will either function as a standard MAC
1180 * Bridge or a standard VLAN Bridge.
1181 *
1182 * Therefore, a Bridge of this architecture can only comprise S-VLAN components,
1183 * C-VLAN components, or MAC Bridge components. Since there's no TPMR component,
1184 * we don't need to relay PDUs using the destination addresses specified on the
1185 * Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge
1186 * section where they must be relayed by TPMR components.
1187 *
1188 * One option to trap link-local frames to CPU port is to add static FDB entries
1189 * with CPU port designated as destination port. However, because that
1190 * Independent VLAN Learning (IVL) is being used on every VID, each entry only
1191 * applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC
1192 * Bridge component or a C-VLAN component, there would have to be 16 times 4096
1193 * entries. This switch intellectual property can only hold a maximum of 2048
1194 * entries. Using this option, there also isn't a mechanism to prevent
1195 * link-local frames from being discarded when the spanning tree Port State of
1196 * the reception Port is discarding.
1197 *
1198 * The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4
1199 * registers. Whilst this applies to every VID, it doesn't contain all of the
1200 * reserved MAC addresses without affecting the remaining Standard Group MAC
1201 * Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the
1202 * remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination
1203 * addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF
1204 * destination addresses which may be relayed by MAC Bridges or VLAN Bridges.
1205 * The latter option provides better but not complete conformance.
1206 *
1207 * This switch intellectual property also does not provide a mechanism to trap
1208 * link-local frames with specific destination addresses to CPU port by Bridge,
1209 * to conform to the filtering rules for the distinct Bridge components.
1210 *
1211 * Therefore, regardless of the type of the Bridge component, link-local frames
1212 * with these destination addresses will be trapped to CPU port:
1213 *
1214 * 01-80-C2-00-00-[00,01,02,03,0E]
1215 *
1216 * In a Bridge comprising a MAC Bridge component or a C-VLAN component:
1217 *
1218 * Link-local frames with these destination addresses won't be trapped to CPU
1219 * port which won't conform to IEEE Std 802.1Q-2022:
1220 *
1221 * 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F]
1222 *
1223 * In a Bridge comprising an S-VLAN component:
1224 *
1225 * Link-local frames with these destination addresses will be trapped to CPU
1226 * port which won't conform to IEEE Std 802.1Q-2022:
1227 *
1228 * 01-80-C2-00-00-00
1229 *
1230 * Link-local frames with these destination addresses won't be trapped to CPU
1231 * port which won't conform to IEEE Std 802.1Q-2022:
1232 *
1233 * 01-80-C2-00-00-[04,05,06,07,08,09,0A]
1234 *
1235 * To trap link-local frames to CPU port as conformant as this switch
1236 * intellectual property can allow, link-local frames are made to be regarded as
1237 * Bridge Protocol Data Units (BPDUs). This is because this switch intellectual
1238 * property only lets the frames regarded as BPDUs bypass the spanning tree Port
1239 * State function of the Forwarding Process.
1240 *
1241 * The only remaining interference is the ingress rules. When the reception Port
1242 * has no PVID assigned on software, VLAN-untagged frames won't be allowed in.
1243 * There doesn't seem to be a mechanism on the switch intellectual property to
1244 * have link-local frames bypass this function of the Forwarding Process.
1245 */
1246 static void
mt753x_trap_frames(struct mt7530_priv * priv)1247 mt753x_trap_frames(struct mt7530_priv *priv)
1248 {
1249 /* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
1250 * VLAN-untagged.
1251 */
1252 mt7530_rmw(priv, MT753X_BPC,
1253 PAE_BPDU_FR | PAE_EG_TAG_MASK | PAE_PORT_FW_MASK |
1254 BPDU_EG_TAG_MASK | BPDU_PORT_FW_MASK,
1255 PAE_BPDU_FR | PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1256 PAE_PORT_FW(TO_CPU_FW_CPU_ONLY) |
1257 BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1258 TO_CPU_FW_CPU_ONLY);
1259
1260 /* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
1261 * them VLAN-untagged.
1262 */
1263 mt7530_rmw(priv, MT753X_RGAC1,
1264 R02_BPDU_FR | R02_EG_TAG_MASK | R02_PORT_FW_MASK |
1265 R01_BPDU_FR | R01_EG_TAG_MASK | R01_PORT_FW_MASK,
1266 R02_BPDU_FR | R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1267 R02_PORT_FW(TO_CPU_FW_CPU_ONLY) | R01_BPDU_FR |
1268 R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1269 TO_CPU_FW_CPU_ONLY);
1270
1271 /* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
1272 * them VLAN-untagged.
1273 */
1274 mt7530_rmw(priv, MT753X_RGAC2,
1275 R0E_BPDU_FR | R0E_EG_TAG_MASK | R0E_PORT_FW_MASK |
1276 R03_BPDU_FR | R03_EG_TAG_MASK | R03_PORT_FW_MASK,
1277 R0E_BPDU_FR | R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1278 R0E_PORT_FW(TO_CPU_FW_CPU_ONLY) | R03_BPDU_FR |
1279 R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1280 TO_CPU_FW_CPU_ONLY);
1281 }
1282
1283 static void
mt753x_cpu_port_enable(struct dsa_switch * ds,int port)1284 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1285 {
1286 struct mt7530_priv *priv = ds->priv;
1287
1288 /* Enable Mediatek header mode on the cpu port */
1289 mt7530_write(priv, MT7530_PVC_P(port),
1290 PORT_SPEC_TAG);
1291
1292 /* Enable flooding on the CPU port */
1293 mt7530_set(priv, MT753X_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1294 UNU_FFP(BIT(port)));
1295
1296 /* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1297 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1298 * is affine to the inbound user port.
1299 */
1300 if (priv->id == ID_MT7531 || priv->id == ID_MT7988 ||
1301 priv->id == ID_EN7581 || priv->id == ID_AN7583)
1302 mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1303
1304 /* CPU port gets connected to all user ports of
1305 * the switch.
1306 */
1307 mt7530_write(priv, MT7530_PCR_P(port),
1308 PCR_MATRIX(dsa_user_ports(priv->ds)));
1309
1310 /* Set to fallback mode for independent VLAN learning */
1311 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1312 MT7530_PORT_FALLBACK_MODE);
1313 }
1314
1315 static int
mt7530_port_enable(struct dsa_switch * ds,int port,struct phy_device * phy)1316 mt7530_port_enable(struct dsa_switch *ds, int port,
1317 struct phy_device *phy)
1318 {
1319 struct dsa_port *dp = dsa_to_port(ds, port);
1320 struct mt7530_priv *priv = ds->priv;
1321
1322 mutex_lock(&priv->reg_mutex);
1323
1324 /* Allow the user port gets connected to the cpu port and also
1325 * restore the port matrix if the port is the member of a certain
1326 * bridge.
1327 */
1328 if (dsa_port_is_user(dp)) {
1329 struct dsa_port *cpu_dp = dp->cpu_dp;
1330
1331 priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1332 }
1333 priv->ports[port].enable = true;
1334 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1335 priv->ports[port].pm);
1336
1337 mutex_unlock(&priv->reg_mutex);
1338
1339 if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
1340 return 0;
1341
1342 if (port == 5)
1343 mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS);
1344 else if (port == 6)
1345 mt7530_clear(priv, MT753X_MTRAP, MT7530_P6_DIS);
1346
1347 return 0;
1348 }
1349
1350 static void
mt7530_port_disable(struct dsa_switch * ds,int port)1351 mt7530_port_disable(struct dsa_switch *ds, int port)
1352 {
1353 struct mt7530_priv *priv = ds->priv;
1354
1355 mutex_lock(&priv->reg_mutex);
1356
1357 /* Clear up all port matrix which could be restored in the next
1358 * enablement for the port.
1359 */
1360 priv->ports[port].enable = false;
1361 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1362 PCR_MATRIX_CLR);
1363
1364 mutex_unlock(&priv->reg_mutex);
1365
1366 if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
1367 return;
1368
1369 /* Do not set MT7530_P5_DIS when port 5 is being used for PHY muxing. */
1370 if (port == 5 && priv->p5_mode == GMAC5)
1371 mt7530_set(priv, MT753X_MTRAP, MT7530_P5_DIS);
1372 else if (port == 6)
1373 mt7530_set(priv, MT753X_MTRAP, MT7530_P6_DIS);
1374 }
1375
1376 static int
mt7530_port_change_mtu(struct dsa_switch * ds,int port,int new_mtu)1377 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1378 {
1379 struct mt7530_priv *priv = ds->priv;
1380 int length;
1381 u32 val;
1382
1383 /* When a new MTU is set, DSA always set the CPU port's MTU to the
1384 * largest MTU of the user ports. Because the switch only has a global
1385 * RX length register, only allowing CPU port here is enough.
1386 */
1387 if (!dsa_is_cpu_port(ds, port))
1388 return 0;
1389
1390 mt7530_mutex_lock(priv);
1391
1392 val = mt7530_mii_read(priv, MT7530_GMACCR);
1393 val &= ~MAX_RX_PKT_LEN_MASK;
1394
1395 /* RX length also includes Ethernet header, MTK tag, and FCS length */
1396 length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1397 if (length <= 1522) {
1398 val |= MAX_RX_PKT_LEN_1522;
1399 } else if (length <= 1536) {
1400 val |= MAX_RX_PKT_LEN_1536;
1401 } else if (length <= 1552) {
1402 val |= MAX_RX_PKT_LEN_1552;
1403 } else {
1404 val &= ~MAX_RX_JUMBO_MASK;
1405 val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1406 val |= MAX_RX_PKT_LEN_JUMBO;
1407 }
1408
1409 mt7530_mii_write(priv, MT7530_GMACCR, val);
1410
1411 mt7530_mutex_unlock(priv);
1412
1413 return 0;
1414 }
1415
1416 static int
mt7530_port_max_mtu(struct dsa_switch * ds,int port)1417 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1418 {
1419 return MT7530_MAX_MTU;
1420 }
1421
1422 static void
mt7530_stp_state_set(struct dsa_switch * ds,int port,u8 state)1423 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1424 {
1425 struct mt7530_priv *priv = ds->priv;
1426 u32 stp_state;
1427
1428 switch (state) {
1429 case BR_STATE_DISABLED:
1430 stp_state = MT7530_STP_DISABLED;
1431 break;
1432 case BR_STATE_BLOCKING:
1433 stp_state = MT7530_STP_BLOCKING;
1434 break;
1435 case BR_STATE_LISTENING:
1436 stp_state = MT7530_STP_LISTENING;
1437 break;
1438 case BR_STATE_LEARNING:
1439 stp_state = MT7530_STP_LEARNING;
1440 break;
1441 case BR_STATE_FORWARDING:
1442 default:
1443 stp_state = MT7530_STP_FORWARDING;
1444 break;
1445 }
1446
1447 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1448 FID_PST(FID_BRIDGED, stp_state));
1449 }
1450
mt7530_update_port_member(struct mt7530_priv * priv,int port,const struct net_device * bridge_dev,bool join)1451 static void mt7530_update_port_member(struct mt7530_priv *priv, int port,
1452 const struct net_device *bridge_dev,
1453 bool join) __must_hold(&priv->reg_mutex)
1454 {
1455 struct dsa_port *dp = dsa_to_port(priv->ds, port), *other_dp;
1456 struct mt7530_port *p = &priv->ports[port], *other_p;
1457 struct dsa_port *cpu_dp = dp->cpu_dp;
1458 u32 port_bitmap = BIT(cpu_dp->index);
1459 int other_port;
1460 bool isolated;
1461
1462 dsa_switch_for_each_user_port(other_dp, priv->ds) {
1463 other_port = other_dp->index;
1464 other_p = &priv->ports[other_port];
1465
1466 if (dp == other_dp)
1467 continue;
1468
1469 /* Add/remove this port to/from the port matrix of the other
1470 * ports in the same bridge. If the port is disabled, port
1471 * matrix is kept and not being setup until the port becomes
1472 * enabled.
1473 */
1474 if (!dsa_port_offloads_bridge_dev(other_dp, bridge_dev))
1475 continue;
1476
1477 isolated = p->isolated && other_p->isolated;
1478
1479 if (join && !isolated) {
1480 other_p->pm |= PCR_MATRIX(BIT(port));
1481 port_bitmap |= BIT(other_port);
1482 } else {
1483 other_p->pm &= ~PCR_MATRIX(BIT(port));
1484 }
1485
1486 if (other_p->enable)
1487 mt7530_rmw(priv, MT7530_PCR_P(other_port),
1488 PCR_MATRIX_MASK, other_p->pm);
1489 }
1490
1491 /* Add/remove the all other ports to this port matrix. For !join
1492 * (leaving the bridge), only the CPU port will remain in the port matrix
1493 * of this port.
1494 */
1495 p->pm = PCR_MATRIX(port_bitmap);
1496 if (priv->ports[port].enable)
1497 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, p->pm);
1498 }
1499
1500 static int
mt7530_port_pre_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)1501 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1502 struct switchdev_brport_flags flags,
1503 struct netlink_ext_ack *extack)
1504 {
1505 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1506 BR_BCAST_FLOOD | BR_ISOLATED))
1507 return -EINVAL;
1508
1509 return 0;
1510 }
1511
1512 static int
mt7530_port_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)1513 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1514 struct switchdev_brport_flags flags,
1515 struct netlink_ext_ack *extack)
1516 {
1517 struct mt7530_priv *priv = ds->priv;
1518
1519 if (flags.mask & BR_LEARNING)
1520 mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1521 flags.val & BR_LEARNING ? 0 : SA_DIS);
1522
1523 if (flags.mask & BR_FLOOD)
1524 mt7530_rmw(priv, MT753X_MFC, UNU_FFP(BIT(port)),
1525 flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1526
1527 if (flags.mask & BR_MCAST_FLOOD)
1528 mt7530_rmw(priv, MT753X_MFC, UNM_FFP(BIT(port)),
1529 flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1530
1531 if (flags.mask & BR_BCAST_FLOOD)
1532 mt7530_rmw(priv, MT753X_MFC, BC_FFP(BIT(port)),
1533 flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1534
1535 if (flags.mask & BR_ISOLATED) {
1536 struct dsa_port *dp = dsa_to_port(ds, port);
1537 struct net_device *bridge_dev = dsa_port_bridge_dev_get(dp);
1538
1539 priv->ports[port].isolated = !!(flags.val & BR_ISOLATED);
1540
1541 mutex_lock(&priv->reg_mutex);
1542 mt7530_update_port_member(priv, port, bridge_dev, true);
1543 mutex_unlock(&priv->reg_mutex);
1544 }
1545
1546 return 0;
1547 }
1548
1549 static int
mt7530_port_bridge_join(struct dsa_switch * ds,int port,struct dsa_bridge bridge,bool * tx_fwd_offload,struct netlink_ext_ack * extack)1550 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1551 struct dsa_bridge bridge, bool *tx_fwd_offload,
1552 struct netlink_ext_ack *extack)
1553 {
1554 struct mt7530_priv *priv = ds->priv;
1555
1556 mutex_lock(&priv->reg_mutex);
1557
1558 mt7530_update_port_member(priv, port, bridge.dev, true);
1559
1560 /* Set to fallback mode for independent VLAN learning */
1561 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1562 MT7530_PORT_FALLBACK_MODE);
1563
1564 mutex_unlock(&priv->reg_mutex);
1565
1566 return 0;
1567 }
1568
1569 static void
mt7530_port_set_vlan_unaware(struct dsa_switch * ds,int port)1570 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1571 {
1572 struct mt7530_priv *priv = ds->priv;
1573 bool all_user_ports_removed = true;
1574 int i;
1575
1576 /* This is called after .port_bridge_leave when leaving a VLAN-aware
1577 * bridge. Don't set standalone ports to fallback mode.
1578 */
1579 if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1580 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1581 MT7530_PORT_FALLBACK_MODE);
1582
1583 mt7530_rmw(priv, MT7530_PVC_P(port),
1584 VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1585 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1586 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1587 MT7530_VLAN_ACC_ALL);
1588
1589 /* Set PVID to 0 */
1590 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1591 G0_PORT_VID_DEF);
1592
1593 for (i = 0; i < priv->ds->num_ports; i++) {
1594 if (dsa_is_user_port(ds, i) &&
1595 dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1596 all_user_ports_removed = false;
1597 break;
1598 }
1599 }
1600
1601 /* CPU port also does the same thing until all user ports belonging to
1602 * the CPU port get out of VLAN filtering mode.
1603 */
1604 if (all_user_ports_removed) {
1605 struct dsa_port *dp = dsa_to_port(ds, port);
1606 struct dsa_port *cpu_dp = dp->cpu_dp;
1607
1608 mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1609 PCR_MATRIX(dsa_user_ports(priv->ds)));
1610 mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1611 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1612 }
1613 }
1614
1615 static void
mt7530_port_set_vlan_aware(struct dsa_switch * ds,int port)1616 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1617 {
1618 struct mt7530_priv *priv = ds->priv;
1619
1620 /* Trapped into security mode allows packet forwarding through VLAN
1621 * table lookup.
1622 */
1623 if (dsa_is_user_port(ds, port)) {
1624 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1625 MT7530_PORT_SECURITY_MODE);
1626 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1627 G0_PORT_VID(priv->ports[port].pvid));
1628
1629 /* Only accept tagged frames if PVID is not set */
1630 if (!priv->ports[port].pvid)
1631 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1632 MT7530_VLAN_ACC_TAGGED);
1633
1634 /* Set the port as a user port which is to be able to recognize
1635 * VID from incoming packets before fetching entry within the
1636 * VLAN table.
1637 */
1638 mt7530_rmw(priv, MT7530_PVC_P(port),
1639 VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1640 VLAN_ATTR(MT7530_VLAN_USER) |
1641 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1642 } else {
1643 /* Also set CPU ports to the "user" VLAN port attribute, to
1644 * allow VLAN classification, but keep the EG_TAG attribute as
1645 * "consistent" (i.o.w. don't change its value) for packets
1646 * received by the switch from the CPU, so that tagged packets
1647 * are forwarded to user ports as tagged, and untagged as
1648 * untagged.
1649 */
1650 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1651 VLAN_ATTR(MT7530_VLAN_USER));
1652 }
1653 }
1654
1655 static void
mt7530_port_bridge_leave(struct dsa_switch * ds,int port,struct dsa_bridge bridge)1656 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1657 struct dsa_bridge bridge)
1658 {
1659 struct mt7530_priv *priv = ds->priv;
1660
1661 mutex_lock(&priv->reg_mutex);
1662
1663 mt7530_update_port_member(priv, port, bridge.dev, false);
1664
1665 /* When a port is removed from the bridge, the port would be set up
1666 * back to the default as is at initial boot which is a VLAN-unaware
1667 * port.
1668 */
1669 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1670 MT7530_PORT_MATRIX_MODE);
1671
1672 mutex_unlock(&priv->reg_mutex);
1673 }
1674
1675 static int
mt7530_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1676 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1677 const unsigned char *addr, u16 vid,
1678 struct dsa_db db)
1679 {
1680 struct mt7530_priv *priv = ds->priv;
1681 int ret;
1682 u8 port_mask = BIT(port);
1683
1684 mutex_lock(&priv->reg_mutex);
1685 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1686 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1687 mutex_unlock(&priv->reg_mutex);
1688
1689 return ret;
1690 }
1691
1692 static int
mt7530_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1693 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1694 const unsigned char *addr, u16 vid,
1695 struct dsa_db db)
1696 {
1697 struct mt7530_priv *priv = ds->priv;
1698 int ret;
1699 u8 port_mask = BIT(port);
1700
1701 mutex_lock(&priv->reg_mutex);
1702 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1703 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1704 mutex_unlock(&priv->reg_mutex);
1705
1706 return ret;
1707 }
1708
1709 static int
mt7530_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)1710 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1711 dsa_fdb_dump_cb_t *cb, void *data)
1712 {
1713 struct mt7530_priv *priv = ds->priv;
1714 struct mt7530_fdb _fdb = { 0 };
1715 int cnt = MT7530_NUM_FDB_RECORDS;
1716 int ret = 0;
1717 u32 rsp = 0;
1718
1719 mutex_lock(&priv->reg_mutex);
1720
1721 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1722 if (ret < 0)
1723 goto err;
1724
1725 do {
1726 if (rsp & ATC_SRCH_HIT) {
1727 mt7530_fdb_read(priv, &_fdb);
1728 if (_fdb.port_mask & BIT(port)) {
1729 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1730 data);
1731 if (ret < 0)
1732 break;
1733 }
1734 }
1735 } while (--cnt &&
1736 !(rsp & ATC_SRCH_END) &&
1737 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1738 err:
1739 mutex_unlock(&priv->reg_mutex);
1740
1741 return 0;
1742 }
1743
1744 static int
mt7530_port_mdb_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1745 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1746 const struct switchdev_obj_port_mdb *mdb,
1747 struct dsa_db db)
1748 {
1749 struct mt7530_priv *priv = ds->priv;
1750 const u8 *addr = mdb->addr;
1751 u16 vid = mdb->vid;
1752 u8 port_mask = 0;
1753 int ret;
1754
1755 mutex_lock(&priv->reg_mutex);
1756
1757 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1758 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1759 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1760 & PORT_MAP_MASK;
1761
1762 port_mask |= BIT(port);
1763 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1764 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1765
1766 mutex_unlock(&priv->reg_mutex);
1767
1768 return ret;
1769 }
1770
1771 static int
mt7530_port_mdb_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1772 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1773 const struct switchdev_obj_port_mdb *mdb,
1774 struct dsa_db db)
1775 {
1776 struct mt7530_priv *priv = ds->priv;
1777 const u8 *addr = mdb->addr;
1778 u16 vid = mdb->vid;
1779 u8 port_mask = 0;
1780 int ret;
1781
1782 mutex_lock(&priv->reg_mutex);
1783
1784 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1785 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1786 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1787 & PORT_MAP_MASK;
1788
1789 port_mask &= ~BIT(port);
1790 mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1791 port_mask ? STATIC_ENT : STATIC_EMP);
1792 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1793
1794 mutex_unlock(&priv->reg_mutex);
1795
1796 return ret;
1797 }
1798
1799 static int
mt7530_vlan_cmd(struct mt7530_priv * priv,enum mt7530_vlan_cmd cmd,u16 vid)1800 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1801 {
1802 struct mt7530_dummy_poll p;
1803 u32 val;
1804 int ret;
1805
1806 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1807 mt7530_write(priv, MT7530_VTCR, val);
1808
1809 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1810 ret = readx_poll_timeout(_mt7530_read, &p, val,
1811 !(val & VTCR_BUSY), 20, 20000);
1812 if (ret < 0) {
1813 dev_err(priv->dev, "poll timeout\n");
1814 return ret;
1815 }
1816
1817 val = mt7530_read(priv, MT7530_VTCR);
1818 if (val & VTCR_INVALID) {
1819 dev_err(priv->dev, "read VTCR invalid\n");
1820 return -EINVAL;
1821 }
1822
1823 return 0;
1824 }
1825
1826 static int
mt7530_port_vlan_filtering(struct dsa_switch * ds,int port,bool vlan_filtering,struct netlink_ext_ack * extack)1827 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1828 struct netlink_ext_ack *extack)
1829 {
1830 struct dsa_port *dp = dsa_to_port(ds, port);
1831 struct dsa_port *cpu_dp = dp->cpu_dp;
1832
1833 if (vlan_filtering) {
1834 /* The port is being kept as VLAN-unaware port when bridge is
1835 * set up with vlan_filtering not being set, Otherwise, the
1836 * port and the corresponding CPU port is required the setup
1837 * for becoming a VLAN-aware port.
1838 */
1839 mt7530_port_set_vlan_aware(ds, port);
1840 mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1841 } else {
1842 mt7530_port_set_vlan_unaware(ds, port);
1843 }
1844
1845 return 0;
1846 }
1847
1848 static void
mt7530_hw_vlan_add(struct mt7530_priv * priv,struct mt7530_hw_vlan_entry * entry)1849 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1850 struct mt7530_hw_vlan_entry *entry)
1851 {
1852 struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1853 u8 new_members;
1854 u32 val;
1855
1856 new_members = entry->old_members | BIT(entry->port);
1857
1858 /* Validate the entry with independent learning, create egress tag per
1859 * VLAN and joining the port as one of the port members.
1860 */
1861 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1862 VLAN_VALID;
1863 mt7530_write(priv, MT7530_VAWD1, val);
1864
1865 /* Decide whether adding tag or not for those outgoing packets from the
1866 * port inside the VLAN.
1867 * CPU port is always taken as a tagged port for serving more than one
1868 * VLANs across and also being applied with egress type stack mode for
1869 * that VLAN tags would be appended after hardware special tag used as
1870 * DSA tag.
1871 */
1872 if (dsa_port_is_cpu(dp))
1873 val = MT7530_VLAN_EGRESS_STACK;
1874 else if (entry->untagged)
1875 val = MT7530_VLAN_EGRESS_UNTAG;
1876 else
1877 val = MT7530_VLAN_EGRESS_TAG;
1878 mt7530_rmw(priv, MT7530_VAWD2,
1879 ETAG_CTRL_P_MASK(entry->port),
1880 ETAG_CTRL_P(entry->port, val));
1881 }
1882
1883 static void
mt7530_hw_vlan_del(struct mt7530_priv * priv,struct mt7530_hw_vlan_entry * entry)1884 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1885 struct mt7530_hw_vlan_entry *entry)
1886 {
1887 u8 new_members;
1888 u32 val;
1889
1890 new_members = entry->old_members & ~BIT(entry->port);
1891
1892 val = mt7530_read(priv, MT7530_VAWD1);
1893 if (!(val & VLAN_VALID)) {
1894 dev_err(priv->dev,
1895 "Cannot be deleted due to invalid entry\n");
1896 return;
1897 }
1898
1899 if (new_members) {
1900 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1901 VLAN_VALID;
1902 mt7530_write(priv, MT7530_VAWD1, val);
1903 } else {
1904 mt7530_write(priv, MT7530_VAWD1, 0);
1905 mt7530_write(priv, MT7530_VAWD2, 0);
1906 }
1907 }
1908
1909 static void
mt7530_hw_vlan_update(struct mt7530_priv * priv,u16 vid,struct mt7530_hw_vlan_entry * entry,mt7530_vlan_op vlan_op)1910 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1911 struct mt7530_hw_vlan_entry *entry,
1912 mt7530_vlan_op vlan_op)
1913 {
1914 u32 val;
1915
1916 /* Fetch entry */
1917 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1918
1919 val = mt7530_read(priv, MT7530_VAWD1);
1920
1921 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1922
1923 /* Manipulate entry */
1924 vlan_op(priv, entry);
1925
1926 /* Flush result to hardware */
1927 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1928 }
1929
1930 static int
mt7530_setup_vlan0(struct mt7530_priv * priv)1931 mt7530_setup_vlan0(struct mt7530_priv *priv)
1932 {
1933 u32 val;
1934
1935 /* Validate the entry with independent learning, keep the original
1936 * ingress tag attribute.
1937 */
1938 val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1939 VLAN_VALID;
1940 mt7530_write(priv, MT7530_VAWD1, val);
1941
1942 return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1943 }
1944
1945 static int
mt7530_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1946 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1947 const struct switchdev_obj_port_vlan *vlan,
1948 struct netlink_ext_ack *extack)
1949 {
1950 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1951 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1952 struct mt7530_hw_vlan_entry new_entry;
1953 struct mt7530_priv *priv = ds->priv;
1954
1955 mutex_lock(&priv->reg_mutex);
1956
1957 mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1958 mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1959
1960 if (pvid) {
1961 priv->ports[port].pvid = vlan->vid;
1962
1963 /* Accept all frames if PVID is set */
1964 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1965 MT7530_VLAN_ACC_ALL);
1966
1967 /* Only configure PVID if VLAN filtering is enabled */
1968 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1969 mt7530_rmw(priv, MT7530_PPBV1_P(port),
1970 G0_PORT_VID_MASK,
1971 G0_PORT_VID(vlan->vid));
1972 } else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1973 /* This VLAN is overwritten without PVID, so unset it */
1974 priv->ports[port].pvid = G0_PORT_VID_DEF;
1975
1976 /* Only accept tagged frames if the port is VLAN-aware */
1977 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1978 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1979 MT7530_VLAN_ACC_TAGGED);
1980
1981 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1982 G0_PORT_VID_DEF);
1983 }
1984
1985 mutex_unlock(&priv->reg_mutex);
1986
1987 return 0;
1988 }
1989
1990 static int
mt7530_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1991 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1992 const struct switchdev_obj_port_vlan *vlan)
1993 {
1994 struct mt7530_hw_vlan_entry target_entry;
1995 struct mt7530_priv *priv = ds->priv;
1996
1997 mutex_lock(&priv->reg_mutex);
1998
1999 mt7530_hw_vlan_entry_init(&target_entry, port, 0);
2000 mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
2001 mt7530_hw_vlan_del);
2002
2003 /* PVID is being restored to the default whenever the PVID port
2004 * is being removed from the VLAN.
2005 */
2006 if (priv->ports[port].pvid == vlan->vid) {
2007 priv->ports[port].pvid = G0_PORT_VID_DEF;
2008
2009 /* Only accept tagged frames if the port is VLAN-aware */
2010 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
2011 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
2012 MT7530_VLAN_ACC_TAGGED);
2013
2014 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
2015 G0_PORT_VID_DEF);
2016 }
2017
2018
2019 mutex_unlock(&priv->reg_mutex);
2020
2021 return 0;
2022 }
2023
mt753x_port_mirror_add(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)2024 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
2025 struct dsa_mall_mirror_tc_entry *mirror,
2026 bool ingress, struct netlink_ext_ack *extack)
2027 {
2028 struct mt7530_priv *priv = ds->priv;
2029 int monitor_port;
2030 u32 val;
2031
2032 /* Check for existent entry */
2033 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
2034 return -EEXIST;
2035
2036 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
2037
2038 /* MT7530 only supports one monitor port */
2039 monitor_port = MT753X_MIRROR_PORT_GET(priv->id, val);
2040 if (val & MT753X_MIRROR_EN(priv->id) &&
2041 monitor_port != mirror->to_local_port)
2042 return -EEXIST;
2043
2044 val |= MT753X_MIRROR_EN(priv->id);
2045 val &= ~MT753X_MIRROR_PORT_MASK(priv->id);
2046 val |= MT753X_MIRROR_PORT_SET(priv->id, mirror->to_local_port);
2047 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
2048
2049 val = mt7530_read(priv, MT7530_PCR_P(port));
2050 if (ingress) {
2051 val |= PORT_RX_MIR;
2052 priv->mirror_rx |= BIT(port);
2053 } else {
2054 val |= PORT_TX_MIR;
2055 priv->mirror_tx |= BIT(port);
2056 }
2057 mt7530_write(priv, MT7530_PCR_P(port), val);
2058
2059 return 0;
2060 }
2061
mt753x_port_mirror_del(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror)2062 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
2063 struct dsa_mall_mirror_tc_entry *mirror)
2064 {
2065 struct mt7530_priv *priv = ds->priv;
2066 u32 val;
2067
2068 val = mt7530_read(priv, MT7530_PCR_P(port));
2069 if (mirror->ingress) {
2070 val &= ~PORT_RX_MIR;
2071 priv->mirror_rx &= ~BIT(port);
2072 } else {
2073 val &= ~PORT_TX_MIR;
2074 priv->mirror_tx &= ~BIT(port);
2075 }
2076 mt7530_write(priv, MT7530_PCR_P(port), val);
2077
2078 if (!priv->mirror_rx && !priv->mirror_tx) {
2079 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
2080 val &= ~MT753X_MIRROR_EN(priv->id);
2081 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
2082 }
2083 }
2084
2085 static enum dsa_tag_protocol
mtk_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)2086 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
2087 enum dsa_tag_protocol mp)
2088 {
2089 return DSA_TAG_PROTO_MTK;
2090 }
2091
2092 #ifdef CONFIG_GPIOLIB
2093 static inline u32
mt7530_gpio_to_bit(unsigned int offset)2094 mt7530_gpio_to_bit(unsigned int offset)
2095 {
2096 /* Map GPIO offset to register bit
2097 * [ 2: 0] port 0 LED 0..2 as GPIO 0..2
2098 * [ 6: 4] port 1 LED 0..2 as GPIO 3..5
2099 * [10: 8] port 2 LED 0..2 as GPIO 6..8
2100 * [14:12] port 3 LED 0..2 as GPIO 9..11
2101 * [18:16] port 4 LED 0..2 as GPIO 12..14
2102 */
2103 return BIT(offset + offset / 3);
2104 }
2105
2106 static int
mt7530_gpio_get(struct gpio_chip * gc,unsigned int offset)2107 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
2108 {
2109 struct mt7530_priv *priv = gpiochip_get_data(gc);
2110 u32 bit = mt7530_gpio_to_bit(offset);
2111
2112 return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
2113 }
2114
2115 static int
mt7530_gpio_set(struct gpio_chip * gc,unsigned int offset,int value)2116 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
2117 {
2118 struct mt7530_priv *priv = gpiochip_get_data(gc);
2119 u32 bit = mt7530_gpio_to_bit(offset);
2120
2121 if (value)
2122 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
2123 else
2124 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
2125
2126 return 0;
2127 }
2128
2129 static int
mt7530_gpio_get_direction(struct gpio_chip * gc,unsigned int offset)2130 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
2131 {
2132 struct mt7530_priv *priv = gpiochip_get_data(gc);
2133 u32 bit = mt7530_gpio_to_bit(offset);
2134
2135 return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
2136 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
2137 }
2138
2139 static int
mt7530_gpio_direction_input(struct gpio_chip * gc,unsigned int offset)2140 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
2141 {
2142 struct mt7530_priv *priv = gpiochip_get_data(gc);
2143 u32 bit = mt7530_gpio_to_bit(offset);
2144
2145 mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
2146 mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
2147
2148 return 0;
2149 }
2150
2151 static int
mt7530_gpio_direction_output(struct gpio_chip * gc,unsigned int offset,int value)2152 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
2153 {
2154 struct mt7530_priv *priv = gpiochip_get_data(gc);
2155 u32 bit = mt7530_gpio_to_bit(offset);
2156
2157 mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
2158
2159 if (value)
2160 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
2161 else
2162 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
2163
2164 mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
2165
2166 return 0;
2167 }
2168
2169 static int
mt7530_setup_gpio(struct mt7530_priv * priv)2170 mt7530_setup_gpio(struct mt7530_priv *priv)
2171 {
2172 struct device *dev = priv->dev;
2173 struct gpio_chip *gc;
2174
2175 gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
2176 if (!gc)
2177 return -ENOMEM;
2178
2179 mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
2180 mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
2181 mt7530_write(priv, MT7530_LED_IO_MODE, 0);
2182
2183 gc->label = "mt7530";
2184 gc->parent = dev;
2185 gc->owner = THIS_MODULE;
2186 gc->get_direction = mt7530_gpio_get_direction;
2187 gc->direction_input = mt7530_gpio_direction_input;
2188 gc->direction_output = mt7530_gpio_direction_output;
2189 gc->get = mt7530_gpio_get;
2190 gc->set = mt7530_gpio_set;
2191 gc->base = -1;
2192 gc->ngpio = 15;
2193 gc->can_sleep = true;
2194
2195 return devm_gpiochip_add_data(dev, gc, priv);
2196 }
2197 #endif /* CONFIG_GPIOLIB */
2198
2199 static void
mt7530_setup_mdio_irq(struct mt7530_priv * priv)2200 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2201 {
2202 struct dsa_switch *ds = priv->ds;
2203 int p;
2204
2205 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2206 if (BIT(p) & ds->phys_mii_mask) {
2207 unsigned int irq;
2208
2209 irq = irq_create_mapping(priv->irq_domain, p);
2210 ds->user_mii_bus->irq[p] = irq;
2211 }
2212 }
2213 }
2214
2215 static const struct regmap_irq mt7530_irqs[] = {
2216 REGMAP_IRQ_REG_LINE(0, 32), /* PHY0_LC */
2217 REGMAP_IRQ_REG_LINE(1, 32), /* PHY1_LC */
2218 REGMAP_IRQ_REG_LINE(2, 32), /* PHY2_LC */
2219 REGMAP_IRQ_REG_LINE(3, 32), /* PHY3_LC */
2220 REGMAP_IRQ_REG_LINE(4, 32), /* PHY4_LC */
2221 REGMAP_IRQ_REG_LINE(5, 32), /* PHY5_LC */
2222 REGMAP_IRQ_REG_LINE(6, 32), /* PHY6_LC */
2223 REGMAP_IRQ_REG_LINE(16, 32), /* MAC_PC */
2224 REGMAP_IRQ_REG_LINE(17, 32), /* BMU */
2225 REGMAP_IRQ_REG_LINE(18, 32), /* MIB */
2226 REGMAP_IRQ_REG_LINE(22, 32), /* ARL_COL_FULL_COL */
2227 REGMAP_IRQ_REG_LINE(23, 32), /* ARL_COL_FULL */
2228 REGMAP_IRQ_REG_LINE(24, 32), /* ARL_TBL_ERR */
2229 REGMAP_IRQ_REG_LINE(25, 32), /* ARL_PKT_QERR */
2230 REGMAP_IRQ_REG_LINE(26, 32), /* ARL_EQ_ERR */
2231 REGMAP_IRQ_REG_LINE(27, 32), /* ARL_PKT_BC */
2232 REGMAP_IRQ_REG_LINE(28, 32), /* ARL_SEC_IG1X */
2233 REGMAP_IRQ_REG_LINE(29, 32), /* ARL_SEC_VLAN */
2234 REGMAP_IRQ_REG_LINE(30, 32), /* ARL_SEC_TAG */
2235 REGMAP_IRQ_REG_LINE(31, 32), /* ACL */
2236 };
2237
2238 static const struct regmap_irq_chip mt7530_regmap_irq_chip = {
2239 .name = KBUILD_MODNAME,
2240 .status_base = MT7530_SYS_INT_STS,
2241 .unmask_base = MT7530_SYS_INT_EN,
2242 .ack_base = MT7530_SYS_INT_STS,
2243 .init_ack_masked = true,
2244 .irqs = mt7530_irqs,
2245 .num_irqs = ARRAY_SIZE(mt7530_irqs),
2246 .num_regs = 1,
2247 };
2248
2249 static int
mt7530_setup_irq(struct mt7530_priv * priv)2250 mt7530_setup_irq(struct mt7530_priv *priv)
2251 {
2252 struct regmap_irq_chip_data *irq_data;
2253 struct device *dev = priv->dev;
2254 struct device_node *np = dev->of_node;
2255 int irq, ret;
2256
2257 if (!of_property_read_bool(np, "interrupt-controller")) {
2258 dev_info(dev, "no interrupt support\n");
2259 return 0;
2260 }
2261
2262 irq = of_irq_get(np, 0);
2263 if (irq <= 0) {
2264 dev_err(dev, "failed to get parent IRQ: %d\n", irq);
2265 return irq ? : -EINVAL;
2266 }
2267
2268 /* This register must be set for MT7530 to properly fire interrupts */
2269 if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
2270 mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2271
2272 ret = devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(dev),
2273 priv->regmap, irq,
2274 IRQF_ONESHOT,
2275 0, &mt7530_regmap_irq_chip,
2276 &irq_data);
2277 if (ret)
2278 return ret;
2279
2280 priv->irq_domain = regmap_irq_get_domain(irq_data);
2281
2282 return 0;
2283 }
2284
2285 static void
mt7530_free_mdio_irq(struct mt7530_priv * priv)2286 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2287 {
2288 int p;
2289
2290 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2291 if (BIT(p) & priv->ds->phys_mii_mask) {
2292 unsigned int irq;
2293
2294 irq = irq_find_mapping(priv->irq_domain, p);
2295 irq_dispose_mapping(irq);
2296 }
2297 }
2298 }
2299
2300 static int
mt7530_setup_mdio(struct mt7530_priv * priv)2301 mt7530_setup_mdio(struct mt7530_priv *priv)
2302 {
2303 struct device_node *mnp, *np = priv->dev->of_node;
2304 struct dsa_switch *ds = priv->ds;
2305 struct device *dev = priv->dev;
2306 struct mii_bus *bus;
2307 static int idx;
2308 int ret = 0;
2309
2310 mnp = of_get_child_by_name(np, "mdio");
2311
2312 if (mnp && !of_device_is_available(mnp))
2313 goto out;
2314
2315 bus = devm_mdiobus_alloc(dev);
2316 if (!bus) {
2317 ret = -ENOMEM;
2318 goto out;
2319 }
2320
2321 if (!mnp)
2322 ds->user_mii_bus = bus;
2323
2324 bus->priv = priv;
2325 bus->name = KBUILD_MODNAME "-mii";
2326 snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2327 bus->read = mt753x_phy_read_c22;
2328 bus->write = mt753x_phy_write_c22;
2329 bus->read_c45 = mt753x_phy_read_c45;
2330 bus->write_c45 = mt753x_phy_write_c45;
2331 bus->parent = dev;
2332 bus->phy_mask = ~ds->phys_mii_mask;
2333
2334 if (priv->irq_domain && !mnp)
2335 mt7530_setup_mdio_irq(priv);
2336
2337 ret = devm_of_mdiobus_register(dev, bus, mnp);
2338 if (ret) {
2339 dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2340 if (priv->irq_domain && !mnp)
2341 mt7530_free_mdio_irq(priv);
2342 }
2343
2344 out:
2345 of_node_put(mnp);
2346 return ret;
2347 }
2348
2349 static int
mt7530_setup(struct dsa_switch * ds)2350 mt7530_setup(struct dsa_switch *ds)
2351 {
2352 struct mt7530_priv *priv = ds->priv;
2353 struct device_node *dn = NULL;
2354 struct device_node *phy_node;
2355 struct device_node *mac_np;
2356 struct mt7530_dummy_poll p;
2357 phy_interface_t interface;
2358 struct dsa_port *cpu_dp;
2359 u32 id, val;
2360 int ret, i;
2361
2362 /* The parent node of conduit netdev which holds the common system
2363 * controller also is the container for two GMACs nodes representing
2364 * as two netdev instances.
2365 */
2366 dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2367 dn = cpu_dp->conduit->dev.of_node->parent;
2368 /* It doesn't matter which CPU port is found first,
2369 * their conduits should share the same parent OF node
2370 */
2371 break;
2372 }
2373
2374 if (!dn) {
2375 dev_err(ds->dev, "parent OF node of DSA conduit not found");
2376 return -EINVAL;
2377 }
2378
2379 ds->assisted_learning_on_cpu_port = true;
2380 ds->mtu_enforcement_ingress = true;
2381
2382 if (priv->id == ID_MT7530) {
2383 regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2384 ret = regulator_enable(priv->core_pwr);
2385 if (ret < 0) {
2386 dev_err(priv->dev,
2387 "Failed to enable core power: %d\n", ret);
2388 return ret;
2389 }
2390
2391 regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2392 ret = regulator_enable(priv->io_pwr);
2393 if (ret < 0) {
2394 dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2395 ret);
2396 return ret;
2397 }
2398 }
2399
2400 /* Reset whole chip through gpio pin or memory-mapped registers for
2401 * different type of hardware
2402 */
2403 if (priv->mcm) {
2404 reset_control_assert(priv->rstc);
2405 usleep_range(5000, 5100);
2406 reset_control_deassert(priv->rstc);
2407 } else {
2408 gpiod_set_value_cansleep(priv->reset, 0);
2409 usleep_range(5000, 5100);
2410 gpiod_set_value_cansleep(priv->reset, 1);
2411 }
2412
2413 /* Waiting for MT7530 got to stable */
2414 INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP);
2415 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2416 20, 1000000);
2417 if (ret < 0) {
2418 dev_err(priv->dev, "reset timeout\n");
2419 return ret;
2420 }
2421
2422 id = mt7530_read(priv, MT7530_CREV);
2423 id >>= CHIP_NAME_SHIFT;
2424 if (id != MT7530_ID) {
2425 dev_err(priv->dev, "chip %x can't be supported\n", id);
2426 return -ENODEV;
2427 }
2428
2429 if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_20MHZ) {
2430 dev_err(priv->dev,
2431 "MT7530 with a 20MHz XTAL is not supported!\n");
2432 return -EINVAL;
2433 }
2434
2435 /* Reset the switch through internal reset */
2436 mt7530_write(priv, MT7530_SYS_CTRL,
2437 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2438 SYS_CTRL_REG_RST);
2439
2440 /* Lower Tx driving for TRGMII path */
2441 for (i = 0; i < NUM_TRGMII_CTRL; i++)
2442 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2443 TD_DM_DRVP(8) | TD_DM_DRVN(8));
2444
2445 for (i = 0; i < NUM_TRGMII_CTRL; i++)
2446 mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2447 RD_TAP_MASK, RD_TAP(16));
2448
2449 /* Allow modifying the trap and directly access PHY registers via the
2450 * MDIO bus the switch is on.
2451 */
2452 mt7530_rmw(priv, MT753X_MTRAP, MT7530_CHG_TRAP |
2453 MT7530_PHY_INDIRECT_ACCESS, MT7530_CHG_TRAP);
2454
2455 if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_40MHZ)
2456 mt7530_pll_setup(priv);
2457
2458 mt753x_trap_frames(priv);
2459
2460 /* Enable and reset MIB counters */
2461 mt7530_mib_reset(ds);
2462
2463 for (i = 0; i < priv->ds->num_ports; i++) {
2464 /* Clear link settings and enable force mode to force link down
2465 * on all ports until they're enabled later.
2466 */
2467 mt7530_rmw(priv, MT753X_PMCR_P(i),
2468 PMCR_LINK_SETTINGS_MASK |
2469 MT753X_FORCE_MODE(priv->id),
2470 MT753X_FORCE_MODE(priv->id));
2471
2472 /* Disable forwarding by default on all ports */
2473 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2474 PCR_MATRIX_CLR);
2475
2476 /* Disable learning by default on all ports */
2477 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2478
2479 if (dsa_is_cpu_port(ds, i)) {
2480 mt753x_cpu_port_enable(ds, i);
2481 } else {
2482 mt7530_port_disable(ds, i);
2483
2484 /* Set default PVID to 0 on all user ports */
2485 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2486 G0_PORT_VID_DEF);
2487 }
2488 /* Enable consistent egress tag */
2489 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2490 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2491 }
2492
2493 /* Allow mirroring frames received on the local port (monitor port). */
2494 mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2495
2496 /* Setup VLAN ID 0 for VLAN-unaware bridges */
2497 ret = mt7530_setup_vlan0(priv);
2498 if (ret)
2499 return ret;
2500
2501 /* Check for PHY muxing on port 5 */
2502 if (dsa_is_unused_port(ds, 5)) {
2503 /* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2504 * Set priv->p5_mode to the appropriate value if PHY muxing is
2505 * detected.
2506 */
2507 for_each_child_of_node(dn, mac_np) {
2508 if (!of_device_is_compatible(mac_np,
2509 "mediatek,eth-mac"))
2510 continue;
2511
2512 ret = of_property_read_u32(mac_np, "reg", &id);
2513 if (ret < 0 || id != 1)
2514 continue;
2515
2516 phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2517 if (!phy_node)
2518 continue;
2519
2520 if (phy_node->parent == priv->dev->of_node->parent ||
2521 phy_node->parent->parent == priv->dev->of_node) {
2522 ret = of_get_phy_mode(mac_np, &interface);
2523 if (ret && ret != -ENODEV) {
2524 of_node_put(mac_np);
2525 of_node_put(phy_node);
2526 return ret;
2527 }
2528 id = of_mdio_parse_addr(ds->dev, phy_node);
2529 if (id == 0)
2530 priv->p5_mode = MUX_PHY_P0;
2531 if (id == 4)
2532 priv->p5_mode = MUX_PHY_P4;
2533 }
2534 of_node_put(mac_np);
2535 of_node_put(phy_node);
2536 break;
2537 }
2538
2539 if (priv->p5_mode == MUX_PHY_P0 ||
2540 priv->p5_mode == MUX_PHY_P4) {
2541 mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS);
2542 mt7530_setup_port5(ds, interface);
2543 }
2544 }
2545
2546 #ifdef CONFIG_GPIOLIB
2547 if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2548 ret = mt7530_setup_gpio(priv);
2549 if (ret)
2550 return ret;
2551 }
2552 #endif /* CONFIG_GPIOLIB */
2553
2554 /* Flush the FDB table */
2555 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2556 if (ret < 0)
2557 return ret;
2558
2559 return 0;
2560 }
2561
2562 static int
mt7531_setup_common(struct dsa_switch * ds)2563 mt7531_setup_common(struct dsa_switch *ds)
2564 {
2565 struct mt7530_priv *priv = ds->priv;
2566 int ret, i;
2567
2568 ds->assisted_learning_on_cpu_port = true;
2569 ds->mtu_enforcement_ingress = true;
2570
2571 mt753x_trap_frames(priv);
2572
2573 /* Enable and reset MIB counters */
2574 mt7530_mib_reset(ds);
2575
2576 /* Disable flooding on all ports */
2577 mt7530_clear(priv, MT753X_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2578 UNU_FFP_MASK);
2579
2580 for (i = 0; i < priv->ds->num_ports; i++) {
2581 /* Clear link settings and enable force mode to force link down
2582 * on all ports until they're enabled later.
2583 */
2584 mt7530_rmw(priv, MT753X_PMCR_P(i),
2585 PMCR_LINK_SETTINGS_MASK |
2586 MT753X_FORCE_MODE(priv->id),
2587 MT753X_FORCE_MODE(priv->id));
2588
2589 /* Disable forwarding by default on all ports */
2590 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2591 PCR_MATRIX_CLR);
2592
2593 /* Disable learning by default on all ports */
2594 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2595
2596 mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2597
2598 if (dsa_is_cpu_port(ds, i)) {
2599 mt753x_cpu_port_enable(ds, i);
2600 } else {
2601 mt7530_port_disable(ds, i);
2602
2603 /* Set default PVID to 0 on all user ports */
2604 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2605 G0_PORT_VID_DEF);
2606 }
2607
2608 /* Enable consistent egress tag */
2609 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2610 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2611 }
2612
2613 /* Allow mirroring frames received on the local port (monitor port). */
2614 mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2615
2616 /* Enable Special Tag for rx frames */
2617 if (priv->id == ID_EN7581 || priv->id == ID_AN7583)
2618 mt7530_write(priv, MT753X_CPORT_SPTAG_CFG,
2619 CPORT_SW2FE_STAG_EN | CPORT_FE2SW_STAG_EN);
2620
2621 /* Flush the FDB table */
2622 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2623 if (ret < 0)
2624 return ret;
2625
2626 /* Setup VLAN ID 0 for VLAN-unaware bridges */
2627 return mt7530_setup_vlan0(priv);
2628 }
2629
2630 static int
mt7531_setup(struct dsa_switch * ds)2631 mt7531_setup(struct dsa_switch *ds)
2632 {
2633 struct mt7530_priv *priv = ds->priv;
2634 struct mt7530_dummy_poll p;
2635 u32 val, id;
2636 int ret, i;
2637
2638 /* Reset whole chip through gpio pin or memory-mapped registers for
2639 * different type of hardware
2640 */
2641 if (priv->mcm) {
2642 reset_control_assert(priv->rstc);
2643 usleep_range(5000, 5100);
2644 reset_control_deassert(priv->rstc);
2645 } else {
2646 gpiod_set_value_cansleep(priv->reset, 0);
2647 usleep_range(5000, 5100);
2648 gpiod_set_value_cansleep(priv->reset, 1);
2649 }
2650
2651 /* Waiting for MT7530 got to stable */
2652 INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP);
2653 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2654 20, 1000000);
2655 if (ret < 0) {
2656 dev_err(priv->dev, "reset timeout\n");
2657 return ret;
2658 }
2659
2660 id = mt7530_read(priv, MT7531_CREV);
2661 id >>= CHIP_NAME_SHIFT;
2662
2663 if (id != MT7531_ID) {
2664 dev_err(priv->dev, "chip %x can't be supported\n", id);
2665 return -ENODEV;
2666 }
2667
2668 /* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2669 * MT7531BE has got only one SGMII unit which is for port 6.
2670 */
2671 val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2672 priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2673
2674 /* Force link down on all ports before internal reset */
2675 for (i = 0; i < priv->ds->num_ports; i++)
2676 mt7530_write(priv, MT753X_PMCR_P(i), MT7531_FORCE_MODE_LNK);
2677
2678 /* Reset the switch through internal reset */
2679 mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
2680
2681 if (!priv->p5_sgmii) {
2682 mt7531_pll_setup(priv);
2683 } else {
2684 /* Unlike MT7531BE, the GPIO 6-12 pins are not used for RGMII on
2685 * MT7531AE. Set the GPIO 11-12 pins to function as MDC and MDIO
2686 * to expose the MDIO bus of the switch.
2687 */
2688 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2689 MT7531_EXT_P_MDC_11);
2690 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2691 MT7531_EXT_P_MDIO_12);
2692 }
2693
2694 mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2695 MT7531_GPIO0_INTERRUPT);
2696
2697 /* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since
2698 * phy_device has not yet been created provided for
2699 * phy_[read,write]_mmd_indirect is called, we provide our own
2700 * mt7531_ind_mmd_phy_[read,write] to complete this function.
2701 */
2702 val = mt7531_ind_c45_phy_read(priv,
2703 MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
2704 MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2705 val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE;
2706 val &= ~MT7531_PHY_PLL_OFF;
2707 mt7531_ind_c45_phy_write(priv,
2708 MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
2709 MDIO_MMD_VEND2, CORE_PLL_GROUP4, val);
2710
2711 /* Disable EEE advertisement on the switch PHYs. */
2712 for (i = MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr);
2713 i < MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr) + MT7530_NUM_PHYS;
2714 i++) {
2715 mt7531_ind_c45_phy_write(priv, i, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2716 0);
2717 }
2718
2719 ret = mt7531_setup_common(ds);
2720 if (ret)
2721 return ret;
2722
2723 return 0;
2724 }
2725
mt7530_mac_port_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2726 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2727 struct phylink_config *config)
2728 {
2729 config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2730
2731 switch (port) {
2732 /* Ports which are connected to switch PHYs. There is no MII pinout. */
2733 case 0 ... 4:
2734 __set_bit(PHY_INTERFACE_MODE_GMII,
2735 config->supported_interfaces);
2736 break;
2737
2738 /* Port 5 supports rgmii with delays, mii, and gmii. */
2739 case 5:
2740 phy_interface_set_rgmii(config->supported_interfaces);
2741 __set_bit(PHY_INTERFACE_MODE_MII,
2742 config->supported_interfaces);
2743 __set_bit(PHY_INTERFACE_MODE_GMII,
2744 config->supported_interfaces);
2745 break;
2746
2747 /* Port 6 supports rgmii and trgmii. */
2748 case 6:
2749 __set_bit(PHY_INTERFACE_MODE_RGMII,
2750 config->supported_interfaces);
2751 __set_bit(PHY_INTERFACE_MODE_TRGMII,
2752 config->supported_interfaces);
2753 break;
2754 }
2755 }
2756
mt7531_mac_port_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2757 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2758 struct phylink_config *config)
2759 {
2760 struct mt7530_priv *priv = ds->priv;
2761
2762 config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2763
2764 switch (port) {
2765 /* Ports which are connected to switch PHYs. There is no MII pinout. */
2766 case 0 ... 4:
2767 __set_bit(PHY_INTERFACE_MODE_GMII,
2768 config->supported_interfaces);
2769 break;
2770
2771 /* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2772 * MT7531AE.
2773 */
2774 case 5:
2775 if (!priv->p5_sgmii) {
2776 phy_interface_set_rgmii(config->supported_interfaces);
2777 break;
2778 }
2779 fallthrough;
2780
2781 /* Port 6 supports sgmii/802.3z. */
2782 case 6:
2783 __set_bit(PHY_INTERFACE_MODE_SGMII,
2784 config->supported_interfaces);
2785 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
2786 config->supported_interfaces);
2787 __set_bit(PHY_INTERFACE_MODE_2500BASEX,
2788 config->supported_interfaces);
2789
2790 config->mac_capabilities |= MAC_2500FD;
2791 break;
2792 }
2793 }
2794
mt7988_mac_port_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2795 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2796 struct phylink_config *config)
2797 {
2798 switch (port) {
2799 /* Ports which are connected to switch PHYs. There is no MII pinout. */
2800 case 0 ... 3:
2801 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
2802 config->supported_interfaces);
2803
2804 config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2805 break;
2806
2807 /* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2808 case 6:
2809 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
2810 config->supported_interfaces);
2811
2812 config->mac_capabilities |= MAC_10000FD;
2813 break;
2814 }
2815 }
2816
en7581_mac_port_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2817 static void en7581_mac_port_get_caps(struct dsa_switch *ds, int port,
2818 struct phylink_config *config)
2819 {
2820 switch (port) {
2821 /* Ports which are connected to switch PHYs. There is no MII pinout. */
2822 case 0 ... 4:
2823 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
2824 config->supported_interfaces);
2825
2826 config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2827 break;
2828
2829 /* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2830 case 6:
2831 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
2832 config->supported_interfaces);
2833
2834 config->mac_capabilities |= MAC_10000FD;
2835 break;
2836 }
2837 }
2838
2839 static void
mt7530_mac_config(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)2840 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2841 phy_interface_t interface)
2842 {
2843 struct mt7530_priv *priv = ds->priv;
2844
2845 if (port == 5)
2846 mt7530_setup_port5(priv->ds, interface);
2847 else if (port == 6)
2848 mt7530_setup_port6(priv->ds, interface);
2849 }
2850
mt7531_rgmii_setup(struct mt7530_priv * priv,phy_interface_t interface,struct phy_device * phydev)2851 static void mt7531_rgmii_setup(struct mt7530_priv *priv,
2852 phy_interface_t interface,
2853 struct phy_device *phydev)
2854 {
2855 u32 val;
2856
2857 val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2858 val |= GP_CLK_EN;
2859 val &= ~GP_MODE_MASK;
2860 val |= GP_MODE(MT7531_GP_MODE_RGMII);
2861 val &= ~CLK_SKEW_IN_MASK;
2862 val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2863 val &= ~CLK_SKEW_OUT_MASK;
2864 val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2865 val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2866
2867 /* Do not adjust rgmii delay when vendor phy driver presents. */
2868 if (!phydev || phy_driver_is_genphy(phydev)) {
2869 val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2870 switch (interface) {
2871 case PHY_INTERFACE_MODE_RGMII:
2872 val |= TXCLK_NO_REVERSE;
2873 val |= RXCLK_NO_DELAY;
2874 break;
2875 case PHY_INTERFACE_MODE_RGMII_RXID:
2876 val |= TXCLK_NO_REVERSE;
2877 break;
2878 case PHY_INTERFACE_MODE_RGMII_TXID:
2879 val |= RXCLK_NO_DELAY;
2880 break;
2881 case PHY_INTERFACE_MODE_RGMII_ID:
2882 break;
2883 default:
2884 break;
2885 }
2886 }
2887
2888 mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2889 }
2890
2891 static void
mt7531_mac_config(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)2892 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2893 phy_interface_t interface)
2894 {
2895 struct mt7530_priv *priv = ds->priv;
2896 struct phy_device *phydev;
2897 struct dsa_port *dp;
2898
2899 if (phy_interface_mode_is_rgmii(interface)) {
2900 dp = dsa_to_port(ds, port);
2901 phydev = dp->user->phydev;
2902 mt7531_rgmii_setup(priv, interface, phydev);
2903 }
2904 }
2905
2906 static struct phylink_pcs *
mt753x_phylink_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)2907 mt753x_phylink_mac_select_pcs(struct phylink_config *config,
2908 phy_interface_t interface)
2909 {
2910 struct dsa_port *dp = dsa_phylink_to_port(config);
2911 struct mt7530_priv *priv = dp->ds->priv;
2912
2913 switch (interface) {
2914 case PHY_INTERFACE_MODE_TRGMII:
2915 return &priv->pcs[dp->index].pcs;
2916 case PHY_INTERFACE_MODE_SGMII:
2917 case PHY_INTERFACE_MODE_1000BASEX:
2918 case PHY_INTERFACE_MODE_2500BASEX:
2919 return priv->ports[dp->index].sgmii_pcs;
2920 default:
2921 return NULL;
2922 }
2923 }
2924
2925 static void
mt753x_phylink_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)2926 mt753x_phylink_mac_config(struct phylink_config *config, unsigned int mode,
2927 const struct phylink_link_state *state)
2928 {
2929 struct dsa_port *dp = dsa_phylink_to_port(config);
2930 struct dsa_switch *ds = dp->ds;
2931 struct mt7530_priv *priv;
2932 int port = dp->index;
2933
2934 priv = ds->priv;
2935
2936 if ((port == 5 || port == 6) && priv->info->mac_port_config)
2937 priv->info->mac_port_config(ds, port, mode, state->interface);
2938
2939 /* Are we connected to external phy */
2940 if (port == 5 && dsa_is_user_port(ds, 5))
2941 mt7530_set(priv, MT753X_PMCR_P(port), PMCR_EXT_PHY);
2942 }
2943
mt753x_phylink_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)2944 static void mt753x_phylink_mac_link_down(struct phylink_config *config,
2945 unsigned int mode,
2946 phy_interface_t interface)
2947 {
2948 struct dsa_port *dp = dsa_phylink_to_port(config);
2949 struct mt7530_priv *priv = dp->ds->priv;
2950
2951 mt7530_clear(priv, MT753X_PMCR_P(dp->index), PMCR_LINK_SETTINGS_MASK);
2952 }
2953
mt753x_phylink_mac_link_up(struct phylink_config * config,struct phy_device * phydev,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)2954 static void mt753x_phylink_mac_link_up(struct phylink_config *config,
2955 struct phy_device *phydev,
2956 unsigned int mode,
2957 phy_interface_t interface,
2958 int speed, int duplex,
2959 bool tx_pause, bool rx_pause)
2960 {
2961 struct dsa_port *dp = dsa_phylink_to_port(config);
2962 struct mt7530_priv *priv = dp->ds->priv;
2963 u32 mcr;
2964
2965 mcr = PMCR_MAC_RX_EN | PMCR_MAC_TX_EN | PMCR_FORCE_LNK;
2966
2967 switch (speed) {
2968 case SPEED_1000:
2969 case SPEED_2500:
2970 case SPEED_10000:
2971 mcr |= PMCR_FORCE_SPEED_1000;
2972 break;
2973 case SPEED_100:
2974 mcr |= PMCR_FORCE_SPEED_100;
2975 break;
2976 }
2977 if (duplex == DUPLEX_FULL) {
2978 mcr |= PMCR_FORCE_FDX;
2979 if (tx_pause)
2980 mcr |= PMCR_FORCE_TX_FC_EN;
2981 if (rx_pause)
2982 mcr |= PMCR_FORCE_RX_FC_EN;
2983 }
2984
2985 mt7530_set(priv, MT753X_PMCR_P(dp->index), mcr);
2986 }
2987
mt753x_phylink_mac_disable_tx_lpi(struct phylink_config * config)2988 static void mt753x_phylink_mac_disable_tx_lpi(struct phylink_config *config)
2989 {
2990 struct dsa_port *dp = dsa_phylink_to_port(config);
2991 struct mt7530_priv *priv = dp->ds->priv;
2992
2993 mt7530_clear(priv, MT753X_PMCR_P(dp->index),
2994 PMCR_FORCE_EEE1G | PMCR_FORCE_EEE100);
2995 }
2996
mt753x_phylink_mac_enable_tx_lpi(struct phylink_config * config,u32 timer,bool tx_clock_stop)2997 static int mt753x_phylink_mac_enable_tx_lpi(struct phylink_config *config,
2998 u32 timer, bool tx_clock_stop)
2999 {
3000 struct dsa_port *dp = dsa_phylink_to_port(config);
3001 struct mt7530_priv *priv = dp->ds->priv;
3002 u32 val;
3003
3004 /* If the timer is zero, then set LPI_MODE_EN, which allows the
3005 * system to enter LPI mode immediately rather than waiting for
3006 * the LPI threshold.
3007 */
3008 if (!timer)
3009 val = LPI_MODE_EN;
3010 else if (FIELD_FIT(LPI_THRESH_MASK, timer))
3011 val = FIELD_PREP(LPI_THRESH_MASK, timer);
3012 else
3013 val = LPI_THRESH_MASK;
3014
3015 mt7530_rmw(priv, MT753X_PMEEECR_P(dp->index),
3016 LPI_THRESH_MASK | LPI_MODE_EN, val);
3017
3018 mt7530_set(priv, MT753X_PMCR_P(dp->index),
3019 PMCR_FORCE_EEE1G | PMCR_FORCE_EEE100);
3020
3021 return 0;
3022 }
3023
mt753x_phylink_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)3024 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
3025 struct phylink_config *config)
3026 {
3027 struct mt7530_priv *priv = ds->priv;
3028 u32 eeecr;
3029
3030 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE;
3031
3032 config->lpi_capabilities = MAC_100FD | MAC_1000FD | MAC_2500FD;
3033
3034 eeecr = mt7530_read(priv, MT753X_PMEEECR_P(port));
3035 /* tx_lpi_timer should be in microseconds. The time units for
3036 * LPI threshold are unspecified.
3037 */
3038 config->lpi_timer_default = FIELD_GET(LPI_THRESH_MASK, eeecr);
3039
3040 priv->info->mac_port_get_caps(ds, port, config);
3041 }
3042
mt753x_pcs_validate(struct phylink_pcs * pcs,unsigned long * supported,const struct phylink_link_state * state)3043 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
3044 unsigned long *supported,
3045 const struct phylink_link_state *state)
3046 {
3047 /* Autonegotiation is not supported in TRGMII nor 802.3z modes */
3048 if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
3049 phy_interface_mode_is_8023z(state->interface))
3050 phylink_clear(supported, Autoneg);
3051
3052 return 0;
3053 }
3054
mt7530_pcs_get_state(struct phylink_pcs * pcs,unsigned int neg_mode,struct phylink_link_state * state)3055 static void mt7530_pcs_get_state(struct phylink_pcs *pcs, unsigned int neg_mode,
3056 struct phylink_link_state *state)
3057 {
3058 struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3059 int port = pcs_to_mt753x_pcs(pcs)->port;
3060 u32 pmsr;
3061
3062 pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
3063
3064 state->link = (pmsr & PMSR_LINK);
3065 state->an_complete = state->link;
3066 state->duplex = !!(pmsr & PMSR_DPX);
3067
3068 switch (pmsr & PMSR_SPEED_MASK) {
3069 case PMSR_SPEED_10:
3070 state->speed = SPEED_10;
3071 break;
3072 case PMSR_SPEED_100:
3073 state->speed = SPEED_100;
3074 break;
3075 case PMSR_SPEED_1000:
3076 state->speed = SPEED_1000;
3077 break;
3078 default:
3079 state->speed = SPEED_UNKNOWN;
3080 break;
3081 }
3082
3083 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
3084 if (pmsr & PMSR_RX_FC)
3085 state->pause |= MLO_PAUSE_RX;
3086 if (pmsr & PMSR_TX_FC)
3087 state->pause |= MLO_PAUSE_TX;
3088 }
3089
mt753x_pcs_config(struct phylink_pcs * pcs,unsigned int neg_mode,phy_interface_t interface,const unsigned long * advertising,bool permit_pause_to_mac)3090 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3091 phy_interface_t interface,
3092 const unsigned long *advertising,
3093 bool permit_pause_to_mac)
3094 {
3095 return 0;
3096 }
3097
mt7530_pcs_an_restart(struct phylink_pcs * pcs)3098 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3099 {
3100 }
3101
3102 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3103 .pcs_validate = mt753x_pcs_validate,
3104 .pcs_get_state = mt7530_pcs_get_state,
3105 .pcs_config = mt753x_pcs_config,
3106 .pcs_an_restart = mt7530_pcs_an_restart,
3107 };
3108
3109 static int
mt753x_setup(struct dsa_switch * ds)3110 mt753x_setup(struct dsa_switch *ds)
3111 {
3112 struct mt7530_priv *priv = ds->priv;
3113 int ret = priv->info->sw_setup(ds);
3114 int i;
3115
3116 if (ret)
3117 return ret;
3118
3119 ret = mt7530_setup_irq(priv);
3120 if (ret)
3121 return ret;
3122
3123 ret = mt7530_setup_mdio(priv);
3124 if (ret)
3125 return ret;
3126
3127 /* Initialise the PCS devices */
3128 for (i = 0; i < priv->ds->num_ports; i++) {
3129 priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3130 priv->pcs[i].priv = priv;
3131 priv->pcs[i].port = i;
3132 }
3133
3134 if (priv->create_sgmii)
3135 ret = priv->create_sgmii(priv);
3136
3137 if (ret && priv->irq_domain)
3138 mt7530_free_mdio_irq(priv);
3139
3140 return ret;
3141 }
3142
mt753x_set_mac_eee(struct dsa_switch * ds,int port,struct ethtool_keee * e)3143 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3144 struct ethtool_keee *e)
3145 {
3146 if (e->tx_lpi_timer > 0xFFF)
3147 return -EINVAL;
3148
3149 return 0;
3150 }
3151
3152 static void
mt753x_conduit_state_change(struct dsa_switch * ds,const struct net_device * conduit,bool operational)3153 mt753x_conduit_state_change(struct dsa_switch *ds,
3154 const struct net_device *conduit,
3155 bool operational)
3156 {
3157 struct dsa_port *cpu_dp = conduit->dsa_ptr;
3158 struct mt7530_priv *priv = ds->priv;
3159 int val = 0;
3160 u8 mask;
3161
3162 /* Set the CPU port to trap frames to for MT7530. Trapped frames will be
3163 * forwarded to the numerically smallest CPU port whose conduit
3164 * interface is up.
3165 */
3166 if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
3167 return;
3168
3169 mask = BIT(cpu_dp->index);
3170
3171 if (operational)
3172 priv->active_cpu_ports |= mask;
3173 else
3174 priv->active_cpu_ports &= ~mask;
3175
3176 if (priv->active_cpu_ports) {
3177 val = MT7530_CPU_EN |
3178 MT7530_CPU_PORT(__ffs(priv->active_cpu_ports));
3179 }
3180
3181 mt7530_rmw(priv, MT753X_MFC, MT7530_CPU_EN | MT7530_CPU_PORT_MASK, val);
3182 }
3183
mt753x_tc_setup_qdisc_tbf(struct dsa_switch * ds,int port,struct tc_tbf_qopt_offload * qopt)3184 static int mt753x_tc_setup_qdisc_tbf(struct dsa_switch *ds, int port,
3185 struct tc_tbf_qopt_offload *qopt)
3186 {
3187 struct tc_tbf_qopt_offload_replace_params *p = &qopt->replace_params;
3188 struct mt7530_priv *priv = ds->priv;
3189 u32 rate = 0;
3190
3191 switch (qopt->command) {
3192 case TC_TBF_REPLACE:
3193 rate = div_u64(p->rate.rate_bytes_ps, 1000) << 3; /* kbps */
3194 fallthrough;
3195 case TC_TBF_DESTROY: {
3196 u32 val, tick;
3197
3198 mt7530_rmw(priv, MT753X_GERLCR, EGR_BC_MASK,
3199 EGR_BC_CRC_IPG_PREAMBLE);
3200
3201 /* if rate is greater than 10Mbps tick is 1/32 ms,
3202 * 1ms otherwise
3203 */
3204 tick = rate > 10000 ? 2 : 7;
3205 val = FIELD_PREP(ERLCR_CIR_MASK, (rate >> 5)) |
3206 FIELD_PREP(ERLCR_EN_MASK, !!rate) |
3207 FIELD_PREP(ERLCR_EXP_MASK, tick) |
3208 ERLCR_TBF_MODE_MASK |
3209 FIELD_PREP(ERLCR_MANT_MASK, 0xf);
3210 mt7530_write(priv, MT753X_ERLCR_P(port), val);
3211 break;
3212 }
3213 default:
3214 return -EOPNOTSUPP;
3215 }
3216
3217 return 0;
3218 }
3219
mt753x_setup_tc(struct dsa_switch * ds,int port,enum tc_setup_type type,void * type_data)3220 static int mt753x_setup_tc(struct dsa_switch *ds, int port,
3221 enum tc_setup_type type, void *type_data)
3222 {
3223 switch (type) {
3224 case TC_SETUP_QDISC_TBF:
3225 return mt753x_tc_setup_qdisc_tbf(ds, port, type_data);
3226 default:
3227 return -EOPNOTSUPP;
3228 }
3229 }
3230
mt7988_setup(struct dsa_switch * ds)3231 static int mt7988_setup(struct dsa_switch *ds)
3232 {
3233 struct mt7530_priv *priv = ds->priv;
3234
3235 /* Reset the switch */
3236 reset_control_assert(priv->rstc);
3237 usleep_range(20, 50);
3238 reset_control_deassert(priv->rstc);
3239 usleep_range(20, 50);
3240
3241 /* AN7583 require additional tweak to CONN_CFG */
3242 if (priv->id == ID_AN7583)
3243 mt7530_rmw(priv, AN7583_GEPHY_CONN_CFG,
3244 AN7583_CSR_DPHY_CKIN_SEL |
3245 AN7583_CSR_PHY_CORE_REG_CLK_SEL |
3246 AN7583_CSR_ETHER_AFE_PWD,
3247 AN7583_CSR_DPHY_CKIN_SEL |
3248 AN7583_CSR_PHY_CORE_REG_CLK_SEL |
3249 FIELD_PREP(AN7583_CSR_ETHER_AFE_PWD, 0));
3250
3251 /* Reset the switch PHYs */
3252 mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3253
3254 return mt7531_setup_common(ds);
3255 }
3256
3257 const struct dsa_switch_ops mt7530_switch_ops = {
3258 .get_tag_protocol = mtk_get_tag_protocol,
3259 .setup = mt753x_setup,
3260 .preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3261 .get_strings = mt7530_get_strings,
3262 .get_ethtool_stats = mt7530_get_ethtool_stats,
3263 .get_sset_count = mt7530_get_sset_count,
3264 .get_eth_mac_stats = mt7530_get_eth_mac_stats,
3265 .get_rmon_stats = mt7530_get_rmon_stats,
3266 .get_eth_ctrl_stats = mt7530_get_eth_ctrl_stats,
3267 .get_stats64 = mt7530_get_stats64,
3268 .set_ageing_time = mt7530_set_ageing_time,
3269 .port_enable = mt7530_port_enable,
3270 .port_disable = mt7530_port_disable,
3271 .port_change_mtu = mt7530_port_change_mtu,
3272 .port_max_mtu = mt7530_port_max_mtu,
3273 .port_stp_state_set = mt7530_stp_state_set,
3274 .port_pre_bridge_flags = mt7530_port_pre_bridge_flags,
3275 .port_bridge_flags = mt7530_port_bridge_flags,
3276 .port_bridge_join = mt7530_port_bridge_join,
3277 .port_bridge_leave = mt7530_port_bridge_leave,
3278 .port_fdb_add = mt7530_port_fdb_add,
3279 .port_fdb_del = mt7530_port_fdb_del,
3280 .port_fdb_dump = mt7530_port_fdb_dump,
3281 .port_mdb_add = mt7530_port_mdb_add,
3282 .port_mdb_del = mt7530_port_mdb_del,
3283 .port_vlan_filtering = mt7530_port_vlan_filtering,
3284 .port_vlan_add = mt7530_port_vlan_add,
3285 .port_vlan_del = mt7530_port_vlan_del,
3286 .port_mirror_add = mt753x_port_mirror_add,
3287 .port_mirror_del = mt753x_port_mirror_del,
3288 .phylink_get_caps = mt753x_phylink_get_caps,
3289 .support_eee = dsa_supports_eee,
3290 .set_mac_eee = mt753x_set_mac_eee,
3291 .conduit_state_change = mt753x_conduit_state_change,
3292 .port_setup_tc = mt753x_setup_tc,
3293 };
3294 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3295
3296 static const struct phylink_mac_ops mt753x_phylink_mac_ops = {
3297 .mac_select_pcs = mt753x_phylink_mac_select_pcs,
3298 .mac_config = mt753x_phylink_mac_config,
3299 .mac_link_down = mt753x_phylink_mac_link_down,
3300 .mac_link_up = mt753x_phylink_mac_link_up,
3301 .mac_disable_tx_lpi = mt753x_phylink_mac_disable_tx_lpi,
3302 .mac_enable_tx_lpi = mt753x_phylink_mac_enable_tx_lpi,
3303 };
3304
3305 const struct mt753x_info mt753x_table[] = {
3306 [ID_MT7621] = {
3307 .id = ID_MT7621,
3308 .pcs_ops = &mt7530_pcs_ops,
3309 .sw_setup = mt7530_setup,
3310 .phy_read_c22 = mt7530_phy_read_c22,
3311 .phy_write_c22 = mt7530_phy_write_c22,
3312 .phy_read_c45 = mt7530_phy_read_c45,
3313 .phy_write_c45 = mt7530_phy_write_c45,
3314 .mac_port_get_caps = mt7530_mac_port_get_caps,
3315 .mac_port_config = mt7530_mac_config,
3316 },
3317 [ID_MT7530] = {
3318 .id = ID_MT7530,
3319 .pcs_ops = &mt7530_pcs_ops,
3320 .sw_setup = mt7530_setup,
3321 .phy_read_c22 = mt7530_phy_read_c22,
3322 .phy_write_c22 = mt7530_phy_write_c22,
3323 .phy_read_c45 = mt7530_phy_read_c45,
3324 .phy_write_c45 = mt7530_phy_write_c45,
3325 .mac_port_get_caps = mt7530_mac_port_get_caps,
3326 .mac_port_config = mt7530_mac_config,
3327 },
3328 [ID_MT7531] = {
3329 .id = ID_MT7531,
3330 .pcs_ops = &mt7530_pcs_ops,
3331 .sw_setup = mt7531_setup,
3332 .phy_read_c22 = mt7531_ind_c22_phy_read,
3333 .phy_write_c22 = mt7531_ind_c22_phy_write,
3334 .phy_read_c45 = mt7531_ind_c45_phy_read,
3335 .phy_write_c45 = mt7531_ind_c45_phy_write,
3336 .mac_port_get_caps = mt7531_mac_port_get_caps,
3337 .mac_port_config = mt7531_mac_config,
3338 },
3339 [ID_MT7988] = {
3340 .id = ID_MT7988,
3341 .pcs_ops = &mt7530_pcs_ops,
3342 .sw_setup = mt7988_setup,
3343 .phy_read_c22 = mt7531_ind_c22_phy_read,
3344 .phy_write_c22 = mt7531_ind_c22_phy_write,
3345 .phy_read_c45 = mt7531_ind_c45_phy_read,
3346 .phy_write_c45 = mt7531_ind_c45_phy_write,
3347 .mac_port_get_caps = mt7988_mac_port_get_caps,
3348 },
3349 [ID_EN7581] = {
3350 .id = ID_EN7581,
3351 .pcs_ops = &mt7530_pcs_ops,
3352 .sw_setup = mt7988_setup,
3353 .phy_read_c22 = mt7531_ind_c22_phy_read,
3354 .phy_write_c22 = mt7531_ind_c22_phy_write,
3355 .phy_read_c45 = mt7531_ind_c45_phy_read,
3356 .phy_write_c45 = mt7531_ind_c45_phy_write,
3357 .mac_port_get_caps = en7581_mac_port_get_caps,
3358 },
3359 [ID_AN7583] = {
3360 .id = ID_AN7583,
3361 .pcs_ops = &mt7530_pcs_ops,
3362 .sw_setup = mt7988_setup,
3363 .phy_read_c22 = mt7531_ind_c22_phy_read,
3364 .phy_write_c22 = mt7531_ind_c22_phy_write,
3365 .phy_read_c45 = mt7531_ind_c45_phy_read,
3366 .phy_write_c45 = mt7531_ind_c45_phy_write,
3367 .mac_port_get_caps = en7581_mac_port_get_caps,
3368 },
3369 };
3370 EXPORT_SYMBOL_GPL(mt753x_table);
3371
3372 int
mt7530_probe_common(struct mt7530_priv * priv)3373 mt7530_probe_common(struct mt7530_priv *priv)
3374 {
3375 struct device *dev = priv->dev;
3376
3377 priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3378 if (!priv->ds)
3379 return -ENOMEM;
3380
3381 priv->ds->dev = dev;
3382 priv->ds->num_ports = MT7530_NUM_PORTS;
3383
3384 /* Get the hardware identifier from the devicetree node.
3385 * We will need it for some of the clock and regulator setup.
3386 */
3387 priv->info = of_device_get_match_data(dev);
3388 if (!priv->info)
3389 return -EINVAL;
3390
3391 priv->id = priv->info->id;
3392 priv->dev = dev;
3393 priv->ds->priv = priv;
3394 priv->ds->ops = &mt7530_switch_ops;
3395 priv->ds->phylink_mac_ops = &mt753x_phylink_mac_ops;
3396 mutex_init(&priv->reg_mutex);
3397 dev_set_drvdata(dev, priv);
3398
3399 return 0;
3400 }
3401 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3402
3403 void
mt7530_remove_common(struct mt7530_priv * priv)3404 mt7530_remove_common(struct mt7530_priv *priv)
3405 {
3406 if (priv->irq_domain)
3407 mt7530_free_mdio_irq(priv);
3408
3409 dsa_unregister_switch(priv->ds);
3410
3411 mutex_destroy(&priv->reg_mutex);
3412 }
3413 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3414
3415 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3416 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3417 MODULE_LICENSE("GPL");
3418