xref: /linux/drivers/infiniband/core/device.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 static struct workqueue_struct *ib_unreg_wq;
62 
63 /*
64  * Each of the three rwsem locks (devices, clients, client_data) protects the
65  * xarray of the same name. Specifically it allows the caller to assert that
66  * the MARK will/will not be changing under the lock, and for devices and
67  * clients, that the value in the xarray is still a valid pointer. Change of
68  * the MARK is linked to the object state, so holding the lock and testing the
69  * MARK also asserts that the contained object is in a certain state.
70  *
71  * This is used to build a two stage register/unregister flow where objects
72  * can continue to be in the xarray even though they are still in progress to
73  * register/unregister.
74  *
75  * The xarray itself provides additional locking, and restartable iteration,
76  * which is also relied on.
77  *
78  * Locks should not be nested, with the exception of client_data, which is
79  * allowed to nest under the read side of the other two locks.
80  *
81  * The devices_rwsem also protects the device name list, any change or
82  * assignment of device name must also hold the write side to guarantee unique
83  * names.
84  */
85 
86 /*
87  * devices contains devices that have had their names assigned. The
88  * devices may not be registered. Users that care about the registration
89  * status need to call ib_device_try_get() on the device to ensure it is
90  * registered, and keep it registered, for the required duration.
91  *
92  */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96 
97 static u32 highest_client_id;
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101 
ib_client_put(struct ib_client * client)102 static void ib_client_put(struct ib_client *client)
103 {
104 	if (refcount_dec_and_test(&client->uses))
105 		complete(&client->uses_zero);
106 }
107 
108 /*
109  * If client_data is registered then the corresponding client must also still
110  * be registered.
111  */
112 #define CLIENT_DATA_REGISTERED XA_MARK_1
113 
114 unsigned int rdma_dev_net_id;
115 
116 /*
117  * A list of net namespaces is maintained in an xarray. This is necessary
118  * because we can't get the locking right using the existing net ns list. We
119  * would require a init_net callback after the list is updated.
120  */
121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122 /*
123  * rwsem to protect accessing the rdma_nets xarray entries.
124  */
125 static DECLARE_RWSEM(rdma_nets_rwsem);
126 
127 bool ib_devices_shared_netns = true;
128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129 MODULE_PARM_DESC(netns_mode,
130 		 "Share device among net namespaces; default=1 (shared)");
131 /**
132  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133  *			     from a specified net namespace or not.
134  * @dev:	Pointer to rdma device which needs to be checked
135  * @net:	Pointer to net namesapce for which access to be checked
136  *
137  * When the rdma device is in shared mode, it ignores the net namespace.
138  * When the rdma device is exclusive to a net namespace, rdma device net
139  * namespace is checked against the specified one.
140  */
rdma_dev_access_netns(const struct ib_device * dev,const struct net * net)141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142 {
143 	return (ib_devices_shared_netns ||
144 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
145 }
146 EXPORT_SYMBOL(rdma_dev_access_netns);
147 
148 /**
149  * rdma_dev_has_raw_cap() - Returns whether a specified rdma device has
150  *			    CAP_NET_RAW capability or not.
151  *
152  * @dev:	Pointer to rdma device whose capability to be checked
153  *
154  * Returns true if a rdma device's owning user namespace has CAP_NET_RAW
155  * capability, otherwise false. When rdma subsystem is in legacy shared network,
156  * namespace mode, the default net namespace is considered.
157  */
rdma_dev_has_raw_cap(const struct ib_device * dev)158 bool rdma_dev_has_raw_cap(const struct ib_device *dev)
159 {
160 	const struct net *net;
161 
162 	/* Network namespace is the resource whose user namespace
163 	 * to be considered. When in shared mode, there is no reliable
164 	 * network namespace resource, so consider the default net namespace.
165 	 */
166 	if (ib_devices_shared_netns)
167 		net = &init_net;
168 	else
169 		net = read_pnet(&dev->coredev.rdma_net);
170 
171 	return ns_capable(net->user_ns, CAP_NET_RAW);
172 }
173 EXPORT_SYMBOL(rdma_dev_has_raw_cap);
174 
175 /*
176  * xarray has this behavior where it won't iterate over NULL values stored in
177  * allocated arrays.  So we need our own iterator to see all values stored in
178  * the array. This does the same thing as xa_for_each except that it also
179  * returns NULL valued entries if the array is allocating. Simplified to only
180  * work on simple xarrays.
181  */
xan_find_marked(struct xarray * xa,unsigned long * indexp,xa_mark_t filter)182 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
183 			     xa_mark_t filter)
184 {
185 	XA_STATE(xas, xa, *indexp);
186 	void *entry;
187 
188 	rcu_read_lock();
189 	do {
190 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
191 		if (xa_is_zero(entry))
192 			break;
193 	} while (xas_retry(&xas, entry));
194 	rcu_read_unlock();
195 
196 	if (entry) {
197 		*indexp = xas.xa_index;
198 		if (xa_is_zero(entry))
199 			return NULL;
200 		return entry;
201 	}
202 	return XA_ERROR(-ENOENT);
203 }
204 #define xan_for_each_marked(xa, index, entry, filter)                          \
205 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
206 	     !xa_is_err(entry);                                                \
207 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
208 
209 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
210 static DEFINE_SPINLOCK(ndev_hash_lock);
211 static DECLARE_HASHTABLE(ndev_hash, 5);
212 
213 static void free_netdevs(struct ib_device *ib_dev);
214 static void ib_unregister_work(struct work_struct *work);
215 static void __ib_unregister_device(struct ib_device *device);
216 static int ib_security_change(struct notifier_block *nb, unsigned long event,
217 			      void *lsm_data);
218 static void ib_policy_change_task(struct work_struct *work);
219 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
220 
__ibdev_printk(const char * level,const struct ib_device * ibdev,struct va_format * vaf)221 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
222 			   struct va_format *vaf)
223 {
224 	if (ibdev && ibdev->dev.parent)
225 		dev_printk_emit(level[1] - '0',
226 				ibdev->dev.parent,
227 				"%s %s %s: %pV",
228 				dev_driver_string(ibdev->dev.parent),
229 				dev_name(ibdev->dev.parent),
230 				dev_name(&ibdev->dev),
231 				vaf);
232 	else if (ibdev)
233 		printk("%s%s: %pV",
234 		       level, dev_name(&ibdev->dev), vaf);
235 	else
236 		printk("%s(NULL ib_device): %pV", level, vaf);
237 }
238 
239 #define define_ibdev_printk_level(func, level)                  \
240 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
241 {                                                               \
242 	struct va_format vaf;                                   \
243 	va_list args;                                           \
244 								\
245 	va_start(args, fmt);                                    \
246 								\
247 	vaf.fmt = fmt;                                          \
248 	vaf.va = &args;                                         \
249 								\
250 	__ibdev_printk(level, ibdev, &vaf);                     \
251 								\
252 	va_end(args);                                           \
253 }                                                               \
254 EXPORT_SYMBOL(func);
255 
256 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
257 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
258 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
259 define_ibdev_printk_level(ibdev_err, KERN_ERR);
260 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
261 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
262 define_ibdev_printk_level(ibdev_info, KERN_INFO);
263 
264 static struct notifier_block ibdev_lsm_nb = {
265 	.notifier_call = ib_security_change,
266 };
267 
268 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
269 				 struct net *net);
270 
271 /* Pointer to the RCU head at the start of the ib_port_data array */
272 struct ib_port_data_rcu {
273 	struct rcu_head rcu_head;
274 	struct ib_port_data pdata[];
275 };
276 
ib_device_check_mandatory(struct ib_device * device)277 static void ib_device_check_mandatory(struct ib_device *device)
278 {
279 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
280 	static const struct {
281 		size_t offset;
282 		char  *name;
283 	} mandatory_table[] = {
284 		IB_MANDATORY_FUNC(query_device),
285 		IB_MANDATORY_FUNC(query_port),
286 		IB_MANDATORY_FUNC(alloc_pd),
287 		IB_MANDATORY_FUNC(dealloc_pd),
288 		IB_MANDATORY_FUNC(create_qp),
289 		IB_MANDATORY_FUNC(modify_qp),
290 		IB_MANDATORY_FUNC(destroy_qp),
291 		IB_MANDATORY_FUNC(post_send),
292 		IB_MANDATORY_FUNC(post_recv),
293 		IB_MANDATORY_FUNC(create_cq),
294 		IB_MANDATORY_FUNC(destroy_cq),
295 		IB_MANDATORY_FUNC(poll_cq),
296 		IB_MANDATORY_FUNC(req_notify_cq),
297 		IB_MANDATORY_FUNC(get_dma_mr),
298 		IB_MANDATORY_FUNC(reg_user_mr),
299 		IB_MANDATORY_FUNC(dereg_mr),
300 		IB_MANDATORY_FUNC(get_port_immutable)
301 	};
302 	int i;
303 
304 	device->kverbs_provider = true;
305 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
306 		if (!*(void **) ((void *) &device->ops +
307 				 mandatory_table[i].offset)) {
308 			device->kverbs_provider = false;
309 			break;
310 		}
311 	}
312 }
313 
314 /*
315  * Caller must perform ib_device_put() to return the device reference count
316  * when ib_device_get_by_index() returns valid device pointer.
317  */
ib_device_get_by_index(const struct net * net,u32 index)318 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
319 {
320 	struct ib_device *device;
321 
322 	down_read(&devices_rwsem);
323 	device = xa_load(&devices, index);
324 	if (device) {
325 		if (!rdma_dev_access_netns(device, net)) {
326 			device = NULL;
327 			goto out;
328 		}
329 
330 		if (!ib_device_try_get(device))
331 			device = NULL;
332 	}
333 out:
334 	up_read(&devices_rwsem);
335 	return device;
336 }
337 
338 /**
339  * ib_device_put - Release IB device reference
340  * @device: device whose reference to be released
341  *
342  * ib_device_put() releases reference to the IB device to allow it to be
343  * unregistered and eventually free.
344  */
ib_device_put(struct ib_device * device)345 void ib_device_put(struct ib_device *device)
346 {
347 	if (refcount_dec_and_test(&device->refcount))
348 		complete(&device->unreg_completion);
349 }
350 EXPORT_SYMBOL(ib_device_put);
351 
__ib_device_get_by_name(const char * name)352 static struct ib_device *__ib_device_get_by_name(const char *name)
353 {
354 	struct ib_device *device;
355 	unsigned long index;
356 
357 	xa_for_each (&devices, index, device)
358 		if (!strcmp(name, dev_name(&device->dev)))
359 			return device;
360 
361 	return NULL;
362 }
363 
364 /**
365  * ib_device_get_by_name - Find an IB device by name
366  * @name: The name to look for
367  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
368  *
369  * Find and hold an ib_device by its name. The caller must call
370  * ib_device_put() on the returned pointer.
371  */
ib_device_get_by_name(const char * name,enum rdma_driver_id driver_id)372 struct ib_device *ib_device_get_by_name(const char *name,
373 					enum rdma_driver_id driver_id)
374 {
375 	struct ib_device *device;
376 
377 	down_read(&devices_rwsem);
378 	device = __ib_device_get_by_name(name);
379 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
380 	    device->ops.driver_id != driver_id)
381 		device = NULL;
382 
383 	if (device) {
384 		if (!ib_device_try_get(device))
385 			device = NULL;
386 	}
387 	up_read(&devices_rwsem);
388 	return device;
389 }
390 EXPORT_SYMBOL(ib_device_get_by_name);
391 
rename_compat_devs(struct ib_device * device)392 static int rename_compat_devs(struct ib_device *device)
393 {
394 	struct ib_core_device *cdev;
395 	unsigned long index;
396 	int ret = 0;
397 
398 	mutex_lock(&device->compat_devs_mutex);
399 	xa_for_each (&device->compat_devs, index, cdev) {
400 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
401 		if (ret) {
402 			dev_warn(&cdev->dev,
403 				 "Fail to rename compatdev to new name %s\n",
404 				 dev_name(&device->dev));
405 			break;
406 		}
407 	}
408 	mutex_unlock(&device->compat_devs_mutex);
409 	return ret;
410 }
411 
ib_device_rename(struct ib_device * ibdev,const char * name)412 int ib_device_rename(struct ib_device *ibdev, const char *name)
413 {
414 	unsigned long index;
415 	void *client_data;
416 	int ret;
417 
418 	down_write(&devices_rwsem);
419 	if (!strcmp(name, dev_name(&ibdev->dev))) {
420 		up_write(&devices_rwsem);
421 		return 0;
422 	}
423 
424 	if (__ib_device_get_by_name(name)) {
425 		up_write(&devices_rwsem);
426 		return -EEXIST;
427 	}
428 
429 	ret = device_rename(&ibdev->dev, name);
430 	if (ret) {
431 		up_write(&devices_rwsem);
432 		return ret;
433 	}
434 
435 	strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
436 	ret = rename_compat_devs(ibdev);
437 
438 	downgrade_write(&devices_rwsem);
439 	down_read(&ibdev->client_data_rwsem);
440 	xan_for_each_marked(&ibdev->client_data, index, client_data,
441 			    CLIENT_DATA_REGISTERED) {
442 		struct ib_client *client = xa_load(&clients, index);
443 
444 		if (!client || !client->rename)
445 			continue;
446 
447 		client->rename(ibdev, client_data);
448 	}
449 	up_read(&ibdev->client_data_rwsem);
450 	rdma_nl_notify_event(ibdev, 0, RDMA_RENAME_EVENT);
451 	up_read(&devices_rwsem);
452 	return 0;
453 }
454 
ib_device_set_dim(struct ib_device * ibdev,u8 use_dim)455 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
456 {
457 	if (use_dim > 1)
458 		return -EINVAL;
459 	ibdev->use_cq_dim = use_dim;
460 
461 	return 0;
462 }
463 
alloc_name(struct ib_device * ibdev,const char * name)464 static int alloc_name(struct ib_device *ibdev, const char *name)
465 {
466 	struct ib_device *device;
467 	unsigned long index;
468 	struct ida inuse;
469 	int rc;
470 	int i;
471 
472 	lockdep_assert_held_write(&devices_rwsem);
473 	ida_init(&inuse);
474 	xa_for_each (&devices, index, device) {
475 		char buf[IB_DEVICE_NAME_MAX];
476 
477 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
478 			continue;
479 		if (i < 0 || i >= INT_MAX)
480 			continue;
481 		snprintf(buf, sizeof buf, name, i);
482 		if (strcmp(buf, dev_name(&device->dev)) != 0)
483 			continue;
484 
485 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
486 		if (rc < 0)
487 			goto out;
488 	}
489 
490 	rc = ida_alloc(&inuse, GFP_KERNEL);
491 	if (rc < 0)
492 		goto out;
493 
494 	rc = dev_set_name(&ibdev->dev, name, rc);
495 out:
496 	ida_destroy(&inuse);
497 	return rc;
498 }
499 
ib_device_release(struct device * device)500 static void ib_device_release(struct device *device)
501 {
502 	struct ib_device *dev = container_of(device, struct ib_device, dev);
503 
504 	free_netdevs(dev);
505 	WARN_ON(refcount_read(&dev->refcount));
506 	if (dev->hw_stats_data)
507 		ib_device_release_hw_stats(dev->hw_stats_data);
508 	if (dev->port_data) {
509 		ib_cache_release_one(dev);
510 		ib_security_release_port_pkey_list(dev);
511 		rdma_counter_release(dev);
512 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
513 				       pdata[0]),
514 			  rcu_head);
515 	}
516 
517 	mutex_destroy(&dev->subdev_lock);
518 	mutex_destroy(&dev->unregistration_lock);
519 	mutex_destroy(&dev->compat_devs_mutex);
520 
521 	xa_destroy(&dev->compat_devs);
522 	xa_destroy(&dev->client_data);
523 	kfree_rcu(dev, rcu_head);
524 }
525 
ib_device_uevent(const struct device * device,struct kobj_uevent_env * env)526 static int ib_device_uevent(const struct device *device,
527 			    struct kobj_uevent_env *env)
528 {
529 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
530 		return -ENOMEM;
531 
532 	/*
533 	 * It would be nice to pass the node GUID with the event...
534 	 */
535 
536 	return 0;
537 }
538 
net_namespace(const struct device * d)539 static const void *net_namespace(const struct device *d)
540 {
541 	const struct ib_core_device *coredev =
542 			container_of(d, struct ib_core_device, dev);
543 
544 	return read_pnet(&coredev->rdma_net);
545 }
546 
547 static struct class ib_class = {
548 	.name    = "infiniband",
549 	.dev_release = ib_device_release,
550 	.dev_uevent = ib_device_uevent,
551 	.ns_type = &net_ns_type_operations,
552 	.namespace = net_namespace,
553 };
554 
rdma_init_coredev(struct ib_core_device * coredev,struct ib_device * dev,struct net * net)555 static void rdma_init_coredev(struct ib_core_device *coredev,
556 			      struct ib_device *dev, struct net *net)
557 {
558 	bool is_full_dev = &dev->coredev == coredev;
559 
560 	/* This BUILD_BUG_ON is intended to catch layout change
561 	 * of union of ib_core_device and device.
562 	 * dev must be the first element as ib_core and providers
563 	 * driver uses it. Adding anything in ib_core_device before
564 	 * device will break this assumption.
565 	 */
566 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
567 		     offsetof(struct ib_device, dev));
568 
569 	coredev->dev.class = &ib_class;
570 	coredev->dev.groups = dev->groups;
571 
572 	/*
573 	 * Don't expose hw counters outside of the init namespace.
574 	 */
575 	if (!is_full_dev && dev->hw_stats_attr_index)
576 		coredev->dev.groups[dev->hw_stats_attr_index] = NULL;
577 
578 	device_initialize(&coredev->dev);
579 	coredev->owner = dev;
580 	INIT_LIST_HEAD(&coredev->port_list);
581 	write_pnet(&coredev->rdma_net, net);
582 }
583 
584 /**
585  * _ib_alloc_device - allocate an IB device struct
586  * @size:size of structure to allocate
587  * @net: network namespace device should be located in, namespace
588  *       must stay valid until ib_register_device() is completed.
589  *
590  * Low-level drivers should use ib_alloc_device() to allocate &struct
591  * ib_device.  @size is the size of the structure to be allocated,
592  * including any private data used by the low-level driver.
593  * ib_dealloc_device() must be used to free structures allocated with
594  * ib_alloc_device().
595  */
_ib_alloc_device(size_t size,struct net * net)596 struct ib_device *_ib_alloc_device(size_t size, struct net *net)
597 {
598 	struct ib_device *device;
599 	unsigned int i;
600 
601 	if (WARN_ON(size < sizeof(struct ib_device)))
602 		return NULL;
603 
604 	device = kzalloc(size, GFP_KERNEL);
605 	if (!device)
606 		return NULL;
607 
608 	if (rdma_restrack_init(device)) {
609 		kfree(device);
610 		return NULL;
611 	}
612 
613 	/* ib_devices_shared_netns can't change while we have active namespaces
614 	 * in the system which means either init_net is passed or the user has
615 	 * no idea what they are doing.
616 	 *
617 	 * To avoid breaking backward compatibility, when in shared mode,
618 	 * force to init the device in the init_net.
619 	 */
620 	net = ib_devices_shared_netns ? &init_net : net;
621 	rdma_init_coredev(&device->coredev, device, net);
622 
623 	INIT_LIST_HEAD(&device->event_handler_list);
624 	spin_lock_init(&device->qp_open_list_lock);
625 	init_rwsem(&device->event_handler_rwsem);
626 	mutex_init(&device->unregistration_lock);
627 	/*
628 	 * client_data needs to be alloc because we don't want our mark to be
629 	 * destroyed if the user stores NULL in the client data.
630 	 */
631 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
632 	init_rwsem(&device->client_data_rwsem);
633 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
634 	mutex_init(&device->compat_devs_mutex);
635 	init_completion(&device->unreg_completion);
636 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
637 
638 	spin_lock_init(&device->cq_pools_lock);
639 	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
640 		INIT_LIST_HEAD(&device->cq_pools[i]);
641 
642 	rwlock_init(&device->cache_lock);
643 
644 	device->uverbs_cmd_mask =
645 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
646 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
647 		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
648 		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
649 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
650 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
651 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
652 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
653 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
654 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
655 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
656 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
657 		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
658 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
659 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
660 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
661 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
662 		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
663 		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
664 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
665 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
666 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
667 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
668 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
669 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
670 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
671 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
672 		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
673 		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
674 		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
675 
676 	mutex_init(&device->subdev_lock);
677 	INIT_LIST_HEAD(&device->subdev_list_head);
678 	INIT_LIST_HEAD(&device->subdev_list);
679 
680 	return device;
681 }
682 EXPORT_SYMBOL(_ib_alloc_device);
683 
684 /**
685  * ib_dealloc_device - free an IB device struct
686  * @device:structure to free
687  *
688  * Free a structure allocated with ib_alloc_device().
689  */
ib_dealloc_device(struct ib_device * device)690 void ib_dealloc_device(struct ib_device *device)
691 {
692 	if (device->ops.dealloc_driver)
693 		device->ops.dealloc_driver(device);
694 
695 	/*
696 	 * ib_unregister_driver() requires all devices to remain in the xarray
697 	 * while their ops are callable. The last op we call is dealloc_driver
698 	 * above.  This is needed to create a fence on op callbacks prior to
699 	 * allowing the driver module to unload.
700 	 */
701 	down_write(&devices_rwsem);
702 	if (xa_load(&devices, device->index) == device)
703 		xa_erase(&devices, device->index);
704 	up_write(&devices_rwsem);
705 
706 	/* Expedite releasing netdev references */
707 	free_netdevs(device);
708 
709 	WARN_ON(!xa_empty(&device->compat_devs));
710 	WARN_ON(!xa_empty(&device->client_data));
711 	WARN_ON(refcount_read(&device->refcount));
712 	rdma_restrack_clean(device);
713 	/* Balances with device_initialize */
714 	put_device(&device->dev);
715 }
716 EXPORT_SYMBOL(ib_dealloc_device);
717 
718 /*
719  * add_client_context() and remove_client_context() must be safe against
720  * parallel calls on the same device - registration/unregistration of both the
721  * device and client can be occurring in parallel.
722  *
723  * The routines need to be a fence, any caller must not return until the add
724  * or remove is fully completed.
725  */
add_client_context(struct ib_device * device,struct ib_client * client)726 static int add_client_context(struct ib_device *device,
727 			      struct ib_client *client)
728 {
729 	int ret = 0;
730 
731 	if (!device->kverbs_provider && !client->no_kverbs_req)
732 		return 0;
733 
734 	down_write(&device->client_data_rwsem);
735 	/*
736 	 * So long as the client is registered hold both the client and device
737 	 * unregistration locks.
738 	 */
739 	if (!refcount_inc_not_zero(&client->uses))
740 		goto out_unlock;
741 	refcount_inc(&device->refcount);
742 
743 	/*
744 	 * Another caller to add_client_context got here first and has already
745 	 * completely initialized context.
746 	 */
747 	if (xa_get_mark(&device->client_data, client->client_id,
748 		    CLIENT_DATA_REGISTERED))
749 		goto out;
750 
751 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
752 			      GFP_KERNEL));
753 	if (ret)
754 		goto out;
755 	downgrade_write(&device->client_data_rwsem);
756 	if (client->add) {
757 		if (client->add(device)) {
758 			/*
759 			 * If a client fails to add then the error code is
760 			 * ignored, but we won't call any more ops on this
761 			 * client.
762 			 */
763 			xa_erase(&device->client_data, client->client_id);
764 			up_read(&device->client_data_rwsem);
765 			ib_device_put(device);
766 			ib_client_put(client);
767 			return 0;
768 		}
769 	}
770 
771 	/* Readers shall not see a client until add has been completed */
772 	xa_set_mark(&device->client_data, client->client_id,
773 		    CLIENT_DATA_REGISTERED);
774 	up_read(&device->client_data_rwsem);
775 	return 0;
776 
777 out:
778 	ib_device_put(device);
779 	ib_client_put(client);
780 out_unlock:
781 	up_write(&device->client_data_rwsem);
782 	return ret;
783 }
784 
remove_client_context(struct ib_device * device,unsigned int client_id)785 static void remove_client_context(struct ib_device *device,
786 				  unsigned int client_id)
787 {
788 	struct ib_client *client;
789 	void *client_data;
790 
791 	down_write(&device->client_data_rwsem);
792 	if (!xa_get_mark(&device->client_data, client_id,
793 			 CLIENT_DATA_REGISTERED)) {
794 		up_write(&device->client_data_rwsem);
795 		return;
796 	}
797 	client_data = xa_load(&device->client_data, client_id);
798 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
799 	client = xa_load(&clients, client_id);
800 	up_write(&device->client_data_rwsem);
801 
802 	/*
803 	 * Notice we cannot be holding any exclusive locks when calling the
804 	 * remove callback as the remove callback can recurse back into any
805 	 * public functions in this module and thus try for any locks those
806 	 * functions take.
807 	 *
808 	 * For this reason clients and drivers should not call the
809 	 * unregistration functions will holdling any locks.
810 	 */
811 	if (client->remove)
812 		client->remove(device, client_data);
813 
814 	xa_erase(&device->client_data, client_id);
815 	ib_device_put(device);
816 	ib_client_put(client);
817 }
818 
alloc_port_data(struct ib_device * device)819 static int alloc_port_data(struct ib_device *device)
820 {
821 	struct ib_port_data_rcu *pdata_rcu;
822 	u32 port;
823 
824 	if (device->port_data)
825 		return 0;
826 
827 	/* This can only be called once the physical port range is defined */
828 	if (WARN_ON(!device->phys_port_cnt))
829 		return -EINVAL;
830 
831 	/* Reserve U32_MAX so the logic to go over all the ports is sane */
832 	if (WARN_ON(device->phys_port_cnt == U32_MAX))
833 		return -EINVAL;
834 
835 	/*
836 	 * device->port_data is indexed directly by the port number to make
837 	 * access to this data as efficient as possible.
838 	 *
839 	 * Therefore port_data is declared as a 1 based array with potential
840 	 * empty slots at the beginning.
841 	 */
842 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
843 					size_add(rdma_end_port(device), 1)),
844 			    GFP_KERNEL);
845 	if (!pdata_rcu)
846 		return -ENOMEM;
847 	/*
848 	 * The rcu_head is put in front of the port data array and the stored
849 	 * pointer is adjusted since we never need to see that member until
850 	 * kfree_rcu.
851 	 */
852 	device->port_data = pdata_rcu->pdata;
853 
854 	rdma_for_each_port (device, port) {
855 		struct ib_port_data *pdata = &device->port_data[port];
856 
857 		pdata->ib_dev = device;
858 		spin_lock_init(&pdata->pkey_list_lock);
859 		INIT_LIST_HEAD(&pdata->pkey_list);
860 		spin_lock_init(&pdata->netdev_lock);
861 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
862 	}
863 	return 0;
864 }
865 
verify_immutable(const struct ib_device * dev,u32 port)866 static int verify_immutable(const struct ib_device *dev, u32 port)
867 {
868 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
869 			    rdma_max_mad_size(dev, port) != 0);
870 }
871 
setup_port_data(struct ib_device * device)872 static int setup_port_data(struct ib_device *device)
873 {
874 	u32 port;
875 	int ret;
876 
877 	ret = alloc_port_data(device);
878 	if (ret)
879 		return ret;
880 
881 	rdma_for_each_port (device, port) {
882 		struct ib_port_data *pdata = &device->port_data[port];
883 
884 		ret = device->ops.get_port_immutable(device, port,
885 						     &pdata->immutable);
886 		if (ret)
887 			return ret;
888 
889 		if (verify_immutable(device, port))
890 			return -EINVAL;
891 	}
892 	return 0;
893 }
894 
895 /**
896  * ib_port_immutable_read() - Read rdma port's immutable data
897  * @dev: IB device
898  * @port: port number whose immutable data to read. It starts with index 1 and
899  *        valid upto including rdma_end_port().
900  */
901 const struct ib_port_immutable*
ib_port_immutable_read(struct ib_device * dev,unsigned int port)902 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
903 {
904 	WARN_ON(!rdma_is_port_valid(dev, port));
905 	return &dev->port_data[port].immutable;
906 }
907 EXPORT_SYMBOL(ib_port_immutable_read);
908 
ib_get_device_fw_str(struct ib_device * dev,char * str)909 void ib_get_device_fw_str(struct ib_device *dev, char *str)
910 {
911 	if (dev->ops.get_dev_fw_str)
912 		dev->ops.get_dev_fw_str(dev, str);
913 	else
914 		str[0] = '\0';
915 }
916 EXPORT_SYMBOL(ib_get_device_fw_str);
917 
ib_policy_change_task(struct work_struct * work)918 static void ib_policy_change_task(struct work_struct *work)
919 {
920 	struct ib_device *dev;
921 	unsigned long index;
922 
923 	down_read(&devices_rwsem);
924 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
925 		unsigned int i;
926 
927 		rdma_for_each_port (dev, i) {
928 			u64 sp;
929 			ib_get_cached_subnet_prefix(dev, i, &sp);
930 			ib_security_cache_change(dev, i, sp);
931 		}
932 	}
933 	up_read(&devices_rwsem);
934 }
935 
ib_security_change(struct notifier_block * nb,unsigned long event,void * lsm_data)936 static int ib_security_change(struct notifier_block *nb, unsigned long event,
937 			      void *lsm_data)
938 {
939 	if (event != LSM_POLICY_CHANGE)
940 		return NOTIFY_DONE;
941 
942 	schedule_work(&ib_policy_change_work);
943 	ib_mad_agent_security_change();
944 
945 	return NOTIFY_OK;
946 }
947 
compatdev_release(struct device * dev)948 static void compatdev_release(struct device *dev)
949 {
950 	struct ib_core_device *cdev =
951 		container_of(dev, struct ib_core_device, dev);
952 
953 	kfree(cdev);
954 }
955 
add_one_compat_dev(struct ib_device * device,struct rdma_dev_net * rnet)956 static int add_one_compat_dev(struct ib_device *device,
957 			      struct rdma_dev_net *rnet)
958 {
959 	struct ib_core_device *cdev;
960 	int ret;
961 
962 	lockdep_assert_held(&rdma_nets_rwsem);
963 	if (!ib_devices_shared_netns)
964 		return 0;
965 
966 	/*
967 	 * Create and add compat device in all namespaces other than where it
968 	 * is currently bound to.
969 	 */
970 	if (net_eq(read_pnet(&rnet->net),
971 		   read_pnet(&device->coredev.rdma_net)))
972 		return 0;
973 
974 	/*
975 	 * The first of init_net() or ib_register_device() to take the
976 	 * compat_devs_mutex wins and gets to add the device. Others will wait
977 	 * for completion here.
978 	 */
979 	mutex_lock(&device->compat_devs_mutex);
980 	cdev = xa_load(&device->compat_devs, rnet->id);
981 	if (cdev) {
982 		ret = 0;
983 		goto done;
984 	}
985 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
986 	if (ret)
987 		goto done;
988 
989 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
990 	if (!cdev) {
991 		ret = -ENOMEM;
992 		goto cdev_err;
993 	}
994 
995 	cdev->dev.parent = device->dev.parent;
996 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
997 	cdev->dev.release = compatdev_release;
998 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
999 	if (ret)
1000 		goto add_err;
1001 
1002 	ret = device_add(&cdev->dev);
1003 	if (ret)
1004 		goto add_err;
1005 	ret = ib_setup_port_attrs(cdev);
1006 	if (ret)
1007 		goto port_err;
1008 
1009 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
1010 			      cdev, GFP_KERNEL));
1011 	if (ret)
1012 		goto insert_err;
1013 
1014 	mutex_unlock(&device->compat_devs_mutex);
1015 	return 0;
1016 
1017 insert_err:
1018 	ib_free_port_attrs(cdev);
1019 port_err:
1020 	device_del(&cdev->dev);
1021 add_err:
1022 	put_device(&cdev->dev);
1023 cdev_err:
1024 	xa_release(&device->compat_devs, rnet->id);
1025 done:
1026 	mutex_unlock(&device->compat_devs_mutex);
1027 	return ret;
1028 }
1029 
remove_one_compat_dev(struct ib_device * device,u32 id)1030 static void remove_one_compat_dev(struct ib_device *device, u32 id)
1031 {
1032 	struct ib_core_device *cdev;
1033 
1034 	mutex_lock(&device->compat_devs_mutex);
1035 	cdev = xa_erase(&device->compat_devs, id);
1036 	mutex_unlock(&device->compat_devs_mutex);
1037 	if (cdev) {
1038 		ib_free_port_attrs(cdev);
1039 		device_del(&cdev->dev);
1040 		put_device(&cdev->dev);
1041 	}
1042 }
1043 
remove_compat_devs(struct ib_device * device)1044 static void remove_compat_devs(struct ib_device *device)
1045 {
1046 	struct ib_core_device *cdev;
1047 	unsigned long index;
1048 
1049 	xa_for_each (&device->compat_devs, index, cdev)
1050 		remove_one_compat_dev(device, index);
1051 }
1052 
add_compat_devs(struct ib_device * device)1053 static int add_compat_devs(struct ib_device *device)
1054 {
1055 	struct rdma_dev_net *rnet;
1056 	unsigned long index;
1057 	int ret = 0;
1058 
1059 	lockdep_assert_held(&devices_rwsem);
1060 
1061 	down_read(&rdma_nets_rwsem);
1062 	xa_for_each (&rdma_nets, index, rnet) {
1063 		ret = add_one_compat_dev(device, rnet);
1064 		if (ret)
1065 			break;
1066 	}
1067 	up_read(&rdma_nets_rwsem);
1068 	return ret;
1069 }
1070 
remove_all_compat_devs(void)1071 static void remove_all_compat_devs(void)
1072 {
1073 	struct ib_compat_device *cdev;
1074 	struct ib_device *dev;
1075 	unsigned long index;
1076 
1077 	down_read(&devices_rwsem);
1078 	xa_for_each (&devices, index, dev) {
1079 		unsigned long c_index = 0;
1080 
1081 		/* Hold nets_rwsem so that any other thread modifying this
1082 		 * system param can sync with this thread.
1083 		 */
1084 		down_read(&rdma_nets_rwsem);
1085 		xa_for_each (&dev->compat_devs, c_index, cdev)
1086 			remove_one_compat_dev(dev, c_index);
1087 		up_read(&rdma_nets_rwsem);
1088 	}
1089 	up_read(&devices_rwsem);
1090 }
1091 
add_all_compat_devs(void)1092 static int add_all_compat_devs(void)
1093 {
1094 	struct rdma_dev_net *rnet;
1095 	struct ib_device *dev;
1096 	unsigned long index;
1097 	int ret = 0;
1098 
1099 	down_read(&devices_rwsem);
1100 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1101 		unsigned long net_index = 0;
1102 
1103 		/* Hold nets_rwsem so that any other thread modifying this
1104 		 * system param can sync with this thread.
1105 		 */
1106 		down_read(&rdma_nets_rwsem);
1107 		xa_for_each (&rdma_nets, net_index, rnet) {
1108 			ret = add_one_compat_dev(dev, rnet);
1109 			if (ret)
1110 				break;
1111 		}
1112 		up_read(&rdma_nets_rwsem);
1113 	}
1114 	up_read(&devices_rwsem);
1115 	if (ret)
1116 		remove_all_compat_devs();
1117 	return ret;
1118 }
1119 
rdma_compatdev_set(u8 enable)1120 int rdma_compatdev_set(u8 enable)
1121 {
1122 	struct rdma_dev_net *rnet;
1123 	unsigned long index;
1124 	int ret = 0;
1125 
1126 	down_write(&rdma_nets_rwsem);
1127 	if (ib_devices_shared_netns == enable) {
1128 		up_write(&rdma_nets_rwsem);
1129 		return 0;
1130 	}
1131 
1132 	/* enable/disable of compat devices is not supported
1133 	 * when more than default init_net exists.
1134 	 */
1135 	xa_for_each (&rdma_nets, index, rnet) {
1136 		ret++;
1137 		break;
1138 	}
1139 	if (!ret)
1140 		ib_devices_shared_netns = enable;
1141 	up_write(&rdma_nets_rwsem);
1142 	if (ret)
1143 		return -EBUSY;
1144 
1145 	if (enable)
1146 		ret = add_all_compat_devs();
1147 	else
1148 		remove_all_compat_devs();
1149 	return ret;
1150 }
1151 
rdma_dev_exit_net(struct net * net)1152 static void rdma_dev_exit_net(struct net *net)
1153 {
1154 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1155 	struct ib_device *dev;
1156 	unsigned long index;
1157 	int ret;
1158 
1159 	down_write(&rdma_nets_rwsem);
1160 	/*
1161 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1162 	 */
1163 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1164 	WARN_ON(ret);
1165 	up_write(&rdma_nets_rwsem);
1166 
1167 	down_read(&devices_rwsem);
1168 	xa_for_each (&devices, index, dev) {
1169 		get_device(&dev->dev);
1170 		/*
1171 		 * Release the devices_rwsem so that pontentially blocking
1172 		 * device_del, doesn't hold the devices_rwsem for too long.
1173 		 */
1174 		up_read(&devices_rwsem);
1175 
1176 		remove_one_compat_dev(dev, rnet->id);
1177 
1178 		/*
1179 		 * If the real device is in the NS then move it back to init.
1180 		 */
1181 		rdma_dev_change_netns(dev, net, &init_net);
1182 
1183 		put_device(&dev->dev);
1184 		down_read(&devices_rwsem);
1185 	}
1186 	up_read(&devices_rwsem);
1187 
1188 	rdma_nl_net_exit(rnet);
1189 	xa_erase(&rdma_nets, rnet->id);
1190 }
1191 
rdma_dev_init_net(struct net * net)1192 static __net_init int rdma_dev_init_net(struct net *net)
1193 {
1194 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1195 	unsigned long index;
1196 	struct ib_device *dev;
1197 	int ret;
1198 
1199 	write_pnet(&rnet->net, net);
1200 
1201 	ret = rdma_nl_net_init(rnet);
1202 	if (ret)
1203 		return ret;
1204 
1205 	/* No need to create any compat devices in default init_net. */
1206 	if (net_eq(net, &init_net))
1207 		return 0;
1208 
1209 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1210 	if (ret) {
1211 		rdma_nl_net_exit(rnet);
1212 		return ret;
1213 	}
1214 
1215 	down_read(&devices_rwsem);
1216 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1217 		/* Hold nets_rwsem so that netlink command cannot change
1218 		 * system configuration for device sharing mode.
1219 		 */
1220 		down_read(&rdma_nets_rwsem);
1221 		ret = add_one_compat_dev(dev, rnet);
1222 		up_read(&rdma_nets_rwsem);
1223 		if (ret)
1224 			break;
1225 	}
1226 	up_read(&devices_rwsem);
1227 
1228 	if (ret)
1229 		rdma_dev_exit_net(net);
1230 
1231 	return ret;
1232 }
1233 
1234 /*
1235  * Assign the unique string device name and the unique device index. This is
1236  * undone by ib_dealloc_device.
1237  */
assign_name(struct ib_device * device,const char * name)1238 static int assign_name(struct ib_device *device, const char *name)
1239 {
1240 	static u32 last_id;
1241 	int ret;
1242 
1243 	down_write(&devices_rwsem);
1244 	/* Assign a unique name to the device */
1245 	if (strchr(name, '%'))
1246 		ret = alloc_name(device, name);
1247 	else
1248 		ret = dev_set_name(&device->dev, name);
1249 	if (ret)
1250 		goto out;
1251 
1252 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1253 		ret = -ENFILE;
1254 		goto out;
1255 	}
1256 	strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1257 
1258 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1259 			&last_id, GFP_KERNEL);
1260 	if (ret > 0)
1261 		ret = 0;
1262 
1263 out:
1264 	up_write(&devices_rwsem);
1265 	return ret;
1266 }
1267 
1268 /*
1269  * setup_device() allocates memory and sets up data that requires calling the
1270  * device ops, this is the only reason these actions are not done during
1271  * ib_alloc_device. It is undone by ib_dealloc_device().
1272  */
setup_device(struct ib_device * device)1273 static int setup_device(struct ib_device *device)
1274 {
1275 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1276 	int ret;
1277 
1278 	ib_device_check_mandatory(device);
1279 
1280 	ret = setup_port_data(device);
1281 	if (ret) {
1282 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1283 		return ret;
1284 	}
1285 
1286 	memset(&device->attrs, 0, sizeof(device->attrs));
1287 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1288 	if (ret) {
1289 		dev_warn(&device->dev,
1290 			 "Couldn't query the device attributes\n");
1291 		return ret;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
disable_device(struct ib_device * device)1297 static void disable_device(struct ib_device *device)
1298 {
1299 	u32 cid;
1300 
1301 	WARN_ON(!refcount_read(&device->refcount));
1302 
1303 	down_write(&devices_rwsem);
1304 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1305 	up_write(&devices_rwsem);
1306 
1307 	/*
1308 	 * Remove clients in LIFO order, see assign_client_id. This could be
1309 	 * more efficient if xarray learns to reverse iterate. Since no new
1310 	 * clients can be added to this ib_device past this point we only need
1311 	 * the maximum possible client_id value here.
1312 	 */
1313 	down_read(&clients_rwsem);
1314 	cid = highest_client_id;
1315 	up_read(&clients_rwsem);
1316 	while (cid) {
1317 		cid--;
1318 		remove_client_context(device, cid);
1319 	}
1320 
1321 	ib_cq_pool_cleanup(device);
1322 
1323 	/* Pairs with refcount_set in enable_device */
1324 	ib_device_put(device);
1325 	wait_for_completion(&device->unreg_completion);
1326 
1327 	/*
1328 	 * compat devices must be removed after device refcount drops to zero.
1329 	 * Otherwise init_net() may add more compatdevs after removing compat
1330 	 * devices and before device is disabled.
1331 	 */
1332 	remove_compat_devs(device);
1333 }
1334 
1335 /*
1336  * An enabled device is visible to all clients and to all the public facing
1337  * APIs that return a device pointer. This always returns with a new get, even
1338  * if it fails.
1339  */
enable_device_and_get(struct ib_device * device)1340 static int enable_device_and_get(struct ib_device *device)
1341 {
1342 	struct ib_client *client;
1343 	unsigned long index;
1344 	int ret = 0;
1345 
1346 	/*
1347 	 * One ref belongs to the xa and the other belongs to this
1348 	 * thread. This is needed to guard against parallel unregistration.
1349 	 */
1350 	refcount_set(&device->refcount, 2);
1351 	down_write(&devices_rwsem);
1352 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1353 
1354 	/*
1355 	 * By using downgrade_write() we ensure that no other thread can clear
1356 	 * DEVICE_REGISTERED while we are completing the client setup.
1357 	 */
1358 	downgrade_write(&devices_rwsem);
1359 
1360 	if (device->ops.enable_driver) {
1361 		ret = device->ops.enable_driver(device);
1362 		if (ret)
1363 			goto out;
1364 	}
1365 
1366 	down_read(&clients_rwsem);
1367 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1368 		ret = add_client_context(device, client);
1369 		if (ret)
1370 			break;
1371 	}
1372 	up_read(&clients_rwsem);
1373 	if (!ret)
1374 		ret = add_compat_devs(device);
1375 out:
1376 	up_read(&devices_rwsem);
1377 	return ret;
1378 }
1379 
prevent_dealloc_device(struct ib_device * ib_dev)1380 static void prevent_dealloc_device(struct ib_device *ib_dev)
1381 {
1382 }
1383 
ib_device_notify_register(struct ib_device * device)1384 static void ib_device_notify_register(struct ib_device *device)
1385 {
1386 	struct net_device *netdev;
1387 	u32 port;
1388 	int ret;
1389 
1390 	down_read(&devices_rwsem);
1391 
1392 	/* Mark for userspace that device is ready */
1393 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1394 
1395 	ret = rdma_nl_notify_event(device, 0, RDMA_REGISTER_EVENT);
1396 	if (ret)
1397 		goto out;
1398 
1399 	rdma_for_each_port(device, port) {
1400 		netdev = ib_device_get_netdev(device, port);
1401 		if (!netdev)
1402 			continue;
1403 
1404 		ret = rdma_nl_notify_event(device, port,
1405 					   RDMA_NETDEV_ATTACH_EVENT);
1406 		dev_put(netdev);
1407 		if (ret)
1408 			goto out;
1409 	}
1410 
1411 out:
1412 	up_read(&devices_rwsem);
1413 }
1414 
1415 /**
1416  * ib_register_device - Register an IB device with IB core
1417  * @device: Device to register
1418  * @name: unique string device name. This may include a '%' which will
1419  * 	  cause a unique index to be added to the passed device name.
1420  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1421  *	        device will be used. In this case the caller should fully
1422  *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1423  *
1424  * Low-level drivers use ib_register_device() to register their
1425  * devices with the IB core.  All registered clients will receive a
1426  * callback for each device that is added. @device must be allocated
1427  * with ib_alloc_device().
1428  *
1429  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1430  * asynchronously then the device pointer may become freed as soon as this
1431  * function returns.
1432  */
ib_register_device(struct ib_device * device,const char * name,struct device * dma_device)1433 int ib_register_device(struct ib_device *device, const char *name,
1434 		       struct device *dma_device)
1435 {
1436 	int ret;
1437 
1438 	ret = assign_name(device, name);
1439 	if (ret)
1440 		return ret;
1441 
1442 	/*
1443 	 * If the caller does not provide a DMA capable device then the IB core
1444 	 * will set up ib_sge and scatterlist structures that stash the kernel
1445 	 * virtual address into the address field.
1446 	 */
1447 	WARN_ON(dma_device && !dma_device->dma_parms);
1448 	device->dma_device = dma_device;
1449 
1450 	ret = setup_device(device);
1451 	if (ret)
1452 		return ret;
1453 
1454 	ret = ib_cache_setup_one(device);
1455 	if (ret) {
1456 		dev_warn(&device->dev,
1457 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1458 		return ret;
1459 	}
1460 
1461 	device->groups[0] = &ib_dev_attr_group;
1462 	device->groups[1] = device->ops.device_group;
1463 	ret = ib_setup_device_attrs(device);
1464 	if (ret)
1465 		goto cache_cleanup;
1466 
1467 	ib_device_register_rdmacg(device);
1468 
1469 	rdma_counter_init(device);
1470 
1471 	/*
1472 	 * Ensure that ADD uevent is not fired because it
1473 	 * is too early amd device is not initialized yet.
1474 	 */
1475 	dev_set_uevent_suppress(&device->dev, true);
1476 	ret = device_add(&device->dev);
1477 	if (ret)
1478 		goto cg_cleanup;
1479 
1480 	ret = ib_setup_port_attrs(&device->coredev);
1481 	if (ret) {
1482 		dev_warn(&device->dev,
1483 			 "Couldn't register device with driver model\n");
1484 		goto dev_cleanup;
1485 	}
1486 
1487 	ret = enable_device_and_get(device);
1488 	if (ret) {
1489 		void (*dealloc_fn)(struct ib_device *);
1490 
1491 		/*
1492 		 * If we hit this error flow then we don't want to
1493 		 * automatically dealloc the device since the caller is
1494 		 * expected to call ib_dealloc_device() after
1495 		 * ib_register_device() fails. This is tricky due to the
1496 		 * possibility for a parallel unregistration along with this
1497 		 * error flow. Since we have a refcount here we know any
1498 		 * parallel flow is stopped in disable_device and will see the
1499 		 * special dealloc_driver pointer, causing the responsibility to
1500 		 * ib_dealloc_device() to revert back to this thread.
1501 		 */
1502 		dealloc_fn = device->ops.dealloc_driver;
1503 		device->ops.dealloc_driver = prevent_dealloc_device;
1504 		ib_device_put(device);
1505 		__ib_unregister_device(device);
1506 		device->ops.dealloc_driver = dealloc_fn;
1507 		dev_set_uevent_suppress(&device->dev, false);
1508 		return ret;
1509 	}
1510 	dev_set_uevent_suppress(&device->dev, false);
1511 
1512 	ib_device_notify_register(device);
1513 
1514 	ib_device_put(device);
1515 
1516 	return 0;
1517 
1518 dev_cleanup:
1519 	device_del(&device->dev);
1520 cg_cleanup:
1521 	dev_set_uevent_suppress(&device->dev, false);
1522 	ib_device_unregister_rdmacg(device);
1523 cache_cleanup:
1524 	ib_cache_cleanup_one(device);
1525 	return ret;
1526 }
1527 EXPORT_SYMBOL(ib_register_device);
1528 
1529 /* Callers must hold a get on the device. */
__ib_unregister_device(struct ib_device * ib_dev)1530 static void __ib_unregister_device(struct ib_device *ib_dev)
1531 {
1532 	struct ib_device *sub, *tmp;
1533 
1534 	mutex_lock(&ib_dev->subdev_lock);
1535 	list_for_each_entry_safe_reverse(sub, tmp,
1536 					 &ib_dev->subdev_list_head,
1537 					 subdev_list) {
1538 		list_del(&sub->subdev_list);
1539 		ib_dev->ops.del_sub_dev(sub);
1540 		ib_device_put(ib_dev);
1541 	}
1542 	mutex_unlock(&ib_dev->subdev_lock);
1543 
1544 	/*
1545 	 * We have a registration lock so that all the calls to unregister are
1546 	 * fully fenced, once any unregister returns the device is truely
1547 	 * unregistered even if multiple callers are unregistering it at the
1548 	 * same time. This also interacts with the registration flow and
1549 	 * provides sane semantics if register and unregister are racing.
1550 	 */
1551 	mutex_lock(&ib_dev->unregistration_lock);
1552 	if (!refcount_read(&ib_dev->refcount))
1553 		goto out;
1554 
1555 	disable_device(ib_dev);
1556 	rdma_nl_notify_event(ib_dev, 0, RDMA_UNREGISTER_EVENT);
1557 
1558 	/* Expedite removing unregistered pointers from the hash table */
1559 	free_netdevs(ib_dev);
1560 
1561 	ib_free_port_attrs(&ib_dev->coredev);
1562 	device_del(&ib_dev->dev);
1563 	ib_device_unregister_rdmacg(ib_dev);
1564 	ib_cache_cleanup_one(ib_dev);
1565 
1566 	/*
1567 	 * Drivers using the new flow may not call ib_dealloc_device except
1568 	 * in error unwind prior to registration success.
1569 	 */
1570 	if (ib_dev->ops.dealloc_driver &&
1571 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1572 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1573 		ib_dealloc_device(ib_dev);
1574 	}
1575 out:
1576 	mutex_unlock(&ib_dev->unregistration_lock);
1577 }
1578 
1579 /**
1580  * ib_unregister_device - Unregister an IB device
1581  * @ib_dev: The device to unregister
1582  *
1583  * Unregister an IB device.  All clients will receive a remove callback.
1584  *
1585  * Callers should call this routine only once, and protect against races with
1586  * registration. Typically it should only be called as part of a remove
1587  * callback in an implementation of driver core's struct device_driver and
1588  * related.
1589  *
1590  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1591  * this function.
1592  */
ib_unregister_device(struct ib_device * ib_dev)1593 void ib_unregister_device(struct ib_device *ib_dev)
1594 {
1595 	get_device(&ib_dev->dev);
1596 	__ib_unregister_device(ib_dev);
1597 	put_device(&ib_dev->dev);
1598 }
1599 EXPORT_SYMBOL(ib_unregister_device);
1600 
1601 /**
1602  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1603  * @ib_dev: The device to unregister
1604  *
1605  * This is the same as ib_unregister_device(), except it includes an internal
1606  * ib_device_put() that should match a 'get' obtained by the caller.
1607  *
1608  * It is safe to call this routine concurrently from multiple threads while
1609  * holding the 'get'. When the function returns the device is fully
1610  * unregistered.
1611  *
1612  * Drivers using this flow MUST use the driver_unregister callback to clean up
1613  * their resources associated with the device and dealloc it.
1614  */
ib_unregister_device_and_put(struct ib_device * ib_dev)1615 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1616 {
1617 	WARN_ON(!ib_dev->ops.dealloc_driver);
1618 	get_device(&ib_dev->dev);
1619 	ib_device_put(ib_dev);
1620 	__ib_unregister_device(ib_dev);
1621 	put_device(&ib_dev->dev);
1622 }
1623 EXPORT_SYMBOL(ib_unregister_device_and_put);
1624 
1625 /**
1626  * ib_unregister_driver - Unregister all IB devices for a driver
1627  * @driver_id: The driver to unregister
1628  *
1629  * This implements a fence for device unregistration. It only returns once all
1630  * devices associated with the driver_id have fully completed their
1631  * unregistration and returned from ib_unregister_device*().
1632  *
1633  * If device's are not yet unregistered it goes ahead and starts unregistering
1634  * them.
1635  *
1636  * This does not block creation of new devices with the given driver_id, that
1637  * is the responsibility of the caller.
1638  */
ib_unregister_driver(enum rdma_driver_id driver_id)1639 void ib_unregister_driver(enum rdma_driver_id driver_id)
1640 {
1641 	struct ib_device *ib_dev;
1642 	unsigned long index;
1643 
1644 	down_read(&devices_rwsem);
1645 	xa_for_each (&devices, index, ib_dev) {
1646 		if (ib_dev->ops.driver_id != driver_id)
1647 			continue;
1648 
1649 		get_device(&ib_dev->dev);
1650 		up_read(&devices_rwsem);
1651 
1652 		WARN_ON(!ib_dev->ops.dealloc_driver);
1653 		__ib_unregister_device(ib_dev);
1654 
1655 		put_device(&ib_dev->dev);
1656 		down_read(&devices_rwsem);
1657 	}
1658 	up_read(&devices_rwsem);
1659 }
1660 EXPORT_SYMBOL(ib_unregister_driver);
1661 
ib_unregister_work(struct work_struct * work)1662 static void ib_unregister_work(struct work_struct *work)
1663 {
1664 	struct ib_device *ib_dev =
1665 		container_of(work, struct ib_device, unregistration_work);
1666 
1667 	__ib_unregister_device(ib_dev);
1668 	put_device(&ib_dev->dev);
1669 }
1670 
1671 /**
1672  * ib_unregister_device_queued - Unregister a device using a work queue
1673  * @ib_dev: The device to unregister
1674  *
1675  * This schedules an asynchronous unregistration using a WQ for the device. A
1676  * driver should use this to avoid holding locks while doing unregistration,
1677  * such as holding the RTNL lock.
1678  *
1679  * Drivers using this API must use ib_unregister_driver before module unload
1680  * to ensure that all scheduled unregistrations have completed.
1681  */
ib_unregister_device_queued(struct ib_device * ib_dev)1682 void ib_unregister_device_queued(struct ib_device *ib_dev)
1683 {
1684 	WARN_ON(!refcount_read(&ib_dev->refcount));
1685 	WARN_ON(!ib_dev->ops.dealloc_driver);
1686 	get_device(&ib_dev->dev);
1687 	if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1688 		put_device(&ib_dev->dev);
1689 }
1690 EXPORT_SYMBOL(ib_unregister_device_queued);
1691 
1692 /*
1693  * The caller must pass in a device that has the kref held and the refcount
1694  * released. If the device is in cur_net and still registered then it is moved
1695  * into net.
1696  */
rdma_dev_change_netns(struct ib_device * device,struct net * cur_net,struct net * net)1697 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1698 				 struct net *net)
1699 {
1700 	int ret2 = -EINVAL;
1701 	int ret;
1702 
1703 	mutex_lock(&device->unregistration_lock);
1704 
1705 	/*
1706 	 * If a device not under ib_device_get() or if the unregistration_lock
1707 	 * is not held, the namespace can be changed, or it can be unregistered.
1708 	 * Check again under the lock.
1709 	 */
1710 	if (refcount_read(&device->refcount) == 0 ||
1711 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1712 		ret = -ENODEV;
1713 		goto out;
1714 	}
1715 
1716 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1717 	disable_device(device);
1718 
1719 	/*
1720 	 * At this point no one can be using the device, so it is safe to
1721 	 * change the namespace.
1722 	 */
1723 	write_pnet(&device->coredev.rdma_net, net);
1724 
1725 	down_read(&devices_rwsem);
1726 	/*
1727 	 * Currently rdma devices are system wide unique. So the device name
1728 	 * is guaranteed free in the new namespace. Publish the new namespace
1729 	 * at the sysfs level.
1730 	 */
1731 	ret = device_rename(&device->dev, dev_name(&device->dev));
1732 	up_read(&devices_rwsem);
1733 	if (ret) {
1734 		dev_warn(&device->dev,
1735 			 "%s: Couldn't rename device after namespace change\n",
1736 			 __func__);
1737 		/* Try and put things back and re-enable the device */
1738 		write_pnet(&device->coredev.rdma_net, cur_net);
1739 	}
1740 
1741 	ret2 = enable_device_and_get(device);
1742 	if (ret2) {
1743 		/*
1744 		 * This shouldn't really happen, but if it does, let the user
1745 		 * retry at later point. So don't disable the device.
1746 		 */
1747 		dev_warn(&device->dev,
1748 			 "%s: Couldn't re-enable device after namespace change\n",
1749 			 __func__);
1750 	}
1751 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1752 
1753 	ib_device_put(device);
1754 out:
1755 	mutex_unlock(&device->unregistration_lock);
1756 	if (ret)
1757 		return ret;
1758 	return ret2;
1759 }
1760 
ib_device_set_netns_put(struct sk_buff * skb,struct ib_device * dev,u32 ns_fd)1761 int ib_device_set_netns_put(struct sk_buff *skb,
1762 			    struct ib_device *dev, u32 ns_fd)
1763 {
1764 	struct net *net;
1765 	int ret;
1766 
1767 	net = get_net_ns_by_fd(ns_fd);
1768 	if (IS_ERR(net)) {
1769 		ret = PTR_ERR(net);
1770 		goto net_err;
1771 	}
1772 
1773 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1774 		ret = -EPERM;
1775 		goto ns_err;
1776 	}
1777 
1778 	/*
1779 	 * All the ib_clients, including uverbs, are reset when the namespace is
1780 	 * changed and this cannot be blocked waiting for userspace to do
1781 	 * something, so disassociation is mandatory.
1782 	 */
1783 	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1784 		ret = -EOPNOTSUPP;
1785 		goto ns_err;
1786 	}
1787 
1788 	get_device(&dev->dev);
1789 	ib_device_put(dev);
1790 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1791 	put_device(&dev->dev);
1792 
1793 	put_net(net);
1794 	return ret;
1795 
1796 ns_err:
1797 	put_net(net);
1798 net_err:
1799 	ib_device_put(dev);
1800 	return ret;
1801 }
1802 
1803 static struct pernet_operations rdma_dev_net_ops = {
1804 	.init = rdma_dev_init_net,
1805 	.exit = rdma_dev_exit_net,
1806 	.id = &rdma_dev_net_id,
1807 	.size = sizeof(struct rdma_dev_net),
1808 };
1809 
assign_client_id(struct ib_client * client)1810 static int assign_client_id(struct ib_client *client)
1811 {
1812 	int ret;
1813 
1814 	lockdep_assert_held(&clients_rwsem);
1815 	/*
1816 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1817 	 * achieve this we assign client_ids so they are sorted in
1818 	 * registration order.
1819 	 */
1820 	client->client_id = highest_client_id;
1821 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1822 	if (ret)
1823 		return ret;
1824 
1825 	highest_client_id++;
1826 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1827 	return 0;
1828 }
1829 
remove_client_id(struct ib_client * client)1830 static void remove_client_id(struct ib_client *client)
1831 {
1832 	down_write(&clients_rwsem);
1833 	xa_erase(&clients, client->client_id);
1834 	for (; highest_client_id; highest_client_id--)
1835 		if (xa_load(&clients, highest_client_id - 1))
1836 			break;
1837 	up_write(&clients_rwsem);
1838 }
1839 
1840 /**
1841  * ib_register_client - Register an IB client
1842  * @client:Client to register
1843  *
1844  * Upper level users of the IB drivers can use ib_register_client() to
1845  * register callbacks for IB device addition and removal.  When an IB
1846  * device is added, each registered client's add method will be called
1847  * (in the order the clients were registered), and when a device is
1848  * removed, each client's remove method will be called (in the reverse
1849  * order that clients were registered).  In addition, when
1850  * ib_register_client() is called, the client will receive an add
1851  * callback for all devices already registered.
1852  */
ib_register_client(struct ib_client * client)1853 int ib_register_client(struct ib_client *client)
1854 {
1855 	struct ib_device *device;
1856 	unsigned long index;
1857 	bool need_unreg = false;
1858 	int ret;
1859 
1860 	refcount_set(&client->uses, 1);
1861 	init_completion(&client->uses_zero);
1862 
1863 	/*
1864 	 * The devices_rwsem is held in write mode to ensure that a racing
1865 	 * ib_register_device() sees a consisent view of clients and devices.
1866 	 */
1867 	down_write(&devices_rwsem);
1868 	down_write(&clients_rwsem);
1869 	ret = assign_client_id(client);
1870 	if (ret)
1871 		goto out;
1872 
1873 	need_unreg = true;
1874 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1875 		ret = add_client_context(device, client);
1876 		if (ret)
1877 			goto out;
1878 	}
1879 	ret = 0;
1880 out:
1881 	up_write(&clients_rwsem);
1882 	up_write(&devices_rwsem);
1883 	if (need_unreg && ret)
1884 		ib_unregister_client(client);
1885 	return ret;
1886 }
1887 EXPORT_SYMBOL(ib_register_client);
1888 
1889 /**
1890  * ib_unregister_client - Unregister an IB client
1891  * @client:Client to unregister
1892  *
1893  * Upper level users use ib_unregister_client() to remove their client
1894  * registration.  When ib_unregister_client() is called, the client
1895  * will receive a remove callback for each IB device still registered.
1896  *
1897  * This is a full fence, once it returns no client callbacks will be called,
1898  * or are running in another thread.
1899  */
ib_unregister_client(struct ib_client * client)1900 void ib_unregister_client(struct ib_client *client)
1901 {
1902 	struct ib_device *device;
1903 	unsigned long index;
1904 
1905 	down_write(&clients_rwsem);
1906 	ib_client_put(client);
1907 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1908 	up_write(&clients_rwsem);
1909 
1910 	/* We do not want to have locks while calling client->remove() */
1911 	rcu_read_lock();
1912 	xa_for_each (&devices, index, device) {
1913 		if (!ib_device_try_get(device))
1914 			continue;
1915 		rcu_read_unlock();
1916 
1917 		remove_client_context(device, client->client_id);
1918 
1919 		ib_device_put(device);
1920 		rcu_read_lock();
1921 	}
1922 	rcu_read_unlock();
1923 
1924 	/*
1925 	 * remove_client_context() is not a fence, it can return even though a
1926 	 * removal is ongoing. Wait until all removals are completed.
1927 	 */
1928 	wait_for_completion(&client->uses_zero);
1929 	remove_client_id(client);
1930 }
1931 EXPORT_SYMBOL(ib_unregister_client);
1932 
__ib_get_global_client_nl_info(const char * client_name,struct ib_client_nl_info * res)1933 static int __ib_get_global_client_nl_info(const char *client_name,
1934 					  struct ib_client_nl_info *res)
1935 {
1936 	struct ib_client *client;
1937 	unsigned long index;
1938 	int ret = -ENOENT;
1939 
1940 	down_read(&clients_rwsem);
1941 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1942 		if (strcmp(client->name, client_name) != 0)
1943 			continue;
1944 		if (!client->get_global_nl_info) {
1945 			ret = -EOPNOTSUPP;
1946 			break;
1947 		}
1948 		ret = client->get_global_nl_info(res);
1949 		if (WARN_ON(ret == -ENOENT))
1950 			ret = -EINVAL;
1951 		if (!ret && res->cdev)
1952 			get_device(res->cdev);
1953 		break;
1954 	}
1955 	up_read(&clients_rwsem);
1956 	return ret;
1957 }
1958 
__ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1959 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1960 				   const char *client_name,
1961 				   struct ib_client_nl_info *res)
1962 {
1963 	unsigned long index;
1964 	void *client_data;
1965 	int ret = -ENOENT;
1966 
1967 	down_read(&ibdev->client_data_rwsem);
1968 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1969 			     CLIENT_DATA_REGISTERED) {
1970 		struct ib_client *client = xa_load(&clients, index);
1971 
1972 		if (!client || strcmp(client->name, client_name) != 0)
1973 			continue;
1974 		if (!client->get_nl_info) {
1975 			ret = -EOPNOTSUPP;
1976 			break;
1977 		}
1978 		ret = client->get_nl_info(ibdev, client_data, res);
1979 		if (WARN_ON(ret == -ENOENT))
1980 			ret = -EINVAL;
1981 
1982 		/*
1983 		 * The cdev is guaranteed valid as long as we are inside the
1984 		 * client_data_rwsem as remove_one can't be called. Keep it
1985 		 * valid for the caller.
1986 		 */
1987 		if (!ret && res->cdev)
1988 			get_device(res->cdev);
1989 		break;
1990 	}
1991 	up_read(&ibdev->client_data_rwsem);
1992 
1993 	return ret;
1994 }
1995 
1996 /**
1997  * ib_get_client_nl_info - Fetch the nl_info from a client
1998  * @ibdev: IB device
1999  * @client_name: Name of the client
2000  * @res: Result of the query
2001  */
ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)2002 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
2003 			  struct ib_client_nl_info *res)
2004 {
2005 	int ret;
2006 
2007 	if (ibdev)
2008 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
2009 	else
2010 		ret = __ib_get_global_client_nl_info(client_name, res);
2011 #ifdef CONFIG_MODULES
2012 	if (ret == -ENOENT) {
2013 		request_module("rdma-client-%s", client_name);
2014 		if (ibdev)
2015 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
2016 		else
2017 			ret = __ib_get_global_client_nl_info(client_name, res);
2018 	}
2019 #endif
2020 	if (ret) {
2021 		if (ret == -ENOENT)
2022 			return -EOPNOTSUPP;
2023 		return ret;
2024 	}
2025 
2026 	if (WARN_ON(!res->cdev))
2027 		return -EINVAL;
2028 	return 0;
2029 }
2030 
2031 /**
2032  * ib_set_client_data - Set IB client context
2033  * @device:Device to set context for
2034  * @client:Client to set context for
2035  * @data:Context to set
2036  *
2037  * ib_set_client_data() sets client context data that can be retrieved with
2038  * ib_get_client_data(). This can only be called while the client is
2039  * registered to the device, once the ib_client remove() callback returns this
2040  * cannot be called.
2041  */
ib_set_client_data(struct ib_device * device,struct ib_client * client,void * data)2042 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2043 			void *data)
2044 {
2045 	void *rc;
2046 
2047 	if (WARN_ON(IS_ERR(data)))
2048 		data = NULL;
2049 
2050 	rc = xa_store(&device->client_data, client->client_id, data,
2051 		      GFP_KERNEL);
2052 	WARN_ON(xa_is_err(rc));
2053 }
2054 EXPORT_SYMBOL(ib_set_client_data);
2055 
2056 /**
2057  * ib_register_event_handler - Register an IB event handler
2058  * @event_handler:Handler to register
2059  *
2060  * ib_register_event_handler() registers an event handler that will be
2061  * called back when asynchronous IB events occur (as defined in
2062  * chapter 11 of the InfiniBand Architecture Specification). This
2063  * callback occurs in workqueue context.
2064  */
ib_register_event_handler(struct ib_event_handler * event_handler)2065 void ib_register_event_handler(struct ib_event_handler *event_handler)
2066 {
2067 	down_write(&event_handler->device->event_handler_rwsem);
2068 	list_add_tail(&event_handler->list,
2069 		      &event_handler->device->event_handler_list);
2070 	up_write(&event_handler->device->event_handler_rwsem);
2071 }
2072 EXPORT_SYMBOL(ib_register_event_handler);
2073 
2074 /**
2075  * ib_unregister_event_handler - Unregister an event handler
2076  * @event_handler:Handler to unregister
2077  *
2078  * Unregister an event handler registered with
2079  * ib_register_event_handler().
2080  */
ib_unregister_event_handler(struct ib_event_handler * event_handler)2081 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2082 {
2083 	down_write(&event_handler->device->event_handler_rwsem);
2084 	list_del(&event_handler->list);
2085 	up_write(&event_handler->device->event_handler_rwsem);
2086 }
2087 EXPORT_SYMBOL(ib_unregister_event_handler);
2088 
ib_dispatch_event_clients(struct ib_event * event)2089 void ib_dispatch_event_clients(struct ib_event *event)
2090 {
2091 	struct ib_event_handler *handler;
2092 
2093 	down_read(&event->device->event_handler_rwsem);
2094 
2095 	list_for_each_entry(handler, &event->device->event_handler_list, list)
2096 		handler->handler(handler, event);
2097 
2098 	up_read(&event->device->event_handler_rwsem);
2099 }
2100 
iw_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2101 static int iw_query_port(struct ib_device *device,
2102 			   u32 port_num,
2103 			   struct ib_port_attr *port_attr)
2104 {
2105 	struct in_device *inetdev;
2106 	struct net_device *netdev;
2107 
2108 	memset(port_attr, 0, sizeof(*port_attr));
2109 
2110 	netdev = ib_device_get_netdev(device, port_num);
2111 	if (!netdev)
2112 		return -ENODEV;
2113 
2114 	port_attr->max_mtu = IB_MTU_4096;
2115 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2116 
2117 	if (!netif_carrier_ok(netdev)) {
2118 		port_attr->state = IB_PORT_DOWN;
2119 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2120 	} else {
2121 		rcu_read_lock();
2122 		inetdev = __in_dev_get_rcu(netdev);
2123 
2124 		if (inetdev && inetdev->ifa_list) {
2125 			port_attr->state = IB_PORT_ACTIVE;
2126 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2127 		} else {
2128 			port_attr->state = IB_PORT_INIT;
2129 			port_attr->phys_state =
2130 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2131 		}
2132 
2133 		rcu_read_unlock();
2134 	}
2135 
2136 	dev_put(netdev);
2137 	return device->ops.query_port(device, port_num, port_attr);
2138 }
2139 
__ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2140 static int __ib_query_port(struct ib_device *device,
2141 			   u32 port_num,
2142 			   struct ib_port_attr *port_attr)
2143 {
2144 	int err;
2145 
2146 	memset(port_attr, 0, sizeof(*port_attr));
2147 
2148 	err = device->ops.query_port(device, port_num, port_attr);
2149 	if (err || port_attr->subnet_prefix)
2150 		return err;
2151 
2152 	if (rdma_port_get_link_layer(device, port_num) !=
2153 	    IB_LINK_LAYER_INFINIBAND)
2154 		return 0;
2155 
2156 	ib_get_cached_subnet_prefix(device, port_num,
2157 				    &port_attr->subnet_prefix);
2158 	return 0;
2159 }
2160 
2161 /**
2162  * ib_query_port - Query IB port attributes
2163  * @device:Device to query
2164  * @port_num:Port number to query
2165  * @port_attr:Port attributes
2166  *
2167  * ib_query_port() returns the attributes of a port through the
2168  * @port_attr pointer.
2169  */
ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2170 int ib_query_port(struct ib_device *device,
2171 		  u32 port_num,
2172 		  struct ib_port_attr *port_attr)
2173 {
2174 	if (!rdma_is_port_valid(device, port_num))
2175 		return -EINVAL;
2176 
2177 	if (rdma_protocol_iwarp(device, port_num))
2178 		return iw_query_port(device, port_num, port_attr);
2179 	else
2180 		return __ib_query_port(device, port_num, port_attr);
2181 }
2182 EXPORT_SYMBOL(ib_query_port);
2183 
add_ndev_hash(struct ib_port_data * pdata)2184 static void add_ndev_hash(struct ib_port_data *pdata)
2185 {
2186 	unsigned long flags;
2187 
2188 	might_sleep();
2189 
2190 	spin_lock_irqsave(&ndev_hash_lock, flags);
2191 	if (hash_hashed(&pdata->ndev_hash_link)) {
2192 		hash_del_rcu(&pdata->ndev_hash_link);
2193 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2194 		/*
2195 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2196 		 * grace period
2197 		 */
2198 		synchronize_rcu();
2199 		spin_lock_irqsave(&ndev_hash_lock, flags);
2200 	}
2201 	if (pdata->netdev)
2202 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2203 			     (uintptr_t)pdata->netdev);
2204 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2205 }
2206 
2207 /**
2208  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2209  * @ib_dev: Device to modify
2210  * @ndev: net_device to affiliate, may be NULL
2211  * @port: IB port the net_device is connected to
2212  *
2213  * Drivers should use this to link the ib_device to a netdev so the netdev
2214  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2215  * affiliated with any port.
2216  *
2217  * The caller must ensure that the given ndev is not unregistered or
2218  * unregistering, and that either the ib_device is unregistered or
2219  * ib_device_set_netdev() is called with NULL when the ndev sends a
2220  * NETDEV_UNREGISTER event.
2221  */
ib_device_set_netdev(struct ib_device * ib_dev,struct net_device * ndev,u32 port)2222 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2223 			 u32 port)
2224 {
2225 	enum rdma_nl_notify_event_type etype;
2226 	struct net_device *old_ndev;
2227 	struct ib_port_data *pdata;
2228 	unsigned long flags;
2229 	int ret;
2230 
2231 	if (!rdma_is_port_valid(ib_dev, port))
2232 		return -EINVAL;
2233 
2234 	/*
2235 	 * Drivers wish to call this before ib_register_driver, so we have to
2236 	 * setup the port data early.
2237 	 */
2238 	ret = alloc_port_data(ib_dev);
2239 	if (ret)
2240 		return ret;
2241 
2242 	pdata = &ib_dev->port_data[port];
2243 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2244 	old_ndev = rcu_dereference_protected(
2245 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2246 	if (old_ndev == ndev) {
2247 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2248 		return 0;
2249 	}
2250 
2251 	rcu_assign_pointer(pdata->netdev, ndev);
2252 	netdev_put(old_ndev, &pdata->netdev_tracker);
2253 	netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2254 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2255 
2256 	add_ndev_hash(pdata);
2257 
2258 	/* Make sure that the device is registered before we send events */
2259 	if (xa_load(&devices, ib_dev->index) != ib_dev)
2260 		return 0;
2261 
2262 	etype = ndev ? RDMA_NETDEV_ATTACH_EVENT : RDMA_NETDEV_DETACH_EVENT;
2263 	rdma_nl_notify_event(ib_dev, port, etype);
2264 
2265 	return 0;
2266 }
2267 EXPORT_SYMBOL(ib_device_set_netdev);
2268 
free_netdevs(struct ib_device * ib_dev)2269 static void free_netdevs(struct ib_device *ib_dev)
2270 {
2271 	unsigned long flags;
2272 	u32 port;
2273 
2274 	if (!ib_dev->port_data)
2275 		return;
2276 
2277 	rdma_for_each_port (ib_dev, port) {
2278 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2279 		struct net_device *ndev;
2280 
2281 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2282 		ndev = rcu_dereference_protected(
2283 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2284 		if (ndev) {
2285 			spin_lock(&ndev_hash_lock);
2286 			hash_del_rcu(&pdata->ndev_hash_link);
2287 			spin_unlock(&ndev_hash_lock);
2288 
2289 			/*
2290 			 * If this is the last dev_put there is still a
2291 			 * synchronize_rcu before the netdev is kfreed, so we
2292 			 * can continue to rely on unlocked pointer
2293 			 * comparisons after the put
2294 			 */
2295 			rcu_assign_pointer(pdata->netdev, NULL);
2296 			netdev_put(ndev, &pdata->netdev_tracker);
2297 		}
2298 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2299 	}
2300 }
2301 
ib_device_get_netdev(struct ib_device * ib_dev,u32 port)2302 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2303 					u32 port)
2304 {
2305 	struct ib_port_data *pdata;
2306 	struct net_device *res;
2307 
2308 	if (!rdma_is_port_valid(ib_dev, port))
2309 		return NULL;
2310 
2311 	if (!ib_dev->port_data)
2312 		return NULL;
2313 
2314 	pdata = &ib_dev->port_data[port];
2315 
2316 	/*
2317 	 * New drivers should use ib_device_set_netdev() not the legacy
2318 	 * get_netdev().
2319 	 */
2320 	if (ib_dev->ops.get_netdev)
2321 		res = ib_dev->ops.get_netdev(ib_dev, port);
2322 	else {
2323 		spin_lock(&pdata->netdev_lock);
2324 		res = rcu_dereference_protected(
2325 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2326 		dev_hold(res);
2327 		spin_unlock(&pdata->netdev_lock);
2328 	}
2329 
2330 	return res;
2331 }
2332 EXPORT_SYMBOL(ib_device_get_netdev);
2333 
2334 /**
2335  * ib_query_netdev_port - Query the port number of a net_device
2336  * associated with an ibdev
2337  * @ibdev: IB device
2338  * @ndev: Network device
2339  * @port: IB port the net_device is connected to
2340  */
ib_query_netdev_port(struct ib_device * ibdev,struct net_device * ndev,u32 * port)2341 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev,
2342 			 u32 *port)
2343 {
2344 	struct net_device *ib_ndev;
2345 	u32 port_num;
2346 
2347 	rdma_for_each_port(ibdev, port_num) {
2348 		ib_ndev = ib_device_get_netdev(ibdev, port_num);
2349 		if (ndev == ib_ndev) {
2350 			*port = port_num;
2351 			dev_put(ib_ndev);
2352 			return 0;
2353 		}
2354 		dev_put(ib_ndev);
2355 	}
2356 
2357 	return -ENOENT;
2358 }
2359 EXPORT_SYMBOL(ib_query_netdev_port);
2360 
2361 /**
2362  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2363  * @ndev: netdev to locate
2364  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2365  *
2366  * Find and hold an ib_device that is associated with a netdev via
2367  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2368  * returned pointer.
2369  */
ib_device_get_by_netdev(struct net_device * ndev,enum rdma_driver_id driver_id)2370 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2371 					  enum rdma_driver_id driver_id)
2372 {
2373 	struct ib_device *res = NULL;
2374 	struct ib_port_data *cur;
2375 
2376 	rcu_read_lock();
2377 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2378 				    (uintptr_t)ndev) {
2379 		if (rcu_access_pointer(cur->netdev) == ndev &&
2380 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2381 		     cur->ib_dev->ops.driver_id == driver_id) &&
2382 		    ib_device_try_get(cur->ib_dev)) {
2383 			res = cur->ib_dev;
2384 			break;
2385 		}
2386 	}
2387 	rcu_read_unlock();
2388 
2389 	return res;
2390 }
2391 EXPORT_SYMBOL(ib_device_get_by_netdev);
2392 
2393 /**
2394  * ib_enum_roce_netdev - enumerate all RoCE ports
2395  * @ib_dev : IB device we want to query
2396  * @filter: Should we call the callback?
2397  * @filter_cookie: Cookie passed to filter
2398  * @cb: Callback to call for each found RoCE ports
2399  * @cookie: Cookie passed back to the callback
2400  *
2401  * Enumerates all of the physical RoCE ports of ib_dev
2402  * which are related to netdevice and calls callback() on each
2403  * device for which filter() function returns non zero.
2404  */
ib_enum_roce_netdev(struct ib_device * ib_dev,roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2405 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2406 			 roce_netdev_filter filter,
2407 			 void *filter_cookie,
2408 			 roce_netdev_callback cb,
2409 			 void *cookie)
2410 {
2411 	u32 port;
2412 
2413 	rdma_for_each_port (ib_dev, port)
2414 		if (rdma_protocol_roce(ib_dev, port)) {
2415 			struct net_device *idev =
2416 				ib_device_get_netdev(ib_dev, port);
2417 
2418 			if (filter(ib_dev, port, idev, filter_cookie))
2419 				cb(ib_dev, port, idev, cookie);
2420 			dev_put(idev);
2421 		}
2422 }
2423 
2424 /**
2425  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2426  * @filter: Should we call the callback?
2427  * @filter_cookie: Cookie passed to filter
2428  * @cb: Callback to call for each found RoCE ports
2429  * @cookie: Cookie passed back to the callback
2430  *
2431  * Enumerates all RoCE devices' physical ports which are related
2432  * to netdevices and calls callback() on each device for which
2433  * filter() function returns non zero.
2434  */
ib_enum_all_roce_netdevs(roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2435 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2436 			      void *filter_cookie,
2437 			      roce_netdev_callback cb,
2438 			      void *cookie)
2439 {
2440 	struct ib_device *dev;
2441 	unsigned long index;
2442 
2443 	down_read(&devices_rwsem);
2444 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2445 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2446 	up_read(&devices_rwsem);
2447 }
2448 
2449 /*
2450  * ib_enum_all_devs - enumerate all ib_devices
2451  * @cb: Callback to call for each found ib_device
2452  *
2453  * Enumerates all ib_devices and calls callback() on each device.
2454  */
ib_enum_all_devs(nldev_callback nldev_cb,struct sk_buff * skb,struct netlink_callback * cb)2455 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2456 		     struct netlink_callback *cb)
2457 {
2458 	unsigned long index;
2459 	struct ib_device *dev;
2460 	unsigned int idx = 0;
2461 	int ret = 0;
2462 
2463 	down_read(&devices_rwsem);
2464 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2465 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2466 			continue;
2467 
2468 		ret = nldev_cb(dev, skb, cb, idx);
2469 		if (ret)
2470 			break;
2471 		idx++;
2472 	}
2473 	up_read(&devices_rwsem);
2474 	return ret;
2475 }
2476 
2477 /**
2478  * ib_query_pkey - Get P_Key table entry
2479  * @device:Device to query
2480  * @port_num:Port number to query
2481  * @index:P_Key table index to query
2482  * @pkey:Returned P_Key
2483  *
2484  * ib_query_pkey() fetches the specified P_Key table entry.
2485  */
ib_query_pkey(struct ib_device * device,u32 port_num,u16 index,u16 * pkey)2486 int ib_query_pkey(struct ib_device *device,
2487 		  u32 port_num, u16 index, u16 *pkey)
2488 {
2489 	if (!rdma_is_port_valid(device, port_num))
2490 		return -EINVAL;
2491 
2492 	if (!device->ops.query_pkey)
2493 		return -EOPNOTSUPP;
2494 
2495 	return device->ops.query_pkey(device, port_num, index, pkey);
2496 }
2497 EXPORT_SYMBOL(ib_query_pkey);
2498 
2499 /**
2500  * ib_modify_device - Change IB device attributes
2501  * @device:Device to modify
2502  * @device_modify_mask:Mask of attributes to change
2503  * @device_modify:New attribute values
2504  *
2505  * ib_modify_device() changes a device's attributes as specified by
2506  * the @device_modify_mask and @device_modify structure.
2507  */
ib_modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)2508 int ib_modify_device(struct ib_device *device,
2509 		     int device_modify_mask,
2510 		     struct ib_device_modify *device_modify)
2511 {
2512 	if (!device->ops.modify_device)
2513 		return -EOPNOTSUPP;
2514 
2515 	return device->ops.modify_device(device, device_modify_mask,
2516 					 device_modify);
2517 }
2518 EXPORT_SYMBOL(ib_modify_device);
2519 
2520 /**
2521  * ib_modify_port - Modifies the attributes for the specified port.
2522  * @device: The device to modify.
2523  * @port_num: The number of the port to modify.
2524  * @port_modify_mask: Mask used to specify which attributes of the port
2525  *   to change.
2526  * @port_modify: New attribute values for the port.
2527  *
2528  * ib_modify_port() changes a port's attributes as specified by the
2529  * @port_modify_mask and @port_modify structure.
2530  */
ib_modify_port(struct ib_device * device,u32 port_num,int port_modify_mask,struct ib_port_modify * port_modify)2531 int ib_modify_port(struct ib_device *device,
2532 		   u32 port_num, int port_modify_mask,
2533 		   struct ib_port_modify *port_modify)
2534 {
2535 	int rc;
2536 
2537 	if (!rdma_is_port_valid(device, port_num))
2538 		return -EINVAL;
2539 
2540 	if (device->ops.modify_port)
2541 		rc = device->ops.modify_port(device, port_num,
2542 					     port_modify_mask,
2543 					     port_modify);
2544 	else if (rdma_protocol_roce(device, port_num) &&
2545 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2546 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2547 		rc = 0;
2548 	else
2549 		rc = -EOPNOTSUPP;
2550 	return rc;
2551 }
2552 EXPORT_SYMBOL(ib_modify_port);
2553 
2554 /**
2555  * ib_find_gid - Returns the port number and GID table index where
2556  *   a specified GID value occurs. Its searches only for IB link layer.
2557  * @device: The device to query.
2558  * @gid: The GID value to search for.
2559  * @port_num: The port number of the device where the GID value was found.
2560  * @index: The index into the GID table where the GID was found.  This
2561  *   parameter may be NULL.
2562  */
ib_find_gid(struct ib_device * device,union ib_gid * gid,u32 * port_num,u16 * index)2563 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2564 		u32 *port_num, u16 *index)
2565 {
2566 	union ib_gid tmp_gid;
2567 	u32 port;
2568 	int ret, i;
2569 
2570 	rdma_for_each_port (device, port) {
2571 		if (!rdma_protocol_ib(device, port))
2572 			continue;
2573 
2574 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2575 		     ++i) {
2576 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2577 			if (ret)
2578 				continue;
2579 
2580 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2581 				*port_num = port;
2582 				if (index)
2583 					*index = i;
2584 				return 0;
2585 			}
2586 		}
2587 	}
2588 
2589 	return -ENOENT;
2590 }
2591 EXPORT_SYMBOL(ib_find_gid);
2592 
2593 /**
2594  * ib_find_pkey - Returns the PKey table index where a specified
2595  *   PKey value occurs.
2596  * @device: The device to query.
2597  * @port_num: The port number of the device to search for the PKey.
2598  * @pkey: The PKey value to search for.
2599  * @index: The index into the PKey table where the PKey was found.
2600  */
ib_find_pkey(struct ib_device * device,u32 port_num,u16 pkey,u16 * index)2601 int ib_find_pkey(struct ib_device *device,
2602 		 u32 port_num, u16 pkey, u16 *index)
2603 {
2604 	int ret, i;
2605 	u16 tmp_pkey;
2606 	int partial_ix = -1;
2607 
2608 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2609 	     ++i) {
2610 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2611 		if (ret)
2612 			return ret;
2613 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2614 			/* if there is full-member pkey take it.*/
2615 			if (tmp_pkey & 0x8000) {
2616 				*index = i;
2617 				return 0;
2618 			}
2619 			if (partial_ix < 0)
2620 				partial_ix = i;
2621 		}
2622 	}
2623 
2624 	/*no full-member, if exists take the limited*/
2625 	if (partial_ix >= 0) {
2626 		*index = partial_ix;
2627 		return 0;
2628 	}
2629 	return -ENOENT;
2630 }
2631 EXPORT_SYMBOL(ib_find_pkey);
2632 
2633 /**
2634  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2635  * for a received CM request
2636  * @dev:	An RDMA device on which the request has been received.
2637  * @port:	Port number on the RDMA device.
2638  * @pkey:	The Pkey the request came on.
2639  * @gid:	A GID that the net_dev uses to communicate.
2640  * @addr:	Contains the IP address that the request specified as its
2641  *		destination.
2642  *
2643  */
ib_get_net_dev_by_params(struct ib_device * dev,u32 port,u16 pkey,const union ib_gid * gid,const struct sockaddr * addr)2644 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2645 					    u32 port,
2646 					    u16 pkey,
2647 					    const union ib_gid *gid,
2648 					    const struct sockaddr *addr)
2649 {
2650 	struct net_device *net_dev = NULL;
2651 	unsigned long index;
2652 	void *client_data;
2653 
2654 	if (!rdma_protocol_ib(dev, port))
2655 		return NULL;
2656 
2657 	/*
2658 	 * Holding the read side guarantees that the client will not become
2659 	 * unregistered while we are calling get_net_dev_by_params()
2660 	 */
2661 	down_read(&dev->client_data_rwsem);
2662 	xan_for_each_marked (&dev->client_data, index, client_data,
2663 			     CLIENT_DATA_REGISTERED) {
2664 		struct ib_client *client = xa_load(&clients, index);
2665 
2666 		if (!client || !client->get_net_dev_by_params)
2667 			continue;
2668 
2669 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2670 							addr, client_data);
2671 		if (net_dev)
2672 			break;
2673 	}
2674 	up_read(&dev->client_data_rwsem);
2675 
2676 	return net_dev;
2677 }
2678 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2679 
ib_set_device_ops(struct ib_device * dev,const struct ib_device_ops * ops)2680 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2681 {
2682 	struct ib_device_ops *dev_ops = &dev->ops;
2683 #define SET_DEVICE_OP(ptr, name)                                               \
2684 	do {                                                                   \
2685 		if (ops->name)                                                 \
2686 			if (!((ptr)->name))				       \
2687 				(ptr)->name = ops->name;                       \
2688 	} while (0)
2689 
2690 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2691 
2692 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2693 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2694 			dev_ops->driver_id != ops->driver_id);
2695 		dev_ops->driver_id = ops->driver_id;
2696 	}
2697 	if (ops->owner) {
2698 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2699 		dev_ops->owner = ops->owner;
2700 	}
2701 	if (ops->uverbs_abi_ver)
2702 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2703 
2704 	dev_ops->uverbs_no_driver_id_binding |=
2705 		ops->uverbs_no_driver_id_binding;
2706 
2707 	SET_DEVICE_OP(dev_ops, add_gid);
2708 	SET_DEVICE_OP(dev_ops, add_sub_dev);
2709 	SET_DEVICE_OP(dev_ops, advise_mr);
2710 	SET_DEVICE_OP(dev_ops, alloc_dm);
2711 	SET_DEVICE_OP(dev_ops, alloc_dmah);
2712 	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2713 	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2714 	SET_DEVICE_OP(dev_ops, alloc_mr);
2715 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2716 	SET_DEVICE_OP(dev_ops, alloc_mw);
2717 	SET_DEVICE_OP(dev_ops, alloc_pd);
2718 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2719 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2720 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2721 	SET_DEVICE_OP(dev_ops, attach_mcast);
2722 	SET_DEVICE_OP(dev_ops, check_mr_status);
2723 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2724 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2725 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2726 	SET_DEVICE_OP(dev_ops, counter_init);
2727 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2728 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2729 	SET_DEVICE_OP(dev_ops, create_ah);
2730 	SET_DEVICE_OP(dev_ops, create_counters);
2731 	SET_DEVICE_OP(dev_ops, create_cq);
2732 	SET_DEVICE_OP(dev_ops, create_cq_umem);
2733 	SET_DEVICE_OP(dev_ops, create_flow);
2734 	SET_DEVICE_OP(dev_ops, create_qp);
2735 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2736 	SET_DEVICE_OP(dev_ops, create_srq);
2737 	SET_DEVICE_OP(dev_ops, create_user_ah);
2738 	SET_DEVICE_OP(dev_ops, create_wq);
2739 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2740 	SET_DEVICE_OP(dev_ops, dealloc_dmah);
2741 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2742 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2743 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2744 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2745 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2746 	SET_DEVICE_OP(dev_ops, del_gid);
2747 	SET_DEVICE_OP(dev_ops, del_sub_dev);
2748 	SET_DEVICE_OP(dev_ops, dereg_mr);
2749 	SET_DEVICE_OP(dev_ops, destroy_ah);
2750 	SET_DEVICE_OP(dev_ops, destroy_counters);
2751 	SET_DEVICE_OP(dev_ops, destroy_cq);
2752 	SET_DEVICE_OP(dev_ops, destroy_flow);
2753 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2754 	SET_DEVICE_OP(dev_ops, destroy_qp);
2755 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2756 	SET_DEVICE_OP(dev_ops, destroy_srq);
2757 	SET_DEVICE_OP(dev_ops, destroy_wq);
2758 	SET_DEVICE_OP(dev_ops, device_group);
2759 	SET_DEVICE_OP(dev_ops, detach_mcast);
2760 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2761 	SET_DEVICE_OP(dev_ops, drain_rq);
2762 	SET_DEVICE_OP(dev_ops, drain_sq);
2763 	SET_DEVICE_OP(dev_ops, enable_driver);
2764 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2765 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2766 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2767 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2768 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2769 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2770 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2771 	SET_DEVICE_OP(dev_ops, fill_res_srq_entry);
2772 	SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw);
2773 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2774 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2775 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2776 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2777 	SET_DEVICE_OP(dev_ops, get_link_layer);
2778 	SET_DEVICE_OP(dev_ops, get_netdev);
2779 	SET_DEVICE_OP(dev_ops, get_numa_node);
2780 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2781 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2782 	SET_DEVICE_OP(dev_ops, get_vf_config);
2783 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2784 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2785 	SET_DEVICE_OP(dev_ops, iw_accept);
2786 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2787 	SET_DEVICE_OP(dev_ops, iw_connect);
2788 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2789 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2790 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2791 	SET_DEVICE_OP(dev_ops, iw_reject);
2792 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2793 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2794 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2795 	SET_DEVICE_OP(dev_ops, mmap);
2796 	SET_DEVICE_OP(dev_ops, mmap_free);
2797 	SET_DEVICE_OP(dev_ops, modify_ah);
2798 	SET_DEVICE_OP(dev_ops, modify_cq);
2799 	SET_DEVICE_OP(dev_ops, modify_device);
2800 	SET_DEVICE_OP(dev_ops, modify_hw_stat);
2801 	SET_DEVICE_OP(dev_ops, modify_port);
2802 	SET_DEVICE_OP(dev_ops, modify_qp);
2803 	SET_DEVICE_OP(dev_ops, modify_srq);
2804 	SET_DEVICE_OP(dev_ops, modify_wq);
2805 	SET_DEVICE_OP(dev_ops, peek_cq);
2806 	SET_DEVICE_OP(dev_ops, pre_destroy_cq);
2807 	SET_DEVICE_OP(dev_ops, poll_cq);
2808 	SET_DEVICE_OP(dev_ops, port_groups);
2809 	SET_DEVICE_OP(dev_ops, post_destroy_cq);
2810 	SET_DEVICE_OP(dev_ops, post_recv);
2811 	SET_DEVICE_OP(dev_ops, post_send);
2812 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2813 	SET_DEVICE_OP(dev_ops, process_mad);
2814 	SET_DEVICE_OP(dev_ops, query_ah);
2815 	SET_DEVICE_OP(dev_ops, query_device);
2816 	SET_DEVICE_OP(dev_ops, query_gid);
2817 	SET_DEVICE_OP(dev_ops, query_pkey);
2818 	SET_DEVICE_OP(dev_ops, query_port);
2819 	SET_DEVICE_OP(dev_ops, query_qp);
2820 	SET_DEVICE_OP(dev_ops, query_srq);
2821 	SET_DEVICE_OP(dev_ops, query_ucontext);
2822 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2823 	SET_DEVICE_OP(dev_ops, read_counters);
2824 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2825 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2826 	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2827 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2828 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2829 	SET_DEVICE_OP(dev_ops, resize_cq);
2830 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2831 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2832 	SET_DEVICE_OP(dev_ops, ufile_hw_cleanup);
2833 	SET_DEVICE_OP(dev_ops, report_port_event);
2834 
2835 	SET_OBJ_SIZE(dev_ops, ib_ah);
2836 	SET_OBJ_SIZE(dev_ops, ib_counters);
2837 	SET_OBJ_SIZE(dev_ops, ib_cq);
2838 	SET_OBJ_SIZE(dev_ops, ib_dmah);
2839 	SET_OBJ_SIZE(dev_ops, ib_mw);
2840 	SET_OBJ_SIZE(dev_ops, ib_pd);
2841 	SET_OBJ_SIZE(dev_ops, ib_qp);
2842 	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2843 	SET_OBJ_SIZE(dev_ops, ib_srq);
2844 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2845 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2846 	SET_OBJ_SIZE(dev_ops, rdma_counter);
2847 }
2848 EXPORT_SYMBOL(ib_set_device_ops);
2849 
ib_add_sub_device(struct ib_device * parent,enum rdma_nl_dev_type type,const char * name)2850 int ib_add_sub_device(struct ib_device *parent,
2851 		      enum rdma_nl_dev_type type,
2852 		      const char *name)
2853 {
2854 	struct ib_device *sub;
2855 	int ret = 0;
2856 
2857 	if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev)
2858 		return -EOPNOTSUPP;
2859 
2860 	if (!ib_device_try_get(parent))
2861 		return -EINVAL;
2862 
2863 	sub = parent->ops.add_sub_dev(parent, type, name);
2864 	if (IS_ERR(sub)) {
2865 		ib_device_put(parent);
2866 		return PTR_ERR(sub);
2867 	}
2868 
2869 	sub->type = type;
2870 	sub->parent = parent;
2871 
2872 	mutex_lock(&parent->subdev_lock);
2873 	list_add_tail(&parent->subdev_list_head, &sub->subdev_list);
2874 	mutex_unlock(&parent->subdev_lock);
2875 
2876 	return ret;
2877 }
2878 EXPORT_SYMBOL(ib_add_sub_device);
2879 
ib_del_sub_device_and_put(struct ib_device * sub)2880 int ib_del_sub_device_and_put(struct ib_device *sub)
2881 {
2882 	struct ib_device *parent = sub->parent;
2883 
2884 	if (!parent)
2885 		return -EOPNOTSUPP;
2886 
2887 	mutex_lock(&parent->subdev_lock);
2888 	list_del(&sub->subdev_list);
2889 	mutex_unlock(&parent->subdev_lock);
2890 
2891 	ib_device_put(sub);
2892 	parent->ops.del_sub_dev(sub);
2893 	ib_device_put(parent);
2894 
2895 	return 0;
2896 }
2897 EXPORT_SYMBOL(ib_del_sub_device_and_put);
2898 
2899 #ifdef CONFIG_INFINIBAND_VIRT_DMA
ib_dma_virt_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents)2900 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2901 {
2902 	struct scatterlist *s;
2903 	int i;
2904 
2905 	for_each_sg(sg, s, nents, i) {
2906 		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2907 		sg_dma_len(s) = s->length;
2908 	}
2909 	return nents;
2910 }
2911 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2912 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2913 
2914 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2915 	[RDMA_NL_LS_OP_RESOLVE] = {
2916 		.doit = ib_nl_handle_resolve_resp,
2917 		.flags = RDMA_NL_ADMIN_PERM,
2918 	},
2919 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2920 		.doit = ib_nl_handle_set_timeout,
2921 		.flags = RDMA_NL_ADMIN_PERM,
2922 	},
2923 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2924 		.doit = ib_nl_handle_ip_res_resp,
2925 		.flags = RDMA_NL_ADMIN_PERM,
2926 	},
2927 };
2928 
ib_dispatch_port_state_event(struct ib_device * ibdev,struct net_device * ndev)2929 void ib_dispatch_port_state_event(struct ib_device *ibdev, struct net_device *ndev)
2930 {
2931 	enum ib_port_state curr_state;
2932 	struct ib_event ibevent = {};
2933 	u32 port;
2934 
2935 	if (ib_query_netdev_port(ibdev, ndev, &port))
2936 		return;
2937 
2938 	curr_state = ib_get_curr_port_state(ndev);
2939 
2940 	write_lock_irq(&ibdev->cache_lock);
2941 	if (ibdev->port_data[port].cache.last_port_state == curr_state) {
2942 		write_unlock_irq(&ibdev->cache_lock);
2943 		return;
2944 	}
2945 	ibdev->port_data[port].cache.last_port_state = curr_state;
2946 	write_unlock_irq(&ibdev->cache_lock);
2947 
2948 	ibevent.event = (curr_state == IB_PORT_DOWN) ?
2949 					IB_EVENT_PORT_ERR : IB_EVENT_PORT_ACTIVE;
2950 	ibevent.device = ibdev;
2951 	ibevent.element.port_num = port;
2952 	ib_dispatch_event(&ibevent);
2953 }
2954 EXPORT_SYMBOL(ib_dispatch_port_state_event);
2955 
handle_port_event(struct net_device * ndev,unsigned long event)2956 static void handle_port_event(struct net_device *ndev, unsigned long event)
2957 {
2958 	struct ib_device *ibdev;
2959 
2960 	/* Currently, link events in bonding scenarios are still
2961 	 * reported by drivers that support bonding.
2962 	 */
2963 	if (netif_is_lag_master(ndev) || netif_is_lag_port(ndev))
2964 		return;
2965 
2966 	ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN);
2967 	if (!ibdev)
2968 		return;
2969 
2970 	if (ibdev->ops.report_port_event) {
2971 		ibdev->ops.report_port_event(ibdev, ndev, event);
2972 		goto put_ibdev;
2973 	}
2974 
2975 	ib_dispatch_port_state_event(ibdev, ndev);
2976 
2977 put_ibdev:
2978 	ib_device_put(ibdev);
2979 };
2980 
ib_netdevice_event(struct notifier_block * this,unsigned long event,void * ptr)2981 static int ib_netdevice_event(struct notifier_block *this,
2982 			      unsigned long event, void *ptr)
2983 {
2984 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
2985 	struct ib_device *ibdev;
2986 	u32 port;
2987 
2988 	switch (event) {
2989 	case NETDEV_CHANGENAME:
2990 		ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN);
2991 		if (!ibdev)
2992 			return NOTIFY_DONE;
2993 
2994 		if (ib_query_netdev_port(ibdev, ndev, &port)) {
2995 			ib_device_put(ibdev);
2996 			break;
2997 		}
2998 
2999 		rdma_nl_notify_event(ibdev, port, RDMA_NETDEV_RENAME_EVENT);
3000 		ib_device_put(ibdev);
3001 		break;
3002 
3003 	case NETDEV_UP:
3004 	case NETDEV_CHANGE:
3005 	case NETDEV_DOWN:
3006 		handle_port_event(ndev, event);
3007 		break;
3008 
3009 	default:
3010 		break;
3011 	}
3012 
3013 	return NOTIFY_DONE;
3014 }
3015 
3016 static struct notifier_block nb_netdevice = {
3017 	.notifier_call = ib_netdevice_event,
3018 };
3019 
ib_core_init(void)3020 static int __init ib_core_init(void)
3021 {
3022 	int ret = -ENOMEM;
3023 
3024 	ib_wq = alloc_workqueue("infiniband", 0, 0);
3025 	if (!ib_wq)
3026 		return -ENOMEM;
3027 
3028 	ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
3029 				      WQ_UNBOUND_MAX_ACTIVE);
3030 	if (!ib_unreg_wq)
3031 		goto err;
3032 
3033 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
3034 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3035 	if (!ib_comp_wq)
3036 		goto err_unbound;
3037 
3038 	ib_comp_unbound_wq =
3039 		alloc_workqueue("ib-comp-unb-wq",
3040 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
3041 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
3042 	if (!ib_comp_unbound_wq)
3043 		goto err_comp;
3044 
3045 	ret = class_register(&ib_class);
3046 	if (ret) {
3047 		pr_warn("Couldn't create InfiniBand device class\n");
3048 		goto err_comp_unbound;
3049 	}
3050 
3051 	rdma_nl_init();
3052 
3053 	ret = addr_init();
3054 	if (ret) {
3055 		pr_warn("Couldn't init IB address resolution\n");
3056 		goto err_ibnl;
3057 	}
3058 
3059 	ret = ib_mad_init();
3060 	if (ret) {
3061 		pr_warn("Couldn't init IB MAD\n");
3062 		goto err_addr;
3063 	}
3064 
3065 	ret = ib_sa_init();
3066 	if (ret) {
3067 		pr_warn("Couldn't init SA\n");
3068 		goto err_mad;
3069 	}
3070 
3071 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
3072 	if (ret) {
3073 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
3074 		goto err_sa;
3075 	}
3076 
3077 	ret = register_pernet_device(&rdma_dev_net_ops);
3078 	if (ret) {
3079 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
3080 		goto err_compat;
3081 	}
3082 
3083 	nldev_init();
3084 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
3085 	ret = roce_gid_mgmt_init();
3086 	if (ret) {
3087 		pr_warn("Couldn't init RoCE GID management\n");
3088 		goto err_parent;
3089 	}
3090 
3091 	register_netdevice_notifier(&nb_netdevice);
3092 
3093 	return 0;
3094 
3095 err_parent:
3096 	rdma_nl_unregister(RDMA_NL_LS);
3097 	nldev_exit();
3098 	unregister_pernet_device(&rdma_dev_net_ops);
3099 err_compat:
3100 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
3101 err_sa:
3102 	ib_sa_cleanup();
3103 err_mad:
3104 	ib_mad_cleanup();
3105 err_addr:
3106 	addr_cleanup();
3107 err_ibnl:
3108 	class_unregister(&ib_class);
3109 err_comp_unbound:
3110 	destroy_workqueue(ib_comp_unbound_wq);
3111 err_comp:
3112 	destroy_workqueue(ib_comp_wq);
3113 err_unbound:
3114 	destroy_workqueue(ib_unreg_wq);
3115 err:
3116 	destroy_workqueue(ib_wq);
3117 	return ret;
3118 }
3119 
ib_core_cleanup(void)3120 static void __exit ib_core_cleanup(void)
3121 {
3122 	unregister_netdevice_notifier(&nb_netdevice);
3123 	roce_gid_mgmt_cleanup();
3124 	rdma_nl_unregister(RDMA_NL_LS);
3125 	nldev_exit();
3126 	unregister_pernet_device(&rdma_dev_net_ops);
3127 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
3128 	ib_sa_cleanup();
3129 	ib_mad_cleanup();
3130 	addr_cleanup();
3131 	rdma_nl_exit();
3132 	class_unregister(&ib_class);
3133 	destroy_workqueue(ib_comp_unbound_wq);
3134 	destroy_workqueue(ib_comp_wq);
3135 	/* Make sure that any pending umem accounting work is done. */
3136 	destroy_workqueue(ib_wq);
3137 	destroy_workqueue(ib_unreg_wq);
3138 	WARN_ON(!xa_empty(&clients));
3139 	WARN_ON(!xa_empty(&devices));
3140 }
3141 
3142 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
3143 
3144 /* ib core relies on netdev stack to first register net_ns_type_operations
3145  * ns kobject type before ib_core initialization.
3146  */
3147 fs_initcall(ib_core_init);
3148 module_exit(ib_core_cleanup);
3149